
 1

Incorporating remote sensing-based ET estimates into Community Land 1 

Model version 4.5 2 

 3 

Dagang Wang1, 2, 3, 4*, Guiling Wang4*, Dana T. Parr4, Weilin Liao1, 2, Youlong Xia5, Congsheng 4 

Fu4 5 

 6 

1 School of Geography and Planning, Sun Yat-sen University, Guangzhou, China 7 

2 Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, 8 

Guangzhou, China 9 

3 Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High 10 

Education Institute, Sun Yat-sen University, Guangzhou, P.R. China 11 

4 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, USA 12 

5 National Centers for Environmental Prediction/Environmental Modeling Center, and I. M. 13 

System Group at NCEP/EMC, College Park, Maryland, USA  14 

 15 

Submitted to special issue of Hydrology and Earth System Sciences: Observations and modeling 16 

of land surface water and energy exchanges across scales, in Honor of Eric F. Wood 17 

Revised June, 2017 18 

 19 

*Corresponding authors: Dr. Dagang Wang, School of Geography Science and Planning, Sun 20 

Yat-sen University, Guangzhou, P. R. China 510275, wangdag@mail.sysu.edu.cn, (86) 21 

2084114575. Dr. Guiling Wang, Department of Civil and Environmental Engineering, 22 

University of Connecticut, Storrs, USA, guiling.wang@uconn.edu 23 



 2

Abstract 24 

Land surface models bear substantial biases in simulating surface water and energy budgets 25 

despite the continuous development and improvement of model parameterizations. To reduce 26 

model biases, Parr et al. (2015) proposed a method incorporating satellite-based evapotranspiration 27 

(ET) products into land surface models. Here we apply this bias correction method to the 28 

Community Land Model version 4.5 (CLM4.5) and test its performance over the conterminous US 29 

(CONUS). We first calibrate a relationship between the observational ET from the Global Land 30 

Evaporation Amsterdam Model (GLEAM) product and the model ET from CLM4.5, and assume 31 

that this relationship holds beyond the calibration period. During the validation or application 32 

period, a simulation using the default CLM4.5 (“CLM”) is conducted first, and its output is 33 

combined with the calibrated observational-vs-model ET relationship to derive a corrected ET; an 34 

experiment (“CLMET”) is then conducted in which the model-generated ET is overwritten with 35 

the corrected ET. Using the observations of ET, runoff, and soil moisture content as benchmarks, 36 

we demonstrate that CLMET greatly improves the hydrological simulations over most of CONUS, 37 

and the improvement is stronger in the eastern CONUS than the west and is the strongest over the 38 

southeast CONUS. For any specific region, the degree of the improvement depends on whether 39 

the relationship between observational and model ET remains time-invariant (a fundamental 40 

hypothesis of the Parr et al. method) and whether water is the limiting factor in places where ET 41 

is underestimated. While the bias correction method improves hydrological estimates without 42 

improving the physical parameterization of land surface models, results from this study does 43 

provide guidance for physically based model development effort.  44 

 45 
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1. Introduction 47 

Land surface models are widely used tools in simulating and predicting the Earth’s water and 48 

energy budgets over a wide range of spatiotemporal scales (Rodell et al., 2004, Haddeland et al. 49 

2011, Getirana, 2014, Xia et al. 2012a, b, Xia et al. 2016a, b). For example, the Global Land Data 50 

Assimilation System (GLDAS) was designed to simulate the terrestrial water and energy budgets 51 

over the globe using multiple land surface models (Rodell et al., 2004); and its regional counterpart, 52 

the North America Land Data Assimilation System (NLDAS), utilizes four land surface models 53 

and focuses on the conterminous United States at a much higher resolution (Rodell et al., 2004, 54 

Xia et al. 2012a, b). Products from these two operational systems have been widely used in 55 

estimating terrestrial water storage changes (Syed et al. 2008), investigating land-atmosphere 56 

coupling strength (Spennemann and Saulo, 2015), analyzing soil moisture variability (Cheng et al. 57 

2015), studying the impact of soil moisture on dust outbreaks (Kim and Choi 2015), and improving 58 

data quality of in-situ soil moisture observations (Dorigo et al. 2013, Xia et al. 2015). These model-59 

based estimates of land surface fluxes and state variables are considered important surrogate for 60 

observations, as observational data for some components of the global water and energy cycles are 61 

scarce in many regions of the world, and lack spatial and temporal continuity where they do exist. 62 

However, land surface models are subject to large uncertainties. Haddeland et al. (2011) compared 63 

eleven models in simulating evapotranspiration (ET), and found that the global ET on land surface 64 

ranges from 415 to 586 mm year-1 and the runoff ranges from 290 to 457 mm year-1. Xia et al. 65 

(2012a-b, 2016a-b) documented large disparity among the four models in NLDAS phase 2 66 

(NLDAS-2) at both the continental and basin scales. The Mosaic and Sacramento Soil Moisture 67 

Accounting (SAC-SMA) models tend to overestimate ET, whereas the Noah and Variable 68 

Infiltration Capacity (VIC) models tend to underestimate ET. 69 
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Great efforts have been made to improve model performance over the years, through enhancing 70 

both the model parameterization of land surface processes and the model input data.  For instance, 71 

during the past ten years, the Community Land Model (CLM) has been upgraded from version 2 72 

to version 4.5 (Bonan et al. 2002, Oleson et al. 2008, 2013), accompanied by increasingly accurate 73 

and high resolution surface datasets (Lawrence et al. 2011). Comparison with observations of 74 

runoff, evapotranspiration, and total water storage demonstrated continuous improvement of the 75 

model performance (Lawrence et al. 2011). The Noah model is another example of continuous 76 

upgrade from its original version since 1980s (Mahrt et al. 1984). Recent model developments 77 

were on vegetation canopy energy balance, the layered snowpack, frozen soil and infiltration, soil 78 

moisture-groundwater interaction and related runoff production, and vegetation phenology (Niu et 79 

al. 2011).  Despite the improved understanding and parameterization of physical processes and 80 

better input data, substantial model biases remain (e.g., Parr et al. 2016, Wang et al. 2016).  81 

Another approach to improving model simulations or predictions is through data assimilation, 82 

by merging observational data and land surface models to obtain optimal estimates for next time 83 

step. Fusing soil moisture observations into land surface models is a typical practice in land data 84 

assimilation, and it has been reported that data assimilation of soil moisture helped in reducing 85 

model biases (Reichle and Koster 2005, Kumar et al. 2008, Yin et al. 2015). However, data 86 

assimilation is a computationally intensive task, especially when implementing a multi-model 87 

ensemble approach. Moreover, data assimilation approach is not applicable to future prediction. 88 

Parr et al. (2015) proposed an alternative approach to reducing model biases, and applied it to the 89 

Variable Infiltration Capacity (VIC) model over the Connecticut River Basin for both historical 90 

simulations and future projections. The Parr et al. (2015) approach assumes that the relationship 91 

between the model evapotranspiration (ET) and observational ET remain unchanged from one 92 
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period to another, and hence the relationship estimated from the calibration period can be used to 93 

correct ET biases and their effects on other variables for any period, historically or in the future. 94 

When applied to VIC over the Connecticut River Basin, Parr et al. (2015) found that the ET bias 95 

correction approach significantly reduces systematic biases in the estimates of both historical ET 96 

and historical river flow, and qualitatively influences the projected future changes in drought and 97 

flood risks. 98 

To establish the robustness of the Parr et al. (2015) method, it needs to be evaluated over 99 

different regions and different climate regimes based on different models. In this study, we 100 

implement the Parr et al. (2015) approach for CLM4.5 and evaluate its performance over the whole 101 

conterminous United States (CONUS). The land surface model, study area, and the bias correction 102 

method are introduced in Section 2. The data for model calibration and validation, including 103 

datasets of ET, runoff, soil moisture, are described in Section 3. Section 4 presents the calibration 104 

and validation results. Finally, the main findings are summarized and discussed in Section 5. 105 

2 Model and Methodology 106 

2.1 Model and Forcing Data 107 

CLM4.5 (Oleson et al. 2013) in its offline mode with the prescribed vegetation phenology is 108 

used in this study. The land surface datasets used in CLM4.5 were derived from different sources. The 109 

soil texture data were taken from Bonan et al. (2012), which was generated using the International 110 

Geopshere-Biosphere Programme soil data (Global Soil Data Task, 2000). Both the percentage of plant 111 

functional types (PFTs) and the leaf area index within each grid cell were derived from Moderate 112 

Resolution Imaging Spectroradiometer (MODIS) satellite data (Lawrence et al. 2011). Slope and 113 

elevation were obtained from the U.S. Geological Survey HYDRO1K 1 km data set (Verdin and 114 

Greenlee, 1996). Parr et al. (2016) found that CLM4.5 can realistically capture the overall spatial 115 
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pattern of ET in CONUS when the model is forced by the NLDAS-2 meteorological variables. 116 

The spatial correlation coefficients between the simulated annual ET and the FLUXNET-MTE 117 

(model tree ensemble) ET are as high as 0.93. Wang et al. (2016), using multiple atmospheric 118 

forcing datasets, also reported that CLM4.5 can reasonably reproduce the large-scale patterns of 119 

runoff and ET. In this study CLM4.5 is forced by the NLDAS-2 meteorological forcing (Xia et al., 120 

2012a). The NLDAS-2 forcing is available during 1979-present at hourly resolution on a 0.125° 121 

grid system, but is aggregated to a 0.25° resolution in this study as the driving forcing for CLM4.5. 122 

CONUS is chosen as the study domain over the globe for the high quality of atmospheric forcing 123 

data in this region. 124 

2.2 Methodology 125 

The division of CONUS into Northwest, Southwest, Northeast, and Southeast, which is 126 

based on the 40°N latitude line and the 98°W longitude line, was defined by Lohmann et al. (2004). 127 

This division was later adopted by Xia et al. (2012a) and Tian et al. (2014) when land surface 128 

models were evaluated over CONUS. We follow this division in this study, as shown in Figure 1a. 129 

Although land surface models are capable of capturing the large-scale pattern of ET, 130 

significant biases were found at finer spatiotemporal scales (Parr et al. 2015, 2016, and Wang et 131 

al. 2016), which propagate to influence other components of the hydrological cycle including 132 

runoff and soil moisture (Parr et al. 2015). Following Parr et al. (2015), we derived the climatology 133 

of modeled ET for each model grid cell and for each month based on a simulation during the 134 

calibration period and climatology of observational ET from satellite-based ET data at the same 135 

spatiotemporal resolution during the same period, and estimate the scaling factor between 136 

observational ET and the model ET. This scaling factor, which has its unique spatial variability 137 

and seasonal cycle, is assumed to be time-invariant at the inter-annual and longer time scales. To 138 
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correct the ET biases in model simulations during any period, two types of simulations are 139 

conducted sequentially. In the first type of simulation, named as CLM, we run the default CLM4.5 140 

and save the output for three components of ET, i.e., interception loss, plant transpiration, and soil 141 

evaporation, at the PFT level for every time step. The corrected interception loss, plant 142 

transpiration, and soil evaporation are then derived by multiplying the simulated values with the 143 

ET scaling factor, and will be used as the input for the second type of simulation, named as CLMET. 144 

In CLMET, we re-run CLM4.5 for the same period as in the first type, but overwrite the three ET 145 

components simulated by the model with the corrected values. Since ET simulations affect the 146 

partitioning of precipitation between ET and runoff, the bias correction in ET is expected to have 147 

direct positive impact on runoff generation and therefore soil moisture.  148 

In this study, we use 1986-1995 as the calibration period and 2000-2014 as the validation 149 

period. The simulations during the calibration period are obtained from a 16-year (1980-1995) 150 

CLM run with the first 6-year run disregarded as the spinup. Both CLM and CLMET runs during 151 

the validation period starts with the initial condition of January 1st 1996 obtained from the 152 

calibration period. The time step for both CLM and CLMET runs is one hour. Since the overwriting 153 

process in CLMET may break the water balance, the model checks whether the amount of water 154 

stored in vegetation canopy is sufficient to sustain the interception loss and whether the surface 155 

soil water storage is sufficient to sustain soil evaporation through the model time step. If not, the 156 

interception loss (soil evaporation) rate is set to be equal to the water available in vegetation canopy 157 

(soil) divided by the model time step. This adjustment minimizes the imbalance caused by 158 

overwriting ET components in CLMET. 159 
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In this study, the statistics Bias, Relative bias, and root mean square error (RMSE) are used 160 

to validate models in reproducing the spatial pattern against the reference dataset. They are defined 161 

as: 162 
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Where N is the total number of grid cells, and iS ( iR ) are the temporal average of model 167 

simulated (reference) value for grid cell i, which is calculated as: 168 
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Where Si,j (Ri,j) is model simulated (reference) value at time j and grid cell i, M is the total 171 

number of time points. The statistic RMSE is also used to validate models in reproducing time 172 

series where M becomes the total number of grid cells and N the total number of time points. 173 

3 Data 174 

3.1 ET 175 

3.1.1 GLEAM ET 176 

GLEAM (The Global Land Evaporation Amsterdam Model) version 3.0a (Miralles et al. 177 

2011, Martens et al. 2016) is used to calibrate the ET scaling factors and to validate CLM and 178 
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CLMET. As such we assume full trust in the GLEAM evaporation data with the bias correction 179 

method. GLEAM 3.0a was derived based on reanalysis net radiation and air temperature, a 180 

combination of gauge-based, reanalysis and satellite-based precipitation and satellite-based 181 

vegetation optical depth, spanning the 35-year period 1980–2014 (http://www.gleam.eu/). 182 

Potential evaporation in GLEAM 3.0a was calculated using a Priestley and Taylor equation based 183 

on surface net radiation and near-surface air temperature, and was converted to actual evaporation 184 

using the multiplicative evaporative stress factor. The dataset has been used in studying soil 185 

moisture-temperature coupling (Miralles et al. 2012), the impact of land surface on precipitation 186 

(Guillod et al. 2015), and the climate control on land surface evaporation (Miralles et al., 2014). 187 

Recent evaluations conducted at both flux tower site and global scales show that GLEAM-based 188 

ET is superior to MODIS-based and the Surface Energy Balance System (SEBS) based ET 189 

products (Michel et al. 2016, Miralles et al. 2016). The spatial resolution of GLEAM dataset is 190 

0.25°, which is consistent with the resolution of CLM4.5 used in this study. The temporal 191 

resolution of GLEAM dataset is daily, and the monthly aggregated ET is used to derive the scaling 192 

factors. 193 

3.1.2 MODIS and FLUXNET-MTE ET 194 

Two other gridded ET products are used for independent evaluations: MODIS ET and 195 

FLUXNET-MTE (model tree ensemble) ET. Mu et al. (2007, 2011) produced a MODIS-based 196 

global ET dataset using a revised Penman–Monteith (PM) equation. The dataset is arguably the 197 

most widely used remote sensing-based global ET product (Miralles et al. 2016). Monthly version 198 

of the MODIS-based product at the 0.5° spatial resolution are used to validate the model with the 199 

bias correction method. The FLUXNET-MTE global ET dataset was derived from 253 FLUXNET 200 

eddy covariance towers distributed over the globe using the model tree ensemble (MTE) approach 201 
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(Jung et al., 2009, 2010). The record gaps of half hourly eddy covariance fluxes were filled first, 202 

and the complete tower-based dataset was then used to train MTE to produce monthly global ET 203 

dataset at the 0.5° spatial resolution. The data have been used to study the ET trend (Jung et al., 204 

2010) and to improve canopy processes in a land surface model (Bonan et al., 2011). As 205 

FLUXNET sites over the CONUS are fairly dense, the quality of the FLUXNET-MTE dataset in 206 

our study domain is expected to be good. The MODIS dataset is available for 2000-2014, and the 207 

FLUXNET-MTE dataset is available for 1982-2011. We chose the overlap period of these two 208 

products, 2000-2011, for model validations using MODIS and FLUXNET-MTE dataset. 209 

3.1.3 Flux Tower ET 210 

ET observations (in energy unit) at 16 sites from the AmeriFlux network are used to 211 

validate the model on the grid cell scale (Figure 1b). Those sites span four sub-regions (i.e., NW, 212 

SW, NE, and SW) of CONUS with five different vegetation types (i.e., grass, crop, evergreen 213 

needleleaf forest, mixed forest, and deciduous broadleaf forest). More details about these flux 214 

tower sites can be found in Xia et al. (2015b). For most sites, the year of 2005 is selected for 215 

validation because data for this year has the least amount of missing records; three sites are 216 

exceptions due to data availability: 2002 for the site of Sylvania Wilderness, 2004 for the sites of 217 

Donaldson and Walnut River. Both daily and monthly ET observations at these 16 sites are 218 

compared with model simulations. 219 

3.2 Observation-based Runoff Coefficient 220 

The runoff coefficient (the ratio of runoff to precipitation) of Global Streamflow 221 

Characteristics Dataset (GSCD) version 1.9 (Beck et al., 2013, Beck et al., 2015) is used to evaluate 222 

the model performance in simulating runoff. The GSCD dataset was produced based on 223 

streamflow observations from approximately 7500 catchments over the globe. A data-driven 224 
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approach was adopted to derive the gridded streamflow characteristics at the 0.125° resolution on 225 

a global scale. This dataset is relatively reliable for the grid cells within which a large number of 226 

catchments data is used. The uncertainty is low in North America, Europe, and southeastern 227 

Australia where a large number of observations are available. 228 

3.3 In-situ soil moisture observations 229 

The North American Soil Moisture Database (NASMD) is used to evaluate the model 230 

performance in simulating soil moisture in both the surface (0-10cm) and root-zone (0-100cm) 231 

layers.  NASMD was initiated in 2011 to provide support for developing climate forecasting tools, 232 

calibrating land surface models, and validating satellite-derived soil moisture algorithms. A 233 

homogenized procedure has been implemented, as the measurement stations are across a variety 234 

of in-situ networks. In addition, a quality control (QC) algorithm was applied to the measurement 235 

records (Xia et al., 2015; Liao et al., submitted to Journal of Hydrometeorology, 2017). The in-236 

situ observations in Alabama (AL), Illinois (IL), Mississippi (MS), Nebraska (NE), and Oklahoma 237 

(OK) from 2006-2010 are selected from NASMD (Figure 1a). A large number of stations is evenly 238 

distributed over these states and observation records during this period are relatively complete 239 

after QC. The numbers of stations in AL, IL, MS, NE, and OK are 10, 19, 14, 45, 105, and 39, 240 

respectively. Since the soil layer where measurement was taken varies with stations, we linearly 241 

interpolate the volumetric soil water content to the 5 cm and 50 cm depth for all stations to compare 242 

with the modeled soil moisture for the 0-10 cm and 0-100 cm layers. 243 

4 Results 244 

4.1 Calibration of ET Scaling Factor 245 

Figure 2 shows the climatological scaling factors for each month over CONUS based on 246 

the 1986-1995 period. The GLEAM-derived dew and the CLM simulated dew is not consistent in 247 
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some areas of northwest CONUS. If that happens, the scaling factors became negative, because 248 

ET is negative for one and positive for the other. We did not scale ET when the scaling factor is 249 

negative, and those areas are masked out in Figure 2. This treatment (scaling in some months and 250 

no scaling in other months) may introduce a seasonal bias correction effect in these areas. The 251 

model simulations generally agree better with GLEAM estimations during the warm seasons, 252 

whereas the difference between simulations and GLEAM estimations remains large during the 253 

cold seasons. The scaling factors greatly vary with region. For instance, the area-averaged scaling 254 

factors for November are 0.34, 0.58, 0.28, and 0.52 for Northwest, Southwest, Northeast, and 255 

Southeast, respectively. The overestimation is overwhelming during October, November, 256 

December, and January, whereas underestimation occurs in many areas during March, April, and 257 

May. The overestimation is especially severe over the Northeast CONUS where simulated ET is 258 

almost five times of GLEAM estimate in December. 259 

4.2 Evaluation 260 

We evaluate the effectiveness of the ET bias correction approach in CLM4.5 by comparing 261 

results from CLM and CLMET with the reference dataset. The evaluation metrics examined 262 

include bias, relative bias, and root mean square error (RMSE) as described in Section 2.2. Since 263 

the spatial resolution of some gridded reference data is not consistent with the model resolution, 264 

we upscale the finer resolution data to match the coarser resolution data using simple 265 

arithmetic averages.  For example, when the MODIS and FLUXNET-MTE ET are used for 266 

validation, we average ET from the four 0.25° model grid cell within each 0.5° observational grid 267 

cell; for the GSCD runoff data, we aggregate observations from 0.125° to 0.25° to match the model 268 

resolution. As in-situ soil moisture observations are technically at the point scale, we spatially 269 
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average observed soil moisture in each state and compare the averaged observations with the model 270 

simulations averaged across grid cells within the same state. 271 

4.2.1 ET 272 

Figure 3 shows the multi-year averages (2000-2014) of ET derived from GLEAM, 273 

simulated by CLM and CLMET, and the relative bias of simulations against GLEAM. Over most 274 

of CONUS, CLM overestimates ET and CLMET reduces ET as well as ET biases relative to 275 

GLEAM data. The averaged relative bias in CLM over CONUS is 10.8%, with relative bias 276 

exceeding 10% in a substantial portion of CONUS; and in CLMET, the CONUS-averaged relative 277 

bias is reduced to -0.1%, and it is within 10% over most of CONUS. This improvement is more 278 

significant over eastern CONUS than western CONUS. Table 1 shows the statistics on the model 279 

performance with these two schemes during different seasons and in four sub regions. CLM 280 

overestimates the CONUS-averaged ET in all other seasons except for March-April-May (MAM), 281 

and the largest overestimation occurs in Northeast CONUS during December-January-February 282 

(DJF) with a relative bias as large as 146.4%. The underestimation in MAM is largest over 283 

Southwest CONUS with a relative bias of -17.9%. CLMET substantially improves the model 284 

performance as indicated by the various metrics. All the statistics in CLMET are superior to those 285 

in CLM with a few exceptions in bias or relative bias. The improvement from CLM to CLMET is 286 

more substantial for September-October-November (SON) and DJF than MAM and June-July-287 

August (JJA). The relative bias of 51% (77.7%) in CLM is reduced to 7.8% (18.9%) in CLMET 288 

over CONUS during SON (DJF). For the regional average, the improvement is greatest over 289 

Southeast CONUS. All the positive biases in all seasons over Southeast CONUS are substantially 290 

reduced. 291 
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  To understand the differences between CLM and CLMET, we select four months 292 

representing each of the four seasons, January, April, July, and November, to examine the 293 

relationship between the relative bias of model simulations and the scaling factor changes from 294 

calibration period (1986-1995) to validation period (2000-2014) in Figure 4. The improvement 295 

from CLM to CLMET is evident, especially in January and November (Figure 4a-4b). Although 296 

the bias is dramatically reduced in CLMET, it remains large in Northeast CONUS in January 297 

(Figure 4b1). In addition, the bias in CLMET appears larger in western CONUS than eastern 298 

CONUS (Figure 4b). The spatial patterns of the relative biases in CLMET and the scaling factor 299 

differences between the two periods demonstrate a great degree of similarity (Figure 4b-4c), and 300 

the scatter plots between the two quantities (Figure 4d) reflect a strong correlation. Not surprisingly, 301 

the degree to which CLMET can improve model performance in simulating ET greatly depends 302 

on how stable the scaling factor is from the calibration period to the validation period, i.e., how 303 

well the assumption of a time-invariant scaling relationship holds. Over most of CONUS, changes 304 

in the scaling factor are within 10% (Figure 4d). This temporal stability of the relationship between 305 

observed ET and simulations guarantees improvements from CLM to CLMET. 306 

CLM and CLMET performances are also evaluated using two independent observation 307 

datasets of ET, MODIS-based and FLUXNET-MTE-based ET (Figure 5, Tables 2 and 3). For the 308 

multi-year averaged ET, the relative bias in CLMET is smaller than that in CLM, and the 309 

improvement is greater in eastern CONUS than western CONUS as compared with either MODIS- 310 

or FLUXNET-MTE-based ET. Note that there is still a substantial overestimation in western 311 

CONUS in CLMET compared with the MODIS ET. With the reference of the MODIS or 312 

FLUXNET-MTE ET, CLMET corrects bias for all other three seasons except for MAM (Tables 2 313 

and 3). Bias, relative bias and RMSE in CLMET are greater than in CLM for the whole CONUS, 314 
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Northwest, Southwest, and Northeast in MAM. The most considerable improvement occurs in 315 

SON compared with the other three seasons. CLMET deteriorates the ET estimate for MAM by 316 

enhancing the overestimation already occurring in CLM, which is different from the validation 317 

against the GLEAM-based ET. 318 

The analysis on time series of ET from MODIS, FLUXNET-MTE, and the two types of 319 

simulations also demonstrates improvement from CLM to CLMET. Climatological seasonal 320 

cycles of ET over CONUS and four sub regions for the period 2000-2011 are shown in Figure 6. 321 

CLMET outperforms CLM over CONUS with a smaller RMSE (0.31 versus 0.40 against MODIS, 322 

0.19 versus 0.25 against FLUXNET-MTE). The improvement mainly results from reduction of the 323 

overestimation existing in CLM for SON and DJF. However, the model performance greatly varies 324 

with region. As indicated by the ET RMSE values, CLMET and CLM perform similarly over 325 

western CONUS, whereas CLMET improves the ET simulation over eastern CONUS no matter 326 

which reference data is used. Figure 7 compares the temporal evolution of the simulated ET in 327 

CLM and CLMET against MODIS and FLUXNET-MTE ET over CONUS and four sub-regions. 328 

It is evident that the bias correction method in CLMET is very effective in reducing overestimation 329 

(positive bias), but does not work as well in correcting the underestimation (negative bias) in water-330 

limited regimes. The difference has to do with the specific ET regime, i.e. whether ET is limited 331 

by water or energy.  When an overestimated ET is overwritten with a lower value, the water on 332 

land is sufficient to support the reduced ET; in contrast, when an underestimated ET is overwritten 333 

with a higher value, the land surface model checks whether water storage in soil layer and 334 

vegetation canopy can sustain the elevated ET and further adjust if necessary to keep with the mass 335 

conservation equation. The extent to which ET can be increased is limited by the availability of 336 

water stored in soil layer and vegetation canopy. Therefore, in water-limited ET regimes, if ET is 337 
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underestimated in CLM, the actual ET in CLMET after the water availability check can be 338 

substantially lower than the corrected ET fed into the model, which diminishes the effect of the 339 

bias correction algorithm under such circumstance. 340 

 In addition, the ET validation is also conducted at the site scale (Figures 8, 9, and 10). 341 

Except for Port Peck and Wind River Crane stations in the northwest CONUS, for all other stations 342 

the monthly mean ET from CLMET agrees better with the observed ET than that from CLM 343 

(Figure 8). The same statement holds for daily mean ET (Figures 9 and 10). Generally, CLM 344 

overestimates ET as compared with station observations, and CLMET alleviates this 345 

overestimation, which is consistent with comparisons between the modelled ET and satellite-based 346 

ET products. 347 

4.2.2 Runoff 348 

Using the runoff coefficient (the ratio of runoff to total precipitation) derived from GSCD 349 

as the benchmark, we evaluate the model performance in CLM and CLMET in simulating runoff 350 

(Figure 11). The CONUS-averaged runoff coefficients in CLM and CLMET are 0.18 and 0.21, 351 

which are comparable to the GSCD-based runoff coefficient (0.22). However, CLM 352 

underestimates runoff in most areas of CONUS due to an overestimation of ET.  CLMET alleviates 353 

the underestimation by reducing ET therefore increasing the runoff, especially over eastern 354 

CONUS. The relative bias of CLMET against GSCD is 1.1%, which is much smaller than the 355 

value in CLM (-9.2%). Table 4 shows the regional difference in runoff simulations in CLM and 356 

CLMET. The improvement is greater over Eastern CONUS than Western CONUS, which is 357 

consistent with the improvement of ET simulations. The most striking improvement occurs in 358 

Southeast CONUS, with the relative bias (RMSE) reduced from -24.7% (0.091) to -8.2% (0.06). 359 
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Because only the multi-year mean annual runoff coefficient is available for GSCD, we cannot 360 

examine the seasonal dependency of the model performance improvement. 361 

The increase in runoff from CLM to CLMET is mainly due to the increase in subsurface 362 

runoff (not shown). The same value of the ET scaling factor within each grid cell are applied to 363 

three components of ET (interception loss, plant transpiration and soil evaporation) in this study. 364 

Because interception loss accounts for a small portion of total ET, the absolute change of 365 

interception loss (decrease from CLM to CLMET over most areas) is much smaller compared with 366 

plant transpiration and soil evaporation (not shown). As a result, the increase in throughfall does 367 

not change much from CLM to CLMET, which leads to smaller increases in surface runoff. By 368 

contrast, plant transpiration and soil evaporation are more significantly reduced by CLMET, 369 

inducing wetter soil and therefore more subsurface runoff. 370 

4.2.3 Soil moisture 371 

 As analyzed in Section 4.2.2, reductions in all three components of ET interception loss, 372 

plant transpiration, and soil evaporation from CLM to CLMET slow down moisture depletion from 373 

the soil. As a result, the water content in different soil layers increases with reduced ET. Figure 12 374 

shows soil water at the surface and root-zone layers simulated by CLM and CLMET, and their 375 

differences in August. From CLM to CLMET, the changes over CONUS show an overwhelmingly 376 

increasing signal for both surface and root-zone soil moisture. The moisture increase in the top 0-377 

100 cm soil layer from CLM to CLMET in central CONUS is very evident, which may have 378 

significant implications in drought monitoring and assessment. For example, Central Great Plains 379 

experienced a severe drought in summer of 2012, and soil moisture derived from land surface 380 

models was used to evaluate the intensity of the drought event (Hoerling et al. 2014, Livneh and 381 

Hoerling 2016). Unfortunately, land surface models tend to systematically overestimate drought 382 
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(Milly and Dunne 2016, Ukkol et al. 2016). The more accurate estimates of ET and soil moisture 383 

resulting from the bias correction method in this study may prove useful for improving drought 384 

monitoring and assessment. 385 

Due to the strong spatial heterogeneity of soil moisture and the lack of large-scale 386 

distributed data, the comparisons between observed soil moisture and modeled soil moisture from 387 

CLM and CLMET are done based on the spatial averages across stations within each state and at 388 

the monthly scale during 2006-2010 for the top 0-10 cm and top 0-100 cm soil, respectively. The 389 

soil water increase from CLM to CLMET is more evident during SON and DJF, which is consistent 390 

with changes in ET that also features more decreases during SON and DJF. The soil in CLM shows 391 

dry biases over most of the examined states with the exception of soil moisture at the top 10 cm 392 

layer in Alabama and Illinois, and CLMET generally alleviate these dry biases. The RMSE values 393 

against the NASMD observations in CLMET is smaller than or at least the same as the RMSE 394 

values in CLM. An exception exists for the top 0-10 cm layer in Alabama and Illinois where a wet 395 

bias is found in CLM. The soil water content difference between CLM and CLMET is larger for 396 

the 0-100 cm layer than the 0-10 cm layer, because plant transpiration, to which a large fraction of 397 

ET and therefore a large fraction of ET bias correction are associated, primarily depletes moisture 398 

from the rooting zone which is deeper than 10 cm. As such, the improvement is more evident for 399 

the top 0-100 cm layer. For example, in Mississippi, the RMSE is reduced from 0.048 m3 m-3 in 400 

CLM to 0.042 in CLMET at the top 0-10 cm layer, and from 0.07 to 0.06 m3 m-3 at the top 0-100 401 

cm layer. The improvements in Alabama, Mississippi, Nebraska, and Oklahoma are summarized 402 

in Table 5. 403 
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5 Summary and discussions 404 

In this study, we implemented the on-line bias correction approach proposed by Parr et al. 405 

(2015) to CLM4.5, and evaluated the effectiveness of the approach in reducing model biases over 406 

CONUS. The bias correction algorithm was calibrated using the GLEAM ET product combined 407 

with the default CLM4.5 output over the period of 1986-1995, and was validated over the period 408 

of 2000-2014 using both gridded and site-based ET datasets, the GSCD runoff product, and the 409 

NASMD soil moisture data. Results from all evaluation metrics indicate improved estimation of 410 

the terrestrial hydrological cycle across most of the model domain, with different degrees of 411 

improvement among the CONUS sub-regions. 412 

Qualitatively, whether the Parr et al. (2015) ET bias correction approach improves the 413 

quantification of the hydrological cycle depends on whether ET is limited by water or energy and 414 

whether ET is underestimated or overestimated. The approach works well when/where ET is not 415 

limited by water availability; in water-limited regimes, the approach is effective in correcting the 416 

positive ET biases but does not work well if ET is underestimated. Quantitatively, the degree of 417 

the model improvement derived from this bias correction algorithm is highly related to whether 418 

the fundamental assumption of Parr et al. (2015) (on a time-invariant relationship characterizing 419 

the default model biases) holds or not. Although the scaling factors between observations and 420 

simulations do not change much from the calibration period to the validation period over most 421 

regions in most seasons, dramatic changes do exist in some areas. Differences in the scaling factors 422 

between the calibration and verification/application periods greatly influence the effectiveness of 423 

the bias correction method, with large differences causing the approach to be less effective leaving 424 

substantial biases in CLMET. Northeast CONUS during winter is an example of having a large 425 
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bias in CLMET due to greater changes in the ET scaling factor from the calibration period to the 426 

verification period.   427 

Another factor affecting the degree of the model improvement is whether the ET scaling is 428 

applied at all. As shown in Figure 2, we do not scale ET in some areas of Northwest CONUS 429 

during the winter months due to the inconsistence in the ET sign (positive or negative) between 430 

GLEAM and CLM. In these areas and season(s), ET in CLMET is not corrected at all. All these 431 

three factors (i.e., whether the scaling factor differs significantly between calibration and 432 

validation periods, whether ET is underestimated in water-limited regimes, and whether ET scaling 433 

is applied at all) influence the effectiveness of the bias correction approach, but one or two of them 434 

may dominate for a given region/season. For example, regardless of which product is used as the 435 

reference for comparison (Figures 3g, 5a4, 5b4), the approach reduces ET biases over the eastern 436 

CONUS where the ET scaling is applied in most places/seasons and the scaling factor shows little 437 

difference between the calibration and validation periods. In contrast, in the north part of the 438 

Midwest, some positive biases still remain in CLMET, as the ET scaling is not applied in winter 439 

months and the scaling factor differs quite much between these two periods. Over a portion of 440 

western CONUS, the bias correction approach is less effective due to the underestimation of ET 441 

under a water-limited condition and large differences between calibration and validation periods 442 

in the scaling factor.  443 

 For a given grid cell and given month, the scaling factors for all three ET components, i.e., 444 

interception loss, plan transpiration, soil evaporation, are the same in this study, set to be the ratio 445 

of the remote sensing ET to the modeled ET. Since the GLEAM dataset contains values of three 446 

components besides the total ET, we conducted additional experiments in which the scaling factor 447 

for each ET component was estimated separately, using the ratio of each ET component from the 448 



 21

GLEAM product to the corresponding ET component from CLM during the same calibration 449 

period. However, results based on the component-specific scaling do not show further 450 

improvement, which is likely due to the inaccurate partitioning of ET into interception loss, plan 451 

transpiration, soil evaporation. Miralles et al. (2016) compared the ET partitioning for three widely 452 

used remote sensing-based ET products, and found that the contribution of each component to ET 453 

is dramatically different among these three products. For instance, they found the percentage of 454 

global ET accounted for by soil evaporation ranges from 14% to 52%, and the ranges are even 455 

larger at the regional and local scales. Because the in-situ measurements of separate components 456 

of ET is very scarce, it is particularly challenging to validate the accuracy of the remote sensing-457 

based estimates of the three ET components. These challenges led Miralles et al. (2016) to 458 

recommend against the use of any single product in partitioning ET. 459 

 The bias correction method evaluated in this study can effectively improve the estimates 460 

of surface fluxes and state variables in the absence of improved physical parameterizations in land 461 

surface models. It is applicable to not only historical simulations but also future predictions (Parr 462 

et al. 2015). It provides an alternative approach to, but would in no way replace, model 463 

improvement through better parameterization of physical processes. Development of better 464 

physical parameterizations has to be based on improved understanding of physical processes, more 465 

effective mathematical formulations, and higher quality surface type dataset, which requires a 466 

long-term commitment from the land surface modeling community. Model parameter calibration 467 

(e.g., tuning surface resistance) is another way to reduce model bias (Ren et al. 2016). However, 468 

the parameter space may contain nonphysical parameter subsets (Ray et al. 2015), which is 469 

especially an issue when model parameter tuning is used to offset unrelated model deficits. The 470 

method used in this study attempts to avoid such issues through improving the model performance 471 
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without dealing with calibration of model physical parameters. However, results from this study 472 

can provide useful guidance for physically-based land surface model development. As can be seen 473 

from Figure 3g, the bias correction algorithm improves ET estimation over most of the U.S., 474 

indicating a strong potential for performance improvement that can be derived from improving the 475 

physical parameterization of ET processes in the model. Over regions where the bias correction 476 

approach does not improve the ET estimate (which are mostly places where ET is water-limited 477 

while the model underestimates ET), parameterizations for other processes that influence soil 478 

moisture (e.g., runoff generation, groundwater interactions) are the most likely cause for model 479 

biases and should be the focus of physically-based model development effort.  480 

 481 
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Table 1 Spatial evaluations of simulated ET from two different types of runs (CLM and 695 

CLMET) against GLEAM-derived ET over CONUS, Northwest (NW), Southwest (SW), 696 

Northeast (NW), and Southeast (SW) annually and seasonally during the period 2000-2014. 697 

March-April-May: MAM, June-July-August: JJA, September-October-November: SON, 698 

December-January-February: DJF 699 

Season Region Bias (mm day-1) Relative bias (%) RMSE (mm day-1) 

CLM CLMET CLM CLMET CLM CLMET

Annual 

CONUS 0.137 -0.006 10.8 -0.1 0.266 0.144

NW 0.029 -0.03 7.9 0.3 0.25 0.199

SW 0.074 -0.025 10.2 -3.1 0.181 0.118

NE 0.138 -0.012 9.6 -0.1 0.243 0.132

SE 0.315 0.041 15.6 2.1 0.355 0.099

MAM 

CONUS -0.081 -0.062 -5.8 -3.3 0.351 0.227

NW -0.138 -0.074 -6.7 -2.7 0.326 0.244

SW -0.211 -0.122 -17.9 -9.3 0.318 0.206

NE -0.191 -0.078 -8.3 -2.8 0.429 0.293

SE 0.19 0.023 8.9 1.5 0.346 0.165

JJA 

CONUS 0.094 -0.041 6.4 -1.3 0.451 0.331

NW -0.137 -0.121 -3.9 -4.0 0.487 0.408

SW 0.147 -0.006 18.3 -0.9 0.352 0.232

NE 0.045 -0.124 2.5 -2.7 0.55 0.452

SE 0.332 0.075 9.1 2.1 0.414 0.181

SON 

CONUS 0.360 0.055 51 7.8 0.428 0.155

NW 0.271 0.044 76.4 14.0 0.346 0.147

SW 0.228 0.044 39.5 5.0 0.282 0.117

NE 0.481 0.077 50.4 7.3 0.527 0.242

SE 0.499 0.061 34.5 4.1 0.531 0.11

DJF 

CONUS 0.182 0.009 77.7 18.9 0.265 0.115

NW 0.114 -0.013 104.2 28.8 0.252 0.122

SW 0.132 -0.014 42.3 -1.9 0.182 0.056

NE 0.239 0.077 146.4 65.3 0.334 0.199

SE 0.24 0.004 49.5 2.7 0.292 0.072

 700 

 701 
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Table 2. Similar to Table 1, but based on comparison with MODIS-derived ET during the 702 

period 2000-2011. 703 

Season Region Bias (mm day-1) Relative bias (%) RMSE (mm day-1) 

CLM CLMET CLM CLMET CLM CLMET

Annual 

CONUS 0.321 0.177 30.8 19.1 0.427 0.321

NW 0.28 0.232 35.8 27.9 0.367 0.326

SW 0.282 0.183 39.7 25.6 0.428 0.36

NE 0.278 0.125 19.6 9.1 0.316 0.193

SE 0.431 0.159 24.9 10.6 0.538 0.348

MAM 

CONUS 0.514 0.533 50.1 55.8 0.631 0.635

NW 0.564 0.628 67.2 74.5 0.636 0.687

SW 0.345 0.438 45.9 61.8 0.538 0.599

NE 0.547 0.655 51.7 61.9 0.58 0.675

SE 0.596 0.436 34.6 25.8 0.735 0.578

JJA 

CONUS 0.251 0.116 18.2 12.1 0.759 0.691

NW 0.263 0.281 23.8 25.6 0.704 0.71

SW 0.344 0.192 28.8 14.5 0.806 0.724

NE 0.028 -0.144 2.9 -2.4 0.662 0.564

SE 0.31 0.052 13.2 5.8 0.829 0.72

SON 

CONUS 0.345 0.039 48.2 9.8 0.459 0.284

NW 0.261 0.038 56.8 9.4 0.369 0.261

SW 0.284 0.096 55.9 20.8 0.43 0.306

NE 0.448 0.043 47.4 5.6 0.483 0.207

SE 0.417 -0.019 32.1 2.7 0.547 0.329

DJF 

CONUS 0.181 0.025 82.2 28 0.383 0.276

NW 0.043 -0.049 77.6 40.4 0.385 0.365

SW 0.156 0.007 70.5 19.4 0.292 0.191

NE 0.091 -0.051 96.7 14.8 0.344 0.214

SE 0.403 0.169 87.5 33.6 0.474 0.281

 704 
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Table 3. Similar to Table 1, but based on comparison with FLUXNET-MTE ET during the 709 

period 2000-2011. 710 

Season Region Bias (mm day-1) Relative bias (%) RMSE (mm day-1) 

CLM CLMET CLM CLMET CLM CLMET

Annual 

CONUS 0.207 0.065 13.3 3.2 0.328 0.24

NW 0.07 0.013 5.8 0.0 0.222 0.234

SW 0.051 -0.047 6.8 -4.7 0.244 0.241

NE 0.309 0.165 21.9 12.2 0.334 0.238

SE 0.427 0.154 21.3 7.6 0.461 0.248

MAM 

CONUS 0.27 0.292 15.8 19.5 0.418 0.399

NW 0.266 0.33 22.4 28.0 0.349 0.401

SW -0.042 0.051 -7.3 2.5 0.298 0.301

NE 0.288 0.401 21.6 30.4 0.338 0.435

SE 0.561 0.4 26.4 18.5 0.6 0.448

JJA 

CONUS 0.197 0.063 7.0 0.5 0.608 0.517

NW -0.149 -0.13 -8.7 -7.5 0.506 0.506

SW 0.029 -0.122 9.2 -6.1 0.594 0.555

NE 0.415 0.257 13.6 8.8 0.492 0.369

SE 0.565 0.304 16.9 9.4 0.779 0.585

SON 

CONUS 0.216 -0.088 20.3 -9.4 0.353 0.294

NW 0.072 -0.151 9.2 -22.8 0.224 0.286

SW 0.132 -0.055 21.1 -5.2 0.311 0.277

NE 0.356 -0.034 33.7 -1.1 0.473 0.385

SE 0.346 -0.091 21.2 -5.4 0.396 0.23

DJF 

CONUS 0.149 -0.004 40.1 -1 0.268 0.189

NW 0.104 0.014 27 -4.9 0.279 0.26

SW 0.086 -0.063 20.9 -14.4 0.17 0.129

NE 0.176 0.037 78.5 19.2 0.329 0.208

SE 0.236 0.002 42.8 0.8 0.282 0.129
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Table 4 Statistics of simulated annual runoff coefficient (ratio of runoff to total precipitation) 716 

against GSCD observations over CONUS, Northwest (NW), Southwest (SW), Northeast (NW), 717 

and Southeast (SW) during the period 2000-2014. 718 

 Bias  Relative bias (%) RMSE 

CLM CLMET CLM CLMET CLM CLMET 

CONUS -0.053 -0.027 -18.5 -6.7 0.198 0.192

Northwest -0.046 -0.036 -13.5 -5.6 0.146 0.144

Southwest -0.026 -0.019 -19.9 -11.4 0.373 0.373

Northeast -0.06 -0.022 -15.7 -1.5 0.108 0.092

Southeast -0.074 -0.026 -24.7 -8.2 0.091 0.06
 719 

 720 
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 731 
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Table 5 Root mean square error (RMSE) values of monthly volumetric soil moisture (m-3m-3) 734 

simulated by CLM and CLMET relative to the quality-controlled NASMD for the top 0-10 cm 735 

soil layer and for the top 0-100 cm soil layer over Alabama, Illinois, Mississippi, Nebraska, and 736 

Oklahoma.  737 

 top 0-10 cm soil water content top 0-10 cm soil water content 

 CLM CLMET CLM CLMET 

Alabama 0.044 0.048 0.027 0.020 

Illinois 0.019 0.021 0.038 0.034 

Mississippi 0.048 0.042 0.070 0.060 

Nebraska 0.014 0.014 0.032 0.025 

Oklahoma 0.050 0.045 0.039 0.032 

 738 

 739 
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 740 

Figure 1 a) Mean annual (1980-2015) precipitation in mm over conterminous USA 741 

(CONUS). NW, SW, NE, and SE represent Northwest, Southwest, Northeast, and Southeast 742 

CONUS, respectively. The black circles represent sites of in-situ soil moisture observations in 743 

Alabama, Illinois, Mississippi, Nebraska, and Oklahoma. b) Locations of the 16 AmeriFlux 744 

stations with vegetation types. 745 

 746 
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 747 

Figure 2 Scaling factor as the ratio of the CLM simulated ET to the GLEAM ET for each month 748 
during 1986-1995. The numbers in titles are CONUS-averaged values, and the numbers of 749 

within figures are area-averaged values for each of four sub regions (NW, SW, NE, and SE). The 750 
areas with negative scaling factors are masked out. 751 

 752 
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 753 

Figure 3 Mean annual ET from a) GLEAM, b) CLM, and c) CLMET, the relative difference 754 

between d) CLMET and CLM, e) CLM and GLEAM, f) CLMET and GLEAM, and g) the 755 

difference between absolute value of e) and absolute value of f) during the period 2000-2014. 756 

Numbers in titles are CONUS-averaged values. 757 
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 758 

Figure 4 a) Relative bias (RB) for CLM (RBCLM), b) RB for CLMET (RBCLMET) during the 759 

period 2000-2014, c) difference in scaling factor fET  between the period 1986-1995 and the 760 

period 2000-2014 (fET(86)- fET(00)), and d) scatter plots of fET(86)- fET(00) versus RBCLMET in 1) 761 

January (Jan), 2) April (Apr), 3) July (Jul), and 4) November (Nov). 762 

 763 
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 764 

Figure 5 Mean annual ET from a1) MODIS, b1) FLUXNET-MTE, the relative differences 765 

between a2) CLM and MODIS, b2) CLM and FLUXNET-MTE, a3) CLMET and MODIS, and 766 

b3) CLMET and FLUXNET-MTE, and the differences between a4) absolute value of a2 and 767 

absolute value of a3, and b4) absolute value of b2 and absolute value of b3 during the period 768 

2000-2011. Numbers in titles are CONUS-averaged values. 769 
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 770 

Figure 6 Seasonal cycles of ET from MODIS, FLUXNET-MTE, CLM, and CLMET over a) 771 

CONUS, b) Northwest, c) Southwest, d) Northeast, and e) Southeast during the period 2000-772 

2011. 773 
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 774 

Figure 7 Time series of ET difference between model (CLM or CLMET) and reference data 775 

(MODIS or FLUXNET-MTE) over a) CONUS, b) Northwest, c) Southwest, d) Northeast, and e) 776 

Southeast during the period 2000-2011. 777 
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 778 

Figure 8 Monthly mean latent heat fluxes from CLM, CLMET and observations at 16 flux tower 779 

sites. RMSECLM and RMSECLMET represent the root mean square error against observations for 780 

CLM and CLMET, respectively. Note that the CLM and CLMET simulations are driven with 781 

meteorological forcings at the grid cell level (as opposed to site-specific forcing). 782 
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 783 
Figure 9 Daily mean latent heat fluxes from CLM and CLMET grids and station observations at 784 

ARM SGP Burn, Audubon Grassland, Bondville, Donaldson, Flagstaff Forest, Fort Dix, Fort 785 

Peck, and Little Prospect. RMSECLM and RMSECLMET represent the root mean square error 786 

against observations for CLM and CLMET, respectively. 787 
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 788 
Figure 10 Daily mean latent heat fluxes from CLM and CLMET grids and station observations at 789 

Mead Rainfed, Metolius Pine, Missouri Ozark, Morgan Forest, Sylvania Wilderness, Tonzi 790 

Ranch, Walnut River, and Wind River Crane. RMSECLM and RMSECLMET represent the root 791 

mean square error against observations for CLM and CLMET, respectively. 792 
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 793 

Figure 11 Mean annual runoff coefficient (the ratio runoff to total precipitation) from a) Global 794 

Streamflow Characteristics Dataset (GSCD), b) CLM, and c) CLMET, and the relative 795 

differences between d) CLM and GSCD, e) CLMET and GSCD, and f) CLMET and CLM 796 

during the period 2000-2014. Runoff coefficient less than 0.02 is blanked out. Numbers in titles 797 

are CONUS-averaged values. 798 
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 799 

Figure 12 Simulated soil moisture (mm) in the top a) 0-10 cm and b) 0-100 layers in August 800 

from 1) CLM and 2) CLMET, 3) their differences, and 4) their relative differences during the 801 

period 2000-2014. 802 
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