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Abstract: The present work proposes to improve estimates of how much streamflow is generated by snow in the 11 
watersheds of the steep Himalayas. Half of the earth’s glacial catchments in nonpolar areas are in the Himalayas, 12 
and they generate almost a third of the streamflows in India. In River catchments with glacier presence in the region, 13 
temporal variability in streamflow generation and the associated distribution of accumulated snow illustrate how 14 
changes in snowmelt and precipitation can affect water supplies to a growing population of 1.3 billion people. 15 
Estimations of snowpack and snowmelt in watersheds are critical for understanding streamflow generation and 16 
sources of catchments. However, estimating precipitation and snow accumulation is constrained by the difficulties 17 
complex terrain poses to data collection. The primary objective of this study is to assess the role of elevations in the 18 
computation of snowfall (snowpack) and snowmelt in sub-catchments. The study area is the Satluj River Catchment 19 
(up to Kasol gauge) with moderate (e.g., 526 m) to very high elevations (e.g., 7429 m) dominated by snow covers 20 
and glaciers. The Satluj River Catchment was divided into 14 sub-catchments. Snowpack and snowmelt variations in 21 
the sub-catchments in both historical and projected near-term (2011-2130) periods were analyzed using observed 22 
and Global Circulation Model (GCM) data sets. Both hydrological scenarios used elevation bands and parameter-23 
sensitivity analyses built in the Soil Water Assessment Tool (SWAT) model.  For model calibration/validation and 24 
parameter sensitivity analysis, an advanced optimization method—namely, Sequential Uncertainty Fitting (SUFI2) 25 
approach was used with multiple hydrological parameters. Among all parameters, the curve number (CN2) was 26 
found significantly sensitive for computations. The snowmelt hydrological parameters such as snowmelt factor 27 
maximum (SMFMX) and snow coverage (SNO50COV) significantly affected objective functions such as R2 and 28 
NSE during the model optimization process. The computed snowpack and snowmelt were found highly variable 29 
over the Himalayan sub-catchments as also reported by previous researchers in other regions. The magnitude of 30 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-689, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



2 
 

snowpack change consistently decreases across all the sub-catchments of the Satluj River Catchment (varying 31 
between 4% and 42%). The highest percentage of changes in snowpack was observed over high-elevation 32 
subcatchments.  33 

 34 

1.	Introduction	35 

Most of the perennial river channels such as the Ganga, Indus, and Brahmaputra are originated in Himalayan 36 
glaciers. Large snowpacks along the Himalayas are formed by thousands of glaciers in valleys and are the major 37 
sources of fresh water reserves in India (Bolch et al., 2012). Many studies reported that the hydroclimatology of the 38 
Himalayan catchments is changing, and thus snowpack and glaciers are reducing their mass, which leads to more 39 
snowmelt water into the streams (Bhambri and Bolch, 2009; Bolch et al., 2012; Xu et al., 2016; Singh et al., 2016). 40 
According to the Intergovernmental Panel on Climate Change (IPCC, 2013), changes in temperature and 41 
precipitation are expected to affect the hydrology of Himalayan catchments (IPCC, 2013). Some of these changes 42 
can be reflected in the spatial distribution and temporal variability of rainfall, snowfall and glaciers’ mass, which at 43 
the same time can drive streamflow generation in large catchments in the Himalayas (Singh et al., 2008). While 44 
glaciers influence streamflows in high altitudes, rainfall is considered a predominant factor in low altitudes. As a 45 
main tributary of the Indus River, the Satluj River has its flow primarily generated by snowmelt during the spring. 46 
Thus, a higher melting will result in an increase in runoff downstream before the monsoon season (Jain et al., 2010) 47 
and increased vulnerability to floods and risk to the sustainability of agriculture in the Punjab region. Other areas of 48 
the world, such as the western United States of America, have experienced increments in altitude of snow 49 
accumulation reduction of the snowpack, and earlier snowmelt onsets (Motte et al., 2005; Mote, 2006). All of these 50 
factors influence water supply and storage and affect the sustainability of human activities downstream. However, in 51 
the Sutlej River Catchment, recent and projected changes in snowmelt and snowpack are inconclusive about how 52 
glacial and perennial streamflow will be affected in a changing climate.   53 

Several studies highlighted an elevation-dependent warming and revealed that changes in temperature lapse rate 54 
(TLR) and precipitation lapse rate (PLR), due to climate change, are responsible for the higher reduction in the 55 
snowpack at high elevations than those present at lower elevations (Singh and Goyal, 2016a; Singh and Goyal, 56 
2016b). The TLR and PLR are functions of elevation (Gardner et al., 2009), and thus the snowpack and snowmelt 57 
rate can be affected by variations in TLR and PLR as analyzed by Singh and Goyal (2016a and 2016b) over eastern 58 
Himalayan catchments. After temperature, alterations in precipitation pattern have been recognized as another major 59 
factor that determines changes in snowpack over the region. Thus, climate change projections indicate an increment 60 
in precipitation variability (Change, I.C., 2013) which will influence PLRs (Singh and Goyal, 2016a) and snowfall 61 
patterns, particularly when catchments’ topography corresponds with moderate to very high elevations like the 62 
Himalayas. Also, influences of a changing climate in the Himalayan regions have evidenced long-term shifts in 63 
average air temperature, precipitation and other land surface variables (Sridhar and Nayak, 2010; Jain et al., 2010; 64 
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Beniston, 2012; Narsimlu et al., 2013;). Bolch et al. (2012) reported that the length of many Himalayan glaciers is 65 
shortening, and only 25% of glaciers are stable. Therefore, future changes, especially near-term changes, have made 66 
it increasingly important to be able to compute snowpack and snowmelt in sub-catchments to manage water 67 
resources.  68 

Several studies successfully used the SWAT model to project water yield and streamflow as a function of the 69 
variable temperature and precipitation using Coupled Model Intercomparison Project Phase 3 (CMIP3 or CM3) 70 
Global Circulation Model (GCM) data sets (Ferrant et al., 2014; Shrestha et al., 2013). Neupane et al. (2014) used 71 
SWAT to simulate the effect of climate change on natural water storage at watersheds, evidencing the influence of 72 
precipitation and temperature lapse rates and inherent snow accumulation and snowmelt roles. Glacial hydrologic 73 
assessments can help track and predict water availability in catchments reliant on snowpack and timing snowmelt. 74 
The primary objective of this study is to show the scope of computation and characterization of snowpack and 75 
snowmelt in sub-catchments, which could help in understanding modeling complexities, mainly snowmelt induced 76 
in the Satluj River catchment. Another important objective of this study is to highlight the near-term future changes 77 
in snowfall and snowmelt using GCMs.  78 

 79 

2. Methodology 80 

2.1. Study area 81 

The Satluj River Catchment is a part of the Indus River system, which has many major tributaries--such as the 82 
Satluj, Beas, Jhelum, Chenab and Ravi--and minor tributaries. The current research focused on a part of the Satluj 83 
River Catchment (up to Kasol gauge station), which stream flows through the western Himalayan region. The main 84 
outlet point, Kasol, consists of an area about 51055 km2, which is located at the head of the Bhakra Dam of India. 85 
The geographical extent of the study area lies between 77°00’ to 82°39’ E longitudes and 30°8’ to 33°00’ N 86 
latitudes (Fig. 1). The Satluj River is the longest river among the five major rivers that flow through northern India 87 
and Pakistan. It is north of the Vindhya Range, south of the Hindu Kush segment of the Himalayas, and east of the 88 
Central Sulaiman Range in Pakistan. The Satluj Catchment is mainly covered by snow. Glaciers of the Satluj River 89 
are at moderate (526 m) to very high elevations (7429 m). The majority of the Satluj River catchment is fed by 90 
snowmelt (up to the Rampur gauge station) and rainfall during the summer and by groundwater flow during the 91 
winter.  92 

2.2 Historical and near-term scenarios 93 

Daily precipitation, minimum and maximum temperature, humidity, wind speed and solar radiation were obtained 94 
from the Indian Meteorological Department (IMD) and Indian Institute of Tropical Meteorology (IITM), Pune, 95 
India, in grid format (at 1 ̊×1 ̊ scale). Six grids with all of these variables were kept for the drainage area of the Satluj 96 
catchment for the historical time series (1991-2008). Additionally, three gauge locations with daily measured 97 
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precipitation were also used for the same time duration. The geospatial thematic data layers such as SRTM (Shuttle 98 
Radar Topographic Mission) digital elevation model (DEM) with 90 m spatial resolution (GLCF, 2005) and 99 
landuse/landcover (LULC) map (prepared at 1:50,000 topographical scale using IRSP6 LISS III satellite data sets) 100 
were used in the study. The description of the LULC codes is given in the SWAT user manual written by Neitsch et 101 
al. (2011). A soil map of India (Figure 1) downloaded from SWAT portal (www.swat.tamu.edu/conferences/ 102 
international/2012/data set/) was also used  (FAO, 2007). The description of soil categories came from FAO’s world 103 
harmonic soil database (FAO, 2007).  104 

For the assessment of near-term (2011 to 2030) snowpack, snowmelt and water yield, daily precipitation and 105 
temperature data sets  were downloaded from the IPCC climate data portal. CGCM3.1/T63 atmospheric and sea-ice 106 
model outputs–namely, SRES B2 model experiment (Qiao et al., 2013)--were used. CMIP3-SRES B2’s daily 107 
temperature and precipitation were provided at 128x64 Gaussian grid (approximately 2.81° latitudes x 2.81° 108 
longitudes) (Thornton et al., 2009) and bias corrected ( Taylor et al., 2012; Mahmood and Babel, 2012; Singh and 109 
Goyal, 2016b;). The SRES B2 model experiment was selected for the near-term assessment based on the 110 
comparison of IPCC’s SRES B1, SRES A2, 20C3M, COMMIT and B2 historical simulations and observed 111 
precipitation and temperature. Four GCM data points which fell in the current study area and highlighted the spatial 112 
variations of the present study were considered without downscaling (Fig. 1). The occurrence of snowpack and 113 
snowmelt changes due to variations in elevation bands is enhanced by dividing the main catchment into sub-114 
catchments. For the sub-catchment calculations,  observed grids (six), gauge data sets (3 points) and GCM data grids 115 
(four) were spatially interpolated at each sub-catchment using the Inverse Distance Weighting Approach (IDWA) 116 
(Lu and Wong, 2008; Snell, 1998, Snell et al., 2000).  117 

2.3. Spatiotemporal approach 118 

Up to 10 elevation bands were incorporated in each sub-catchment to characterize the snowpack and snowmelt. For 119 
this, at each subcatchment scale, an average TLR and PLR were computed and incorporated into the SWAT model 120 
to improve the snowmelt and snowpack computations. The present study uses a stochastic procedure SUFI2 to 121 
characterize model uncertainty and sensitivity analyses to improve modeling outputs in a snow-glacier dominant 122 
Himalayan catchment. The model calibration and validation were done using daily measured discharge data at three 123 
gauges: Rampur, Suni and Kasol. Hydro-meteorological observations, especially daily measured discharge data 124 
from 1989 to 2008 at all three gauges, were used to improve the modeling in both historical (1991-2008) and near-125 
term projection scenarios (2011-2030). The historical scenarios of snowpack, snowmelt and other water balance 126 
components were generated using hydro-meteorological data from 1991 to 2008. Near-term scenarios used two of 127 
the most relevant GCM variables, temperature and precipitation, to produce the snowfall and snowmelt. CM3 GCM 128 
model’s daily temperature and precipitation were used to analyze the near-term complexities and changes in 129 
snowpack and snowmelt (Ferrant et al., 2014; Shrestha et al., 2013). 130 

The Satluj River Catchment was divided into 16 sub-catchments based on the area threshold method (Ficklin and 131 
Barnhart, 2014; Neitsch et al., 2011). Each sub-catchment includes a main channel and multiple HRUs which 132 
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consist of geospatial representations of homogeneous land use, soil type, and management practices. The 133 
contributions of each HRU were weight-averaged for every sub-catchment (Zhou et al., 2014). Simulated snowpack 134 
and snowmelt were computed at each HRU and also aggregated by sub-catchment. For each sub-catchment, up to 10 135 
elevation bands were defined; then, at each elevation band, all snow hydrological parameters were determined 136 
(Neitsch et al., 2011). To estimate the spatial variability of the snowpack and snowmelt, an average TLR and PLR 137 
were incorporated at each sub-catchment, which adjusted the temperature at each elevation band. Snow and glaciers 138 
mainly cover the upper part of the catchment that has a very low TLR, while the lower part of the catchment has a 139 
reduced presence of glacier areas with large settlements and high temperatures. These topographical variations 140 
brought high variability in TLR and PLR over the Satluj River catchment. The rationale for discretizing the 141 
catchment is to simulate streamflow, snowfall and snowmelt processes at each sub-catchment and the respective 142 
elevation bands, which is also contributes to account homogeneous land use, soil, and weather generator parameters 143 
(e.g., precipitation and temperature). A representation of the water balance components at each sub-catchment, 144 
elevation band, and HRUs could be useful to highlight the catchments’ variability in an efficient manner especially 145 
in the case of large-area catchments. 146 

2.3.1. Modeling approach 147 

The SWAT model is fully capable of computing the long-term water balance components in a semi-distributed 148 
manner through the use of hydrological response units (HRUs). Streamflow is simulated using a slope-adjusted 149 
modified Soil Conservation Services curve number (CN) method (USDA Soil Conservation Service, 1972; Arnold 150 
et al., 1998). Detailed physical and hydrological principles and parameters are fully described in the SWAT user 151 
manual (Neitsch et al. 2011).  152 

2.3.2. Model calibration and validation 153 

Simulated and observed streamflows were used in a SWAT stochastic optimization tool, Calibration and Uncertainty 154 
Program (CUP), to calibrate and validate physical parameters (Abbaspour et al., 2007). Recorded daily streamflows 155 
at three outlet locations (i.e., Rampur, Suni and Kasol) for the period of 1989 to 2008 were used. The initial two 156 
years were considered a warm-up period for the historical scenario, and the initial three years for the near-term 157 
projected scenarios. The model calibration was performed using the concept of aggregate parameter selection (Yang 158 
et al., 2007). An ‘aggregate parameter’ is obtained by adding terms such as v_, a_ and r_ to the front of the original 159 
parameter to create an absolute increase and a relative change in the initial parameter values, respectively (Zhang et 160 
al., 2014). The objective functions such as coefficient of determination (R2) and Nash-Sutcliffe Efficiency Index 161 
(NSE) were used in the calibration and validation procedures (Abbaspour et al., 2007; Zhang et al., 2014).  162 

2.4. Sensitivity analysis  163 

Model outputs are deterministic representations of precipitation, discharge, evapotranspiration (ET), storage and 164 
different transport-processes’ variables and state variables. A deterministic hydrological model such as SWAT is 165 
unable to explore the stochastic behavior of random variables such as rainfall and associated discharges (Abbaspour 166 
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et al., 2007; Singh et al., 2013). Calibration of any distributed hydrological model using observed hydro-observation 167 
data sets always leads to nonidentifiable parametric uncertainties due to complex hydrological processes and data 168 
sets, especially in the case of the large catchments (Yang et al., 2007). Thus, it’s necessary to estimate the 169 
propagation of parameter uncertainty to the uncertainty of the model’s outputs. SWAT uses an independent 170 
stochastic model SUFI2, which in this work is selected to account for model uncertainty (Yang et al., 2007; 171 
Abbaspour et al., 2007).  172 

SUFI2 accounts for parametric uncertainty through sequential and fitting approaches. Iteratively old coefficient 173 
parameters are updated into a new array of coefficients during calibration to ultimately achieve the final set of 174 
parameters (Abbaspour et al. 2011). The SUFI2 algorithm assumes a large parameter uncertainty (or physically 175 
meaningful range) occurring in response to data inputs to ensure the observed data fall into the 95% prediction 176 
uncertainty (95PPU) band during the first iteration. During this iterative procedure, uncertainty progressive decrease 177 
is monitored though the changes of the p-factor and r-factor  (Abbaspour et al., 2007). While the p-factor determines 178 
the percentage of simulated data falling into the observed-data range, the r-factor contributes to determine the 179 
uncertainty of the simulated variables and state variables when compared with observed data sets. 180 

The value of the p-factor ranges between 0 and 100%, and the r-factor ranges between 0 and infinity. A value of p-181 
factor = 1 and r-factor = 0 represents a perfect match between simulated and observed data. The parameter 182 
sensitivity analysis helps identify the significance of a particular parameter to the calibration process, whether the 183 
process is influenced by the parameter values or nature of the forcings. SUFI2 method is based on a global 184 
sensitivity analysis (GSA) performed through multiple regression. GSA’s parameters were generated through a 185 
Latin hypercube sampling (LHS) and the resultant simulated variables and state variables are contrasted to the 186 
equivalent observations through the application of an objective function. The LHS method is considered a highly 187 
efficient sampling method; it can reduce the sampling points within an individual space. In this study, four iterations 188 
with 600 simulations were conducted to estimate the uncertain effect of model parameters in the calibration 189 
outcomes. 190 

In general, after completion of the first iteration, the model performed well using the majority of parameter 191 
combinations sampled from the updated parameter ranges. Therefore, the updated parameter ranges used during the 192 
second iteration are regarded as the uncertainty ranges for model simulations and analyses. In this study, the 193 
statistical significance tests such as p-value test and t-stat were employed to rank parameters from high sensitive to 194 
nonsensitive. A 0 p-values shows a highly sensitive parameter in the GSA . On the other hand, GSA’s t-stat is 195 
evaluated based on the significance level alpha (α = 0.05) and resultant p-values. The alpha value 0.05 was chosen 196 
as the local significance level. Based on this significance level, values larger than +1.96 indicate a significant 197 
(p<0.05) positive sensitivity and values lower than -1.96 indicate a significant (p<0.05)  negative sensitivity. Thus, 198 
the p-values closer to zero will enable the use of trend analyses of the simulated variables and state variables 199 
(Abbaspour et al., 2011). The parameter-sensitivity results can be observed in Table 3. 200 

2.5. Elevation band approach for snowpack and snowmelt measurement 201 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-689, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



7 
 

In this study, SWAT snowmelt hydrology and related processes were performed at the sub-catchment scale 202 
(Fontaine et al., 2002). Therefore, each sub-catchment was divided into 10 elevation bands in order to incorporate 203 
temperature and precipitation variations with respect to altitude (Neitsch et al., 2011). The sequence of 204 
methodological steps are as follows: 205 

2.5.1. TLR and PLR computation and their adjustments at each elevation band 206 

For each sub-catchment, lapse rates for precipitation plaps (mm/km) and temperature tlaps (ºC/km) were computed as 207 
Eq. 1: 208 

𝑷𝑩 = 𝑷 + 𝒁𝑩 − 𝒁
𝒑𝒍𝒂𝒑𝒔

𝒅𝒂𝒚𝒔!𝒄𝒑,𝒚𝒓×𝟏𝟎𝟎𝟎
        and     𝑻𝑩 = 𝑻 +   𝒁𝑩 − 𝒁

𝒕𝒍𝒂𝒑𝒔
𝟏𝟎𝟎𝟎

                                                                 (1) 209 

where P (mm), T (ºC) and Z (m) were the sub-catchment precipitation, temperature and recording gauge elevation, 210 

respectively; while 𝑷𝑩, 𝑻𝑩 and 𝒁𝑩 were the adjusted precipitation, temperature and mean elevation for each 211 
elevation band. The variable dayspcp, yr represented the mean annual number of days with precipitation. The 212 
temperature lapse rate could be computed using mean annual temperature. In accordance with the delineation 213 
approach used with sub-catchments, temperatures were adjusted within each elevation band by comparing the 214 

elevation bands’ midpoint elevation (𝒁𝑩) within the station elevation (Z). The elevation difference was multiplied by 215 
the lapse rate to calculate a temperature difference between the station elevation and the elevation band. An updated 216 

elevation band mean temperature (𝑻𝑩) was calculated by adding or subtracting the temperature difference to or from 217 
the temperature measured at the station elevation (T) as in Eq. 2: 218 

𝑻𝑩 = 𝑻 + (𝒁𝑩 − 𝒁)
𝒅𝑻
𝒅𝒁

                                                                                                                                                (2) 219 

where 𝒅𝑻
𝒅𝒁

  is the mean local lapse rate (𝒕𝒍𝒂𝒑𝒔)(ºC/km) calculated at all sub-catchments. A lapse rate for annual 220 

precipitation was represented by the changes of the mean annual precipitation with respect to the station elevation. 221 

Adjusted precipitation in each elevation band (𝑷𝑩) was based on the difference between the elevations of the 222 

subcatchment meteorological station (Z) and each elevation band (𝒁𝑩) multiplied by the lapse rate of (mm/km) per 223 
event (P). If the meteorological station was unavailable in a particular subwatershed, then the next nearest 224 
meteorological station was considered for lapse rate calculations. The equation was defined as Eq. 3: 225 

𝑷𝑩 = 𝑷 + (𝒁𝑩 − 𝒁)
𝒅𝑷
𝒅𝒁

                                                                                                                                                (3) 226 

where 𝒅𝑷
𝒅𝒁

  was the mean local lapse rate (𝒑𝒍𝒂𝒑𝒔) calculated for all sub-catchments.  227 

2.5.2 Snow Accumulation 228 

The snowpack was represented in SWAT by the snow water equivalent (the mass of liquid water in the snowpack) 229 
SWE (mm), which balanced snowfall SF (mm) and snowmelt SM (mm) or sublimation ES (mm) (Eq. 4): 230 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-689, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



8 
 

𝑺𝑾𝑬𝒅𝒂𝒚 = 𝑺𝑾𝑬(𝒅𝒂𝒚!𝟏) + 𝑺𝑭 − 𝑺𝑴 − 𝑬𝒔                                                                                                                (4) 231 

In SWAT, snowmelt SM is controlled by the air and snowpack temperatures, the melting rate, and areal coverage of 232 
snow. When daily mean air temperature is less than a snowfall temperature, as specified by the SWAT variable 233 
SFTMP (Table 1), the precipitation within an HRU is classified as snow, and the liquid water equivalent is added to 234 
the already-present snowpack. The snowpack temperature is a function of the mean daily temperature during the 235 
preceding days and varies as a dampened function of air temperature (Anderson, 1976). The influence of the 236 
previous day’s snowpack temperature on the current day’s snowpack temperature was controlled by a lagging factor, 237 
(TIMP), which intrinsically accounts for snowpack density, snowpack depth, exposure and other factors known to 238 
affect snowpack temperature (Eq. 5): 239 

𝑻𝒔𝒏𝒐𝒘𝒑𝒂𝒄𝒌 𝒅𝒂𝒚 = 𝑻𝒔𝒏𝒐𝒘𝒑𝒂𝒄𝒌 𝒅𝒂𝒚!𝟏 × 𝟏 − 𝑻𝑰𝑴𝑷 + 𝑻𝒂𝒗𝑻𝑰𝑴𝑷                                                                            (5) 240 

where Tsnowpack (day) and Tsnowpack (day-1) are the snowpack temperature (ºC) on a given day and on the day 241 
preceding it, respectively, and Tav (ºC) is the mean air temperature for the same given day. The fraction of area 242 
covered by snow SNOcov can be computed as Eq. 6: 243 

𝒔𝒏𝒐𝒄𝒐𝒗 =
𝑺𝑵𝑶

𝑺𝑵𝑶𝟏𝟎𝟎

𝑺𝑵𝑶
𝑺𝑵𝑶𝟏𝟎𝟎

+ 𝒆𝒙𝒑 𝒄𝒐𝒗𝟏 − 𝒄𝒐𝒗𝟐
𝑺𝑵𝑶

𝑺𝑵𝑶𝟏𝟎𝟎
− 𝟏                                                                                (6) 244 

where SNO is the water content of the snow pack on a given day (mm), SNO100 is the threshold depth of snow at 245 
100% coverage (mm), and cov1 and cov2 are coefficients that define the shape of the curve. Snow depth over an 246 
elevation band is assumed to be constant when the SWE exceeds SNO100; i.e., the areal depletion curve affects 247 
snowmelt only when the snowpack water content is between zero and SNO100.  248 

2.5.3. Snowmelt and glacier melt 249 

Snowmelt rate is controlled by snowpack temperature and air temperature. A snowpack cannot begin to melt and 250 
release water before the entire pack has reached 0°C and thus we adopted the same. The SWAT model is unable to 251 
calculate glacier melt contributions directly. It corresponds to snowmelt contribution mainly from the snowpack 252 
amount. Hence, in this study the snowmelt amount integrated glacier melt and snowmelt. The melt rate from a 253 
snowpack varies in response to snowpack conditions (Fontaine et al., 2002). In this study, snowmelt and glacier melt 254 
were set up together in the SWAT model as a linear function of the difference between the average of the snowpack 255 
and glacier temperature (Tsnowpack) and the maximum air temperature (Tmax) on a given day and the base or threshold 256 
temperature for the snowmelt (Eq. 7). It is worth stating that due to the large number of glaciers over the Satluj 257 
catchment, the temporal mass balance of glaciers and melting rates were analyzed at the catchment and HRU levels, 258 
respectively. Hence, standard coefficient values were used: 259 

𝑺𝑴 = 𝒃𝒎𝒍𝒕×𝒔𝒏𝒐𝒄𝒐𝒗
𝑻𝒔𝒏𝒐𝒘𝒑𝒂𝒄𝒌!𝑻𝒎𝒆𝒍𝒕

𝟐
− 𝑻𝑴𝑳𝑻                                                                                                        (7) 260 

where bmlt (mmH2O/day-°C), is the melt factor for a day: 261 
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Eq. 8 has been adapted for application in the Northern Hemisphere, where SMFMN is the melt factor for 21st June, 263 
SMFMX is the melt factor for 21st December, and dn represents the day of the year. 264 
 265 
3. Result and analysis 266 

Geophysical components, such as topography, land use/land cover change and soil classes, are parameterized in 267 
SWAT (Neitsch et al., 2011) and help determine the spatial distribution of water availability and its physical-state. 268 
For example, more than 30 different soil parameters associated with each soil category such as soil texture, available 269 
water content, hydraulic conductivity, bulk density and organic carbon content were used for this study. These 270 
parameters in SWAT were defined for each soil subtype for different layers (between two and three layers). A key 271 
parameter in SWAT, the curve number (CN) averaged 80.1 in the catchment, though it varied from lower 272 
subcatchment to upstream subcatchment as per LULC, slope and soil properties.  273 

SWAT information on model implementation, including the temporal context for the simulated water balance 274 
components for the sensitivity analyses is described in Table 1. The sensitivity results were a product of 20 different 275 
hydrological parameters (Table 2) on both daily and monthly time steps. In Table 3, the parameters which were 276 
found sensitive to snowmelt-induced streamflows are selected for model calibration. The description of parameters 277 
and their coefficients are given in Table 3. For example, TLAPS.sub parameter (TLR) fluctuates from -7.0 ˚C/km to 278 
2.5˚C/km (with the best-fitted value computed as -4.1 ˚C/km), showing how temperature variations exist across the 279 
Satluj River Catchment. Table 3 also shows the aggregate parameter ranges that result from the final iteration 280 
number, which was optimized through the Latin Hypercube Sampling (LHS) method (Abbaspour et al., 2011). For 281 
TLAPS.sub, the p-value is recorded as 0.01 and its t-stat value is recorded as -2.2, also illustrating that this 282 
parameter is found sensitive for the model calibration and validation.  283 

Among the 20 calibration parameters, the 5 parameters R_CN2.mgt, R_SMFMX.bsn, V_CH_K2.rte, TLAPS.sub 284 
and V_GW_DELAY were computed as significantly sensitive parameters for daily calibration while the parameters 285 
SNO50COV.bsn, CN2.mgt, GW_DELAY.gw and SOL_K.sol were found sensitive for monthly analysis. The 286 
computed  t-stat values were less than -1.96 or greater than +1.96; the estimated p-values were close to zero. At 287 
daily time steps, sensitive parameters evidence the role of snow melt and the temperature lapse rate on water flowing 288 
in the model. Further, soil properties also evidence the regulatory role of infiltration in the subsurface. For example, 289 
the V_GW_DELAY.gw parameter of aquifer recharge at the catchment was found significantly sensitive for both 290 
daily and monthly time steps (Table 3). In unconfined and shallow aquifers, this factor could influence the temporal 291 
variability and spatial distribution of different components of the water balance, highlighting the contributions of 292 
surface water and groundwater interactions. Also, at the catchment scale  A_ALFA_BF.gw, whose p-value was 293 
recorded as 0.172 daily and 0.406 monthly, was found insignificant for the model calibration, indicating the 294 
sensitivity of the model’s baseflow parameterization. 295 
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Other model parameters associated with different types of LULC and soil categories were not found sensitive for the 296 
model calibration and validation process. These model parameters included GWQMN.gw, HRU_SLP.hru, 297 
SOL_BD.sol, HRU_SLP, PLAPS.sub, CH_N2.rte, SOL_AWC.sol and GW_REVAP. The snowmelt temperature-298 
related parameters such as R_SMTMP.bsn, R_SFTMP.bsn and R_SMTMP.bsn were also recorded nonsignificant 299 
during model calibration as shown in Table 3. These properties are relevant to the temperatures that allow the 300 
formation or accumulation of snow, rather than the melting of snow already packed (which coincides with the 301 
sensitivity of the SMFMX parameter described above). The Saltuj River drainage area is dominated by glacial 302 
hydrology, permanent ice sheets and seasonal well-packed snow. These, are typical features of the catchment, which 303 
at the same time are identified in the sensitivity of parameters such as R__SNOCOVMX.bsn and SNO50COV.bsn 304 
(parameters that represent the fraction of snowpack and the elevation bands) and the recorded significant parameter 305 
sensitivity of daily and monthly calibration, respectively. The significance of elevation differences is reflected in the 306 
snowpack computations. The curve number coefficient (R_CN2) was the most significantly sensitive parameter in 307 
the model calibration process. CNs were modified based on the fractional HRU slopes so soil physical properties 308 
could vary at sub-catchment scale. Thus, groundwater delays and baseflow, together with management practices, 309 
soil physical properties (i.e., the CN), and snow properties, influence the generation of return flows, which aligns 310 
with the purpose of this work in the Satluj River Catchment.  311 

Table 4 presents the daily and monthly results for streamflow calibration (1991 to 2000) and validation (2001 to 312 
2008) at all three outlet locations, Rampur, Suni and Kasol. Table 4 also shows the goodness-of-fit between the 313 
simulated and measured streamflows with the coefficient of determination (R2) and Nash-Sutcliffe Equation (NSE) 314 
(Legates et al., 1999) for the Rampur, Kasol and Suni outlet stations. The computed R2 and NSE are found 315 
reasonably acceptable for daily and monthly observations. Regarding goodness-of-fit aspects, monthly and daily 316 
calibration correlations were similar. Among all the three outlet stations, Kasol and Rampur show better calibration 317 
and validation statistics than does Suni station. Before initialization of the model calibration, we took 5% as bias to 318 
ignore the extreme ambiguities from the calibration.  319 

Uncertainty results, which were computed using the objective functions p-factor and r-factor, provide insights about 320 
the precision and accuracy of model simulations (Abbaspour et al., 2011). Also, factors refer to the final uncertainty 321 
level of the calibration-validation approach. The p-factor values recorded during model calibration for the Rampur, 322 
Kasol and Suni stations were 0.46, 0.57, and 0.52 daily and 0.41, 0.57, and 0.49 monthly for the timespan 1991-323 
2000 (Table 4). During model validation, the p-factor values recorded were 0.43, 0.52, and 0.53 dailyand 0.45, 0.60 324 
and 0.58 monthly. Along the Satluj River Catchment, resultant p-factors indicate that more than 50% of the 325 
simulated flows were encompassed within the uncertainty bonds for Kasol station’s daily and monthly simulations, 326 
as well as for calibration and validation approaches. In contrast, simulated flows for Rampur showed p-factors 327 
below 50%, contrasting with their performance on the SWAT model for Kasol and Suni stations during daily 328 
simulations and for model validation. On the other hand, the r-factor values recorded were 1.89, 1.50, and 1.60 daily 329 
and 1.90, 1.57, and1.43 monthly for Rampur, Kasol and Suni. During model validation, the r-factor values were 330 
calculated as 1.89, 1.67, and 1.72 daily and 1.92, 1.62 and 1.52 monthly for Rampur, Kasol and Suni. Resultant r-331 
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factors indicated the SWAT’s ability to precisely reproduce flow values; however, values above 1.43 indicated that 332 
other sources of error besides model physics could contribute to the values of the r-factor. The experiments 333 
described here are unable to identify the contribution of such sources of error. Kasol, Suni, and Rampur were the 334 
only stations with observed data and all were located in the lowest drainage area in the Sultej River Catchment. 335 
Although small, differences among model performance metrics illustrate the local contributions of Suni and 336 
Rampur’s downstream drainage areas to the total streamflow generated at Kasol. Kasol “averages” over and under 337 
estimations of streamflows generated upstream, so lower r-factor values are expected, representing higher precision. 338 
Further, smaller values of p-factor in Kasol also indicate a lower accuracy of the model in replicating observed 339 
streamflows within the uncertainty bonds.  340 

Considering that most of the drainage areas of this catchment are snowmelt-dependent and are upstream of Rampur 341 
station,  a deeper assessment of snowfall and snowmelt along with streamflow generation is required at high 342 
altitudes. The temporal variability and spatial distribution of the hydrological components such as precipitation, 343 
snowpack, snowmelt, water yield (contributed by rainfall only) and total water yield (contributed by both snowmelt 344 
and rainfall) were computed and analyzed. Figure 2 illustrates the aggregation of simulated snowpack and snowmelt 345 
compared with precipitation from 1991 to 2008 in sub-catchments. Here, it is evident that the maximum snowpack 346 
contribution occurs at sub-catchments at a high elevation. These sub-catchments, such as SB1, SB2, SB3, SB4, 347 
SB15 and SB16, have values varying from ~10 to ~380 mm in a single year. Figure 2 also shows that sub-348 
catchments such as SB10, SB11, SB12, and SB13, located in the lowest drainage areas, poorly contribute to the 349 
snowpack of the Saltej River Catchment. (They had annual values below 150 mm predominantly). Interannual 350 
changes in snowpack and the amount precipitation show local to large-scale influences in snow melt as well as snow 351 
accumulation. For example, SB1 shows that the proportion of snowmelt/snowpack with respect to precipitation was 352 
larger in 2000 and 2002, which contrasts with those proportions between 1995 and 1996. In the easternmost portion 353 
of the catchment, this proportion is consistent during all years, which contrasts with the catchment’s lower drainage 354 
areas. Further analysis is required to identify causality in those accumulations in response to El Niño Southern 355 
Oscillation or interannual changes in monsoon intensity and interannual accumulation of snow. Figure 3 illustrates a 356 
possible influence of elevation differences along the catchment.  357 

During near-term projection, input parameters such as DEM, LULC, and soil map were kept constant to simulate 358 
and isolate possible effects of temperature and precipitation, which could emerge in places with highly variable 359 
elevations and large elevation gradients. The TLR and PLR were estimated by elevation band as shown in Figure 3. 360 
The TLR and PLR are given as an input to set up the SWAT model for sub-catchment calculations of snowfall and 361 
snowmelt, as well as parameters in calibration. Figures 3a and 3b illustrate the TLR or inverse changes in 362 
temperature with altitude (Gardner et al., 2009). Figures 3a and 3b also show the winter and summer months’ 363 
temperature variations in relation to elevation differences, as well as the inherent variation due to seasonal cycles at 364 
each sub-catchment. While winter temperatures in low-altitude portions of the catchment vary between 9oC and 365 
21oC, summer temperatures range between 22oC and 27oC. At high altitudes, the largest temperature span (21oC) 366 
occurs during winter months whereas the summer months’ temperature span (5oC) remains the same along the 367 
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catchment. Parameter sensitivity in daily and monthly analyses (described in Table 3) evidenced SWAT’s ability to 368 
simulate flows in response to snowmelt rather than changes in temperatures. Figure 3b evidences such sensitivity 369 
since the temperature between April and September remains within a 5oC temperature span.  370 

Figure 4 shows annual averages of snowpack variations by elevation band (10 numbers) computed at each sub-371 
catchment for the 1991-2030 period. These variations are expressed in fractional snowpack at each sub-catchment, 372 
which at the same time define the variations in TLRs and PLRs. The distribution of the fractional snowpack varied 373 
throughout the catchment from upstream to downstream sub-catchments. Figures 4a to 4d are examples of high-374 
altitude drainage areas characterized by high and variable snowpacks. In contrast, low-land variations upstream of 375 
Rampur station (Figures 4e and 4f) evidenced small variability and low values of accumulated snow. Downstream of 376 
Rampur (Figures 4g and 4h) illustrate slightly larger variations in snow accumulation with average values below 50 377 
mm/year. Figure 5 is consistent with the fractional variations in snowpack expressed above, expanding such 378 
variations into multidecade contributions (1991-2000, 2001-2008, 2011-2020 and 2021-2030). In this figure, 379 
snowpack variation is highlighted at each catchment on a cumulative annual average. Figure 5 shows that sub-380 
catchments at high elevations, such as SB1, SB2, SB3, SB8, SB15 and SB16, receive the highest amounts of 381 
snowpack. When compared intra-annually, the scenarios computed between 1991-2000 and 2001-2008 showed 382 
higher snowpack amounts than those calculated between 2011-2020 and 2021-2030. This difference in snowpack 383 
amount mainly occurred due to the variations in fractional snow covers.  384 

Figures 6a-e show the spatial distribution of multidecadal averages of precipitation, snowpack, snowmelt, rainfall-385 
runoff and total water yields (contributed by both snowmelt runoff and rainfall runoff) for the period 1991-2008 and 386 
their differences with respect to the near-term period 2011-2030. Figure 6a shows that the lower portion of the 387 
catchment (i.e., SB10, SB11, SB12 and SB13) and highest elevated part of the catchment (i.e., SB14, SB15 and 388 
SB16) had the largest precipitation (1991-2030). However, when compared with split time series sets, such as the 389 
1991-2008 and 2011-2030 time series sets, precipitation decreases in the high elevation sub-catchments and 390 
increases in the lower parts. The snowpack and snowmelt plots have shown similar kinds of trends in their time 391 
series values. A decrease in the snowpack amounts can be observed in Figures 6b and 6c. Figure 6d also shows that 392 
the contribution of runoff (due to rainfall) has increased during the time 2011-2030. Figure 6e shows an increase in 393 
total water yield in subcatchments at low elevations. The portions of the watershed most vulnerable to hydrologic 394 
changes, specifically responses to variations in snow melting and snow accumulation, are the mid- to low-altitude 395 
portions of the catchment upstream of Rampur station.  396 

Figure 7 illustrates the magnitude of change (shown as “% of change”) in snowpack amount as a function of the 397 
fraction of elevation bands.  The results showed a decrease in snowpack amount recorded from a minimum of 5% to 398 
a maximum of 42% across all the subcatchments. The subcatchments SB1, SB2, SB3 and SB8 correspond with the 399 
utmost decrease in snowpack amount (20% to 42%); whereas, the subcatchments SB5, SB7, SB14, SB15 and SB16 400 
showed a small to moderate decrease in snowpack amount (4% to 20%). The above showed significant variations in 401 
the water balance components of the Satluj River catchment, illustrating an enormous change in snowpack amount 402 
over different sub-catchments. 403 
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5. Conclusion 404 

This study analyzed the snowpack and snowmelt computations in high elevations of the Satluj River Himalayan 405 
catchment. In this study, the snowpack and snowmelt have been evaluated at multiple elevation bands, illustrating 406 
spatial variations in their amount at each subcatchment. For the computation of snowpack and snowmelt, both 407 
measured and GCM data sets were used to highlight the intraannual changes in snowmelt and snowpack. This study 408 
showed an enormous spatial and temporal variability in snowpack amount at elevation bands. The average TLR and 409 
PLR were used to compute the more accurate estimation of snowpack. For this, various model calibration 410 
parameters were considered and then sensitivity was analyzed. Based on the sensitivity analysis, significant sensitive 411 
and nonsensitive parameters were identified, which helped to improve the accuracy of the computation of snowpack 412 
and snowmelt. The other water balance components such as precipitation, water yield due to rainfall and water yield 413 
due to snowmelt were spatial studies. The long-term spatial comparison of these water balance components showed 414 
noticeable spatial variability from upstream subcatchments to downstream subcatchments. The percentage of change 415 
analysis clearly showed that snowpack is highly variable over the Satluj catchment and it could be more variable in 416 
the near-term period.  417 

 418 
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Tables 541 

Table 1: Details of water balance components simulated in the SWAT model  542 

Model Simulation Details 
General details  Satluj catchment 
Simulation period (years) 16 
Warmup (years) 3 
Hydrological response units 358 
Sub-catchments 16 
Output time step Daily, Monthly 
Watershed area (km2) 51055 

Water Balance Ratios 
Streamflow/precipitation 0.63 
Baseflow/total flow 0.25 
Surface runoff/total flow 0.45 
Percolation/precipitation 0.26 
Deep recharge/precipitation 0.01 
ET/precipitation 0.36 

Water Balance Components (mm) 
ET 382.0 
Precipitation 1073.5 
Surface runoff 304.8 
Lateral flow 113.0 
Return flow 259.0 
Percolation to shallow aquifer 283.4 
Revaporation from shallow aquifer 10.2 
Recharge to deep aquifer 14.2 

 543 
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Table 2: Description of model calibration parameters 549 

Streamflow parameters selected for calibration 
and validation Description 

SNOCOVMX.bsn Minimum snow water content 
HRU_SLP.hru Average slope steepness 
SOL_K.sol Soil hydraulic conductivity 
SNO50COV.bsn Fraction of snow volume 
PLAPS.sub Precipitation lapse rate 
SFTMP.bsn Snowfall temperature 

GWQMN.gw 
Threshold depth of water in shallow aquifer required 
for return flow 

CH_N2.rte Manning roughness coefficient for main channel 
SOL_BD.sol Moist bulk density 
SOL_AWC.sol Available water capacity of the soil layer 
GW_REVAP.gw Groundwater “revaporation” coefficient 
SMTMP.bsn Snowmelt base temperature 
ALPHA_BF.gw Baseflow alfa factor coefficient 
SMFMN.bsn Melt factor for snow on December 21st  
SOL_Z.sol Depth from soil surface to bottom layer 
GW_DELAY.gw Groundwater delay time 
TLAPS.sub Temperature lapse rate 
CH_K2.rte Effective hydraulic conductivity 
SMFMX.bsn Melt factor for snow on June 21st 
CN2.mgt Curve number coefficient 
 550 
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Table 3: Aggregate parameters and their values, ranges and global sensitivity results 557 

Daily 
SI. 
No. Parameter Fitted Value Minimum Value Maximum 

Value t-Stat P-Value 

1 A__SNOCOVMX.bsn 300.0 0.0 500.0 -2.1 0.03 

2 R__HRU_SLP.hru 
0.2 0.2 0.2 -0.2 0.9 

3 R__SOL_K.sol 
0.3 0.0 1.3 -0.2 0.8 

4 R__SNO50COV.bsn 
0.4 0.0 50.0 -0.2 0.8 

5 A__PLAPS.sub 
277.0 100.0 300.0 0.3 0.8 

6 A__SFTMP.bsn 
-1.7 -1.8 1.0 -0.4 0.7 

7 V__GWQMN.gw 
1.0 0.8 1.1 -0.4 0.7 

8 V__CH_N2.rte 
0.3 0.2 0.3 0.5 0.6 

9 R__SOL_BD.sol 
1.4 1.2 1.5 0.7 0.5 

10 R__SOL_AWC.sol 
0.6 0.6 0.7 0.7 0.5 

11 V__GW_REVAP.gw 
0.0 0.0 0.0 0.9 0.4 

12 R__SMTMP.bsn 
-0.5 -2.7 2.0 -0.9 0.4 

13 A__ALPHA_BF.gw 
0.12 0.06 0.2 -1.4 0.2 

14 R__SMFMN.bsn 
7.4 6.4 7.7 -1.4 0.2 

15 R__SOL_Z.sol 
2813 100 4000.0 1.6 0.1 

16 V__GW_DELAY.gw 
10.5 -88.6 50.1 -2.1 0.02 
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17 A__TLAPS.sub 
-4.1 -7.0 2.5 -2.2 0.01 

18 V__CH_K2.rte 
27 22 75.0 2.4 0.0 

19 R__SMFMX.bsn 
0.5 -0.5 1.4 6.4 0.0 

20 R__CN2.mgt 
0.03 0.0 0.1 -8.6 0.0 

Monthly 

1 R__SOL_BD.sol 
1.0 0.9 1.6 -0.1 0.9 

2 R__SMFMN.bsn 
9.1 6.2 11.2 0.3 0.8 

3 A__PLAPS.sub 
337 100 350.0 -0.3 0.7 

4 V__GW_REVAP.gw 
0.1 0.1 0.2 -0.4 0.7 

5 R__TLAPS.sub 
-4.6 -6.2 2.5 0.4 0.7 

6 V__GWQMN.gw 
1.6 0.8 1.7 0.7 0.5 

7 R__SOL_AWC.sol 
0.5 0.5 0.9 -0.8 0.4 

8 R__SOL_Z.sol 
1296 1265 4388.0 -0.8 0.4 

9 V__ALPHA_BF.gw 
0.11 0.0 1.7 0.8 0.4 

10 R__SNOCOVMX.bsn 
100 50 500.0 -1.0 0.3 

11 R__SMTMP.bsn 
0.7 0.6 1.7 1.1 0.3 

12 R__SFTMP.bsn 
1.4 1.0 1.9 1.4 0.2 

13 R__SMFMX.bsn 
0.4 0.3 1.5 -1.8 0.1 
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14 R__SOL_K.sol 
0.5 0.6 1.3 2.1 0.0 

15 V__GW_DELAY.gw 
20 -70 251 2.6 0.0 

16 R__CN2.mgt 
0.02 0.0 0.1 -4.6 0.0 

17 R__SNO50COV.bsn 
0.2 0.0 1.0 -11.7 0.0 
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Table 4: Model calibration and validation results using the SUFI method for the daily and monthly 572 

analysis  573 

Calibration (1991 - 2000) 

Outlet Station 
Daily Monthly 

p-factor r-factor R2 p-factor r-factor R2 
Rampur 0.46 1.89 0.75 0.41 1.90 0.71 
Kasol 0.57 1.50 0.76 0.57 1.57 0.78 
Suni 0.52 1.60 0.72 0.49 1.43 0.73 

Validation (2001 - 2008) 

Outlet Station 
Daily Monthly 

p-factor r-factor R2 p-factor r-factor R2 
Rampur 0.43 1.89 0.62 0.45 1.92 0.65 
Kasol 0.52 1.67 0.71 0.60 1.62 0.73 
Suni 0.52 1.72 0.65 0.58 1.52 0.71 
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Figure Captions 588 

Fig. 1: Study area map of Satluj river catchment (up to Kasol station/gauge).  589 

Fig. 2: Sub-catchment and annual variability in snowpack and snowmelt (annual average) for the year 590 

1991 to 2008.  591 

order); (a) winter season and (b) summer season. 593 

Figure 4: (a-h) Sub-catchment snowpack variability (average annual) based on the fractional elevation 594 

bands in long term climate domain (1991-2030) and (b) Cumulative variability in snowpack amount over 595 

different sub-catchments of Satluj catchment in different temporal domains. 596 

Figure 5: Cumulative variability in snowpack amount over different sub-catchments of Satluj catchment 597 

in different temporal domains. 598 

Fig. 6: Historical average (1991-2008) and differences between near-term and historical average for (a 599 

and b) precipitation, (c and d) snowpack/snowfall, (e and f) snowmelt, (g and h) water yield (due to snow) 600 

and (I and j) total water yield (snowmelt and rainfall runoff) in the Satluj River Basin. 601 

Fig. 7: Percentage of change in snowpack amount (average annual) over different sub-catchments of 602 

Satluj River. 603 

 604 

 605 

 606 

 607 

 608 

592 Fig. 3: Distribution of average temperature over the sub-watershed’s centroid elevation (in chronological 
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 609 

Fig. 1: Study area map of Satluj river catchment (up to Kasol station/gauge).  610 
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 622 

 623 

Fig. 2: Sub-catchment and annual variability in snowpack and snowmelt (annual average) for the year 624 

1991 to 2008.  625 
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(a) 626 

 627 

(b) 628 

 629 

order); (a) winter season and (b) summer season. 631 
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 637 

Figure 4: (a-h) Sub-catchment snowpack variability (average annual) based on the fractional elevation 638 

bands in long term climate domain (1991-2030) and (b) Cumulative variability in snowpack amount over 639 

different sub-catchments of Satluj catchment in different temporal domains. 640 
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 642 

Figure 5: Cumulative variability in snowpack amount over different sub-catchments of Satluj catchment 643 

in different temporal domains. 644 
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 656 

Figure 5: Cumulative variability in snowpack amount over different sub-catchments of Satluj 
catchment in different temporal domains. 
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 657 

Fig. 6: Historical average (1991-2008) and differences between near-term and historical average for (a 658 

and b) precipitation, (c and d) snowpack/snowfall, (e and f) snowmelt, (g and h) water yield (due to snow) 659 

and (I and j) total water yield (snowmelt and rainfall runoff) in the Satluj River Basin. 660 

 

Fig. 6: Changes and inter annual comparisons in average annual (a) precipitation, (b) 
snowpack/snowfall, (c) snowmelt, (d) water yield (due to snow) and (e) total water yield (snowmelt 
and rainfall runoff) over the study area in different temporal climate domains (1991-2030). 
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 661 

Fig. 7: Percentage of change in snowpack amount (average annual) over different sub-catchments of 662 

Satluj River. 663 
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