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Abstract	

The	 diversity	 in	 hydrologic	models	 has	 historically	 led	 to	 great	 controversy	 on	 the	 “correct”	
approach	 to	 process-based	 hydrologic	 modeling,	 with	 debates	 centered	 on	 the	 adequacy	 of	
process	 parameterizations,	 data	 limitations	 and	 uncertainty,	 and	 computational	 constraints	
on	model	 analysis.	 In	 this	 paper,	we	 revisit	 key	modeling	 challenges	 on	 requirements	 to	 (1)	
define	 suitable	 model	 equations,	 (2)	 define	 adequate	 model	 parameters,	 and	 (3)	 cope	 with	
limitations	 in	 computing	 power.	 We	 outline	 the	 historical	 modeling	 challenges,	 provide	
examples	of	modeling	advances	that	address	these	challenges,	and	define	outstanding	research	
needs.	 We	 illustrate	 how	 modeling	 advances	 have	 been	 made	 by	 groups	 using	 models	 of	
different	type	and	complexity,	and	we	argue	for	the	need	to	more	effectively	use	our	diversity	
of	 modeling	 approaches	 in	 order	 to	 advance	 our	 collective	 quest	 for	 physically	 realistic	
hydrologic	models.	

1 Introduction	

The	 research	 community	 exhibits	 great	 diversity	 in	 its	 approach	 to	 hydrologic	modeling,	
with	 different	 models	 positioned	 at	 different	 points	 along	 a	 continuum	 of	 complexity.	
Models	can	be	defined	both	in	terms	of	process	complexity,	i.e.,	to	what	extent	do	different	
models	explicitly	represent	specific	processes;	and	spatial	complexity,	i.e.,	to	what	extent	do	
different	models	explicitly	represent	details	of	 the	 landscape	and	the	 lateral	 flow	of	water	
across	model	 elements.	 Such	model	 diversity	 has	 led	 to	 great	 community	 debates	 on	 the	
“correct”	approach	to	process-based	hydrologic	modeling	[Wood	et	al.	1988;	Grayson	et	al.	
1992b,	1992a;	Famiglietti	and	Wood	1995;	Reggiani	et	al.	1998;	Beven	2002;	Sivapalan	et	al.	
2003;	Maxwell	and	Miller	2005;	Wood	et	al.	2011;	Beven	and	Cloke	2012;	Wood	et	al.	2012],	
with	the	debate	centered	around	issues	of	the	adequacy	of	process	parameterizations,	data	
limitations	and	uncertainty,	and	computational	constraints	on	model	analysis.	
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This	 synthesis	 paper	 is	 an	 outcome	 of	 the	 Symposium	 in	 Honor	 of	 Eric	 F.	 Wood,	
Observations	and	Modeling	across	Scales,	held	June	2-3,	2016	in	Princeton,	New	Jersey,	USA.		
The	purpose	of	 this	paper	 is	 to	 revisit	 the	historical	debates	on	process-based	hydrologic	
modeling	 and	 ask	 the	 following	 question:	 How	 can	 we	 combine	 different	 perspectives	 on	
hydrologic	modeling	to	advance	 the	quest	 for	physical	realism?	 [Kirchner	 2006;	 Clark	 et	 al.	
2016].	Specifically,	we	focus	attention	on	the	three	fundamental	questions	that	were	posed	
by	Freeze	and	Harlan	[1969]	in	their	seminal	“blueprint”	for	a	physically-based	hydrologic	
response	model:	

1. Are	physically	based	mathematical	descriptions	of	hydrologic	processes	available?	
Are	 the	 interrelationships	 between	 the	 component	 phenomena	 well	 enough	
understood?	 Are	 the	 developments	 adaptable	 to	 a	 simulation	 of	 the	 entire	
hydrologic	cycle?	

2. Is	 it	 possible	 to	 measure	 or	 estimate	 accurately	 the	 controlling	 hydrologic	
parameters?	Are	the	amounts	of	necessary	input	data	prohibitive?	

3. Have	the	earlier	computer	limitations	of	storage	capacity	and	speed	of	computation	
been	 overcome?	 Is	 the	 application	 of	 digital	 computers	 to	 this	 type	 of	 problem	
economically	feasible?	

We	posit	that	these	questions,	published	almost	fifty	years	ago,	are	very	relevant	today	and	
nicely	frame	the	debates	on	process-based	hydrologic	modeling.		

We	 organize	 the	 paper	 around	 the	 three	 questions	 posed	 by	 Freeze	 and	 Harlan,	 on	 (1)	
model	 structure;	 (2)	model	 parameter	 values;	 and	 (3)	model	 execution	 (computing).	We	
discuss	 these	 modeling	 challenges	 separately,	 while	 recognizing	 that	 these	 modeling	
challenges	 are	 strongly	 interdependent	 (e.g.,	 a	 complex	 model	 structure	 may	 have	 large	
computing	 demands,	 restricting	 the	 extent	 to	 which	 it	 is	 possible	 to	 explore	 alternative	
model	parameter	sets).	We	will	touch	on	these	interdependencies	in	the	individual	sections	
of	the	paper.	

For	each	question	posed	by	Freeze	and	Harlan	we	define	the	major	research	challenges,	and	
we	 provide	 examples	 of	 different	 ways	 that	 the	 community	 has	 risen	 to	 meet	 these	
challenges,	 considering	 modeling	 approaches	 of	 varying	 complexity.	 We	 do	 not	 mean	 to	
provide	 a	 comprehensive	 review;	 rather,	 we	 present	 possible	 solutions	 to	 outstanding	
modeling	problems,	focusing	attention	on	the	research	sphere	of	Eric	F.	Wood.	Our	overall	
intent	in	writing	this	paper	is	to	demonstrate	how	diverse	hydrologic	modeling	approaches	
advance	 the	 collective	 quest	 for	 physically	 realistic	 hydrologic	 models,	 and	 to	 define	
additional	research	that	is	necessary	to	further	advance	process-based	hydrologic	models.	

2 Model	structure	

2.1 Modeling	challenges	
The	 first	 question	 posed	 by	 Freeze	 and	 Harlan	 [1969]	 focuses	 on	 the	 adequacy	 of	 the	
mathematical	descriptions	of	system	of	interest.	Such	mathematical	descriptions	define	the	
structure	 of	 a	 model.	 They	 include	 both	 the	 equations	 used	 to	 parameterize	 individual	
processes	as	well	as	the	interactions	among	processes	and	across	scales.	

A	major	research	challenge	addressed	by	Eric	F.	Wood	is	the	problem	of	scaling,	or	closure	
[Wood	et	al.	1988;	Blöschl	and	Sivapalan	1995;	Reggiani	et	al.	2001;	Beven	2006],	i.e.,	how	
best	to	represent	the	influence	of	small-scale	heterogeneities	on	large-scale	fluxes,	and	how	
best	 to	 represent	 interactions	 among	 processes	 and	 the	 connectivity	 of	 water	 across	 the	
landscape.	 The	 scaling	 challenge	 is	 ubiquitous.	 For	 example,	 Mahrt	 [1987]	 demonstrates	
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how	localized	areas	of	instability	can	dominate	large-scale	energy	fluxes;	Scott	et	al.	[2008]	
demonstrate	 that	 transpiration	 from	 narrow	 riparian	 corridors	 in	 arid	 regions	 is	 much	
greater	than	the	local	precipitation;	Seyfried	et	al.	[2009]	demonstrate	that	deep	snow	drifts	
produce	local	runoff	“hotspots”	that	generate	a	disproportionate	amount	of	the	catchment	
runoff;	 Tromp-van	Meerveld	 and	McDonnell	 [2006a,	 2006b]	 demonstrate	 that	 the	 water	
stored	 in	 bedrock	 depressions	 must	 be	 raised	 to	 a	 sufficient	 level	 in	 order	 to	 connect	
bedrock	depressions	and	generate	hillslope	outflow.	The	community	has	risen	to	meet	these	
scaling	 challenges	 in	 very	 different	 ways	 –	 different	 models	 use	 very	 different	 sets	 of	
equations	 to	 describe	 the	 large-scale	 manifestation	 of	 spatial	 heterogeneity,	 process	
interactions,	and	connectivity.	

The	different	solutions	to	the	scaling/closure	problem	can	be	distinguished	by	the	extent	to	
which	 the	 effort	 is	 focused	 on	 developing	 new	 large-scale	 flux	 parameterizations	 or	
numerically	 integrating	 the	 small-scale	 heterogeneities	 across	 space.	 Such	 differences	 are	
perhaps	 best	 illustrated	 by	 considering	 the	 different	 approaches	 used	 to	 simulate	 the	
transmission	 of	water	 through	 catchments.	 In	 bucket-style	 rainfall-runoff	models—at	 the	
simplest	 end	of	 the	 complexity	 continuum—the	 large-scale	 transmission	of	water	 is	often	
defined	as	a	linear	(or	near-linear)	function	of	water	storage	(e.g.,	see	the	synthesis	in	Clark	
et	 al.	 [2008]	 and	 the	 recent	 review	 by	 Hrachowitz	 and	 Clark	 [2017]).	 Such	 large-scale	
closure	relations	implicitly	represent	the	small-scale	heterogeneity	of	flow	paths,	including	
the	 localized	 areas	 of	 high	 conductivity	 (e.g.,	 macropores)	 that	 dominate	 the	 large-scale	
response	[Beven	and	Germann	1982;	McDonnell	1990].	By	contrast,	 the	more	complex	3D	
variably	 saturated	 flow	 models	 typically	 use	 small-scale	 closure	 relations	 [Maxwell	 and	
Miller	 2005;	Rigon	 et	 al.	 2006],	where	 unsaturated	 hydraulic	 conductivity	 is	 defined	 as	 a	
highly	 non-linear	 function	 of	 soil	 moisture	 [e.g.,	 Van	 Genuchten	 1980].	 These	 3D	models	
compute	large-scale	fluxes	by	spatially	integrating	the	small-scale	heterogeneities	[Maxwell	
and	Kollet	2008;	Kollet	et	al.	2010].	The	differences	in	solutions	to	the	scaling	problem	are	
not	mutually	 exclusive,	 as	many	models	 include	 a	mix	 of	 small-scale	 and	 large-scale	 flux	
parameterizations	(e.g.,	VIC	uses	a	large-scale	parameterization	of	infiltration,	yet	relies	on	
small-scale	equations	to	simulate	the	storage	and	transmission	of	water	through	the	upper	
portion	of	the	soil	matrix).	

When	 viewed	 in	 this	 way,	 the	 different	 solutions	 to	 the	 scaling/closure	 problem	 can	 be	
shared	among	different	modeling	groups	that	employ	very	different	modeling	approaches.	
To	 explain	 this	 perspective,	 consider	 the	 inequality	 that	 describes	 ideal	 relationships	
between	 the	model	 resolution	 and	 the	 length	 scale	 of	 resolved	 and	 unresolved	 processes	
[Wood	et	al.	1988]	

	 		 (1)	

where	 	is	the	length	scale	of	the	rapidly	varying	hydrologic	response,	 	is	the	length	scale	
of	 the	slowly	varying	quantities,	and	 	is	 the	 length	scale	of	 the	model	element	(note	 the	
assumption	that	the	spatial	scale	of	processes	below	the	grid	resolution	is	clearly	separated	
from	 the	 spatial	 scale	 of	 processes	 above	 the	model	 resolution;	 a	 condition	 that	 is	 rarely	
achieved	 in	practice	 [Fan	and	Bras	1995]).	Critically,	equation	(1)	requires	 that	processes	
below	the	 length	scale	of	 the	model	element	must	be	represented	 implicitly	 (e.g.,	 through	
large-scale	 flux	 parameterizations)	 and	 processes	 above	 the	 length	 scale	 of	 the	 model	
element	must	be	 represented	 explicitly	 (e.g.,	 through	numerical	 integration	over	 spatially	
distributed	model	elements).	

The	 trend	 towards	 “hyper”	 resolution	 land	models	 [Wood	et	 al.	 2011],	 e.g.,	 1km	or	100m	
over	 large	 geographical	 domains,	 emphasizes	 the	 need	 for	 general	 parameterizations	 of	
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hydrological	processes	at	 this	scale.	However,	 this	 is	still	an	unsolved	problem:	we	do	not	
have	firm	evidence	that	the	structure	and	parameter	values	of	our	element-scale	equations	
correspond	 to	hydrologic	 reality	at	 those	scales.	One	of	 the	most	 important	causes	of	 this	
difficulty	 is	 the	 spatial	 heterogeneity	 in	 the	 initial	 and	 boundary	 conditions,	 and	 in	 the	
material	properties	of	the	medium.	This	heterogeneity	occurs	at	multiple	spatial	scales,	and	
has	 multiple	 physical	 causes	 [Seyfried	 and	 Wilcox	 1995].	 The	 multiple	 scales	 of	
heterogeneity	 are	 manifest	 as	 multiple	 dominant	 processes	 [Grayson	 and	 Blöschl	 2001],	
and	 also	 as	 processes	 without	 a	 well-defined	 spatial	 scale	 (e.g.	 preferential	 flow	 in	 the	
snowpack,	on	the	land	surface,	 in	the	subsurface).	These	problems	cannot	be	solved	solely	
by	 numerical	 integration	 across	 space.	 The	 next	 section	 summarizes	 recent	 advances	 in	
developing	 large-scale	 flux	 parameterizations,	 and	 in	 effectively	 resolving	 dominant	
processes.	

2.2 Modeling	solutions	
The	common	challenge	of	developing	large-scale	flux	parameterizations	has	been	addressed	
in	a	number	of	ways.	One	class	of	methods	 is	statistical-dynamical	 flux	parameterizations,	
where	 large-scale	fluxes	are	defined	based	on	probability	distributions	of	sub-grid	or	sub-
element	model	state	variables.	For	example,	area-average	infiltration	can	be	parameterized	
based	on	probability	distributions	of	water	table	depth	[Beven	and	Kirkby	1979;	Sivapalan	
et	al.	1987]	or	on	probability	distributions	of	soil	moisture	[Moore	and	Clarke	1981;	Wood	
et	al.	1992].	 Statistical-dynamical	approaches	are	also	used	 to	parameterize	 the	 impact	of	
frozen	 soils	 on	 area-average	 infiltration	 [Koren	 et	 al.	 1999]	 and	 the	 impact	 of	 spatial	
variability	of	snow	on	area-average	energy	fluxes	[Luce	et	al.	1999;	Liston	2004;	Clark	et	al.	
2011a].	 Another	 class	 of	 methods	 consists	 of	 scale-dependent	 parameterizations,	 where	
new	 flux	 parameterizations	 are	 defined	 directly	 at	 the	 scale	 of	 interest.	 Examples	 of	 this	
class	of	methods	include	the	empirically	derived	storage-discharge	relationships	described	
earlier,	where	 the	 large-scale	 transmission	 of	water	 is	 often	 defined	 as	 a	 linear	 (or	 near-
linear)	function	of	water	storage	[Ambroise	et	al.	1996;	Clark	et	al.	2008;	Fenicia	et	al.	2011;	
Brauer	et	al.	2014].	Similarly,	large-scale	stability	corrections,	used	in	computations	of	land-
atmosphere	energy	fluxes,	 implicitly	represent	the	impact	of	local	pockets	of	instability	on	
large-scale	fluxes	[Mahrt	1987].	There	is	a	strong	need	to	synthesize,	evaluate,	and	compare	
these	large-scale	parameterizations,	in	order	to	improve	the	physical	realism	of	hydrologic	
models	[Clark	et	al.	2011b;	Clark	et	al.	2015b;	Clark	et	al.	2016].	

Statistical-dynamic	flux	parameterizations	rely	on	the	assumption	that	the	model	scale	D	is	
large	compared	to	the	length-	or	time-scale	of	the	heterogeneity	of	hydrological	response	l.	
In	 other	words,	 the	 size	 of	 a	model	 element	 is	 large	 compared	 to	 the	 scale-of-fluctuation	
[Rodríguez‐Iturbe	1986]	or	the	integral-scale	[Dagan	1994]	of	the	underlying	process.	 In	
that	 case,	 univariate	 probability	 density	 functions	 can	 be	 used	 that,	 when	 spatially,	
temporally	 or	 probabilistically	 integrated,	 result	 in	 small	 variance	 representative	
parameters	at	the	scale	of	the	model	elements	that	do	not	depend	on	the	model	state	(called	
full	closure).	However,	it	becomes	more	difficult	to	define	scale-aware	parameterizations	if	l	
and	D	are	comparable	in	scale.	Here,	much	can	be	learned	from	the	upscaling	research	that	
has	 been	 done	 in	 stochastic	 subsurface	 hydrology	 to	 derive	 representative	 hydraulic	
conductivities	at	the	scale	of	model	blocks	[see	Sánchez-Vila	et	al.	1996	for	a	review].	These	
approaches	 can	 be	 distinguished	 into	 two	 main	 categories	 [Bierkens	 and	 Van	 der	 Gaast	
1998]:	direct	upscaling,	whereby	 the	 spatial	 statistics,	 i.e.	mean	and	spatial	 covariance,	of	
the	block-scale	hydraulic	conductivity	are	directly	derived	from	integrating	the	small	scale	
spatial	 statistics,	 and	 indirect	 upscaling	 where	 the	 hydraulic	 conductivity	 is	 first	
stochastically	 simulated	 or	 interpolated	 at	 the	 smallest	 scale	 and	 then	 upscaled	 by	 non-
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linear	 averaging.	 Direct	 methods	 work	 best	 for	 heterogeneity	 that	 can	 be	 described	 by	
multi-Gaussian	 random	 functions.	 However,	 numerical	 integration	 across	 space	 may	 be	
necessary	if	the	heterogeneity	is	more	organized	or	of	larger	complexity.	It	is	important	to	
notice	 however,	 that	 full	 closure	 is	 often	 not	 possible,	 resulting	 in	 representative	
parameterizations	that	change	with	the	model	state.	

The	challenge	of	effectively	resolving	dominant	processes	has	also	been	tackled	in	different	
ways.	While	 one	 tactic	 is	 to	 simply	 discretize	 the	 domain	 into	 the	 highest	 resolution	 grid	
that	 modern	 computers	 allow	 (the	 numerical	 integration	 across	 space	 described	 above)	
[Freeze	 and	 Harlan	 1969;	 Maxwell	 et	 al.	 2015],	 this	 approach	 constrains	 capabilities	 to	
extensively	 experiment	 with	 alternative	 model	 configurations	 and	 to	 characterize	 model	
uncertainty	 [Beven	 and	 Cloke	 2012;	Wood	 et	 al.	 2012].	 Hence,	 for	 practical	 reasons,	 the	
challenge	 of	 spatial	 integration	 is	 commonly	met	 using	 concepts	 of	 hydrologic	 similarity,	
often	implemented	at	multiple	levels	of	granularity	within	the	same	model.	At	a	fine	level	of	
granularity,	Wang	and	Leuning	[1998]	make	separate	stomatal	conductance	calculations	on	
sunlit	and	shaded	leaves	to	improve	scaling	from	the	leaf	to	the	canopy.	Similarly,	Swenson	
and	 Lawrence	 [2012]	make	 separate	 energy	 balance	 calculations	 over	 snow	 covered	 and	
snow	 free	 terrain	 to	 improve	 estimates	 of	 large-scale	 energy	 fluxes.	 At	 the	 system	 scale,	
many	models	spatially	 integrate	across	discrete	 landscape	types	to	capture	the	 large-scale	
manifestation	 of	 small-scale	 heterogeneity	 [e.g.,	 Flügel	 1995;	 Tague	 and	 Band	 2004].	 For	
example,	 Newman	 et	 al.	 [2014]	 spatially	 integrate	 across	 a	 small	 number	 of	 discrete	
landscape	types	 in	order	to	reproduce	the	 local	runoff	“hotspots”	described	by	Seyfried	et	
al.	 	 [2009].	 More	 recently,	 Chaney	 et	 al.	 [2016a]	 demonstrate	 that	 the	 use	 of	 spatially	
interacting	hydrologic	 response	units	 can	reduce	computational	 cost	of	a	 fully	distributed	
hydrologic	model	by	three	orders	of	magnitude	without	appreciable	losses	in	information.	
Like	 the	 large-scale	 flux	 parameterizations,	 there	 is	 a	 strong	 need	 to	 rigorously	 compare	
different	approaches	to	explicitly	resolve	dominant	processes.	

An	 interesting	 twist	 is	 the	 interplay	between	explicitly	 representing	small-scale	processes	
and	avoiding	or	reducing	redundant	calculations	across	large	model	domains.	For	example,	
in	the	push	for	hillslope-resolving	models	across	large	geographical	domains,	one	approach	
is	to	use	the	concept	of	representative	hillslopes	[Troch	et	al.	2003;	Hazenberg	et	al.	2015;	
Ajami	et	al.	2016].	The	representative	hillslope	has	a	 length	dimension	much	smaller	than	
the	length	scale	of	the	model	element,	and	the	hillslope	is	discretized	into	columns	along	an	
axis	perpendicular	to	the	stream	to	explicitly	resolve	lateral	flow	processes.	The	hydrologic	
and	energy	 fluxes	 from	the	single	hillslope,	or	averaged	across	 local	hillslopes	of	different	
types,	are	then	considered	representative	of	the	model	element	as	a	whole.	This	approach	
spatially	 integrates	 both	 along	 a	 hillslope	 and	 among	 hillslopes.	 Such	 multi-scale	
approaches	 show	 considerable	 promise	 and	will	 likely	 be	 increasingly	 used	 to	 represent	
how	 small-scale	 heterogeneities,	 interactions	 among	 processes	 and	 the	 connectivity	 of	
water	across	the	landscape	affects	large-scale	behavior.	

A	 broader	 challenge	 is	 to	 simulate	 the	 myriad	 controls	 on	 catchment	 evolution,	 e.g.,	 to	
predict	 how	 energy	 gradients	 dictate	 landscape	 evolution,	 how	 natural	 selection	 favors	
plants	 that	 make	 optimal	 use	 of	 available	 resources,	 and	 how	 the	 dynamic	 interactions	
between	humans	and	the	environment	shapes	the	storage	and	transmission	of	water	across	
the	 landscape	 [Rodríguez‐Iturbe	 et	 al.	 1992;	 Eagleson	 2002;	 Schymanski	 et	 al.	 2009;	
Schymanski	 et	 al.	 2010;	 Sivapalan	et	 al.	 2012;	Harman	and	Troch	2014;	Zehe	et	 al.	 2014;	
Clark	et	al.	2016;	Grant	and	Dietrich	2017].	Addressing	this	challenge	requires	shifting	focus	
from	 traditional	 approaches	 at	 short	 time	 scales	 where	 “properties	 define	 processes”	
[Gupta	et	al.	2012]	towards	approaches	at	longer	time	scales	that	focus	on	predicting	how	
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“processes	define	properties”	[Rodríguez‐Iturbe	et	al.	1992;	Eagleson	2002;	Harman	and	
Troch	2014].	Importantly,	it	requires	treating	humans	as	an	endogenous	component	of	the	
Earth	system	[Sivapalan	et	al.	2012;	Clark	et	al.	2015a].	

There	are	of	course	multiple	possible	approaches	available	to	simulate	dominant	hydrologic	
processes.	 A	 useful	 path	 forward	 is	 to	 isolate	 and	 scrutinize	 alternative	 modeling	
approaches	to	represent	scaling	and	heterogeneity.	Peters-Lidard	et	al.	(this	issue)	propose	
the	 idea	 that	 the	 approximations	 in	our	models	 can	be	 treated	 as	hypotheses	 that	 can	be	
tested	in	an	information-based	framework.	Such	advances	in	model	evaluation	methods	will	
be	critical	in	order	to	accelerate	advances	in	process-based	hydrologic	models.	

3 Model	parameters	

3.1 Modeling	challenges	
The	second	question	posed	by	Freeze	and	Harlan	[1969]	focuses	on	the	availability	of	data	
to	define	system	properties	(model	parameter	values).	

A	key	part	of	this	modeling	challenge	revolves	around	the	availability	and	quality	of	spatial	
information	on	model	parameters.	For	some	model	parameters,	 spatial	 information	 is	not	
readily	 available.	 Examples	 of	missing	 parameters	 include	 those	 that	 define	 the	 temporal	
decay	 of	 snow	 albedo	 and	 the	 recession	 characteristics	 of	 shallow	 aquifers.	 In	 such	
situations	 process-based	 hydrologic	 and	 land	 models	 often	 treat	 these	 uncertain	
parameters	as	physical	constants,	adopting	hard-coded	parameters	that	are	selected	based	
on	 order-of-magnitude	 considerations	 or	 on	 limited	 experimental	 data	 [Mendoza	 et	 al.	
2015;	Cuntz	et	al.	2016].	For	other	parameters	the	available	spatial	information	is	limited	to	
broad	 landscape	 characteristics;	 e.g.,	 the	 parameters	 controlling	 carbon	 assimilation	 and	
stomatal	 conductance	 are	 typically	 tied	 to	 vegetation	 type	 [Bonan	 et	 al.	 2011;	 Niu	 et	 al.	
2011],	 or	 the	 available	 soil	maps	 impose	 the	 same	 hydraulic	 properties	 over	 large	 areas	
[Miller	 and	 White	 1998].	 Such	 ill-defined	 information	 on	 vegetation	 and	 soils	 greatly	
underestimates	 the	 tremendous	 spatial	heterogeneity	 that	occurs	 in	nature.	Finally,	when	
spatial	information	does	exist	it	may	have	limited	spatial	representativeness	and	relevance	
–	for	example,	the	information	on	hydraulic	conductivity	from	soil	pits	may	only	have	weak	
relations	with	the	transmission	of	water	throughout	catchments	[Beven	1989].	

Such	 limitations	 notwithstanding,	 the	 challenge,	 really,	 is	 to	 make	 the	 most	 of	 the	
information	 we	 do	 have,	 and	 generate	 new	 information	 where	 we	 can	 (e.g.,	 new	
observations),	 in	 order	 to	 improve	 estimates	 of	 the	 spatial	 variations	 in	 the	 storage	 and	
transmission	 properties	 of	 the	 landscape,	 including	 the	 scale	 dependence	 of	 these	
properties	and	their	transferability	across	spatio-temporal	scales	[Klemeš	1986;	Samaniego	
et	al.	2010;	Melsen	et	al.	2016].	The	next	section	summarizes	how	the	hydrologic	modeling	
community	is	rising	to	this	challenge.	

3.2 Modeling	solutions	
The	solutions	to	improve	information	on	model	parameters	are	general	and	can	be	applied	
across	 multiple	 models	 of	 different	 type	 and	 complexity.	 We	 see	 three	 specific	 paths	
forward.	 	 First,	 there	 are	numerous	 opportunities	 to	 improve	 information	on	 geophysical	
properties,	 including	 estimates	 of	 vegetation	 structure	 [Simard	 et	 al.	 2011],	 soil	 depth	
[Pelletier	et	al.	2016],	soil	properties	[Chaney	et	al.	2016b],	bedrock	depth	and	permeability	
[Fan	et	al.	2015]	and	the	physical	characteristics	of	rivers	[Gleason	and	Smith	2014].		

Second,	 it	 is	possible	 to	 improve	the	way	that	geophysical	 information	 is	used	to	estimate	
model	parameters.	For	example,	the	Multi-scale	Parameter	Regionalization	(MPR)	approach	
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of	Samaniego	et	al.	 [2010]	 focuses	attention	squarely	on	 the	 transfer	 functions	 that	 relate	
geophysical	 attributes	 to	model	parameters	 –	Samaniego	et	al.	 apply	 transfer	 functions	at	
the	 finest	 spatial	 scale	 of	 the	 geophysical	 data	 (e.g.,	 the	 soil	 polygons)	 and	 then	 apply	
parameter-dependent	 operators	 to	 upscale	 the	 fine-scale	 model	 parameters	 to	 the	
resolution	 of	 the	 model.	 The	 parameter	 estimation	 in	 MPR	 is	 hence	 centered	 on	 the	
coefficients	 in	 the	 transfer	 functions	 used	 to	 relate	 geophysical	 attributes	 to	 model	
parameters,	 maximizing	 the	 information	 extracted	 from	 the	 geophysical	 data.	 Much	
research	has	focused	on	pedotransfer	functions	to	relate	soil	properties	to	soil	parameters	
[e.g.,	Schaap	et	al.	2001;	Soet	and	Stricker,	2003],	and	there	has	been	limited	work	to	relate	
geophysical	 attributes	 to	 other	model	 parameters	 such	 as	 those	 controlling	 the	 impact	 of	
soil	moisture	on	saturated	areas	[Balsamo	et	al.	2011].	

Third,	 there	 is	 considerable	 scope	 to	 improve	 the	 way	 that	 multivariate	 data	 is	 used	 to	
constrain	model	 parameter	 values.	 A	 key	 path	 forward	 is	 to	 identify	 different	 signatures	
from	the	data	that	can	be	used	to	improve	parameter	values	in	different	parts	of	the	model	
[Gupta	et	al.	2008;	Yilmaz	et	al.	2008;	Pokhrel	et	al.	2012;	Vrugt	and	Sadegh	2013;	Rakovec	
et	al.	2015].	For	example,	Troy	et	al.	[2008]	use	regionalized	estimates	of	the	runoff	ratio	to	
constrain	 the	VIC	model	at	 the	grid	scale,	and	 there	 is	much	more	 that	can	be	done	using	
such	methods	[e.g.,	see	the	approach	of	Yadav	et	al.	2007].	In	the	distributed	model	context,	
signatures	 related	 to	 energy	 and	 moisture	 fluxes	 may	 now	 be	 constrained	 by	 remote	
sensing	 imagery,	 e.g.	 of	 skin	 temperature	or	ET,	 though	 this	 strategy	 is	 far	 from	common	
today.	 	 Similarly,	 remotely	 sensed	estimates	of	 surface	water	 levels	 [Revilla-Romero	et	al.	
2016]	 and	 total	 basin	 storage	 [Tangdamrongsub	 et	 al.	 2015]	 could	 be	 used	 as	 well	 as	
reported	 statistics	 on	 water	 withdrawal	 [Wada	 et	 al.	 2014].	 Together,	 focused	 effort	 on	
improving	 geophysical	 information,	 improving	 the	 links	 between	 geophysical	 information	
and	model	 parameters,	 and	 better	 constraining	model	 parameters,	 will	 go	 a	 long	way	 to	
improve	parameter	values	across	multiple	models.	

A	 very	 different	 solution	 is	 stochastic	 modeling	 (e.g.,	 see	 Kim	 et	 al.,	 1997).	 Stochastic	
modeling	accepts	that	many	parameters	are	impossible	to	measure	or	estimate,	and	instead	
generates	 synthetic	model	 parameter	 fields	 using	 probability	 distributions	with	 assumed	
length	scales.	For	example,	Maxwell	and	Kollet	[2008]	use	spatially	correlated	random	fields	
of	saturated	hydraulic	conductivity	to	define	the	fine-scale	spatial	structure	of	their	model	
domain,	 and	 evaluate	 the	 impact	 of	 this	 fine-scale	 structure	 on	 hillslope	 runoff.	 Similar	
approaches	were	used	by	Kollet	et	al.	[2010]	in	their	proof-of-concept	study	illustrating	the	
spatial	 integration	of	 fine-scale	3D	variably	 saturated	 flow	simulations.	These	approaches	
derive	from	the	indirect	upscaling	methods	(numerical	integration	across	space)	developed	
in	stochastic	subsurface	hydrology.	The	downside	of	such	stochastic	simulation	approaches	
is	that	multiple	realizations	are	necessary	to	separate	the	signals	from	the	imposed	random	
variability,	making	such	approaches	computationally	challenging	for	fine-scale	simulations	
over	large	geographical	domains	[Fatichi	et	al.	2016].	

A	major	challenge	is	to	parameterize	the	deeper	subsurface	at	regional	to	continental	scales	
in	 order	 to	 support	 large-domain	 groundwater	 modeling	 [Bierkens	 2015;	 Clark	 et	 al.	
2015a].	 Advances	 in	 estimating	 parameters	 of	 the	 subsurface	 may	 profit	 from	 new	
technologies.	 For	 example,	 it	 will	 be	 possible	 to	 use	 monitoring	 and	 exploration	
technologies	(e.g.,	geophysics)	to	generate	ensembles	of	hydraulic	conductivity	fields.	Once	
these	 fields	 are	 estimated	 at	 high	 resolution,	 MPR	 could	 be	 used	 to	 estimate	 effective	
hydraulic	 conductivity	 values	 to	 characterize	 the	 required	 subsurface	 parameters.	 Also,	
stochastic	methods	 need	 to	 be	 extended	 to	 capture	 the	 large	 structural	 variability	 in	 the	
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formations	and	layers	that	dominate	continental	domains	[Baroni	et	al.	2017;	Schalge	et	al.	
2017].	

Recent	attempts	to	parameterize	the	sub-surface	are	a	good	first	step.	These	include	maps	
of	global	permeability	and	porosity	for	the	upper	50	m	of	the	world’s	aquifers	[Gleeson	et	al.	
2014],	 soil	 characteristics	 and	 regolith	 thickness	 [Pelletier	 et	 al.	 2016;	 Shangguan	 et	 al.,	
2016;	Hengl	et	al.,	2017]	and	global	 thickness	of	 the	upper	aquifers	 [De	Graaf	et	al.	2015;	
Fan	et	al.	2015;	Fan	2016].	However,	 these	datasets	have	been	globally	extrapolated	 from	
locally	 established	 empirical	 relationships	 between	 subsurface	 properties	 and	 surface	
lithology	[Hartmann	and	Moosdorf	2012].	None	of	these	approaches	resolve	the	multi-layer	
structure	of	aquifers	and	aquitards.	As	a	consequence,	 they	provide	useful	 information	on	
the	 interaction	between	groundwater	 and	evaporation,	but	have	 limited	use	 for	 resolving	
true	 hydrogeological	 challenges	 such	 as	 assessing	 global	 groundwater	 depletion,	
groundwater	age	and	 land	subsidence	related	 to	groundwater	pumping.	Concerted	efforts	
are	 needed	 to	 compile	 a	 global	 hydrogeological	 multilayer	 model	 based	 on	 national	
geological	maps	and	archives	and	local-	and	regional	scale	groundwater	modelling	studies,	
providing	the	rich	information	on	the	subsurface	that	already	exists	for	soils.	

4 Model	execution	(computing)	

4.1 Modeling	challenges	
In	their	final	question	Freeze	and	Harlan	[1969]	ask	if	the	computer	limitations	of	storage	
capacity	and	speed	of	computation	have	been	overcome,	and	if	their	blueprint	for	process-
based	 hydrologic	 modeling	 is	 now	 economically	 feasible.	 Interestingly,	 we	 have	 made	
substantial	 (and	 economically	 feasible)	 advances	 in	 computing,	 yet	 we	 have	 also	 pushed	
beyond	what	they	could	envision	with	model	resolution	and	process	complexity.	As	a	result,	
computing	remains,	ironically,	a	present-day	challenge,	and	we	still	routinely	push	available	
computing	resources	 to	 their	 limit	 [Kollet	et	al.	2010;	Wood	et	al.	2011].	We	still	 struggle	
with	 tradeoffs	 among	 process	 complexity,	 spatial	 complexity,	 domain	 size,	 ensemble	 size,	
the	 time	 period	 of	 the	model	 simulation.	We	 also	 still	 struggle	 to	 run	 our	most	 complex	
models	 for	 a	 large	 number	 of	 model	 configurations,	 for	 example,	 experimenting	 with	
different	model	 parameter	 sets,	 different	 process	 parameterizations,	 and	 different	 spatial	
architectures.	To	answer	Freeze	and	Harlan’s	question:	The	computing	limitations	have	not	
been	overcome.	

The	challenge	is	as	follows:	As	we	push	our	models	to	their	computational	limit,	the	expense	
of	 these	 complex	 configurations	 may	 permit	 only	 a	 single	 deterministic	 simulation	 for	 a	
short	 time	 period	 [e.g.,	 Maxwell	 et	 al.	 2015;	 Fatichi	 et	 al.	 2016].	 Such	 preferences	 for	
complexity	 and	 large-domain	 simulations	 arguably	 sacrifice	 opportunities	 for	 model	
analysis,	 model	 improvement,	 and	 uncertainty	 characterization.	 Complex	 models	 may	
struggle	with	physical	 realism	because	 computational	 limitations	 constrain	 capabilities	 to	
identify	and	resolve	model	weaknesses.	Paradoxically,	more	complex	models	may	achieve	
less	 physical	 realism	 than	 computationally	 frugal	 alternatives.	 This	 is	 a	 critical	 concept	 –	
though	a	counter-intuitive	one	–	 that	 ideally	 should	guide	 the	development	of	new	model	
applications.	

4.2 Modeling	solutions	
There	are	several	 solutions	 to	 these	computational	challenges,	all	of	which	are	now	being	
advanced	by	leading	process-based	hydrologic	modeling	groups.	The	first	solution,	and	the	
most	 obvious,	 is	 to	 exploit	 advances	 in	 massively	 parallel	 (e.g.,	 exa-scale)	 computation	
[Kollet	 et	 al.	 2010;	Wood	 et	 al.	 2011;	 Paniconi	 and	 Putti	 2015;	 Fatichi	 et	 al.	 2016].	 This	
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solution	 is	 often	 implemented	 by	 running	 a	 complex	model	 for	 the	 finest	 grid	 resolution	
possible	over	the	domain	of	interest	[e.g.,	Maxwell	et	al.	2015;	Maxwell	and	Condon	2016].	A	
key	 reason	 for	 conducting	 such	 spatially	 resolved	 simulations	 is	 to	 understand	 explicit	
spatial	controls	on	hydrologic	processes.	For	example,	Maxwell	and	Condon	[2016]	use	high	
resolution	 continental-domain	 ParFlow	 simulations	 to	 understand	 the	 controls	 of	
groundwater	flow	on	the	partitioning	of	evapotranspiration	into	bare	soil	evaporation	and	
transpiration.	

A	second	(related)	solution	to	the	computing	challenge	is	to	improve	numerical	solvers.	In	
simpler	models	the	need	for	robust	numerical	methods	is	often	undervalued,	and	numerical	
errors	 in	 simple	 models	 contaminate	 model	 analysis	 and	 complicate	 model	 calibration	
[Kavetski	 et	 al.	 2006b;	 Kavetski	 and	 Clark	 2010,	 2011].	 For	 example,	 the	 “pits”	 in	model	
parameter	 surfaces	 have	 been	 shown	 to	 be	 an	 artifact	 of	 numerical	 solution	 methods,	
requiring	 development	 of	 elaborate	 and	 time-consuming	 parameter	 estimation	 strategies	
that	 are	 not	 necessary	 in	models	with	 robust	 numerical	 solutions	 [Kavetski	 et	 al.	 2006a;	
Clark	and	Kavetski	2010;	Kavetski	and	Clark	2010].	 In	more	complex	models,	advances	 in	
solution	methods	are	an	active	area	of	research,	with	several	recent	advances	in	numerical	
solvers	 and	parallelization	 strategies	 [Qu	and	Duffy	2007;	Kumar	 et	 al.	 2009;	Kollet	 et	 al.	
2010;	 Maxwell	 2013].	 Across	 all	 models	 there	 is	 a	 need	 to	 improve	 numerical	 solution	
methods,	e.g.,	evaluate	accuracy-efficiency	tradeoffs,	to	support	efficient	model	analysis	and	
calibration	strategies.	

A	 third	 solution	 to	 the	 computing	 challenge	 is	 to	 identify	model	 configurations	 that	avoid	
redundant	calculations	while	still	capturing	dominant	processes.	This	can	be	accomplished	
using	 the	concept	of	hydrologic	 similarity,	 i.e.,	 recognizing	 that	 there	 is	no	need	 to	 repeat	
calculations	for	areas	of	the	landscape	with	very	similar	forcing	and	geophysical	properties	
[e.g.,	Flügel	1995;	Tague	and	Band	2004].	As	noted	earlier,	recent	applications	of	hydrologic	
similarity	methods	have	shown	that	it	is	possible	to	reduce	run	times	by	two	to	three	orders	
of	magnitude,	without	any	 loss	 in	 information	content	 [Newman	et	al.	2014;	Chaney	et	al.	
2016a].	 Also,	 hydrologic	 similarity	 concepts	 can	 be	 effectively	 applied	 using	 multi-scale	
methods	 to	 resolve	 the	 dominant	 spatial	 gradients	 that	 drive	 flow;	 for	 example,	 using	
representative	 hillslopes	 to	 explicitly	 resolve	 lateral	 flow	 processes	 [Troch	 et	 al.	 2003;	
Berne	et	al.	2005;	Hazenberg	et	al.	2015;	Ajami	et	al.	2016].	In	exploring	these	solutions,	we	
recognize	 that	 there	 is	 not	 necessarily	 a	 tradeoff	 between	 physical	 realism	 and	
computational	efficiency	–	 the	 linkage	between	spatial	complexity	and	process	complexity	
may	be	rather	weak,	as	models	run	using	a	large	number	of	spatial	elements	may	still	miss	
dominant	processes	[e.g.,	Hartmann	et	al.	2017]	

A	fourth	solution	to	the	computing	challenge,	especially	the	concern	that	the	computational	
cost	of	complex	models	sacrifices	opportunities	for	analysis,	is	to	focus	on	improving	model	
analysis	methods.	Analysis	of	complex	models	is	possible	by	developing	surrogate	models,	
i.e.,	models	that	emulate	the	behavior	of	complex	models	and	run	very	quickly	[Razavi	et	al.	
2012].	Analysis	 of	 complex	models	 is	 also	possible	 through	 computationally	 frugal	model	
analysis	methods	 that	require	a	 fewer	number	of	model	simulations	 [Rakovec	et	al.	2014;	
Hill	 et	 al.	 2015].	 A	way	 to	 support	 these	 types	 of	methods	 is	 to	 use	 quasi-scale	 invariant	
parameterizations	 (e.g.,	 MPR)	 to	 estimate	 transfer	 function	 parameters	 at	 coarser	
resolutions	 instead	 of	 using	 a	 high-resolution	 model	 setting.	 Since	 parameters	 obtained	
with	the	MPR	technique	are	transferable	across	scales	without	significant	performance	loss,	
models	can	be	applied	at	higher	spatial	resolutions	as	shown	by	Kumar	et	al.	 [2013].	This	
alternative	would	 lead	 to	 computationally	 efficient	 large-scale	 hydrologic	 predictions	 and	
allows	performing	parameter	estimation	over	large	domains.	
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In	 short,	 solving	 computing	 challenges	 will	 require	 judiciously	 combining	 emerging	
computing	capabilities,	advanced	numerical	methods,	justifiable	model	simplifications,	and	
extensive	use	of	computationally	frugal	model	analysis	methods.	

5 Summary	and	next	steps	

In	this	paper,	we	review	key	advances	in	process-based	hydrologic	models.	We	see	that	the	
community	 has	 risen	 to	 meet	 major	 hydrologic	 modeling	 challenges	 in	 diverse	 and	
productive	ways.	Specifically,	the	community	has	made	noteworthy	advances	in	improving	
mathematical	 descriptions	 of	 hydrologic	 processes,	 in	 parameter	 estimation,	 and	 in	
identifying	 justifiable	 model	 simplifications	 that	 make	 more	 effective	 use	 of	 available	
computing	 resources.	 Many	 of	 these	 modeling	 advances	 are	 general,	 and	 can	 be	 applied	
across	multiple	models	of	different	type	and	complexity.	

To	 summarize,	 there	 are	 three	 general	 opportunities	 to	 improve	 the	 physical	 realism	 of	
hydrologic	 models.	 First,	 there	 is	 still	 considerable	 scope	 to	 improve	 mathematical	
descriptions	 of	 hydrologic	 processes.	 A	 major	 research	 challenge	 is	 the	 scaling/closure	
problem,	 i.e.,	 to	 represent	 how	 small-scale	 heterogeneities	 shape	 large-scale	 fluxes,	
interactions	among	processes,	and	the	connectivity	of	water	across	the	landscape.	While	the	
hydrological	modeling	community	has	made	progress	in	this	challenge,	through	statistical-
dynamical	 models,	 stochastic	 upscaling	 theory,	 scale-appropriate	 flux	 parameterizations,	
and	spatial	integration	across	discrete	landscape	types,	much	work	is	still	required	both	to	
develop	new	closure	schemes	and	to	systematically	compare	existing	modeling	approaches.	
Second,	there	is	considerable	scope	to	improve	information	on	model	parameter	values	and	
their	associated	uncertainties.	Advances	in	parameter	estimation	will	require	focused	effort	
to	 improve	 the	 available	 geophysical	 information	 (e.g.,	 through	 improved	 observations),	
improve	 the	 links	 between	 geophysical	 information	 and	model	 parameters,	 and	 advance	
methods	 to	 use	multivariate	 data	 to	 constrain	model	 parameter	 values.	 Third,	 there	 is	 a	
strong	need	to	more	effectively	use	the	available	computing	resources.	We	argue	here	that	
in	addition	to	exploiting	advances	in	massively	parallel	computation	and	numerical	solution	
methods,	we	 can	 also	make	much	more	 effective	 use	 of	 the	 available	 computing	 through	
more	efficient/agile	models	(e.g.,	use	of	hydrologic	similarity	concepts).	More	effective	use	
of	 available	 computing	 resources	 can	 increase	 capabilities	 for	 model	 analysis	 and	
uncertainty	characterization,	and	shine	the	light	toward	further	model	improvements.		

We	see	several	 specific	needs	underlying	 these	general	 research	 themes	 (see	Figure	1	 for	
the	general	framework):	

1. We	need	to	improve	the	theoretical	underpinnings	of	our	hydrologic	models	[Clark	
et	 al.	 2016].	 Most	 discussions	 of	 inter-model	 differences	 focus	 on	 a	 discussion	 of	
algorithms	rather	than	a	discussion	of	processes.	While	there	have	been	some	calls	
in	the	past	to	improve	the	"dialog"	between	experimentalists	and	modelers	[Seibert	
and	 McDonnell	 2002],	 e.g.,	 to	 focus	 more	 on	 processes,	 much	 of	 the	 interaction	
between	 experimentalists	 and	modelers	 is	 focused	 on	 individual	watersheds	 [e.g.,	
Tromp-van	Meerveld	 and	Weiler	2008;	Hopp	and	McDonnell	 2009].	More	work	 is	
needed	 to	 synthesize	 process	 explanations	 from	 research	 watersheds	 to	 develop	
more	 general	 theories	 of	 hydrologic	 processes	 [e.g.,	 Tetzlaff	 et	 al.	 2009],	 and	 test	
these	alternative	process	descriptions	in	models.	

2. We	need	to	expand	our	prominence	in	community	hydrologic	modeling	[Wood	et	al.	
2005;	 Weiler	 and	 Beven	 2015],	 both	 by	 providing	 accessible	 and	 extensible	
modeling	 tools,	 and	 also	 providing	 key	 research	 datasets	 and	model	 test	 cases	 to	
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scrutinize	alternative	modeling	approaches.	Such	community	activities	will	result	in	
greater	 engagement	 of	 field	 scientists	 in	 model	 development	 and	 greater	
collaboration	 across	 diverse	 modeling	 groups,	 resulting	 in	 substantial	
improvements	 in	 the	 physical	 realism	 and	 predictive	 capabilities	 of	 hydrologic	
models.	 Advancing	 such	 community	 activities	 requires	 that	 we	 are	 much	 more	
effective	and	efficient	in	sharing	data	and	model	source	code.	This	goes	beyond	just	
by	making	models	and	data	publicly	available,	but,	critically,	integrating	models	and	
data	 in	 widely-used	 analysis	 frameworks	 and	 developing	 model	 standards	 to	
simplify	the	sharing	of	source	code	in	models	developed	by	different	groups	[Clark	
et	al.	2015b;	Clark	et	al.	2016].	

3. We	need	to	systematically	and	comprehensively	explore	 the	benefits	of	competing	
modeling	approaches	[Clark	et	al.	2015a;	Clark	et	al.	2015b;	Clark	et	al.	2016].	A	key	
need	is	to	systematically	evaluate	information	gains/losses	using	models	of	varying	
complexity,	 exploring	 the	 interplay	 between	 changes	 in	 process	 complexity	 and	
changes	 in	 spatial	 complexity.	 These	 assessments	 will	 help	 identify	 useful	 model	
configurations	 for	specific	applications.	Another	need	 is	 to	scrutinize	models	using	
data	from	research	watersheds,	both	using	data	on	internal	states/fluxes	and	inter-
variable	 relationships,	 in	 order	 to	 understand	 the	 benefits	 of	 competing	 process	
parameterizations.	 More	 generally,	 and	 as	 emphasized	 by	 Peters-Lidard	 et	 al.	
[2017],	 it	 is	 important	 to	 use	 applications	 of	 information	 theory	 to	 quantify	 how	
effectively	 models	 use	 the	 available	 information,	 i.e.,	 to	 provide	 an	 estimate	 of	
system	predictability,	and	identify	opportunities	to	improve	models.	

4. We	 need	 to	 substantially	 advance	 the	 development	 of	 new	 modeling	 approaches	
that	 simulate	 the	 temporal	 dynamics	 of	 environmental	 change.	 Key	 challenges	
include	 predicting	 how	 energy	 gradients	 dictate	 landscape	 evolution,	 how	natural	
selection	 favors	 plants	 that	make	optimal	 use	 of	 the	 available	 resources,	 and	how	
the	dynamic	interactions	between	humans	and	the	environment	shapes	the	storage	
and	 transmission	 of	 water	 across	 the	 landscape	 [Rodríguez‐Iturbe	 et	 al.	 1992;	
Eagleson	 2002;	 Schymanski	 et	 al.	 2009;	 Schymanski	 et	 al.	 2010;	 Sivapalan	 et	 al.	
2012;	 Harman	 and	 Troch	 2014;	 Zehe	 et	 al.	 2014;	 Clark	 et	 al.	 2016;	 Grant	 and	
Dietrich	2017].	

5. We	 must	 advance	 research	 on	 process-oriented	 approaches	 to	 estimate	 spatial	
fields	 of	 model	 parameters.	 The	 challenge	 is	 to	 estimate	 spatial	 variations	 in	 the	
storage	 and	 transmission	 properties	 of	 the	 landscape.	 Advances	 are	 possible	
through	developing	new	data	sources	on	geophysical	attributes	[Simard	et	al.	2011;	
Gleason	and	Smith	2014;	Fan	et	al.	2015;	Chaney	et	al.	2016b;	Pelletier	et	al.	2016;	
De	 Graaf	 et	 al.	 2017],	 new	 approaches	 to	 link	 geophysical	 attributes	 to	 model	
parameters	 [Samaniego	 et	 al.	 2010;	 Kumar	 et	 al.	 2013;	 Rakovec	 et	 al.	 2015],	 and	
new	diagnostics	 to	 infer	model	 parameters	 [Gupta	 et	 al.	 2008;	 Yilmaz	 et	 al.	 2008;	
Pokhrel	 et	 al.	 2012].	 Such	 focus	 will	 give	 the	 parameter	 estimation	 problem	 the	
scientific	 attention	 that	 it	 deserves,	 rather	 than	 the	 far-too-common	 approach	
where	 parameter	 estimation	 is	 relegated	 to	 a	 “tuning	 exercise”	 in	 model	
applications.	 This	 focus	 on	 parameter	 estimation	 is	 necessary	 to	 improve	 the	
physical	realism	and	applicability	of	process-based	models.	

6. We	need	to	obtain	better	data	on	hydrologic	processes.	 	Field	campaigns	to	obtain	
new	data	 to	 understand	 hydrologic	 processes	 are	 less	 supported	 and	 supportable	
than	 before	 [Tetzlaff	 et	 al.,	 2017],	 thus	 a	 key	 need	 is	 to	motivate	 and	 design	 new	
field	 experiments	 to	 advance	 understanding	 of	 the	 terrestrial	 component	 of	 the	
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water	 cycle	 across	 scales	 and	 locations.	 Such	 work	 is	 critical	 to	 ensure	 model	
development	 is	not	unduly	constrained	by	 the	 limited	experimental	 field	data	 that	
we	have	at	present.	

7. We	need	to	advance	methods	for	model	analysis,	especially	for	complex	models.	As	
mentioned	 above,	 analysis	 of	 complex	 models	 is	 possible	 by	 both	 (a)	 developing	
surrogate	models,	i.e.,	models	that	emulate	the	behavior	of	complex	models	and	run	
very	 quickly	 [Razavi	 et	 al.	 2012];	 and	 (b)	 applying	 computationally	 frugal	 model	
analysis	methods	that	require	a	fewer	number	of	model	simulations	[Rakovec	et	al.	
2014;	 Hill	 et	 al.	 2015].	 These	 advances	 in	 model	 analysis	 are	 important	 because	
complex	models	are	 typically	calibrated	or	analyzed	using	semi-manual	or	manual	
strategies,	 largely	 due	 to	 their	 immense	 computational	 cost	 (it	 is	 only	 possible	 to	
run	 a	 handful	 of	 simulations).	We	 have	 very	 little	 insight	 into	 process/parameter	
dominance	 and	 process/parameter	 interactions	 in	 very	 complex	models,	 however	
such	 information	 is	 desperately	 needed	 in	 order	 to	 inform	meaningful	 parameter	
estimation	strategies.	

8. Finally,	 and	most	 importantly,	we	need	 to	 improve	 the	 construction	 of	 hydrologic	
models.	 Many	 of	 today’s	 models	 have	 developed	 somewhat	 of	 a	 “shantytown”	
appearance,	 where	 a	 succession	 of	 students	 and	 post-docs	 bolted	 on	 new	
components	 to	 suit	 the	 needs	 of	 their	 particular	 project,	 and	 the	 overall	
construction	 of	 the	 model	 has	 become	 rather	 messy.	 Clark	 et	 al.	 [2015b]	 define	
some	 key	 requirements	 as:	 (a)	 impose	 modularity	 at	 the	 level	 of	 the	 individual	
fluxes,	to	enable	greater	model	extensibility	and	code	reuse,	as	it	is	straightforward	
to	 combine	 different	 flux	 parameterizations	 to	 form	 alternative	 conservation	
equations;	 (b)	 separate	 the	 physical	 processes	 from	 their	 numerical	 solution,	 to	
enable	experimenting	with	alternative	numerical	solution	methods,	e.g.,	evaluating	
accuracy-efficiency	 tradeoffs;	 and	 (c)	 use	 hierarchal	 data	 structures,	 to	 enable	
representing	 spatial	 variability	 and	 connectivity	 across	 a	 range	 of	 spatial	 scales.	
Such	improvements	in	model	construction	are	a	critical	underpinning	activity	that	is	
critical	to	accelerate	advances	in	hydrologic	science.	

In	 addressing	 these	 research	 tasks	 it	 is	 important	 to	 take	 a	 unified	 perspective	 –	 it	 is	
important	 to	 deliberately	 depart	 from	 previous	 debates	 on	 the	 “correct”	 approach	 to	
hydrologic	modeling,	and	 focus	 instead	on	more	effective	use	of	 the	diversity	of	modeling	
tools	to	advance	our	collective	quest	for	physically	realistic	hydrologic	models.	
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Figure	 1.	 Schematic	 summarizing	 some	 key	 research	 priorities	 to	 advance	 the	 physical	 realism	 of	
process-based	hydrologic	models.		
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