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�����������������Please	find	below	the	comments	of	W.	R.	Berghuijs	and	our	replies	(preceded	by	
“»”).	
	
W.R	Berghuijs	
wb14708@bristol.ac.uk	
Received	and	published:	13	January	2017	
I	think	the	authors	address	an	excellent	point	by	stating	that	progress	in	scaling	can	
benefit	from	utilising	data	wisely	instead	of	focusing	on	modelling	all	the	time.	
While	reading	the	paper	I	came	across	a	few	things	that	potentially	(/hopefully)	
help	to	improve	the	manuscript.	This	short	comment	is	NOT	intended	as	a	full	
review	of	the	paper.	
Overall	I	enjoyed	reading	the	paper,	but	I	refrain	from	giving	an	explicit	opinion	on	
the	suitability	of	the	manuscript	for	HESS,	because:	(i)	I	am	not	asked	to	review	the	
paper,	(ii)	I	did	not	fully	review	all	aspects	of	the	paper,	and	(iii)	one	of	the	authors	
(Ross	Woods)	is	my	current	PhD	supervisor.	
	
>>Thank	you	for	your	constructive	comments	
���������������������������������������		
-	While	reading	the	paper	I	was	expecting	a	clear	definition	of	“the	fourth	paradigm”.	
While	the	reader	will	eventually	grasp	your	opinion	on	this,	it	seems	that	the	paper	
can	benefit	by	adding	a	clear	explicit	definition	of	the	4th	paradigm	early	on	in	the	
manuscript	(e.g.	in	the	final	part	of	the	introduction	or	maybe	even	in	the	abstract).	
	
>>Agreed…the	revised	version	of	the	paper	adds	a	definition	of	the	4th	paradigm	in	
the	Introduction.		The	following	definition	seems	appropriate,	and	perhaps	this	
broader	definition	also	addresses	your	next	point	below:	

The	Fourth	Paradigm	is	a	concept	that	focuses	on	how	science	can	be	
advanced	by	enabling	full	exploitation	of	data	via	new	computational	
methods.	The	concept	is	based	on	the	idea	that	computational	science	
constitutes	a	new	set	of	methods	beyond	empiricism,	theory,	and	simulation,	
and	is	concerned	with	data	discovery	in	the	sense	that	researchers	and	
scientists	require	tools,	technologies,	and	platforms	that	seamlessly	integrate	
into	standard	scientific	methodologies	and	processes.	By	integrating	these	
tools	and	technologies	for	research,	we	provide	new	opportunities	for	
researchers	and	scientists	to	share	and	analyze	data	and	thereby	encourage	
new	scientific	discovery.	

������������������������������������	
-	Your	definition,	or	at	least	emphasis,	for	the	“fourth	paradigm	for	hydrology”	
seems	to	be	on	systematic	testing	of	hypotheses.	This	is	narrower	than	the	
definition	of	the	fourth	paradigm	as	discussed	by	Hey	et	al.	(2009)	(which	is	
something	like	“insights	are	wrested	from	vast	troves	of	existing	data”).	In	the	latter	
definition,	there	is	more	emphasis	on	the	data-driven	discovery	of	new	laws,	rather	
than	the	focus	on	testing	(existing)	concepts.	Do	in	interpret	that	correctly?	If	no:	
addressing	the	previous	comment	may	resolve	my	misinterpretation.	If	yes:	is	it	
worth	emphasising	the	difference	between	the	definitions?	
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>>Thank	you	for	helping	us	clarify	this	important	point.		Yes,	the	definition	of	the	4th	
paradigm	is	much	broader	than	we	are	using	here.		However,	the	key	point	is	that	
(following	on	the	broad	definition	above)	we	need	to	seamlessly	integrate	
computational	methods	and	data	into	our	scientific	methodologies	and	processes.		
The	point	being	that	we	have	not	adequately	exploited	the	“vast	troves	of	data”	in	
testing	existing	theories	and	models.		We	hope	this	is	clarified	in	the	revised	version.	
	
-	Connected	to	the	previous	point:	(In	my	view),	it	is	the	combination	of	the	4	
paradigms	(empiricism,	theory,	modeling,	systematic	testing	models/theories	with	
data)	that	will	lead	to	advances.	Should	the	connection	between	the	four	paradigms	
not	be	discussed	explicitly?	Or	is	there	no	place	for	empiricism,	new	theories	and	
model	development	in	the	future	of	scaling?	
	
>>We	do	not	mean	that	the	4th	paradigm	supplants	the	other	3,	and	similar	points	
were	raised	by	at	least	one	reviewer.		We	do	believe	that	perhaps	the	pendulum	has	
swung	a	bit	too	far	in	the	area	of	simulation	such	that	we	have	lost	our	way	in	terms	
of	what	is	actually	knowable	from	the	data	and	how	to	properly	test	hypotheses	that	
might	arise	from	theory	or	empiricism.		For	example,	how	do	we	know	that	
processes	being	represented	in	a	“hyper-resolution”	model	are	adequate	without	
using	the	data	to	provide	an	upper	bound	to	describe	the	information	available?	
Grounding	the	scientific	method	in	information	theory	will	help	to	reconcile	this	
issue.	
			
-	Very	little	is	said	about	past	work	that	tried	to	systematically	assess	the	validity	of	
scaling	hypotheses.	Especially,	since	the	paper	is	introduced	at	a	“review”	rather	
than	an	“opinion	paper”	I	expected	to	read	more	about	past	efforts	before	you	
introduce	the	need	for	a	fourth	paradigm.	
	
>>Yes,	another	reviewer	also	commented	on	the	brevity	of	the	paper—although	it	is	
really	somewhere	between	an	opinion	paper	and	a	review.		We	expand	the	
discussion	of	previous	work	in	the	revised	version.	
	
-	Can	you	summarize	the	vision	of	your	paper	in	a	Figure?	I	think	the	paper	will	be	
more	appealing	with	such	a	figure	
	
>>This	is	a	good	suggestion.			One	possibility	is	a	variant	of	Figure	1	from	Gupta	et	
al.,	HESS,	2014.		In	this	case	the	diagnostic	signatures	are	based	on	the	patterns	in	
the	data	as	a	benchmark	and	compared	with	patterns	in	the	model	simulations	
based	on	a	particular	similarity	concept	or	hypothesis.	
	
Gupta,	H.	V.,	Perrin,	C.,	Blöschl,	G.,	Montanari,	A.,	Kumar,	R.,	Clark,	M.	and	
Andréassian,	V.:	Large-sample	hydrology:	A	need	to	balance	depth	with	breadth,	
Hydrol.	Earth	Syst.	Sci.,	18(2),	463–477,	doi:10.5194/hess-18-463-2014,	2014.	
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Technical	comments:	
Line	14:	“larger/longer”	suggests	that	scaling	is	limited	to	“upscaling”.	Why	not	
change	it	to	“other”	so	it	refers	to	both	upscaling	and	downscaling?	
>>Agreed.			
	
References	

- In	the	text	there	is	one	citation	of	Albergel	et	al	(2012).	However,	in	in	the	
reference	list,	there	are	two	articles	by	Albergel	et	al	(2012).	

>>This	is	actually	an	erroneous	repetition	of	the	same	article.		One	will	be	deleted.	
- 	

-	Berghuijs	et	al.	(2014)	is	listed	in	the	references,	but	not	cited	in	the	main	text.	-	
Köhli	et	al	(2016)	does	not	include	the	journal	it	is	published	in	(WRR?)	
	
>>Thank	you	for	pointing	out	these	oversights.		We	now	include	a	citation	for	
Berghuijs	et	al.	(2014)	in	the	main	text,	and	the	Köhli	et	al	(2016)	reference	has	
been	corrected	to	WRR.	
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Please	find	below	the	comments	of	S.	Mylevaganam	and	our	replies	(preceded	by	
“»”).	
	
S.	Mylevaganam	
sivarajah@abzwater.com	
Received	and	published:	16	January	2017	
Title:	Scaling,	Similarity,	and	the	Fourth	Paradigm	for	Hydrology	
Authors:	Christa	D.	Peters-Lidard,	Martyn	Clark,	Luis	Samaniego,	Niko	E.	C.	Verhoest,	
Tim	van	Emmerik,Remko	Uijlenhoet,	Kevin	Achieng,	Trenton	E.	Franz,	Ross	Woods	
Journal:	Hydrology	and	Earth	System	Sciences	
Review:	
In	hydrologic	science,	a	system	is	associated	to	a	set	of	processes	by	admitting	the	
fact	that	there	exists	no	universal	law	that	can	identify	all	the	processes	associated	
with	a	system.	Keeping	this	in	mind,	these	processes	are	translated	into	governing	
equations	to	formulate	a	model	that	can	help	to	resolve	a	problem	of	interest.	
Unfortunately,	the	inputs	data	to	these	models	do	not	come	at	the	same	resolution	
(i.e.,	physical	and	temporal	dimension).	Therefore	there	exists	a	need	to	scale	the	
inputs	data	to	a	common	resolution	that	is	best	suited	for	the	model	and	its	
discretization.	Moreover,	some	of	the	inputs	data	may	not	be	readily	available.	This	
leads	to	derive	these	inputs	data	by	relating	the	characteristics	of	the	system	of	
interest	to	another	system.	
Though	the	growth	of	hydrologic	science,	from	empiricism	(1st	paradigm),	to	theory	
(2nd	paradigm),	to	computational	simulation	(3rd	paradigm)	has	yielded	important	
advances	in	understanding	and	predictive	capabilities	in	hydrologic	science,	scaling	
(i.e.,	transfer	of	information	across	scales)	and	similarity	(i.e.,	relating	
characteristics	of	one	system	to	another	system)	remain	one	of	the	most	challenging	
problems	in	hydrologic	sciences.	However,	as	underscored	in	the	literature,	there	
has	been	a	dramatic	increase	in	the	type	and	density	of	hydrologic	information	that	
is	becoming	available	at	multiple	scales,	from	point-	to	meso-scale	and	regional	to	
global.	Therefore,	in	this	paper,	the	authors	assert	that	it	is	time	for	the	hydrologic	
sciences	community	to	embrace	the	4th	paradigm	of	data-intensive	science	for	a	
data-driven	hypothesis	testing	framework	for	scaling	and	similarity.	
Based	on	this	review,	the	following	comments	are	made:	
1)	The	authors	assert	that	it	is	time	for	hydrology	to	embrace	a	fourth	paradigm	of	
data-intensive	science.	In	this	paper,	the	authors	too	could	have	used	some	data	to	
demonstrate	the	fourth	paradigm	of	data-intensive	science.	
	
>> In	this	paper,	we	cite	the	Nearing	et	al.,	work	as	the	primary	example.	
	
2)	In	this	paper,	the	authors	should	clearly	state	the	difference	between	“concepts”	
and	“hypotheses”.	
	
>> Here	they	are	used	interchangeably,	although	to	be	precise	a	concept	would	need	
to	be	re-stated	as	a	testable	hypothesis	in	order	to	apply	the	scientific	method.	
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3)	As	per	the	authors,	the	advances	in	data-intensive	hydrologic	science	have	laid	
the	foundation	for	a	data-driven	hypothesis	testing	framework	for	scaling	and	
similarity.	For	hydrologic	sciences	community,	the	concept	of	hypothesis	testing	is	
not	new.	This	concept	has	been	floating	and	researched	for	many	years.	Therefore,	
the	authors	need	to	elaborate	more	on	hypothesis	testing	that	are	relevant	for	the	
purpose	that	is	outlined	in	this	paper.	The	paper	should	also	mention	the	criteria	
used	in	a	data-driven	hypothesis	testing	framework.	
	
>> Yes	it	is	true	that	hypothesis	testing	is	not	new,	and	has	been	practiced	in	
hydrology	for	many	years.		The	new	aspect	promoted	in	this	paper	is	that	we	need	
to	seamlessly	integrate	computational	methods	and	data	into	our	scientific	
methodologies	and	processes.		The	point	being	that	we	have	not	adequately	
exploited	the	“vast	troves	of	data”	in	testing	existing	theories	and	models.		We	hope	
this	is	clarified	in	the	revised	version.	
	
4)	Though	the	authors	assert	that	it	is	time	to	embrace	the	4th	paradigm	of	data-	
intensive	science,	it	is	hard	to	understand	the	actual	reasons	that	have	motivated	
the	authors	to	call	upon	the	hydrologic	sciences	community	to	develop	a	focused	
effort	towards	adopting	the	fourth	paradigm	of	data-intensive	science.	The	authors’	
assertion	gives	an	indication	that,	until	now,	the	hydrologic	sciences	community	is	
reluctant	to	use	the	existing	data.	If	this	is	the	case,	instead	of	asking	for	a	paradigm	
shift,	it	would	be	more	appropriate	to	find	out	the	reasons	that	harbor	the	
hydrologic	sciences	community	from	using	the	existing	data.	
	
>>	The	key	point	that	we	would	like	to	emphasize	is	that	hydrologists	have	been	
focused	primarily	on	integrated,	external	characteristics	of	catchments,	such	as	
streamflow,	while	the	advent	of	higher-resolution	remote	sensing	and	other	
technologies	now	enables	the	routine	observation	of	internal	dynamics	in	
catchments	(soil	moisture	patterns,	evapotranspiration,	snowpack,	etc.),	so	that	we	
can	now	simultaneously	test	the	validity	of	existing	scaling	concepts.		These	scaling	
concepts	or	hypotheses	were	typically	developed	and	tested	over	only	a	few	
catchments,	owing	to	limited	data	availability.		Hence,	the	4th	paradigm	will	enable	
the	exploitation	of	this	rich	array	of	hydrological	variables.		There	have	been	several	
attempts	at	comparative	hydrology	across	multiple	catchments	(e.g.,	Coopersmith	et	
al.,	2012;	Berghuijs	et	al.,	2014),	but	these	are	typically	limited	to	“macroscale”	
signatures	such	as	aridity	index,	runoff	ratio,	flow-duration	curve,	etc.,	rather	than	
examining	the	internal	dynamics	and	scaling	in	these	watersheds.	
	
5)	From	the	reader’s	point	of	view,	the	problem	of	scaling	and	similarity	is	always	
going	to	be	there	in	hydrologic	science.	The	problem	of	scaling	and	similarity	needs	
to	be	addressed	when	the	data	is	acquired.	From	the	reader’s	point	of	view,	
hydrologic	science	should	not	be	pleased	for	having	dramatic	increase	in	the	type	
and	density	of	hydrologic	information,	should	rather	be	disappointed	for	not	being	
able	to	device	a	proper	mechanism	and	methodology	to	acquire	the	data	that	can	
eliminate	the	problem	of	scaling	and	similarity.	
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>> As	noted	in	the	conclusions,	we	hope	that	the	community	will	recognize	the	
opportunity	and	devise	a	strategy	to	test	existing	hypotheses	by	combining	multiple	
data	types	in	an	information	theoretic	framework	so	that	we	can	design	future	
experiments	including	key	observations	to	reconcile	this	issue.	
	
6)	On	page	number	five,	“REH”	is	undefined.	
	
>> Thank	you	for	catching	this.		Actually	it	should	be	RH	for	“Representative	
Hillslope”.		We	include	a	definition	of	Representative	Hillslope	(RH)	on	page	3	along	
with	the	REA,	REW	definitions.	
	
7)	On	page	number	two,	as	per	the	current	version	of	the	paper,	heterogeneity	or	
variability	in	hydrology	manifests	at	multiple	spatial	scales,	from	local	(O(1	m);	
e.g.,macropores)	to	hillslope	(O(100	m);	e.g.,	preferential	flowpaths)	to	catchment	
(O(10	km);	e.g.,	soils)	and	regional	(O(1000	km);	e.g.,	geology).	Are	these	numeri-	
cal	values	widely	accepted	by	the	hydrologic	sciences	community?	
	
>> These	scales	come	directly	from	Figure	6	in	Blöschl	&	Sivapalan,	HP	1995	
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Please	find	below	the	comments	of	M.	Bierkens	and	our	replies	(preceded	by	“»”).	
	
M.	Bierkens	(Referee)	
bierkens@geo.uu.nl	
Received	and	published:	12	February	2017	
In	this	synthesis	paper	the	authors	make	a	case	to	move	from	the	3th	paradigm	of	
computational	science	to	the	4th	paradigm	of	data-intensive	science	to	overcome	
the	challenges	to	represent	hydrological	processes	in	models	over	a	range	of	scales.	
After	a	short	review	on	scaling	and	similarity	in	hydrology	they	propose	an	existing	
framework	by	Nearing	et	al.	(on	information	theory)	for	testing	new	data-driven	
scaling	laws.	They	also	provide	an	overview	of	data	requirements	to	do	this	as	well	
as	what	is	demanded	of	a	modelling	framework	to	provide	for	this	hypothesis	
testing	(SUMMA	being	a	likely	candidate).	
The	paper	is	generally	well	written.	I	have	three	comments	that	I	feel	are	important	
to	address:	
���������������������������������������	
>>Thank	you	for	your	helpful	comments	
���������������������������������������	
	
�1)	I	get	the	idea	behind	the	information	theory	to	test	the	model/scaling	hypotheses	
as	described	in	Figure	2,	but	how	it	works	does	not	become	clear	from	the	figure	
and	this	paper.	I	know,	I	could	read	the	original	paper,	but	I	think	a	paper	should	be	
sufficiently	self-contained	to	convey	the	message	by	reading	it.	So	please	add	a	bit	
more	details	on	the	method;	especially	on	how	to	calculate	the	different	information	
measures	with	a	given	model	and	scaling	method.	
	
>>More	description	and	discussion	will	be	added.	
	
2)	My	second	comment	is	the	most	important	one,	although	it	may	result	from	my	
limited	understanding	of	the	Nearing	et	al.	method.	The	authors	take	the	
information	content	of	the	observations	as	a	benchmark	to	compare	alternative	
hypotheses	against.	However,	this	may	be	fundamentally	problematic	if	the	data	are	
not	intensive	enough	to	properly	describe	the	reality	you	aim	to	describe.	For	
instance,	if	I	compare	a	complex	distributed	model	with	a	lumped-conceptual	model	
against	discharge	data	only,	there	is	no	way	I	will	do	it	better	with	my	complex	
model,	even	though	the	purpose	of	my	model	would	possibly	be	to	model	the	
internal	states	(i.e.	runoff	generation	pro-	cess	or	groundwater	recharge).	So	the	
first	question	should	be:	what	is	the	information	of	the	hydrological	process	I	aim	to	
describe.	Next,	the	question	than	is	what	data	I	would	need	to	approximate	the	
necessary	information	content.	
	
>>As	described	in	Nearing	et	al.,	there	are	three	requirements	for	a	benchmark:		a	
particular	dataset,	a	particular	performance	metric,	and	a	particular	reference	value	
for	that	metric.		The	dataset	must	contain	information	about	the	true	process	you	
seek	to	model,	so	it	would	seem	that	the	streamflow	example	you	mention	would	
require	many	interior	streamflow	points	in	addition	to	that	at	the	outlet.		To	
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calculate	a	benchmark,	you	first	measure	the	information	in	the	observations	
themselves	(using	the	entropy	metric).		In	the	Nearing	example,	we	used	SCAN	soil	
moisture	data	and	FLUXNET	for	ET.		To	derive	the	reference	value,	you	generate	a	
synthetic	representation	of	relationship	between	the	forcing	and/or	parameters	and	
the	metric	(using	a	machine	learning	such	as	sparse	pseudo-input	Gaussian	Process	
Regressions,	as	in	Nearing	et	al.,)	that	provides	an	“upper	bound”	of	information	
contained	in	the	model	about	the	variable	of	interest.		Then	the	information	
contained	in	a	model	that	conforms	to	a	given	hypothesis	may	be	compared	to	the	
information	contained	in	this	“upper	bound”,	and	differences	in	mutual	information	
indicate	losses	of	information	due	to	model	formulation.	
	
	
3)	This	is	generally	an	optimistic	paper	providing	a	way	forward	to	arrive	at	multi-	
scale-consistent	parameterizations.	However,	many	of	the	data	sources	mentioned	
as	needed	to	support	this	path	forward	are	remotely	sensed	data.	These	will	not	
provide	any	information	on	the	subsoil.	Also	georadar	or	even	airborne	EM,	albeit	
promising	at	the	local	scale,	will	not	give	us	this	information	at	larger	scales.	As	long	
as	we	do	not	involve	(hydro)geologistists	and	sedimentologists	in	large-extent	high-
resolution	hydrogeological	mapping,	the	subsoil	will	remain	closed	to	us	I	am	afraid.	
	
>> The	hydrogeophysical	techniques	described	in	Binley	et	al.,	2015	(as	referenced)	
do	provide	some	hope	for	subsurface	mapping,	although	we	agree	that	more	work	is	
needed	to	provide	large-scale	mapping	of	the	subsurface.	We	will	acknowledge	
these	challenges	in	the	revised	manuscript.	
	
Small	remark	page	4,	line	7:	also	refer	to	the	(improved)	ARNO	scheme	here,	e.g.	
DuÌ	́Lmenil,	L.	and	Todini,	E.,	1992.	A	rainfall-runoff	scheme	for	use	in	the	Hamburg	
climate	model.	Advances	in	theoretical	hydrology.	J.	P.	o	ÌA	̨Kane,	(Editor),	Elsevier,	
129-157.		
Hagemann,	S.	and	L.D.	Gates	(2003),	Improving	a	subgrid	runoff	parame-	
terization	scheme	for	climate	models	by	the	use	of	high	resolution	data	derived	from	
satellite	observations,	Climate	Dynamics	21,	349–359.	
	
>> These	references	to	the	improved	ARNO	scheme	have	been	added.	
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�����������������		
Please	find	below	the	comments	of	M.	Sivapalan	and	our	replies	(preceded	by	“>>”).	
	
M.	Sivapalan	(Referee)	
sivapala@illinois.edu	
Received	and	published:	8	March	2017	
This	synthesis	paper	serves	an	important	purpose.	It	not	only	helps	to	celebrate	the	
legacy	of	Eric	Wood	(who	has	made	valuable	contributions	to	the	topics	of	scaling	
and	similarity),	but	also	provides	a	long	term	(40	years)	perspective	about	where	
we	have	come	from,	what	we	have	learned	and	where	we	might	go	in	the	future	in	
terms	of	theory	development.	
	
I	liked	much	of	what	saw	in	the	paper,	I	am	sure	there	are	critical	comments	that	can	
be	made	on	some	details	of	the	history	of	progress	that	the	authors	have	provided.	I	
hope	these	are	picked	up	by	other	reviewers.	In	view	of	the	historical	nature	of	the	
article	and	a	purported	new	vision	offered	by	the	authors,	to	be	effective	(and	be	
different)	I	chose	to	focus	only	on	the	big	picture,	and	decided	to	keep	my	comments	
at	a	philosophical	����������������������������������level.	My	comments	are	not	necessarily	a	criticism	of	the	paper,	
but	provide	a	broader	perspective	that,	if	the	authors	agree	and	choose	to	adopt,	
might	bring	about	a	more	satisfactory	closure	to	the	paper.	I	am	sorry	that	I	use	
several	of	my	own	papers	to	buttress	these	arguments,	and	believe	the	same	
opinions	are	held	by	many	others	too.	
	
>>	Thank	you	for	your	constructive	and	substantive	commentary.	
	
The	main	argument	behind	the	paper	is	that	even	while	we	have	made	a	lot	of	
progress	in	the	last	40	years	on	issues	of	scale	and	similarity,	progress	towards	a	
universal	theory	of	hydrology,	has	slowed	down,	and	the	current	paradigm	is	
unlikely	to	lead	to	further	advances.	The	argument	then	is	that	we	need	a	new	
paradigm	(which	the	authors	call	the	Fourth	Paradigm).	The	fourth	paradigm	is	
supposed	to	be	somewhat	related	to	learning	from	data	(and	lots	of	it).	The	key	
statement	in	the	paper	in	this	context	is	this	one:	
“Fundamentally,	these	approaches	conform	to	the	third	paradigm,	in	the	sense	that	
they	take	as	given	a	set	of	conservation	equations	that	govern	behavior	at	the	funda-	
mental	(patch,	tile,	grid,	hillslope,	or	REW)	scale.	Testing	both	the	scaling	and	clo-	
sure	assumptions	as	hypotheses	using	data	would	move	hydrology	towards	the	
fourth	paradigm.”	
This	is	confirmation	to	me	that	the	authors	continue	to	approach	the	problem	within	
the	constraints	of	the	Newtonian	framework	or	worldview,	now	supplemented	by	
approaches	fashionably	borrowed	from	the	information	sciences	currently	in	vogue.	
This	may	advance	computational	hydrology	(I	am	sure	it	will),	but	I	am	afraid	that	it	
will	not	advance	theory	development,	which	was	ostensibly	the	primary	focus	of	the	
paper.	
	
>>	We	view	the	use	of	information	sciences	to	test	existing	hypotheses	a	necessary	
but	not	independent	step	in	the	scientific	method,	as	illustrated	in	our	new	Figure	1	
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(also	below),	which	was	inspired	by	Figure	1	in	Clark	et	al,	2016.		The	focus	on	using	
new	information	is	not	so	much	on	how	to	generate	new	theory	itself,	but	rather	on	
how	to	test	it	properly.	We	see	this	as	a	significant	contribution,	but	it	is	not	
complete	in	itself.		Proper	development	of	testable	hypotheses	coupled	with	4th	
paradigm-enabled	“gathering	of	data	to	test	predictions”	provides	opportunities	to	
refine,	alter,	expand	or	reject	hypotheses,	which	in	turn,	can	lead	to	more	general	
theories.	
	

	
From	a	medical	doctor	analogy,	I	am	in	agreement	with	the	authors	about	the	nature	
of	the	disease	(the	theory	challenge),	their	diagnosis,	and	even	the	direction	from	
where	a	cure	might	come	from	(data/information	based	learning).	To	my	mind,	
much	of	what	appears	after	the	presentation	of	this	viewpoint	is	a	lot	of	hand	
waving,	and	does	not	convince	me	that	it	will	lead	to	theory	development	of	the	kind	
they	are	hoping	for.	This	gap	in	their	logic	or	unfinished	business	is	surprising,	given	
that	the	nature	of	the	cure	has	been	evident	for	some	time.	
	
>>As	noted	above,	we	are	saying	"we	can	formulate	a	framework	for	testing	
hypotheses".	This	is	not	the	same	as	generating	the	hypotheses,	but	it	plays	an	
important	role	in	the	process.	
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Of	course,	in	the	era	of	the	“big	data”,	one	can	understand	the	thinking	that	big	data	
will	be	the	panacea	to	solve	all	of	our	ills.	I	am	sure	there	will	be	lots	and	lots	of	
action	(including	lots	of	hits	and	misses),	to	keep	lots	of	people	busy	(a	veritable	
cottage	industry	dealing	with	lots	and	lots	of	noisy	statistics	and	uncertainty	
analysis).	Real	progress	will	be	limited	unless	the	focus	on	data-based	learning	is	
guided	by	some	kind	of	over-	arching	vision	or	theoretical	framework.	This	is	
currently	lacking	in	the	paper	–	what	I	see	is	a	blind	faith	that	lots	and	lots	of	data	
will	somehow	bring	about	breakthroughs	that	we	otherwise	have	not	managed	to	
obtain	so	far.	It	could,	but	only	under	certain	conditions.	In	my	mind,	it	is	not	data	
that	produces	theoretical	breakthroughs,	but	the	kinds	of	questions	that	you	ask	of	
the	data	(Sivapalan,	2009).	The	authors	themselves	cite	Beven	and	Kirkby	(1979)	–	
TOPMODEL	theory	did	not	come	from	data	mining,	but	from	somebody	sitting	
down,	observing	things	and	letting	the	imagination	go	wild.	The	same	think	can	be	
said	of	Budyko	(1974).	The	solution	here	is	not	more	information	theory,	but	more	
process	hydrology,	and	plain	hard	science.	
	
>>As	noted	in	the	expanded	Introduction,	“The	Fourth	Paradigm	is	a	concept	that	
focuses	on	how	science	can	be	advanced	by	enabling	full	exploitation	of	data	via	new	
computational	methods.”		It	seems	that	theories	such	as	TOPMODEL	can	be	more	
rigorously	tested	when	we	utilize	large	catchment	databases	(such	as	MOPEX)	
coupled	with	observations	of	topography,	saturated	area,	streamflow,	etc.		Our	focus	
is	on	testing	hypotheses	in	the	age	of	big	data,	but	as	shown	in	Figure	1,	this	could	
also	lead	to	refinements	in	the	hypotheses	as	well	as	data	requirements.	
	
	
The	disappointment	for	me	is	that	a	theoretical	framework	(one	I	can	mention	con-	
fidently,	others	may	also	exist)	to	guide	this	kind	of	data	analysis	(i.e.,	the	Fourth	
Paradigm)	already	exists.	It	started	becoming	articulated	a	decade	ago	(Sivapalan,	
2005;	McDonnell	et	al.,	2007)	and	has	gathered	momentum	since	then,	and	has	
found	expression	as	the	Darwinian	Approach	in	several	papers	(Thompson	et	al.,	
2011;	Harman	and	Troch,	2014).	A	prelude	to	the	kind	of	big-data	based	Newtonian-
Darwinian	synthesis	that	is	relevant	to	this	paper	has	already	appeared	in	the	PUB	
Synthesis	Book	(Blöschl	et	al.,	2013).	In	fact,	the	PUB	book	carried	out	a	synthesis	of	
catchment	scale	predictions	organized	across	scales,	places	and	processes.	The	
notion	of	scale	and	similarity	was	the	foundation	for	the	extrapolation	across	places	
found	in	the	PUB	Book.	
Chapter	2	of	the	PUB	Book	carefully	presented	the	theoretical	basis	for	the	
synthesis,	which	was	the	notion	that	catchments	are	co-evolved	complex	systems.	
This	means	that	one	does	not	look	at	catchment	as	a	physical	object	that	provides	
the	boundary	conditions	for	the	balance	equations	for	water	movement	(as	one	does	
in	a	Newtonian	approach,	which	is	traditional),	but	as	co-evolved	“living”	systems,	
with	a	long	history	of	co-evolution.	Patterns	of	landscape	properties	and	processes	
are	just	a	snapshot	of	a	something	that	has	been	co-evolving,	and	one	looks	at	the	
similarity,	differences	and	scaling	that	one	observes	at	a	moment	in	time	or	at	a	
point	or	area	in	space	arise	from	multiple	trajectories	of	the	same	co-evolutionary	
(land	forming	and	life	sustaining)	processes,	underpinned	by	the	same	organizing	(if	
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not	well	known	yet)	organizing	principles.	Chapter	12	of	the	PUB	Book	presented	
the	outcomes	of	the	synthesis,	and	discussed	how	work	along	these	lines	can	lead	to	
accumulation	of	knowledge,	which	is	a	prelude	to	new	theories.	There	is	much	more	
that	can	be	done	along	these	lines,	with	new	data	that	is	coming	on	line,	as	the	
authors	say.	
	
>>As	noted	above,	the	principal	focus	of	this	work	is	how	the	4th	paradigm	can	assist	
in	testing	hypotheses.		We	believe	that	the	4th	paradigm	is	consistent	with	a	
Darwinian	approach.		Consider	Darwin’s	“Structure	of	Coral	Reefs”	as	quoted	in	
Harman	and	Troch,	2014:	
		“.	.	.	In	effect,	what	an	immense	addition	to	our	knowledge	of	the	laws	of	nature	
should	we	possess	if	a	tithe	of	the	facts	dispersed	in	the	Journals	of	observant	
travellers,	in	the	Transactions	of	academies	and	learned	societies,	were	collected	
together	and	judiciously	arranged!	From	their	very	juxtaposition,	plan,	co-relation,	
and	harmony,	before	unsuspected,	would	become	instantly	visible,	or	the	causes	of	
anomaly	be	rendered	apparent;	erroneous	opinions	would	at	once	be	detected;	and	
new	truths	–	satisfactory	as	such	alone,	or	supplying	corollaries	of	practical	utility	–	
be	added	to	the	mass	of	human	knowledge.	A	better	testimony	to	the	justice	of	this	
remark	can	hardly	be	afforded	than	in	the	work	before	us.”	
	
This	is	precisely	the	issue	that	the	4th	paradigm	seeks	to	address—using	advanced	
computational	technologies	to	gather	together	data	of	different	types,	collected	by	
different	means,	and	knit	them	together	in	an	information	framework	that	enables	
the	testing	of	different	hypotheses.	
	
My	point	is	that	the	Fourth	Paradigm	will	not	be	a	new	paradigm	unless	backed	up	a	
broader	Earth	science	perspective,	such	as	this	co-evolutionary	view.	By	the	way,	
this	is	the	same	worldview	that	is	behind	the	highly	successful	Critical	Zone	
Observatories	in	the	United	States	and	also	in	Europe.	So	what	I	am	saying	is	not	a	
biased	perspective	to	impose	my	own	views,	but	is	a	widely	held	perspective	in	the	
Earth	science	communities.	Of	course	in	the	era	of	big	data	and	hyper-resolution	
modeling,	one	is	tempted	to	believe	more	in	the	power	of	satellites	and	subsurface	
geophysics	and	the	power	of	computers	(and	of	techniques	like	data	assimilation)	to	
generate	results	that	are	satisfactory	enough	for	predictions.	
	
>>Agreed.		If	we	agree	that	“information”	is	the	unifying	concept	one	of	the	key	
findings	of	the	Nearing	et	al,	example	cited	in	the	paper	is	that	the	current	
macroscale	models	used	to	predict	soil	moisture	and	evapotranspiration	are	losing	
information	relative	to	that	contained	in	the	data.		Through	information	theoretic	
metrics	and	machine	learning	designed	to	provide	proper	(i.e.	asymptotically	
convergent)	estimates	of	information,	it	is	shown	that	for	soil	moisture	the	majority	
of	information	is	being	lost	in	the	parameters	rather	than	the	physics	themselves.		
Further,	for	evapotranspiration,	it	is	shown	that	the	input	boundary	conditions	
(“forcings”)	are	the	primary	source	of	lost	information.		Hence,	for	these	predictands	
a	more	fruitful	path	is	to	spend	effort	on	properly	characterizing	soils	and/or	near-
surface	meteorology	rather	than	on	model	physics.			This	is	not	a	model	calibration	
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exercise—rather	it	is	a	demonstration	of	information	content	in	the	model	and	in	
the	observations,	along	with	attribution	of	errors.			
	
But	if	one	seriously	believes	that	improvements	in	theory	will	be	needed	for	
predictions,	or	can	in	the	long	term	lead	to	better	predictions	(predictions	for	the	
right	reasons),	as	I	am	sure	the	authors	do	believe,	then	there	is	no	alternative	but	to	
seriously	consider	the	new	co-evolutionary	worldview	to	generate	new	kinds	of	
questions	with	which	to	interrogate	the	patterns	that	one	finds	in	the	data,	test	
hypotheses	about	the	underlying	causes,	and	use	a	multitude	of	tests	of	hypotheses	
to	move	towards	general	theories.	In	the	absence	of	such	a	vision,	the	combination	
of	traditional	Newtonian	paradigm	and	the	big	data,	in	my	opinion,	is	a	massive	
exercise	in	model	calibration,	parameter	regionalization	and	data	assimilation,	that	
will	keep	a	lot	of	people	busy,	but	will	not	advance	fundamental	theory.	
	
>>As	shown	in	new	Figure	1,	we	believe	that	the	4th	paradigm	represents	an	
enhancement	to	the	scientific	method	for	hydrology,	not	a	replacement.		We	agree	
that	co-evolution	is	a	worthwhile	avenue	to	investigate	for	hydrology,	given	its	
demonstrated	relevance	to	other	fields.	
	
	
Big	data	can	indeed	help	us	generate	new	patterns	(at	a	range	of	time	and	space	
scales)	that	trigger	curiosity	and	imagination,	and	will	lead	to	many	more	examples	
of	simple	theories	such	as	the	TOPMODEL	theory.	Indeed	the	availability	of	data	
from	thousands	of	catchments	around	the	world,	such	as	MOPEX	and	other	datasets,	
is	already	generating	new	non-Newtonian	understanding	through	the	mechanism	of	
comparative	hydrology,	as	the	paper	by	Berghuijs	et	al.	(2014)	illustrates	(for	
example).	
In	conclusion	I	enjoyed	reading	the	paper,	and	indeed	agree	with	the	authors	on	
what	they	are	proposing,	but	believe	that	they	should	go	to	the	next	(and	final)	step	
and	frame	the	problem	from	a	co-evolutionary	perspective.	The	co-evolutionary	
view	is	also	very	critical	to	frame	the	new	prediction	problems	in	a	changing	world	
in	the	new	Anthropocene	era	(Sivapalan	and	Blöschl,	2015).	They	should	present	
avenues,	in	the	style	of	the	natural	history	approach	adopted	by	Charles	Darwin	(as	
described	in	Harman	and	Troch,	2016	and	Thompson	et	al.,	2012)	to	generate	
hypotheses	from	the	data	and	methods	(experiments,	numerical	simulations	etc.)	to	
test	these	hypotheses	to	develop	new	theories.	
	
>>	Agreed,	Figure	1	now	illustrates	this.	
	
Of	course,	this	not	anything	new	or	unique	to	hydrology:	it	is	indeed	the	scientific	
method,	and	for	this	reason	I	draw	inspiration	from	Jacob	Bronowski,	and	point	to	a	
quote	from	his	TV	series	and	book	(Bronowski,	1956,	p.	23)	of	the	same	name	“The	
Ascent	of	Man”:	
“All	science	is	the	search	for	unity	in	hidden	likenesses.	.	.The	progress	of	science	is	
the	discovery	at	each	step	of	a	new	order	which	gives	unity	to	what	had	long	seemed	
unlike.	.	.	For	order	does	not	display	itself	of	itself;	if	it	can	be	said	to	be	there	at	all,	it	
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is	not	there	for	the	mere	looking.	.	.	order	must	be	discovered	and,	in	a	deep	sense,	it	
must	be	created.	What	we	see,	as	we	see	it,	is	mere	disorder.”	
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Please	find	below	the	comments	of	R.	Maxwell	and	our	replies	(preceded	by	“>>”).	
	
R.	Maxwell	(Referee)	
rmaxwell@mines.edu	
Received	and	published:	12	April	2017	
This	manuscript	makes	the	argument	for	a	4th	paradigm,	or	data-intensive	science,	
as	an	additional	path	towards	understanding	scaling	relationships	in	hydrology.	In	
general	this	manuscript	is	clearly	written	and	is	of	a	topic	that	should	be	of	interest	
to	the	readers	of	HESS	and	is	a	good	fit	for	the	special	issue.	I	have	detailed	
comments	organized	topically	below	that	I	think	the	authors	should	consider	in	a	
revised	manuscript.	I	recommend	that	this	discussion	article	undergo	revision	prior	
to	publication.	Finally,	I	did	find	the	article	to	be	a	bit	too	concise	and	while	much	
can	be	written	on	the	topic	and	brevity	is	appreciated,	some	sections	felt	like	they	
would	benefit	from	additional	discussion	(e.g.	conclusions	and	recommendations).	
	
>>Thank	you	for	your	constructive	comments.		Agreed.		More	description	and	
discussion	has	been	added	on	these	points.	
	
	
Types	of	scaling	relationships.	As	the	authors	point	out,	scaling	may	be	a	function	���������������������������of	
organization	or	hydrologic	inputs	and	responses.	Functional	relationships	between	
hydrologic	variables	may	also	exist	and	these	may	be	scale-independent	(or	often	
referred	to	as	scale-invariant).	
	
>>Agreed.		This	point	is	noted	in	the	introduction.	
	
Closure.	Closure	is	still	important	and	a	formal	closure	of	these	systems	need	be	
embraced.	All	models	invoke	some	form	of	closure	at	an	REV	scale	and	whether	this	
is	appropriately	represented	by	the	model	resolution	is	an	interesting	question.	
Many	of	the	scaling	studies	cited	in	this	work	point	out	that	topography	is	fractal	
and	this	drives	much	of	the	scaling	behavior	seen	in	hydrology.	This	presents	a	
special	challenge	to	closure,	similar	to	the	atmospheric	sciences,	where	some	sub	
grid	information	is	always	needed	no	matter	what	the	resolution.	
	
>>Agreed.		See	additional	discussion	added	to	the	introduction.	
	
Model-data	interplay.	Increasing	model	resolution	can	be	for	multiple	reasons,	some	
of	which	are	pointed	out	but	a	critical	one	not	included	is	to	ensure	numerical	
convergence	of	the	underlying	PDE	solution.	This	latter	reason	is	in	tandem	with	
many	of	the	others	mentioned	by	the	authors,	datasets	and	scale	of	process.	An	
important	distinction	is	models	that	have	parameterizations	that	represent	sub	grid	
processes	may	not	improve	with	increased	resolution,	models	that	have	a	single	
column	tile	/	subtile	form	will	only	increase	as	a	function	of	finer	/	better	data.	I	
think	the	important	point	here	is	that	data	limitations	affect	all	models,	but	
differently.	Integrated	models	with	lateral	flow	of	water	in	surface,	subsurface	
systems	that	generate	runoff	directly	will	have	a	different	spatial	sensitivity	to	the	
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resolution	of	the	input	data	than	more	traditional	land	surface	models	with	no	
lateral	flow	and	a	parametrized	runoff	generation,	which	will	have	a	very	different	
spatial	sensitivity.	The	input	data	matters	in	all	cases,	but	differently	for	different	
classes	of	model.	Spatial	resolution	matters	in	all	cases,	but	for	some	models	
increasing	resolution	will	have	diminishing	returns	or	no	effect	past	a	certain	point,	
while	for	other	models	these	thresholds	may	not	be	seen	or	may	be	found	at	
different	spatial	resolutions.	
	
>>	Agreed.		The	PDE/truncation	issue	noted	in	introduction	and	additional	
discussion	added	in	Section	5	on	modeling	framework	requirements.	
	
Scaling	of	process.	The	sub	grid	parameterizations	in	e.g.	VIC	are	an	important	step	
to	understand	how	processes,	such	as	runoff	production,	scale	up	with	
heterogeneous	parameters.	High	resolution	numerical	studies	indicate	that	this	may	
depend	upon	process,	excess	infiltration	doesn’t	appear	to	have	an	ergodic	limit	(e.g.	
Maxwell	and	Kollet	AWR	2008),	while	excess	saturation	processes	scale	with	the	
geometric	of	subsurface	K	(e.g.	Meyerhoff	and	Maxwell,	Hydrogeology	2011).	This	is	
but	what	I’m	sure	must	be	only	one	(self-serving)	example	of	how	model	
simulations	like	this	can	inform	how	parameterizations	may	be	constructed,	tested	
or	scaled.	In	this	type	of	example,	the	effects	of	heterogeneity	may	decrease	with	
scale	for	runoff	that	involves	groundwater,	diminishing	the	impact	of	uncertainty	in	
the	framework	presented	by	the	authors,	while	they	may	not	for	runoff	that	is	
purely	surface-flow	and	connection	driven.	I	would	imagine	that	other	examples	can	
be	used	to	extend	this	idea	to	other	processes,	e.g.	ET,	land	energy	fluxes.	
	
>>	These	are	important	points,	and	we	have	them	along	with	citations	in	section	2.	
	
Distinctions	between	input	data,	observations	for	model	and	process	validation.	The	
4th	paradigm,	or	intensive	spatial	temporal	data,	is	important	in	hydrology.	I	think	it	
is	worth	distinguishing	between	uses	and	types.	Some	of	these	data	will	be	used	as	
model	input,	some	to	compare	or	validate.	Uncertainty	and	spatial	scale	/	scope	is	
important	in	these	large	(e.g.	continental)	datasets	and	although	published	after	this	
article	went	into	discussion,	Christensen	et	al	(WRR	2017),	provide	some	novel	
approaches	for	improving	the	subsurface	datasets.	Additionally,	I	think	it	is	
important	for	the	so-called	3rd	and	4th	paradigm	to	interact	in	that	models	can	be	
useful	hypotheses	generation	tools	to	better	inform	use	of	observations	in	new	
ways.	
	
>>	Agreed.		We	have	included	this	distinction	in	section	4	data	requirements,	and	
have	also	included	a	reference	to	Christensen	et	al.	
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Please	find	below	the	comments	of	U.	Lall	and	our	replies	(preceded	by	“>>”).	
	
My	recommendation	is	to	publish	with	minor	revision.	This	recognizes	that	the	
paper	is	part	of	the	set	for	the	Wood	symposium,	and	addresses	a	specific	audience.	
My	main	reactions	are:	
1)	I	am	lukewarm	to	the	idea	of	the	4	paradigms	that	the	authors	mention.	I	am	not	
sure	that	there	is	such	a	clear,	sequential	separation.	
	
>>Based	on	comments	from	other	reviewers,	we	have	expanded	the	definition	of	the	
4th	paradigm	and	also	included	Figure	1	to	help	explain	that	they	are	all	
interconnected	in	the	scientific	method.	
	
	
2)	I	am	very	sympathetic	to	the	idea	that	data	at	multiple	scales	be	used	
simultaneously	in	the	context	of	setting	up	a	model	and	exploring	what	constitutes	
similarity.	The	authors	really	touch	this	only	towards	the	end,	and	do	not	really	
develop	a	mutual	information	based	approach	that	they	promise	in	the	beginning	of	
the	paper	
	
>>Based	on	comments	from	another	reviewers,	we	have	expanded	some	of	this	
discussion,	but	we	do	also	rely	on	the	citations	to	present	the	background	on	the	
method.	
	
3)	The	authors	had	me	confused	with	their	title	–	I	expected	that	the	paper	would	
develop	some	notions	of	self	similarity,	fractals	and	emergent	behavior	across	scales	
from	the	interactions	across	coupled	hydrologic	systems.	This	would	have	been	an	
exciting	idea	for	the	fourth	paradigm,	I	suppose,	albeit	not	new.	However,	they	are	
really	talking	about	how	to	better	parameterize	surface	hydrologic	models	in	a	multi	
scale	context,	and	are	developing	the	notion	of	similarity	and	homogeneity	that	
Wood	introduced,	in	parallel	to	the	subsurface	literature	where	such	concepts	were	
also	being	explored.	This	is	perhaps	a	useful	direction	for	the	researchers	involved	
in	such	an	enterprise,	and	the	references	to	VIC	and	recent	improvements	are	
helpful.	Perhaps,	I	am	the	only	one	likely	to	be	confused	by	the	scaling	and	similarity	
notions	expressed	here	versus	the	fractals	and	nonlinear	dynamics	literature,	but	it	
may	be	useful	to	draw	the	distinction	early	on	
	
>>We	agree	that	the	scope	is	more	narrowly	focused	on	scaling	and	similarity	in	
hydrology,	with	the	main	contribution	being	to	use	“big	data”	to	test	hypotheses.		
We	have	attempted	to	clarify	this	in	the	introduction.	
	
4)	I	am	quite	averse	to	the	whole	bias	correction	game	that	seems	endemic	in	our	
models	nowadays.	The	one	paragraph	devoted	to	it	seems	to	suggest	that	the	
authors	do	not	think	it	is	a	great	idea	in	the	present	context,	but	stop	shy	of	actually	
trying	to	clarify	that	it	is	not	a	good	thing	to	do.	I	would	suggest	that	they	make	this	
a	stronger	statement	and	emphasize	that	ideally	one	needs	to	use	the	multiscale	
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data	in	a	way	that	best	leverages	it	and	demonstrates	the	ability	of	the	models	to	
reproduce	processes	at	the	scales	at	which	those	data	are	available,	without	any	bias	
correction.	Where	they	talk	about	dynamics,	it	would	be	useful	to	discuss	the	
reproduction	of	attributes	of	dynamics,	such	as	the	time	rate	of	decorrelation	using	
an	information	metric,	and	the	mutual	information	across	variables,	space	and	time.	
Of	course	I	realize	that	most	of	my	suggestions	reflect	my	idiosyncratic	views	and	
the	authors	may	or	may	not	agree	with	them	
	
>>This	is	a	good	point.		We	were	mostly	acknowledging	the	issue	without	providing	
a	clear	statement	of	how	to	apply	the	multiscale	data	to	address	it.		We	now	include	
statements	about	both	multiscale	data	and	attributes	of	dynamics.	
	
>>Thank	you	for	your	constructive	comments.			
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Abstract. In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for 

universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is 15 

time for hydrology to embrace a fourth paradigm of data-intensive science.  Advances in information-based hydrologic 

science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the 

foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses.  We summarize 

important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for 

testing these hypotheses, describe boundary condition, state/flux, and parameter data requirements across scales to support 20 

testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm.  We 

call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply 

this to outstanding challenges in scaling and similarity. 

1 Introduction 

This synthesis paper is an outcome of the “Symposium in Honor of Eric Wood: Observations and Modeling across Scales”, 25 

held June 2-3, 2016 in Princeton, New Jersey, USA.  The focus of this contribution is the heterogeneity of hydrological 

processes, their organization, scaling and similarity, and the impact of the heterogeneity on water and energy states and 

fluxes (and vice versa). We argue here that the growth of hydrologic science, from empiricism (1st paradigm), via theory (2nd 

paradigm), to computational simulation (3rd paradigm) has yielded important advances in understanding and predictive 

capabilities – yet we argue that accelerating advances in hydrologic science will require us to embrace the 4th paradigm of 30 
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data-intensive science, to use emerging datasets to synthesize/scrutinize theories and models, and improve the data support 

for the mechanisms of Earth System change.  

The Fourth Paradigm is a concept that focuses on how science can be advanced by enabling full exploitation of data via new 

computational methods. The concept is based on the idea that computational science constitutes a new set of methods 

beyond empiricism, theory, and simulation, and is concerned with data discovery in the sense that researchers and scientists 5 

require tools, technologies, and platforms that seamlessly integrate into standard scientific methodologies and processes. By 

integrating these tools and technologies for research, we provide new opportunities for researchers and scientists to share and 

analyze data and thereby encourage new scientific discovery.  As shown in Figure 1, the scientific method applied to 

hydrology is not a linear process—rather, because hydrology is already in the 3rd paradigm, empiricism (the 1st paradigm) 

and theoretical development (the 2nd paradigm) both lead to new theories and hypotheses that are embodied in computational 10 

models.  These hypotheses may not be rigorously tested with many datasets, either because the datasets have not been 

gathered into an effective, accessible platform, or because the datasets require additional processing and information 

theoretic techniques to apply them to the model predictions for hypothesis testing.  Further, as noted by Pfister and Kirchner 

(2017), hypothesis testing with models is fraught with challenges that require not only consideration of the data required to 

test a given hypothesis, but also careful consideration of how to encode hypotheses as uniquely falsifiable predictions 15 

(Figure 1).   Advances in data science now allow the 4th paradigm to inject “big data” into the scientific method using 

rigorous information theoretic methods without eliminating the other parts of the scientific method. 

Our focus here on scaling and similarity directs attention to one of the most challenging problems in the hydrologic sciences. 

As defined by Blöschl and Sivapalan (1995), scale is a “characteristic length (or time) of process, observation, model” and 

scaling is a “transfer of information across scales” (see also Bierkens et al., 2000; Grayson and Blöschl, 2000). Functional 20 

relationships between hydrologic variables may also exist and these may be scale-independent (or scale-invariant).  

Similarity is present when characteristics of one system can be related to the corresponding characteristics of another system 

by a simple conversion factor, called the scale factor.  We should note that the terms ‘scaling’ and ‘similarity’ used here are 

specific to the hydrology literature and distinct from the general notions of self-similarity, fractals, and emergent behavior in 

the nonlinear dynamics literature. Classic examples of similarity include the ratio of catchment areas (Willgoose et al., 1991; 25 

Smith, 1992), and the topographic index ln(a/tanβ) (Beven and Kirkby, 1979) that are used for relating flows of two 

catchments and relating the topographic slopes and contributing areas to water table depths, respectively. Another example is 

the hillslope Péclet number (Berne et al., 2005; Lyon and Troch, 2007).  Heterogeneity or variability in hydrology manifests 

itself at multiple spatial scales (e.g., Seyfried and Wilcox, 1995; Blöschl and Sivapalan, 1995), from local (O(1 m); e.g., 

macropores) to hillslope (O(100 m); e.g., preferential flowpaths) to catchment (O(10 km); e.g., soils) and regional (O(1000 30 

km); e.g., geology). Similarly, temporal variability is reflected on event, seasonal and decadal time scales (e.g., Woods, 
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2005). Understanding scaling and similarity requires understanding how the interactions among multiple processes across 

scales affect the (emergent) hydrologic behaviour at otherother space-time scales; such understanding underpins methods for 

computational simulation. 

The scaling and similarity problem is nevertheless very difficult. As asserted by Dooge (1986), “within the physical sciences 

and the earth sciences there is and can be no universal model for water movement.”  Despite numerous attempts at 5 

integrating local models across soils (e.g. Kim et al., 1997), hillslopes (Troch et al., 2015) and watersheds e.g., (Reggiani et 

al., 1998, 1999, 2000, 2001), universal laws in hydrology and the required closure relations remain elusive because the 

physics are likely scale-dependent (e.g. Bierkens, 19961996) and the data required to test these hypotheses are either not 

readily available or not easily synthesized, or, even worse, would never be observable (Beven, 2006).  Further, 

computational advances have enabled so-called “hyper-resolution” or, using anan alternative term that is not necessarily 10 

equivalent, “hillslope-resolving” modellingmodelling (e.g. Chaney et al., 2016; Wood et al., 2011), but as noted in the 

discussion between Beven and Cloke (2012) and Wood et al. (2012), and later discussed in Beven et al. (2015), the ability to 

provide meaningful information from hillslope-resolving models is limited both by a lack of tested parameterizations at a 

given model scale as well as by lack of data for model evaluation (e.g. Melsen et al., 2016a). 

In principalprincipleprinciple, moving to finer spatial and temporal resolutions may improve accuracy simply by reducing 15 

the truncation error in the numerical solution of the system of partial differential equations.  In an analogy with fluid 

mechanics and the atmospheric sciences where “large eddy simulations” are designed to capture the most energetic motions 

and thereby reduce the sensitivity to turbulence closure, one might ask whether “hillslope-resolving” models might resolve 

the most energetic components (in an information theoretic/entropy sense) of the terrestrial water storage spectrum such that 

the closure problem may be simplified.  As discussed in many of the studies cited above, topography is fractal and this, 20 

combined with scaling between the pedon and the hillslope, drives much of the scaling behavior seen in hydrology. Most of 

the apparent fractal nature in relation to hydrology has been demonstrated at the scale of river networks (e.g. Tarboton et al, 

1988), so a hypothesis that could be tested with data following the 4th paradigm is to what extent resolving these river 

networks in models reduces the information loss. Further, proposed scaling relationships may be appropriate above a given 

scale, but as we move downward in scales from watershed to hillslope to local, these relationships may break down.   25 

These current tactics in the hydrologic sciences are representative of the third paradigm of scientific investigation (Hey et al., 

2009), characterized by applying computational science to simulate complex systems.  The so-called third paradigm builds 

on the earlier first (empirical) and second (theoretical) paradigms.  As discussed by Clark et al., (this issue), computational 

science approaches to modeling hydrologic systems have been discussed for decades. With the advent of high-resolution 

earth observing systems (McCabe et al., this issue), proximal sensing (Robinson et al., 2008), sensor networks (Xia et al., 30 

2015), and advances in data-intensive hydrologic science (e.g., Nearing and Gupta, 2015), there is now an opportunity to 
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recast the hydrologic scaling problem into a data-driven hypothesis testing framework e.g., (Rakovec et al., 2016a).  By 

embracing such a framework, hydrologic analysis can become explicitly “scale-aware” by testing specific parameterizations 

at a given model scale. Now is the time for a fourth paradigm in hydrologic science.   

With this goal in mind, this paper addresses the following questions: 

1. What are the key scaling and similarity concepts (hypotheses) that require testing? 5 

2. What framework could we use to test these hypotheses? 

3. What are the data requirements to test these hypotheses? and 

4. What are the model requirements to test these hypotheses? 

2 Scaling and similarity hypotheses 

Most scaling work to date has built on the Representative Elementary Area (REA) concept (Wood et al., 1988), and 10 

extensions to the Representative Elementary Watersheds (REW) introduced by Reggiani et al. (1998, 1999, 2000, 2001) – 

the REA/REW concept seeks to define physically meaningful control volumes for which it is possible to obtain simpler 

descriptions of the rainfall-runoff process (i.e., simpler than those at the point scale).  An alternative, but related, concept is 

the Representative Hillslope (RH; Troch et al., 2003; Berne et al., 2005; Hazenberg et al., 2015). The REA/REW approach is 

conceptually similar to Reynolds averaging, and relies on the fundamental assumption that the physics are known at the 15 

smallest scale considered (e.g. Miller and Miller, 1956). Critically, the fluxes at the boundaries of the model control volumes 

require parameterization (the so-called “closure” relations). These closure assumptions are typically ad-hoc, and include sub-

grid probability distributions, scale-aware parameters, or new flux parameterizations.  Fundamentally, these approaches 

conform to the third paradigm, in the sense that they take as given a set of conservation equations that govern behaviour at 

the fundamental (patch, tile, grid, hillslope, or REW) scale (Figure 22).  Testing both the scaling and closure assumptions as 20 

hypotheses using data would move hydrology towards the fourth paradigm.  

The examples above represent the classic “Newtonian” approach in hydrology, but the 4th paradigm advocated here is not 

specific to testing hypotheses derived from that approach, and as shown in Figure 1, represents an augmentation to the 

scientific method in hydrology.  Foundational (Sivapalan, 2005; McDonnell et al., 2007) and more recent work (Thompson 

et al., 2011; Harman and Troch, 2014) on “Darwinian” hydrology has used scale and similarity concepts to synthesize 25 

catchments across scales, places and processes. As noted in McDonnell et al., (2007) there has been a call for a reconciliation 

of the Newtonian and Darwinian approaches, starting first in the ecology community (Harte, 2002), and we believe that 
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moving to a 4th paradigm with the augmented scientific method depicted in Figure 1 will embody the wishes of Darwin from 

his “Structure of Coral Reefs” as quoted in Harman and Troch (2014): 

  “. . . In effect, what an immense addition to our knowledge of the laws of nature should we possess if a tithe of the facts 

dispersed in the Journals of observant travellers, in the Transactions of academies and learned societies, were collected 

together and judiciously arranged! From their very juxtaposition, plan, co-relation, and harmony, before unsuspected, would 5 

become instantly visible, or the causes of anomaly be rendered apparent; erroneous opinions would at once be detected; and 

new truths – satisfactory as such alone, or supplying corollaries of practical utility – be added to the mass of human 

knowledge. A better testimony to the justice of this remark can hardly be afforded than in the work before us.” 

An important avenue to advance hydrologic understanding and predictive capabilities is through attention on hypotheses of 

hydrologic scaling and similarity, i.e., different ways to relate processes and process interactions across spatial scales. One of 10 

the foundational works in hydrologic similarity is the topographic index (Beven and Kirkby, 1979) – the topographic index 

defines local areas of topographic convergence, and is used to relate the probability distribution of local water table 

fluctuations to catchment-average surface runoff and sub-surface flow.  Building on this topographic similarity, this index 

was expanded to include soils and study runoff production (Sivapalan et al., 1987; Sivapalan et al., 1990), and further 

applied to examine scaling of evaporation (Famiglietti and Wood, 1994) and soil moisture (Wood, 1995; Peters-Lidard et al., 15 

2001).  Such controls of water table depth on runoff production and evapotranspiration at catchment scales represent just one 

hypothesis of similarity and scaling behaviour – an example alternative hypothesis, used in the VIC model (Liang et al., 

1994), is the description of how sub-element variability in soil moisture affects the development of saturated areas in a 

catchment and the partitioning of precipitation into surface runoff and infiltration (Moore and Clarke, 1981; Dümenil and 

Todini, 1992; Wood et al., 1992; Hagemann and Gates, 2003). Other scaling hypotheses are used for other physical 20 

processes, for example, how small-scale variability in snow affects large-scale snow melt (Luce et al., 1999; Liston, 2004; 

Clark et al., 2011a), and how energy fluxes for individual leaves scale up to the vegetation canopy (de Pury and Farquar, 

1997; Wang and Leuning, 1998). 

The critical issue here is the interplay between the scale of the model elements and the choice of the closure relations: As 

computational resources permit higher resolution simulations across larger domains (Wood et al., 2011), more physical 25 

processes can be represented explicitly, and the closure relations must be tailored to fit the spatial scale of the model 

simulation. To some extent such “hyper-resolution” approaches abandon the quest for physically meaningful control 

volumes that characterizes the REA and REW concepts, and the representation of sub-element processes in fully 3-D 

simulation of watersheds (e.g., Kollet and Maxwell, 2008; Maxwell and Miller, 2005) is becoming less and less obvious, and 

perhaps less and less necessary. A key question now is whether “hyper-resolution” applications through explicit 3-D models, 30 

or (at least for some variables) with clustered 2-D simulations (e.g., the HydroBlocks of Chaney et al., 2016), provide 
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reasonable representations of scaling and similarity. Considering infiltration excess and saturation excess runoff generation 

processes, high resolution numerical studies indicate that excess infiltration doesn’t appear to have an ergodic limit (e.g. 

Maxwell and Kollet (2008), while excess saturation processes scale with the geometric of subsurface saturated hydraulic 

conductivity (e.g. Meyerhoff and Maxwell, 2011). Similarly, one might imagine different scaling relations for 

evapotranspiration depending on the nature of controls due to radiation (topography), vegetation, and/or soil moisture (e.g., 5 

Rigden and Salvucci, 2015). For example, as recently shown by Maxwell and Condon (2016), the interplay of water table 

depths with rooting depths along a given hillslope exerts different controls on evaporation and transpiration, which links the 

water table dynamics with the land surface energy balance, even at continental scales.  This finding is based on limited data, 

and would benefit from formal hypothesis testing in an information-based framework, as described in the next section. 

3 A hypothesis testing framework for hydrologic scaling and similarity 10 

As demand increases for hillslope-resolving or “hyper-resolution”modelling modelling (e.g., Beven et al., 2015; Beven and 

Cloke, 2012; Bierkens et al., 2015; Wood et al., 2011, 2012), the question arises as to whether the physics in our models, the 

parameters that are used in the models, and the input data (e.g., “forcings”) are adequate to support such 

endeavoursendeavours (e.g. Melsen et al., 2016b). Following from Nearing and Gupta (2015), we can formulate a 

framework for testing hypotheses based on measuring information provided by a model (e.g., parameterizations based on 15 

similarity concepts) as distinct from information provided to a model (e.g., forcing data or parameters).  We should note that 

this is not hypothesis testing in the traditional sense, but rather a framework for scrutinizing hydrological scaling and 

similarity hypotheses with data. This concept was demonstrated by Nearing et al. (2016),), who evaluated the information 

loss due to forcing data, parameters, and physics in the North American Land Data Assimilation System (NLDAS) model 

ensemble. In this example, information was first measured using point data for soil moisture and evaporation, and compared 20 

to regressions that are kernel density estimators of the conditional probability densities and represent the upper bound of 

information available on a given variable from the forcing data alone and given the forcing data and parameters. As shown in 

Figure 2, we can measure the total information about a given variable z contained in observations (H(z), left bar), and then 

measure the information about that variable provided by a given model simulation (I(z; yM), right bar). The intermediate bars 

represent losses of information due to forcing data (boundary conditions) and due to parameters.   25 

If we take this example, and expand it to conceptualize a framework for hypothesis testing in hydrology, we can imagine 

multiple instances of H(z) computed at different spatial scales, as well as multiple instances of mutual information I(z, yM), 

computed for models employing different representations of processes at that scale.  One concrete example hypothesis 

described in the previous section is the use of TOPMODEL parameterizations for groundwater, versus representative 

hillslopes, versus “HydroBlocks” (Chaney et al., 2016) versus explicit 3-D modeling. 30 
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Critical to this exercise is the availability of forcing data, such as precipitation, radiation, humidity, temperature and wind 

speed, that have sufficient information content at the scale being evaluated such that it can adequately characterize the 

variable (e.g., soil moisture) or process (e.g., evapotranspiration; runoff) being studied (e.g. Berne et al., 2004).  Similarly, 

the parameters provided to the model must also contain information about the variable or process being studied at a 

particular spatial and temporal scale.  The Nearing and Gupta approach provides a framework for explicitly measuring the 5 

information available from observations, comparing that to information provided by a model, and attributing lost information 

to forcings, parameters and physics, and hence provides a rigorous method to test our physics assumptions by confronting 

them with observations. Clearly, this leads to requirements for data that can support such framework. 

4 Data requirements 

As shown in Figure 1, the 4th paradigm for hydrology is characterized by the rigorous application of large datasets towards 10 

testing hypotheses as encapsulated in models.  The process of constructing models requires observations both as input data, 

and for model and process validation or hypotheses testing. A distinguishing characteristic of data for model and process 

validation will be that we are observing spatial and temporal patterns of fluxes and states represented in our modeling 

frameworkFor, for example, soil moisture, snow pack or evapotranspiration. As discussed by McCabe et al. (this issue), 

there has been a dramatic increase in the type and density of hydrologic information that is becoming available at multiple 15 

scales, from point- to meso-scale and regional to global. For example, the number of remote sensing missions dedicated to 

observing the water cycle, allows further development of (large scale) hydrological models and data assimilation frameworks 

for more accurate soil moisture, evaporation, and streamflow prediction. In particular, there are exciting developments in 

meso-scale (i.e. hillslope to catchment) observations, which are critical for testing hypotheses about scaling (REA, RH, 

REW) by connecting point measurements, hydrological models, and remote sensing observations. Examples include recent 20 

advances in cosmic ray neutron sensors (Franz et al., 2015; Köhli et al., 2016; Zreda et al., 2008,), distributed temperature 

sensing (DTS; Steele-Dunne et al., 2010; Bense et al., 2016),; Dong et al., 2016), soil moisture observations, the use of 

crowd-sourcing (De Vos et al., 2016) and microwave signal propagation from telecommunications towers for precipitation 

(Leijnse et al., 2007), to the rise in the use of unmanned autonomous vehicles to characterize the landscape at centimeter 

scale (Vivoni et al., 2014). These alternative data sources enhance our ability to observe, understand, and simulate the 25 

hydrological cycle. Advances in citizen science (Buytaert et al., 2014; Hut et al., 2016) and the use of so-called “soft” data 

for hydrological modeling (Van Emmerik et al., 2015; Seibert and McDonnell, 2002) show that even though these new data 

are collected on nontraditional spatiotemporal scales, they might give us new insights in how processes at different scales are 

coupled.  
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Advances in hydrogeophysical characterization of the subsurface (Binley et al., 2015), such as electrical methods, ground 

penetrating radar and gravimetry, offer non-invasive meso-scale information that can be used to provide parameters or to 

infer boundary conditions, states or fluxes. Recently, Christensen, et al. (2017) demonstrated that dense airborne 

electromagnetic data can be used to map hydrostratigraphic zones, which is an encouraging capability. Imaging the subsoil 

may be feasible at local scales, but it is a challenge at river basin or continental scales. Hence, we encourage more joint 5 

efforts in hydrogeophysical imaging for integrated characterization of the subsurface.  

Combined, these observations may be used in a benchmarking exercise similar to Nearing et al. (2016).Synthesizing 

hydrogeophysical methods with point observations and laboratory/field techniques for estimating "effective" soil hydraulic 

functions/parameters is a challenging opportunity (e.g. Kim et al., 1997),), but one which might be tractable using a data-

driven hypothesis testing framework. These new data sources allow us to understand and apply scaling between data sources 10 

(point scale to remotely sensed data) and between model scales; and provide the critical data required to test alternative 

scaling hypotheses.   

Beyond the new meso-scale observations, extensive catchment databases now exist to support hypothesis testing including 

the TERENO (Zacharias et al., 2011), MOPEX (Duan et al., 2006), CONUS benchmarking (Newman et al., 2015a), GRDC 

(http://www.bafg.de/GRDC/EN/01_GRDC/13_dtbse/database_node.html) and EURO-FRIEND databases (Stahl et al., 15 

2010). Recent similarity studies (Sawicz et al., 2011) have systematically analyzed large numbers of catchments focusing on 

streamflow-oriented signatures such as the runoff coefficient, baseflow index and slope of the flow duration curve, and then 

have explored relationships between these signatures and model process time scales (Carrillo et al., 2011). Coopersmith et al. 

(2012) generalized this work with four nearly orthogonal signatures that included aridity, seasonality of rainfall, peak 

rainfall, and peak streamflow, and demonstrated that 77% of MOPEX catchments can be described by only six classes 20 

defined by combinations of the four signatures.  Clearly there is information contained in these catchment databases about 

not just the coevolution of climate (forcing) and landscape properties (parameters), but also the physics of the catchment 

responses. Comparative hydrology (e.g., Kovács, 1984; Falkenmark and Chapman, 1989; Gupta et al, 2014) takes a first 

needed step in the direction of the fourth paradigm, and following the framework described above, we can explicitly quantify 

the mutual information in the signatures, parameters and forcings to help elucidate these connections beyond classification. 25 

One of the crucial factors that complicate scaling is the anthropogenic effect on catchments. Recent advances in modeling 

the co-evolution of the human-water system (see e.g. Troy et al., 2015; Ciullo et al., 2017) focused on identifying generic 

key processes and relations. Yet, it is unknown how these relate to systems on larger (and smaller) scales. To arrive at new 

understandings of scaling and similarities in human-influenced catchments, studying these issues from a socio-hydrological 

point of view should be an integrated part of the way forward (e.g. Van Loon et al., 2016). 30 
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5 Modeling framework requirements 

Embracing the fourth paradigm in hydrology will face several challenges. First, it is necessary to implement/extend a 

hydrologic modelling framework with sufficient flexibility to evaluate competing hypotheses of similarity and scaling 

behavior (Clark et al., 2011b). One possible framework is the Structure for Unifying Multiple Modeling Alternatives 

(SUMMA), recently introduced by Clark et al. (2015), which has the capability to incorporate alternative spatial 5 

configurations and alternative flux parameterizations. Frameworks like SUMMA, which pursue the method of multiple 

working hypotheses, enable decomposing complex models into the individual decisions made as part of model development, 

and focusing attention on specific decisions (e.g., related to scaling and similarity) while keeping all other components of a 

model constant, hence enabling users to isolate and scrutinize specific hypotheses. One confounding issue is that models 

with parameterizations designed to represent sub grid processes may not add information in a manner proportional to 10 

increased information in the inputs, while models that have a single column tile / subtile form may show a more direct 

relationship between information in inputs and information in outputs. Similarly, integrated models with lateral flow of water 

in surface and subsurface systems that generate runoff directly will have a different spatial sensitivity to the resolution of the 

input data than more traditional land surface models with no lateral flow and a parameterized runoff generation. Hence, the 

modeling framework must be able to isolate the role that surface and subsurface connectivity play in processing information 15 

at different scales. 

A second challenge consists of understanding how to deal with different uncertainties/errors of different observational 

products and hydrologic models when comparing them for studying the scaling behavior. Several papers have highlighted 

the problem of different climatologies or sensitivities of remote sensing products (e.g. Albergel et al., 2012; Brocca et al., 

2011), gridded meteorological products (Clark and Slater, 2006; Newman et al., 2015b), and streamflow observations (Di 20 

Baldassarre and Montanari, 2009; McMillan et al., 2010).  A true correspondence of these remotely sensed variables with 

model results is often hampered, due to vertical mismatches in the soil column between the different products (Wilker et al., 

2006), approximations in the structure of the hydrological model used, its parameterization and discretization, the initial 

conditions, and errors in forcing data (De Lannoy et al., 2007). Because of this, modeled variables often do not correspond 

well to observations; nevertheless, similar trends and dynamics between the different products are found (Koster et al., 25 

2009). 

In several data assimilation studies, the problem of differences in climatologies is resolved by bias-correcting the 

observations towards the model (e.g. Crow et al., 2005; Kumar et al., 2014; Lievens et al., 2015a, 2015b; Martens et al., 

2016; Reichle and Koster, 2004; Sahoo et al., 2013; Verhoest et al., 2015). Yet, such (statistical) operations may not be 

appropriate for scaling studies. First of all, these methods only rescale the remotely sensed value, yet the uncertainties in 30 

these products need rescaling as well. Second, depending on the bias-corrections method used (ranging from only correcting 
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for the first moment to full CDF matching) different scaling relations may be found. Ideally, multiscale data should be used 

in a way that best demonstrates the ability of the models to reproduce processes at the scales at which those data are 

available, particularly with respect to reproducing attributes of dynamics, such as the time rate of decorrelation using an 

information metric, and the mutual information across variables, space and time. 

Testing hypotheses with multiple scale information also require assimilation/modeling frameworks that allow integrating 5 

data into models at their native resolution so that simulations and observations can be compared without the need of 

introducing ad-hoc downscaling/upscaling rules. One such framework has recently been proposed by Rakovec et al. (2016b). 

This framework uses the multiscale parameter regionalization (MPR) (Samaniego et al., 2010) technique to link the 

resolutions of the various data sources with the target modeling resolution and keeping a single set of model transfer 

parameters that are applicable to all scales. As a result, seamless, flux-matching simulations can be obtained. The MPR-10 

based assimilation framework proposed by Rakovec et al. (2016b) is general and can be used within any land surface or 

hydrologic model. This framework was originally tested with mesoscale hydrological model (mHM) (Kumar et al., 2013; 

Samaniego et al., 2010) in order to test ehypotheses related to model transferability across scale and locations as well as 

process description. This data assimilation approach is general and can be used—for example within the SUMMA (Clark et 

al., 2015) modeling framework—to test hypothesis related with the appropriate model complexity at a given scale.  A model 15 

agnostic MPR system called MPR-flex has been recently applied to the Variable Infiltration Capacity (VIC) model to 

estimate seamless parameter and flux fields over CONUS (Mizukami, N., Clark, M., Newman, A., Wood, A., Gutmann, E., 

Nijssen, B., Samaniego, L. Rakovec, ).under reviewunder review). This symbiosis of model parameterization (MPR-Flex) 

and simulation frameworks (e.g., SUMMA, mHM, etc.) is a very promising avenue to test scaling laws as well as the 

uncertainty decomposition described above. Finally, the issue of subjective modeling decisions (e.g. the choice of time step, 20 

spatial resolution, numerical scheme, study region, time period for calibration / validation, performance metrics, etc.) and 

associated uncertainties is an issue that requires further attention (e.g. Krueger et al., 2012). 

6 Summary and Next Steps 

In this paper we review advances in hydrologic scaling and similarity. Beginning with the challenge of Dooge (1986), we 

posit that roadblocks in the search for universal laws of hydrology are hindered by our third-paradigm approach, and assert 25 

that it is time for hydrology to embrace a fourth paradigm of data-intensive science.  Building on other synthesis papers in 

this issue (Clark et al., McCabe et al.), advances in data-intensive hydrologic science (e.g., Nearing and Gupta, 2015) have 

laid the foundation for a data-driven hypothesis testing framework for scaling and similarity. To achieve this goal, we have 

(1) summarized important scaling and similarity concepts (hypotheses) that require testing; (2) described a mutual 

information framework for testing these hypotheses; (3) described boundary condition, state/flux, and parameter data 30 
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requirements across scales to support testing these hypotheses, and (4) discussed some challenges to overcome while 

pursuing the fourth hydrological paradigm. 

Figure 1 illustrates the concept that embracing a 4th paradigm in hydrology where we enable a rigorous confrontation of our 

hypotheses embodied within our models with a range of data types across many locations and spatial-temporal scales.  This 

paradigm represents a union and extension of previous scientific methods within a formal hypotheses driven framework. 5 

Models are a synthesis of all what we have learned (e.g., conservation equations; constitutive relationships for soil 

infiltration) and data, particularly through first paradigm examples like comparative hydrology, yields empirical 

relationships, signatures, fingerprints that helps lead to new understanding and theory (2nd paradigm).  By coupling 

traditional (e.g., in situ) and new data sources (e.g., satellites) we can use the power of information theory and rigorous 

hypothesis testing to elucidate the causes for behaviours that may not be evident in the analysis of individual sites or 10 

catchments.  In this sense, a move to the 4th paradigm means that we seek modelling-driven monitoring, and simultaneously, 

monitoring-driven modelling. The formal hypotheses driven framework will indicate where we have weak processes 

understanding because we cannot explain the data obtained at high resolution. In other cases, comprehensive integrated 

simulations and big-data relationships would allow the identification of where the measurement errors are too large (i.e. data 

has little information content, entropy) and point out what kind of sensors or new measurements/sensors are needed to 15 

improve our physical understanding. These are the feedback loops in Figure 1, and these represent two important paths to 

optimizing the use of models and data to enhance hydrologic science.   

As a next step, we propose a focused community effort to shape the development of the fourth paradigm for hydrology. To 

this end, a workshop following the publication of this special issue would be a good first step. 
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Figure 1:  An illustration of the scientific method in hydrology, highlighting how each component of the method reflects the 
various paradigms of science.  The 4th paradigm is characterized by advanced data collection and analysis, as noted in the green 
boxes.  Based on Figure 1 in Clark et al., 2016. 

  5 

REFINE 
OBSERVATIONAL 
REQUIREMENTS

REFINE, ALTER, 
EXPAND OR REJECT

HYPOTHESES

MAKE 
OBSERVATIONS
(1ST PARADIGM)

DESCRIBE, COMPARE 
AND QUESTION 

PROCESSES & PATTERNS
(1ST PARADIGM)

FORMULATE THEORIES & 
HYPOTHESES TO EXPLAIN 

HYDROLOGIC PHENOMENA
(2ND PARADIGM)

REFINE 
HYDROLOGIC 

THEORY

ENCODE THEORIES IN 
COMPUTATIONAL MODELS

(3RD PARADIGM)

ENCODE HYPOTHESES AS 
FALSIFIABLE PREDICTIONS 

IN MODELS
(3RD PARADIGM)

COLLECT DATA TO TEST 
PREDICTIONS

(4TH PARADIGM)

CONFRONT PREDICTIONS 
& OBSERVATIONS

(4TH PARADIGM)

ACCEPT 
HYPOTHESIS?

YES

NO

Peters-Lidard, Chris…, 5/26/2017 1:16 PM

Deleted: 

Make 
observations  

(1st paradigm) Describe/compare and 
ask questions about 
processes/patterns 

(1st paradigm) 

Formulate theories/
hypotheses to 

explain hydrologic 
phenomena 

(2nd paradigm) 

Encode theories in 
computational 

models 
(3nd paradigm) 

Encode hypotheses as 
falsifiable predictions 

in models 
(3rd paradigm) 

Refine, alter, expand 
or reject hypotheses 

Collect data to test 
predictions 

(4th paradigm) 

Confront predictions 
and observations 

(4th paradigm) 

Refine 
hydrologic 

theory 

Refine 
observational 
requirements Accept 

hypothesis
? 

Peters-Lidard, Christ…, 6/9/2017 9:07 AM
Deleted: purple 



 

26 

 

 

 

Figure 2: Aggregation and scaling schematic following Wood (1995). 
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Figure 33: A conceptual diagram of uncertainty decomposition using Shannon information following Nearing et al., (2016). The 
term H(z) represents the total uncertainty (entropy) in the benchmark observations, and I(z; u) represents the amount of 
information about the benchmark observations that is available from the forcing data. Uncertainty due to forcing data is the 
difference between the total entropy and the information available in the forcing data. The information in the parameters plus 5 
forcing data is I(z; u), and I(z; u, θ)<I(z; u) because of errors in the parameters. The term I(z; yM) is the total information available 
from the model, and I(z; yM)<I(z; u, θ) because of model structural error. 
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