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Response	to	comments	from	Reviewer	4	on	“The	evolution	of	process-
based	hydrologic	models:	Historical	challenges	and	the	collective	quest	
for	physical	realism”	by	Martyn	P.	Clark	et	al.		

[Responses	are	in	red	font	at	the	bottom	each	sub-section].	

1 General	

This	manuscript	is	an	interesting	contribution	to	the	on-going	community	debate	on	how	to	
advance	hydrologic	models.	Given	the	nature	of	this	manuscript,	I	will	below	remark	on	the	
three	main	areas	of	the	commentary,	rather	than	commenting	on	individual	parts.	Hopefully	
my	comments	will	help	to	expand	the	nice	discussion	in	this	manuscript	even	further.		

One	overall	 issue	 that	might	be	 stressed	more	 in	 this	 commentary	 is	 that	 the	 three	 areas	
outlined	 (model	 structure,	 model	 parameters	 and	 model	 execution)	 are	 interdependent,	
and	that	improving	one	requires	advancements	in	the	others.	For	example,	 it	 is	difficult	to	
reduce	 parameter	 spaces	 for	 complex	 models	 if	 computing	 demands	 do	 not	 allow	 us	 to	
explore	such	spaces	thoroughly	in	the	first	place.		

Yes,	good	point.	We	now	highlight	these	interdependencies	in	the	Introduction:	

We	discuss	these	modeling	challenges	separately,	while	recognizing	that	these	
modeling	 challenges	 are	 strongly	 interdependent	 (e.g.,	 a	 complex	 model	
structure	may	have	large	computing	demands,	restricting	the	extent	to	which	
it	 is	 possible	 to	 explore	 alternative	model	 parameter	 sets).	We	will	 touch	 on	
these	interdependencies	in	the	individual	sections	of	the	paper.	

We	 also	 expand	 discussion	 on	 the	 interdependencies	 among	 modeling	 challenges	 in	 the	
individual	sections	of	the	paper.	

2 	Model	Structure	

One	issue	to	mention	here	might	be	that	there	is	a	trade-off	between	our	ambition	to	have	
models	 that	 are	 flexible	 enough	 to	 produce	 a	 high	 performance	 when	 matched	 against	
observations,	that	are	parsimonious	so	that	parameter	uncertainty	is	low,	and	that	show	a	
high	degree	of	realism	in	the	sense	that	they	are	consistent	with	reality	–	often	equated	with	
models	of	higher	resolution	(Wagener,	2003).	These	are	often	seen	as	conflicting	objectives.	
It	might	be	worth	discussing	that	model	realism	can	be	achieved	with	simpler	models,	while	
more	complex	models	can	still	miss	key	processes	or	get	key	fluxes	wrong.	One	example	is	
the	 recent	paper	by	Hartmann	et	 al.	 (2017),	which	 compared	a	widely	used	global	model	
(PCR-GLOBE)	 with	 a	 much	 simpler	 model	 (Var-Karst).	 The	 latter	 included	 subsurface	
heterogeneity	 and	 produced	 much	 more	 realistic	 recharge	 estimates	 for	 karst	 regions.	
Another	example	might	be	 the	 lack	of	preferential	 flow	representation	 in	many	otherwise	
complex	models.		

So	how	can	we	ensure	 that	our	models	 are	not	missing	key	processes,	while	we	 focus	on	
improving	details	elsewhere?	Maybe	the	 top-down	approach	discussed	 in	another	current	
commentary	by	Clark	and	Hrachowitz	is	a	strategy	to	approach	this	problem?	
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Good	point.	We	now	include	discussion	of	model	tradeoffs	in	the	section	on	computing:	

In	 exploring	 these	 solutions	 we	 recognize	 that	 there	 is	 not	 necessarily	 a	
tradeoff	between	physical	realism	and	computational	efficiency	–	 the	 linkage	
between	 spatial	 complexity	 and	 process	 complexity	 may	 be	 rather	 weak,	 as	
models	 run	 using	 a	 large	 number	 of	 spatial	 elements	 may	 miss	 dominant	
processes	[e.g.,	Hartmann	et	al.	2017]	

2.1 Model	Parameters	
The	authors	mention	 the	use	of	 signatures	 for	 constraining	parameter	 spaces.	 I	 think	 this	
part	 might	 be	 worth	 expanding	 a	 bit.	 Such	 strategies	 are	 still	 not	 used	 regularly	 for	
distributed	models	though	some	nice	examples	of	their	value	exist.	One	such	example	is	the	
paper	 by	 Troy	 et	 al.	 (2008)	 where	 Eric	 and	 his	 students/colleagues	 use	 runoff	 ratio	 to	
constrain	VIC	 at	 the	 grid	 scale.	The	 resulting	parameter	 estimates	 are	much	 improved	by	
this	process.		

So,	 what	 information	 can	 we	 use	 to	 constrain	 our	 hyper-resolution	 models?	 This	
information	can	come	from	a	range	of	places.	For	example,	it	might	be	possible	to	synthesise	
previous	experimental	and	modelling	studies	that	have	focused	on	individual	places	to	gain	
a	better	expected	value	of	flux	magnitudes	across	larger	domains,	or	we	might	be	able	to	use	
observed	vertical	 fluxes	of	moisture	and	energy	as	 ‘weak’	 constraints	 to	account	 for	 scale	
differences	 between	 measurement	 and	 model	 scales	 (e.g.	 both	 done	 by	 Hartmann	 et	 al.,	
2017,	 in	 relation	 to	 karst	 recharge).	 Or	 we	 might	 be	 able	 to	 regionalize	 signatures	 as	
constraints	 beyond	 those	 relevant	 for	 streamflow,	 but	 maybe	 relevant	 for	 ET	 or	 other	
fluxes/states	(e.g.	the	Troy	et	al.,	2008,	strategy).	How	can	we	reduce	the	acceptable	output	
space	of	a	model	to	reduce	parameter	uncertainty?	

We	have	added	discussion	to	the	section	on	model	parameters:	

[…]	 there	 is	 considerable	 scope	 to	 improve	 the	way	 that	multivariate	data	 is	
used	 to	 constrain	model	 parameter	 values.	 A	 key	 path	 forward	 is	 to	 identify	
different	 signatures	 from	 the	 data	 that	 can	 be	 used	 to	 improve	 parameter	
values	 in	 different	 parts	 of	 the	model	 [Gupta	 et	 al.	 2008;	 Yilmaz	 et	 al.	 2008;	
Pokhrel	et	al.	2012;	Vrugt	and	Sadegh	2013;	Rakovec	et	al.	2015].	For	example,	
Troy	 et	 al.	 [2008]	 use	 regionalized	 estimates	 of	 the	 runoff	 ratio	 to	 constrain	
the	VIC	model	at	the	grid	scale,	and	there	is	much	more	that	can	be	done	using	
such	methods	[e.g.,	see	the	approach	of	Yadav	et	al.	2007].	 	In	the	distributed	
model	 context,	 signatures	 related	 to	 energy	and	moisture	 fluxes	may	now	be	
constrained	by	remote	sensing	imagery,	e.g.	of	skin	temperature	or	ET,	though	
this	strategy	 is	 far	 from	common	today.	 	Similarly,	remotely	sensed	estimates	
of	 surface	water	 levels	 [Revilla-Romero	 et	 al.,	 2016]	 and	 total	 basin	 storage	
[Tangdamrongsub	et	al.,	2015]	could	be	used	as	well	as	reported	statistics	on	
water	withdrawal	[Wada	et	al.,	2014].	

2.2 Model	Execution	
This	 section	 is	 assuming	 that	 models	 will	 become	 more	 complex	 and	 therefore	
computationally	more	challenging.	Models	might	become	more	complex	because	they	cover	
a	larger	domain	or	because	they	have	more	detailed	spatial	resolutions.	One	area	of	inquiry	
that	 therefore	 requires	 advancements	 so	 that	 it	 can	 serve	 more	 complex	 models	 are	
optimization	 and	 sensitivity	 analysis	 tools.	We	 currently	 explore	 the	 parameter	 spaces	 of	
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medium	 complexity	 models	 in	 great	 detail	 –	 to	 understand	 the	 location	 of	 the	 best	
parameter	 sets	 or	 to	 understand	 dominant	 controls.	 However,	we	 regularly	 find	 that	 the	
most	 complex	models	are	calibrated	or	analysed	using	semi-manual	or	manual	 strategies,	
which	suggests	that	there	is	a	mismatch	between	the	models	most	in	need	of	powerful	tools,	
and	the	tools	we	have	at	our	disposal.	Most	of	our	currently	available	tools	fall	down	when	
confronted	with	very	large	problems,	i.e.	large	parameter	spaces.		

Computational	 demands	 can	 be	 reduced	 if	 we	 better	 understand	 which	 (modelled)	
processes	are	dominant	(at	particular	 times	or	 in	particular	parts	of	 the	model	domain)	–	
therefore	 allowing	 us	 to	 search	 reduced	 parameter	 spaces	 rather	 than	 the	 very	 large	
parameter	spaces	of	these	models.	Our	sensitivity	analysis	methods	are	not	yet	particularly	
good	to	understand	highly	interacting	parameter	spaces	though,	which	is	what	we	typically	
encounter	in	complex	models.	There	is	also	still	a	lack	of	how	we	effectively	merge	process	
understanding	with	optimization/sensitivity	analysis	 to	derive	approaches	 tailored	 to	our	
complex	hydrologic	models.		

We	 agree	 with	 this	 sentiment.	 The	 original	 paper	 discussed	 both	 surrogate	 models	 and	
computationally	frugal	model	analysis	methods,	though	did	not	go	into	great	detail.	We	have	
revised	 the	 paper	 to	 highlight	 the	 need	 for	model	 analysis	 as	 a	 key	 path	 forward	 for	 the	
community.	

We	 need	 to	 advance	 methods	 for	 model	 analysis,	 especially	 for	 complex	
models.	As	mentioned	above,	analysis	of	complex	models	is	possible	by	both	(a)	
developing	surrogate	models,	i.e.,	models	that	emulate	the	behavior	of	complex	
models	and	run	very	quickly	[Razavi	et	al.	2012];	(b)	applying	computationally	
frugal	 model	 analysis	 methods	 that	 require	 a	 fewer	 number	 of	 model	
simulations	 [Rakovec	 et	 al.	 2014;	Hill	 et	 al.	 2015];	 and	 (c)	 developing	multi-
scale	methods	that	provide	insight	into	finer	time-space	scale	behavior	at	only	
the	cost	of	coarser	time-space	analysis	[Samaniego	et	al.	2010;	Rakovec	et	al.	
2015].	 These	 advances	 in	 model	 analysis	 are	 important	 because	 complex	
models	 are	 typically	 calibrated	 or	 analyzed	 using	 semi-manual	 or	 manual	
strategies,	 largely	 because	 of	 their	 immense	 computational	 cost	 (it	 is	 only	
possible	 to	 run	 a	 handful	 of	 simulations).	 We	 have	 very	 little	 insight	
process/parameter	 dominance	 and	 process/parameter	 interactions	 in	 very	
complex	models,	and	such	information	is	desperately	needed	in	order	to	inform	
meaningful	parameter	estimation	strategies.		

	


