

1 Analysing surface energy balance closure and partitioning 2 over a semi-arid savanna FLUXNET site in Skukuza, Kruger 3 National Park, South Africa

5 Nobuhle P. Majoz^{1,2}, Chris M. Mannaerts², Abel Ramoelo^{1,5}, Renaud Mathieu^{1,3}, Alecia
6 Nickless⁴, Wouter Verhoef²

7 ¹Earth Observation Group, Natural Resources and Environment, Council for Scientific and Industrial Research,
8 Pretoria, South Africa, 0001

9 ²Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University
10 of Twente, Enschede, 75AA, the Netherlands

11 ³Department of Geography, Geoinformatics and Meteorology, University of Pretoria, South Africa

12 ⁴Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, United
13 Kingdom

14 ⁵University of Limpopo, Risk and Vulnerability Centre, Sovenga, South Africa, 0727

15 *Correspondence to:* N. P. Majoz (nmajoz@csir.co.za)

17 Abstract

18 Flux towers provide essential terrestrial climate, water and radiation budget information needed for environmental
19 monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended
20 for calibration and validation of satellite-based earth observation and monitoring efforts, such as assessment of
21 evapotranspiration from land and vegetation surfaces using surface energy balance approaches.

22 In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface
23 energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the
24 ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against
25 available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the
26 surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric
27 vapor pressure deficit (VPD), and net radiation.

28 After filtering years with low quality data (2004-2008), our results show an overall mean EBR of 0.93.
29 Seasonal variations of EBR also showed wet with 1.17 and spring (1.02) being closest to unity, with dry (0.70)
30 having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low
31 friction velocity during night-time, with results showing an increase in closure with increase in friction velocity.

32 The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation,
33 especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the
34 wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by
35 an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse
36 happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during
37 the wet season, and an increase of both fluxes during the dry season.

38 1 Introduction

40 Net solar radiation (Rn) reaching the earth's surface determines the amount of energy available for latent (LE),
41 sensible (H) and soil (G) heat fluxes, and heat stored by the canopy, the ground and energy storage terms by
42 photosynthesis. Energy partitioning on the earth's surface is a function of interactions between biogeochemical
43 cycling, plant physiology, the state of the atmospheric boundary layer and climate (Wilson et al., 2002). How the
44 turbulent fluxes (H and LE) are partitioned in an ecosystem plays a critical role in determining the hydrological
45 cycle, boundary layer development, weather and climate (Falge et al., 2005). Understanding the partitioning of
46 energy, particularly the turbulent fluxes, is important for water resource management in (semi) arid regions, where
47 potential reference evapotranspiration far exceeds precipitation.

48 Eddy covariance (EC) systems are currently the most reliable method for measuring carbon, energy and
49 water fluxes, and they have become a standard technique in the study of surface-atmosphere boundary layer

interactions. They provide a distinct contribution to the study of environmental, biological and climatological controls of the net surface exchanges between the land surface (including vegetation) and the atmosphere (Aubinet, et al., 1999; Baldocchi et al., 2001). The accuracy of these data is very important because they are used to validate and assess performance of land surface and climate models. However, the EC techniques have limitations in terms of data processing and quality control methods, especially under complex conditions (e.g., unfavorable weather, such as high turbulence and low wind speed, and heterogeneous topography). In EC measurements, the ideal situation is that available energy, i.e. net radiation minus soil heat flux is equal to the sum of the turbulent fluxes ($Rn-G = LE+H$); however, in most instances, the measured available energy is larger than the sum of the measurable-measured turbulent fluxes of sensible heat and latent heat. Extensive research on the issue of surface energy imbalance in EC observations has been done (Barr et al., 2012; Chen et al., 2009; Foken et al., 2010; Franssen et al., 2010; Mauder et al., 2007), and closure error (or imbalance) has been documented to be around 10-30 % ([Wilson et al., \(2002\)](#); [von Randow et al., \(2004\)](#); [Sanchez et al., \(2010\)](#)).

Causes for non-closure, as extensively discussed, include unaccounted soil and canopy heat storage terms, non-inclusion of the low and high frequency turbulence in the computation of the turbulent fluxes, land surface heterogeneities, systematic measurement and sampling errors. This imbalance has implications on how energy flux measurements should be interpreted and how these estimates should be compared with model simulations. The surface energy balance closure is an accepted performance criterion of EC flux data (Twine et al., 2000; Wilson et al., 2002), and different methods have been used to assess the energy closure and partitioning, including ordinary least squares regression (OLS) method, i.e. a plot of turbulence fluxes ($H+LE$) against available energy ($Rn-G$), the residual method, i.e. $Rn-G-H-LE$, and the energy balance ratio, i.e. $(H+LE)/(Rn-G)$.

Several researchers have investigated surface energy partitioning and energy balance closure for different ecosystems, including savannas. Bagayoko et al. (2007) examined the seasonal variation of the energy balance in West African savannas, and noted that latent heat flux played a major role in the wet season, whereas sensible heat flux was significant in the dry season. In the grassland Mongolian Plateau, Li et al. (2006) concluded that sensible heat flux dominated the energy partitioning, followed by ground heat flux, with the rainy season showing slight increase in latent heat flux. Gu et al. (2006) used different ratios (Bowen ratio, G/Rn , H/Rn and LE/Rn) to investigate surface energy exchange in the Tibetan Plateau, and showed that during the vegetation growth period, LE was higher than H , and this was reversed during the post-growth period.

Research using the Skukuza EC system data has focused mainly on the carbon exchange, fire regimes, and in global analysis of the energy balance (Archibald et al., 2009; Kutsch et al., 2008; Williams et al., 2009). However, there has been no investigation of surface energy partitioning and energy balance closure in this ecosystem. In this study, we examined the surface energy balance partitioning into soil heat conduction, convection (sensible) and latent heat components and its energy balance closure using 15 years (2000-2014) of eddy covariance data from the Skukuza flux tower.

First, a multi-year surface energy balance closure (EBC) analysis was done, including the seasonal and day-night EBC evaluations, role of G on EBC, and an assessment of its error sources. This included investigating how friction velocity affects the closure, and its link to low nighttime EBC. Then, we examined how the surface energy partitioning varies with time in this ecosystem, based on the weather conditions in the region, particularly, in relation to water availability (precipitation) and vegetation dynamics. The effect of VPD and Rn on the energy partitioning between turbulent fluxes during the wet and dry seasons was also examined. Through this study, we

90 expect to contribute to existing literature on the surface energy balance closure and partitioning, especially in
91 semi-arid savanna areas.

92

93 **2 Materials and methods**

94 **2.1 Site description**

95 The Skukuza flux tower (25.02°S, 31.50°E) was established early 2000 as part of the SAFARI 2000 campaign
96 and experiment, set up to understand the interactions between the atmosphere and the land surface in Southern
97 Africa by connecting ground data of carbon, water, and energy fluxes with remote sensing data generated by Earth
98 observing satellites (Scholes et al., 2001; Shugart et al., 2004).

99 The site is located in the Kruger National Park (South Africa) at 365 m above sea level, and receives 550
100 ± 160 mm precipitation per annum between November and April, with significant inter-annual variability. The
101 year is divided into a hot, wet growing season and a warm, dry non-growing season. The soils are generally
102 shallow, with coarse sandy to sandy loam textures (about 65 % sand, 30 % clay and 5% silt). The area is
103 characterized by a catenal pattern of soils and vegetation, with broad-leaved *Combretum* savanna on the crests
104 dominated by the small trees (*Combretum apiculatum*), and fine-leaved *Acacia* savanna in the valleys dominated
105 by *Acacia nigrescens* (Scholes et al., 1999). The vegetation is mainly open woodland, with approximately 30 %
106 tree canopy cover of mixed *Acacia* and *Combretum* savanna types. Tree canopy height is 5–8 m with occasional
107 trees (mostly *Sclerocarya birrea*) reaching 10 m. The grassy and herbaceous understory comprises grasses such
108 as *Panicum maximum*, *Digitaria eriantha*, *Eragrostis rigidor*, and *Pogonarthria squarrosa*.

109

110 **2.1.1 Eddy covariance system**

111 Since 2000, ecosystem-level fluxes of water, heat and carbon dioxide are measured using an eddy covariance
112 system mounted at 16 m height of the 22 m high flux tower. The measurements taken and the instruments used
113 are summarized in Table 1.

114 **(Table 1)**

115 From 2000 to 2005, H and LE were derived from a closed-path CO₂/H₂O monitoring system, which was replaced
116 by the open-path gas analyzer in 2006. Also, from 2000 to 2008, incident and reflected shortwave radiation (i.e.
117 300–1100 nm, W m⁻²), incident and reflected near-infrared (600–1100 nm, W m⁻²) and incoming and emitted
118 longwave radiation (>3.0 μ m, W m⁻²) measurements were made using a two-component net radiometer (Model
119 CNR 2: Kipp & Zonen, Delft, The Netherlands) at 20 s intervals and then recorded in the data-logger as 30 min
120 averages; this was replaced with the Kipp & Zonen NRlite net radiometer in 2009. Soil heat flux is measured
121 using the HFT3 plates (Campbell Scientific) installed at 5 cm below the surface at three locations, two under tree
122 canopies^a and one between canopies.

123 Ancillary meteorological measurements include air temperature and relative humidity, also measured at
124 16 m height, using a Campbell Scientific HMP50 probe; precipitation at the top of the tower using a Texas
125 TR525M tipping bucket rain gauge; wind speed and direction using a Climatronics Wind Sensor; and soil
126 temperature using Campbell Scientific 107 soil temperature probe.

127

128 **2.1.2 Data pre-processing**

129 The Eddysoft software was used to process the raw data collected from the eddy covariance system (Kolle &
130 Rebmann, 2007). Post-processing of the raw high frequency (10 Hz) data for calculation of half-hour periods of
131 the turbulent fluxes and CO₂ (F_c; g CO₂ m⁻² time⁻¹) involved standard spike filtering, planar rotation of velocities
132 and lag correction to CO₂ and q (Aubinet et al., 1999; Wilczak et al., 2001). Frequency response correction of
133 some of the energy lost due to instrument separation, tube attenuation, and gas analyzer response for LE and F_c
134 was performed with empirical co-spectral adjustment to match the H co-spectrum (Eugster and Senn, 1995; Su et
135 al., 2004).

136

137 **2.2 Data analysis**

138 Half-hourly measurements of eddy covariance and climatological data from 2000 to 2014 were used to assess
139 surface energy partitioning and closure. When measuring the different variables, instruments like the sonic
140 anemometer and the net radiometer are affected by different phenomena, like rainfall events and wind gusts,
141 resulting in faulty diagnostic signals, outliers and data gaps, which are sources of error and bias. Thus cleaning,
142 which involved screening, diagnosing and editing, of these half-hourly surface energy data, which was done to
143 reduce bias and error, rejected i) data from periods of sensor malfunction (i.e. when there was a faulty diagnostic
144 signal), (ii) incomplete 30-minute datasets of Rn, G, LE and H, and iii) outliers. The data outliers were detected
145 using the outlier detection procedure found in the Statistica software. After data screening, flux data with non-
146 missing values of Rn, G, LE and H data were arranged according to monthly and seasonal periods (summer
147 (December – February), autumn (March – May), winter (June – August), and spring (September – November)),
148 as well as into daytime and nighttime. To be used in this study, soil heat flux was computed as a weighted mean
149 of the three measurements, i.e., two taken under tree canopies and one on open space.

150

151 **2.2.1 Surface energy balance assessment**

152 The law of conservation of energy states that energy can neither be created nor destroyed, but is transformed from
153 one form to another, hence the ideal surface energy balance equation is written as:

$$Rn - G = H + LE \quad (1)$$

155 Energy imbalance occurs when both sides of the equation do not balance. The energy balance closure was
156 evaluated at different levels, i.e. multi-year, seasonal, and day/ night periods (the assumption being that daytime
157 has positive Rn and nighttime has negative Rn), using two methods, i.e.

158 i) The ordinary least squares method (OLS), which is the regression between turbulent fluxes and available
159 energy.

160 Ideal closure is when the intercept is zero and slope and the coefficient of determination (R²) are one. An
161 assumption is made using this method, that there are no random errors in the independent variables, i.e. Rn and
162 G, which of course is an incorrect assumption a simplification.

163 ii) The energy balance ratio (EBR), which is ratio of the sum of turbulent fluxes to the available energy,
164 $\Sigma(LE + H)/\Sigma(Rn - G)$.

165 The EBR gives an overall evaluation of energy balance closure at longer time scales by averaging over errors in
166 the half-hour measurements; and the ideal closure is 1. EBR has the potential to remove biases in the half-hourly
167 data, such as the tendency to overestimate positive fluxes during the day and underestimate negative fluxes at

168 night. We did not account for the heat storage terms in the EBR, including soil and canopy heat storage, and
169 energy storage by photosynthesis and respiration, in this study. The significance and uncertainty associated with
170 neglecting particularly the soil heat storage term will be discussed.

171 To investigate the effect of friction velocity on EBR and how it is related to time of day, using friction
172 velocity, the half-hourly data were separated into four 25-percentiles, and the EBR and OLS evaluated. Matlab
173 was used to create the graphs.

174 2.2.2 Analyzing surface energy partitioning

175 To evaluate solar radiation variation and partitioning into latent and sensible heat fluxes in this biome, EC surface
176 energy data from 2000 to 2014 were used. Violations in micrometeorological assumptions, instrument
177 malfunction and poor weather result in a proportion of the data being rejected. Yet, our aim was to construct
178 continuous records of half-hourly fluxes measured by eddy covariance and compute monthly, seasonal and annual
179 sums of surface energy fluxes. To fill the gaps in our dataset, we used the Amelia II software, an R-program
180 designed to impute missing data using Expectation-Maximization with Bootstrapping (EMB) multiple imputation
181 algorithm (Honaker et al., 2011). The original dataset is resampled using bootstrapping, after which the missing
182 data values are imputed using Expectation-Maximization algorithm. Each complete imputed dataset is in such a
183 way that the observed values are the same as those in the original data set; only the missing values are different.

184 The minimum, maximum and mean statistics of Rn, H, LE and G were then estimated. The monthly and
185 seasonal trends of energy partitioning were assessed, and how each component is affected by vegetation dynamics
186 at the site. Surface energy partitioning was also characterized as a direct function of vapor pressure deficit (VPD)
187 and Rn during the wet and dry seasons, following Gu et al. (2006).

188 3 Results and Discussion

189 3.1 Meteorological conditions

190 Fig 1 shows the 15-year average daily mean monthly anomalies of air temperature, VPD and rainfall totals at the
191 Skukuza flux tower site. The annual average temperatures over the 15-year period ranged between 21.13°C in
192 2012 and 23.23 °C in 2003, with a 15-year average temperature of 22.9 °C. While 2003 was the hottest year, it
193 was also the driest year, with annual rainfall of 273.6 mm, with 2002 also recording very low rainfall of 325.4
194 mm, both receiving rainfall amounts below the recorded mean annual rainfall of 550 ± 160 mm. The wettest years
195 were 2013, 2000, 2014 and 2004 which received 1414, 1115.6, 1010.2 and 1005.7 mm, respectively. 2007 and
196 2008 had incomplete rainfall data records to assess their annuals. The annual daily average VPD was between
197 0.024 and 4.03 kPa, with an overall average of 1.28 ± 0.62 kPa. The daily average VPD decreased with rainy
198 days, and showed an increase during rain-free days. The wet years, i.e. 2000, 2013 and 2014 had low annual
199 average VPD of 1.98, 1.34 and 1.83 kPa, respectively, whereas the drought years exhibited high VPDs with 2002
200 and 2003 with 2.77 and 2.97 kPa, respectively. The long-term weather records are comparable with the 1912 –
201 2001 and 1960 – 1999 climate analysis for the same area as reported by Kruger et al. (2002) and Scholes et al.
202 (2001), showing a mean annual total precipitation of 547.1 mm and air temperature of 21.9 °C. The low rainfall
203 during 2000-2003 seasons was also reported by Kutch et al. (2008), who were investigating the connection
204 between water relations and carbon fluxes during the mentioned period.

205 **(Figure 1)**

209
210
211 **3.2 Surface energy balance assessment**

212 Data completeness varied largely 7.59 % (2006) and 67.97 % (2013), with a mean of 34.84 %. The variation in
213 data completeness is due to a number of factors including instrument failures, changes and (re)calibration, and
214 poor weather conditions.

215
216 **3.1.13.2.1 Multi-year analysis of surface energy balance closure**

217 Fig 2 summarizes results of the multi-year energy balance closure analysis for the Skukuza eddy covariance
218 system from 2000 to 2014. The coefficient of determination (R^2) for the 15-years period varied between 0.74 and
219 0.92, with a mean value of 0.85 ± 0.06 . The slopes ranged between 0.56 and 1.25, with a mean 0.77 ± 0.19 , while
220 the intercepts varied from -23.73 to 26.28, with a mean of 1.03 ± 1.03 and standard deviation of 18.20 Wm^{-2} . The
221 annual energy balance ratio (EBR) for the 15 years extended between 0.44 in 2005 and 2007 and 1.09 in 2011,
222 with a mean of 0.78 ± 0.24 . Between 2004 and 2008, EBR ranged between 0.44 and 0.53, whereas from 2000 to
223 2003 and 2009 to 2014, the EBR ranged between 0.76 and 1.09. The EBR for 2010 to 2012 were slightly
224 greater than 1 (1.08, 1.09 and 1.01, respectively), indicating an overestimation of the turbulent fluxes (H+LE)
225 compared to the available energy, this still giving the absolute imbalance values of within 30 %. The remaining
226 years, 2000-2003 and 2009, were less than 1, indicating that the turbulent fluxes were lower than the available
227 energy. The further away the slope is from unity, the lower the EBR, as shown by the low slope values between
228 2004 and 2008. The period of low EBR between 2004 and 2008 is characterized by the absence of negative values
229 of available energy (Rn-G) as illustrated in Fig 2. Between 2000 and 2004, the CNR2 net radiometer was used to
230 measure long and shortwave radiation, and these were combined to derive Rn. However, when the pyrgeometer
231 broke down in 2004, Rn was derived from measured shortwave radiation and modelled longwave radiation until
232 the CNR2 was replaced by the NRLite net radiometer in 2009. This was a significant source of error, as shown
233 by the low EBR between 2004 and 2008. The closed-path gas analyzer was also changed to open-path gas analyzer
234 in 2006. An analysis of the 2006 data (which had very low data completeness of 7.59 %) showed that there were
235 no measurements recorded until September, possibly due to instrument failure. Further analysis and discussion of
236 the EBR was done with the exclusion of years with low quality data.

237 Our final mean multiyear EBR estimate, excluding the years with poor data quality (2004 to 2008), was
238 therefore 0.93 ± 0.11 , ranging between 0.76 and 1.09. The R^2 for these years varied between 0.77 and 0.92, with
239 a mean value of 0.87 ± 0.05 . The slopes were from 0.7 to 1.25, with a mean 0.87 ± 0.17 , while the intercepts varied
240 from -12.57 to 26.28, with a mean of $10.79 \pm 13.67 \text{ Wm}^{-2}$.

241 **(Figure 2)**

242 The EBR results for the Skukuza eddy covariance system, which vary between 0.76 and 1.09 with an annual mean
243 of 0.93 (only the years with high quality data), are generally within the reported accuracies as shown in most
244 studies that report the energy balance closure error at 10–30 % across different ecosystems. For instance, Wilson
245 et al., (2002) also recorded an annual mean EBR of 0.84, ranging between 0.34 and 1.69 in an extensive study
246 investigating 22 FLUXNET sites across the globe; EBR in ChinaFLUX sites ranged between 0.58 and 1.00, with
247 a mean of 0.83 (Yulng et al., 2005); according to Were et al. (2007), reported EBR values of about 0.90 were
248 found over shrub and herbaceous patches in a dry valley in southeast Spain, whereas Chen et al. (2009) report

249 showed a mean of 0.98 EBR for their study in the semi-arid region of Mongolia, and an EBR value of 0.80 was
250 found by Xin and Liu (2010) in a maize crop in semi-arid conditions, in China. Using data from the Tibetan
251 Observation and Research Platform (TORP), Liu et al. (2011) observed an EBR value of 0.85 in an alfalfa field
252 in semi-arid China.

253 **3.1.23.2.2 Seasonal variation of EBR**

254 Fig 3 shows the seasonal OLS results for the 15 year period, excluding years 2004 to 2008. The slopes ranged
255 between 0.67 and 0.87, with a mean of 0.78 ± 0.08 , and the intercepts were a mean of $19.13 \text{ Wm}^{-2} \pm 16.30 \text{ Wm}^{-2}$.
256 R^2 ranged between 0.81 and 0.88 with a mean of 0.84 ± 0.04 . The EBR for the different seasons ranged between
257 0.70 and 1.12, with a mean of 0.92 ± 0.19 . The winter dry season had the lowest EBR of 0.70, while summer
258 recorded 1.02, and spring were closest to unity with EBR of 1.12, respectively, and autumn had EBR of 0.84.
259 A large number of outliers is observed in summer due to cloudy weather conditions and rainfall events that make
260 the thermopile surface wet, thus reducing the accuracy of the net radiometer. A study comparing different the
261 performance of different net radiometers by Blonquist et al. (2009) shows that the NR-Lite is highly sensitive to
262 precipitation and dew/ frost since the sensor is not protected.

263 **(Figure 3)**

264 **The results of our study concur with similar studies that assessed the seasonal variation of EBR. For instance,**
265 Wilson et al. (2002) comprehensively investigated the energy closure of the summer and winter seasons for 22
266 FLUXNET sites for 50 site-years. They also reported higher energy balance correlation during the wet compared
267 to the dry season, with the mean R^2 of 0.89 and 0.68, respectively. **Whereas our results show significant differences**
268 **between the wet (1.12) and dry (0.70) their, their** EBR showed smaller differences between the two seasons, being
269 0.81 and 0.72, for summer and winter, respectively. Ma et al. (2009) reported an opposite result from the Skukuza
270 results, showing energy closures of 0.70 in summer and 0.92 in winter over the flat prairie on the northern Tibetan
271 Plateau.

272

273 **3.1.33.2.3 Day – night-time effects**

274 Fig 4 shows the daytime and nocturnal OLS regression results for the 15 year period. The daytime and nocturnal
275 slopes were 0.99 and 0.11, with the intercepts being $76.76 \text{ and } 1.74 \text{ Wm}^{-2}$, respectively. Daytime and nocturnal
276 R^2 were 0.64 and 0.01, respectively. The EBR for the different times of day were 0.96 and 0.27, daytime and
277 nocturnal, respectively.

278 **(Figure 4)**

279 Other studies also reported a higher daytime surface energy balance closure. For instance, Wilson et al., (2002)
280 showed that the mean annual daytime EBR was 0.8, whereas the nocturnal EBR was reported to be was negative
281 or was much less or much greater than 1.

282 To understand the effect of friction velocity on the energy balance closure, **surface energy data** which
283 had **corresponding** friction velocity (u_*) data, were **analysed used**. Using friction velocity, the data were separated
284 into four 25-percentiles, and the EBR and OLS evaluated. Results show that the first quartile, the EBR was 3.94,
285 with the 50-percentile at 0.99, the third quartile at unity, and the fourth quartile at 1.03 (Fig 5). The slopes were
286 between 1.01 and 1.12, with the intercepts ranging between -9.26 and -0.17 Wm^{-2} , whereas R^2 were 0.82, 0.86,
287 0.85 and 0.81 for the first to the fourth quartiles, respectively.

289 (Figure 5)

290 An assessment shows that the time associated with the low friction velocities, i.e. the first quartile are night-time
291 data constituting 81 % of the whole first quartile dataset, and the last quartile had the highest number of daytime
292 values at 79.29 % of the fourth quartile dataset. Lee and Hu (2002) hypothesized that the lack of energy balance
293 closure during nocturnal periods was often the result of mean vertical advection, whereas Aubinet et al.,
294 (1999) and Blanken et al., (1997) showed that energy imbalance during nocturnal periods is usually greatest when
295 friction velocity is small. Another source of error in the nocturnal EBR is the high uncertainty in night-time
296 measurements of R_n . At night, the assumption is that there is no shortwave radiation, and R_n is a product of
297 longwave radiation. Studies show that night-time measurements of longwave radiation were less accurate than
298 daytime measurements (Blonquist et al., 2009). The RN-Lite, for instance has low sensitivity to longwave
299 radiation, resulting in low accuracy in low measurements.

300 Soil heat flux (G) plays a significant role in the surface energy balance as it determined how much energy
301 is available for the turbulent fluxes, especially in areas with limited vegetation cover. Its exclusion in the surface
302 energy balance results not only in the overestimation of the available energy, but also the overestimation of the
303 EBR. -Its exclusion in surface energy balance studies results not only in the overestimation of the available energy,
304 but also the overestimation of the EBR. In this study, we examined how inclusion and exclusion of G impacts the
305 surface energy balance closure. When G was excluded in the calculation, the multiyear EBR ranged between 0.73
306 and 1.07, with an annual mean EBR of 0.90 ± 0.11 , which is about 3 % lower than the initial EBR (0.93 ± 0.11).
307 While the initial daytime EBR was 0.96, it was 0.87 when G was excluded, which is a decrease of approximately
308 10 %. The nighttime EBR was 0.13, as low as 50 % of the initial EBR (0.26), showing that G has greater
309 significance on the surface energy balance at night. These results are in agreement with other studies, for instance,
310 Ogee et al., (2001) showed that soil heat flux represents up to 50% of net radiation at midday and up to 80%
311 during night-time. Stull (2012) also reported that during daytime G only accounts for 5-15% of net radiation,
312 whereas at night, it is up to 50%.

313 While G is an important component of the SEB, our study ignored the different energy storage terms in
314 determining the EBR, including the soil heat storage term. The exclusion of the soil heat storage term results in
315 the underestimation of G, as the real value of G is a combination of the flux measured by the plate and the heat
316 exchange between the ground and the depth of the plate. This in turn contributes to the overestimation of the
317 available energy, which then lowers the EBC. Among other factors (vegetation cover, soil moisture and
318 temperature), this storage term varies with the depth of the soil heat flux plate as demonstrated by Ochsner et al.
319 (2006), who reported that at a depth of 1 cm, the maximum G is up to 13% less than the maximum surface value,
320 and at 10 cm maximum G is up to 70% less than the surface value, thus its exclusion results in similar error
321 margins in the EBC. As reported by different studies, the omission of the soil heat storage results in the
322 underestimation of the energy EBC by up to 7%. For instance, Liu et al. (2017) reported an increase in OLS slope
323 of an average 8.8% and a mean daily EBR increase of 5% when the soil heat storage term was considered in their
324 study in the Taihu Lake region of the Southern China Plain. In their study in the three sites in the Badan Jaran
325 desert, Li et al. (2014) analysed the effect of including soil heat storage derived by different methods in the energy
326 balance closure; their EBR improved by between 1.5 % and 4 %. Zuo et al. (2011) reported an improvement of 6
327 to 7 % when they included the soil heat storage in their calculation of EBR, at the Semi-Arid Climate and
328 Environment Observatory of Lan-Zhou University (SACOL) site in semi-arid grassland over the Loess Plateau

329 of China. The improvement of the EBR in the study in a FLUXNET boreal site in Finland by Sánchez et al. (2010)
330 was shown to be 3 % when the soil heat storage was included, which increased to 6 % when other storage terms
331 (canopy air) were taken into account.

333 **3.23.3 Surface energy partitioning**

334 **3.3.1 Surface energy measurements**

335 The mean daily and annual measurements of the energy budget components from 2000 to 2014 are highlighted in
336 Fig 6 and Table 2. The seasonal cycle of each component can be seen throughout the years, where at the beginning
337 of each year the energy budget components are high, and as each year progresses they all decrease to reach a low
338 during the middle of the year, which is the winter/ dry season, and a gradual increase being experienced during
339 spring right to the summer at the end of each year. The multi-year daily means of Rn, H, LE and G were 139.1
340 Wm^{-2} , 57.70 Wm^{-2} , 42.81 Wm^{-2} and 2.94 Wm^{-2} , with standard deviations of 239.75 Wm^{-2} , 104.15 Wm^{-2} , 70.58
341 Wm^{-2} and 53.67 Wm^{-2} , respectively.

342 **(Figure 6)**

343 The gaps in 2006 indicate the absence of the surface energy flux measurements in those years, which was a result
344 of instrument failure. Between 2004 and 2008, the Rn was calculated as a product of measured shortwave radiation
345 and modelled longwave radiation, which was a high source of error in the estimation of Rn. These years are also
346 ~~characterised~~characterized by poor energy balance closure, as shown in Section 3.2.1 above.

347 **(Table 2)**

348

349 **3.24.3.2 Influence of weather conditions and seasonality**

350 In arid/semi-arid ecosystems, solar radiation is not a limiting factor for latent heat flux, instead it is mainly limited
351 by water availability. The seasonal fluctuations of energy fluxes are affected by the seasonal changes in the solar
352 radiation, air temperature, precipitation and soil moisture (Balocchi et al., 2000; Arain et al., 2003). These
353 climatic variables influence vegetation dynamics in an ecosystem, as well as how solar radiation is partitioned.
354 Hence, daily measurements of precipitation, air temperature and VPD were evaluated to investigate the
355 partitioning of the surface energy in the semi-arid savanna landscape of Skukuza.

356 **(Figure 7)**

357 To illustrate the partitioning of solar radiation into the different fluxes throughout the year, Fig 7 presents
358 the multi-year mean monthly variations of the surface energy components showing a general decrease of the
359 components between February and June, which then gradually increases again until November. The multi-year
360 monthly means of Rn, H, LE and G were 71.27 Wm^{-2} (June) and 197.33 Wm^{-2} (November), 37.11 Wm^{-2} (June)
361 and 80.37 Wm^{-2} (November), 8.52 Wm^{-2} (August) and 127.17 Wm^{-2} (December), -2.28 Wm^{-2} (June) and 20.78
362 Wm^{-2} (November), respectively. The month of August had the highest BR of 6.42, whereas December had the
363 least at 0.42. The residual accounted for between -19.69 and 34.74 % of Rn, and an average of 4.70 %.

364 The general trend shows that sensible heat flux dominated the energy partitioning between May and
365 October, followed by latent heat flux, and lastly the soil heat flux, except during the wet season where latent heat
366 flux was larger than sensible heat flux. This is illustrated by the trend of BR, showing an increase from April, with
367 the peak in August, then a steady decrease until it hits lowest in December. The period of low BR is

368 characterised by high Rn and high precipitation. As the season transitions into winter the dry season,
369 it is characterized by reduced net radiation and low measurements H and LE.

370 Just before the first rains, i.e. between September and November, tree flowering and leaf emergence
371 occurs in the semi-arid savanna in the Skukuza area (Archibald and Scholes, 2007), and grasses shoot as soil
372 moisture availability improves with the rains (Scholes et al., 2003). This is characterized by a gradual
373 increase in LE and decrease in BR, which, when compared to the winter-dry season, is significantly lower than
374 the H, as illustrated in Fig 7. As the rainy season progresses, and vegetation development peaks, LE also reaches
375 its maximum, becoming significantly higher than H, and hence, low BR. Between March and September, when
376 leaf senescence occurs, the leaves gradually change colour to brown and grass to straw, and trees defoliate, H
377 again gradually becomes significantly higher than LE.

378 **(Figure 8)**

379 The influence of VPD and Rn on surface energy partitioning was investigated during the wet and dry
380 seasons. Results show that during both periods there is an increase in H and decrease in LE with an increase in
381 VPD; although the gradient of LE decrease differ significantly during the two periods, H increases similarly during
382 both the wet and dry periods (Fig 89). VPD is higher in times of little or no rain (low soil water availability),
383 which explains the decrease in LE with a rise in VPD. In this instance, although the evaporative demand is high,
384 the stomatal conductance is reduced due to absence of water in the soil, resulting in smaller LE and higher H. Rn,
385 on the other hand, is partitioned into different fluxes, based on other climatic and vegetation physiological
386 characteristics. Fig 9 illustrates that both LE and H increase with increase in Rn, although their increases are not
387 in proportion, based on season. During the wet season, the rate of increase of LE is higher than that of H, whereas
388 in the dry season the reverse is true. The rate of increase of LE is controlled by the availability of soil water
389 (precipitation), (also illustrated in Fig 6 (LE)), and during the wet season it increases steadily with increasing Rn,
390 whereas the rate of increase of H is concave, showing saturation with an increase in Rn. The opposite is true
391 during the dry season, with limited water availability, where the rate of increase of LE slows down with increase
392 in Rn, and a steady increase of H with Rn increase.

393 **(Figure 9)**

394 Our study results are consistent with similar studies, for example Gu, Gu et al. (2006), who examined
395 how soil moisture, vapor pressure deficit (VPD) and net radiation control surface energy partitioning at a
396 temperate deciduous forest site in central Missouri, USA. Both studies agree that with ample soil moisture, during
397 the rainy season, latent heat flux dominates over sensible heat flux, and reduced soil water availability reversed
398 the dominance of latent heat over sensible heat, because of its direct effect on stomatal conductance. An increase
399 in net radiation, on the other hand, also increases both sensible and latent heat fluxes. The increase of either then
400 becomes a function of soil moisture availability, since they cannot increase in the same proportion. However,
401 whereas we found that a rise in VPD is characterized by a decrease in LE and an increase in H in both periods,
402 their findings show a significant increase in LE and decrease in H with a rise in VPD during the non-drought
403 period, with both components showing slight increases with increase in VPD in dry conditions. Li et al. (2012)
404 also investigated the partitioning of surface energy in the grazing lands of Mongolia, and concluded that the energy
405 partitioning was also controlled by vegetation dynamics and soil moisture availability, although soil heat flux is
406 reportedly higher than latent heat flux in most instances. In a temperate mountain grassland in Austria, Harmmerle

407 et al., (2008) found that the energy partitioning in this climatic region was dominated by latent heat flux, followed
408 by sensible heat flux and lastly soil heat flux.

409 The consensus in all above studies is that vegetation and climate dynamics play a critical role in energy
410 partitioning. They note that during full vegetation cover, latent heat flux is the dominant portion of net radiation.
411 However, depending on the climatic region, the limiting factors of energy partitioning vary between water
412 availability and radiation. Our study confirms that in semi-arid regions, sensible heat flux is the highest fraction
413 of net radiation throughout the year, except during the wet period, when latent heat flux surpasses sensible heat
414 flux. However, in regions and locations where water availability is not a limiting factor, latent heat flux may take
415 the highest portion of net radiation.

416

417 **4 Conclusion**

418 This study investigated both surface energy balance [closure](#) and ~~its how this energy is partitioning partitioned~~ into
419 turbulent fluxes during the wet and dry seasons in a semi-arid savanna ecosystem in Skukuza using eddy
420 covariance data from 2000 to 2014. The analysis revealed a mean multi-year energy balance ratio of 0.93 ± 0.11 ,
421 [i.e. excluding years of low quality data](#). The variation of [RBR-EBR](#) based on season, time of day and as a function
422 of friction velocity was [also](#) explored. The seasonal EBR varied between 0.70 and [1.12](#), with [winter the dry season](#)
423 recording the highest energy imbalance. Daytime EBR was as high as 0.96, [with compared with](#) 0.27 EBR for the
424 nighttime. The high energy imbalance at night was explained as a result of stable conditions, which limit
425 turbulence that is essential for the creation of eddies. The assessment of the effect of friction velocity on EBR
426 showed that EBR increased with an increase in friction velocity, with low friction velocity experienced mainly
427 during night-time. [Furthermore, the impact of G in this biome on EBR, with results showing a decrease of up to](#)
428 [7 %, with an annual mean of \$3.13 \pm 2.70\$, in EBR when G was excluded in the calculation of EBR](#).

429 The energy partition analysis revealed that sensible heat flux is the dominant portion of net radiation in
430 this semi-arid region, except ~~in summer, when there is rainfall during the rainfall period~~. The results also show
431 that water availability and vegetation dynamics play a critical role in energy partitioning, whereby when it rains,
432 vegetation growth occurs, leading to an increase in latent heat flux / evapotranspiration. Clearly an increase in Rn
433 results in a rise in [both](#) H and LE, however ~~their either increases are is~~ controlled by water availability. During
434 the wet season, the rate of increase of LE is higher than that of H, whereas in the dry season the reverse is true.
435 The rate of increase of LE is controlled by the availability of soil water (precipitation), and during the wet season
436 it increases steadily with increasing Rn, whereas the rate of increase of H shows saturation with an increase in
437 Rn. The opposite is true during the dry season, with limited water availability, the rate of increase of LE reaches
438 saturation with increase in Rn and a steady increase of H with Rn increase. An increase in VPD, on the other hand,
439 results in an increase in H and decrease in LE, with higher VPD experienced during the dry season, which explains
440 the high H, although the evaporative demand is high.

441

442 **Acknowledgements**

443 This study was supported by the Council for Scientific and Industrial Research under the project entitled
444 “Monitoring of water availability using geo-spatial data and earth observations”, and the National Research
445 Foundation under the Thuthuka PhD cycle grant.

446

447 **References**

- 448 Archibald, S., & Scholes, R. (2007). Leaf green-up in a semi-arid [African](#) savanna-separating tree and grass
449 responses to environmental cues. *Journal of Vegetation Science*, 18(4), 583-594.
- 450 Archibald, S., Kirton, A., Merwe, M., Scholes, R., Williams, C., & Hanan, N. (2009). Drivers of inter-annual
451 variability in net ecosystem exchange in a semi-arid savanna ecosystem, South [africa](#)[Africa](#). *Biogeosciences*, 6(2),
452 251-266.
- 453 Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., . . . Bernhofer, C. (1999). Estimates of
454 the annual net carbon and water exchange of forests: The EUROFLUX methodology. *Advances in Ecological
455 Research*, 30, 113-175.
- 456 Bagayoko, F., Yonkeu, S., Elbers, J., & van de Giesen, N. (2007). Energy partitioning over the West African
457 savanna: Multi-year evaporation and surface conductance measurements in eastern [burkina](#)[Burkina](#) [faso](#)[Faso](#).
458 *Journal of Hydrology*, 334(3), 545-559.
- 459 Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., . . . Evans, R. (2001). FLUXNET: A new
460 tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux
461 densities. *Bulletin of the American Meteorological Society*, 82(11), 2415-2434.
- 462 Barr, A. G., van der Kamp, G., Black, T. A., McCaughey, J. H., & Nesic, Z. (2012). Energy balance closure at
463 the BERMS flux towers in relation to the water balance of the White Gull Creek watershed 1999–2009.
464 *Agricultural and Forest Meteorology*, 153(0), 3-13.
- 465 Blanken, P., Black, T. A., Yang, P., Neumann, H., Nesic, Z., Staebler, R., . . . Lee, X. (1997). Energy balance and
466 canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. *Journal of
467 Geophysical Research: Atmospheres* (1984–2012), 102(D24), 28915-28927.
- 468 Blonquist, J., et al. (2009). "Evaluation of measurement accuracy and comparison of two new and three traditional
469 net radiometers." *Agricultural and Forest Meteorology* 149(10): 1709-1721.
- 470 Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., . . . Han, X. (2009). Energy balance and partition in
471 [inner](#)[Inner](#) Mongolia steppe ecosystems with different land use types. *Agricultural and Forest Meteorology*,
472 149(11), 1800-1809.
- 473 Eugster, W., & Senn, W. (1995). A cospectral correction model for measurement of turbulent NO₂ flux. *Boundary-
474 Layer Meteorology*, 74(4), 321-340.
- 475 Falge, E., Reth, S., Brüggemann, N., Butterbach-Bahl, K., Goldberg, V., Oltchev, A., . . . Queck, R. (2005).
476 Comparison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of
477 [germany](#)[Germany](#). *Ecological Modelling*, 188(2), 174-216.
- 478 Foken, T., Mauder, M., Liebethal, C., Wimmer, F., Beyrich, F., Leps, J., . . . Bange, J. (2010). Energy balance
479 closure for the LITFASS-2003 experiment. *Theoretical and Applied Climatology*, 101(1-2), 149-160.
- 480 Franssen, H., Stöckli, R., Lehner, I., Rotenberg, E., & Seneviratne, S. (2010). Energy balance closure of eddy-
481 covariance data: A multisite analysis for [european](#)[European](#) FLUXNET stations. *Agricultural and Forest
482 Meteorology*, 150(12), 1553-1567.
- 483 Goosse H., P.Y. Barriat, W. Lefebvre, M.F. Loutre and V. Zunz, (2008-2010). Introduction to climate dynamics
484 and climate modeling. Online textbook available at <http://www.climate.be/textbook>.
- 485 Gu, L., Meyers, T., Pallardy, S. G., Hanson, P. J., Yang, B., Heuer, M., . . . Wullschleger, S. D. (2006). Direct
486 and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a

- 487 prolonged drought at a temperate forest site. *Journal of Geophysical Research: Atmospheres* (1984–2012),
488 111(D16)
- 489 Hammerle, A., Haslwanter, A., Tappeiner, U., Cernusca, A., & Wohlfahrt, G. (2008). Leaf area controls on energy
490 partitioning of a temperate mountain grassland. *Biogeosciences (Online)*, 5(2).
- 491 Honaker, J., et al. (2011). "Amelia II: A program for missing data." *Journal of statistical software* 45(7): 1-47.
- 492 Kolle, O., & Rebmann, C. (2007). EddySoft: Dokumentation of a Software Package to Acquire and Process Eddy
493 Covariance Data.
- 494 Kutsch, W., Hanan, N., Scholes, R., McHugh, I., Kubheka, W., Eckhardt, H., & Williams, C. (2008). Response
495 of carbon fluxes to water relations in a savanna ecosystem in ~~s~~South ~~africa~~Africa. *Biogeosciences Discussions*,
496 5(3), 2197-2235.
- 497 Li, S., Eugster, W., Asanuma, J., Kotani, A., Davaa, G., Oyunbaatar, D., & Sugita, M. (2006). Energy partitioning
498 and its biophysical controls above a grazing steppe in central ~~mongolia~~Mongolia. *Agricultural and Forest
499 Meteorology*, 137(1), 89-106.
- 500 Li, Y., Liu, S., Wang, S., Miao, Y., & Chen, B. (2014). Comparative study on methods for computing soil heat
501 storage and energy balance in arid and semi-arid areas. *Journal of Meteorological Research*, 28, 308-
502 322.
- 503 Liu, S., Xu, Z., Wang, W., Jia, Z., Zhu, M., Bai, J., & Wang, J. (2011). A comparison of eddy-covariance and
504 large aperture scintillometer measurements with respect to the energy balance closure problem. *Hydrology and
505 Earth System Sciences*, 15(4), 1291-1306.
- 506 Ma, Y., Wang, Y., Wu, R., Hu, Z., Yang, K., Li, M., . . . Chen, X. (2009). Recent advances on the study of
507 atmosphere-land interaction observations on the ~~tibetan~~Tibetan plateau. *Hydrology and Earth System Sciences*,
508 13(7), 1103-1111.
- 509 Mauder, M., Jegede, O., Okogbue, E., Wimmer, F., & Foken, T. (2007). Surface energy balance measurements at
510 a tropical site in ~~West~~ ~~africa~~Africa during the transition from dry to wet season. *Theoretical and Applied
511 Climatology*, 89(3-4), 171-183.
- 512 Sánchez, J., Caselles, V., & Rubio, E. (2010). Analysis of the energy balance closure over a FLUXNET boreal
513 forest in Finland. *Hydrology and Earth System Sciences*, 14(8), 1487-1497.
- 514 Scholes, R., Gureja, N., Giannecchinni, M., Dovie, D., Wilson, B., Davidson, N., . . . Freeman, A. (2001). The
515 environment and vegetation of the flux measurement site near ~~skukuza~~Skukuza, ~~kruger~~Kruger ~~n~~National ~~p~~Park.
516 Koedoe-African Protected Area Conservation and Science, 44(1), 73-83.
- 517 Scholes, R. J., Bond, W. J., & Eckhardt, H. C. (2003). *Vegetation dynamics in the ~~kruger~~Kruger ecosystem The
518 Kruger Experience*. Island Press.
- 519 Shugart, H., Macko, S., Lesolle, P., Szuba, T., Mukelabai, M., Dowty, P., & Swap, R. (2004). The SAFARI 2000–
520 Kalahari transect wet season campaign of year 2000. *Global Change Biology*, 10(3), 273-280.
- 521 Stull, R. B. (2012). *An introduction to boundary layer meteorology* (Vol. 13): Springer Science & Business Media.
- 522 Su, H., Schmid, H. P., Grimmond, C., Vogel, C. S., & Oliphant, A. J. (2004). Spectral characteristics and
523 correction of long-term eddy-covariance measurements over two mixed hardwood forests in non-flat
524 terrain. *Boundary-Layer Meteorology*, 110(2), 213-253.
- 525 Twine, T. E., Kustas, W., Norman, J., Cook, D., Houser, P., Meyers, T., . . . Wesely, M. (2000). Correcting eddy-
526 covariance flux underestimates over a grassland. *Agricultural and Forest Meteorology*, 103(3), 279-300.

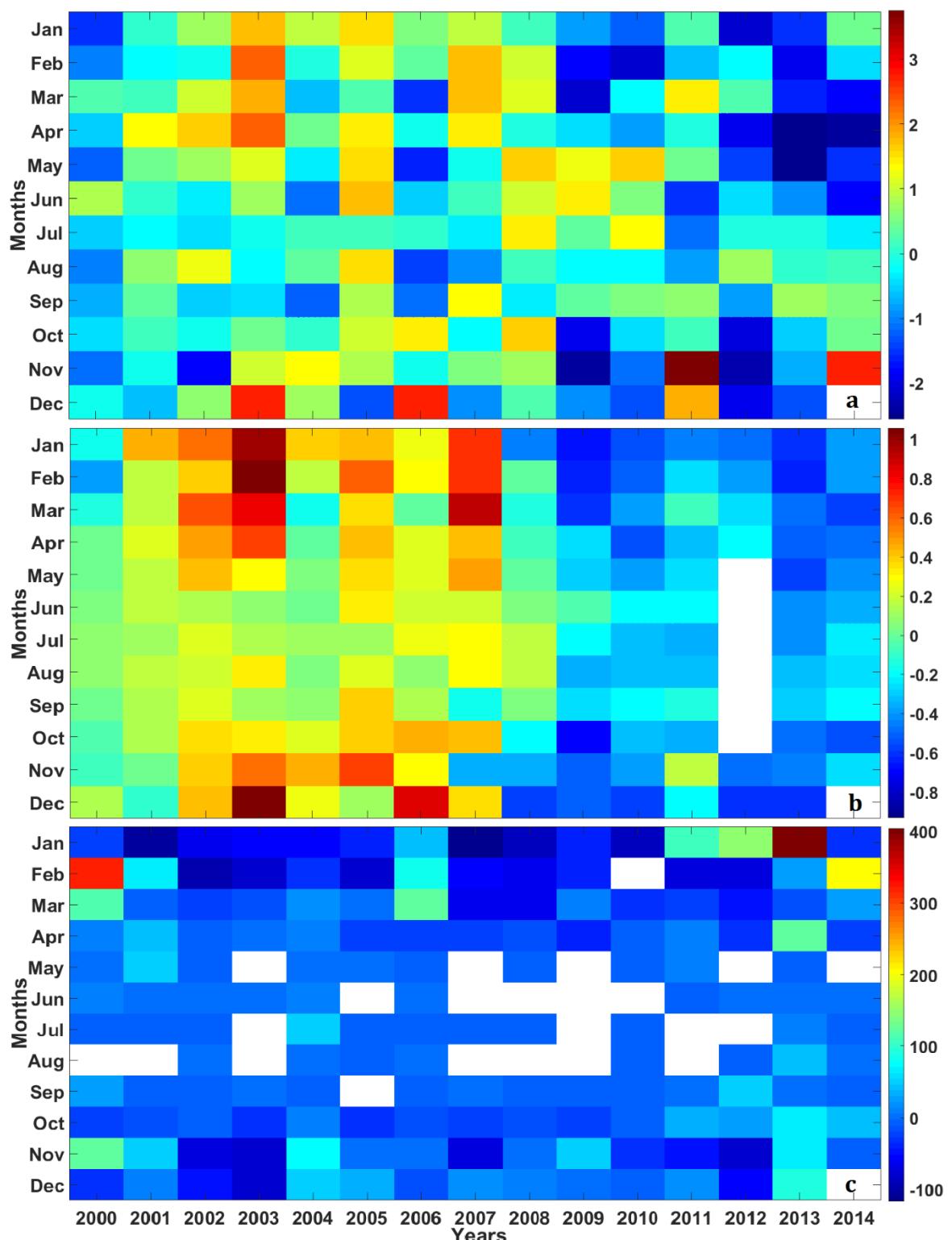

- 527 Von Randow, C., Manzi, A., Kruijt, B., De Oliveira, P., Zanchi, F., Silva, R., . . . Waterloo, M. (2004).
528 Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in
529 south west Amazonia. *Theoretical and Applied Climatology*, 78(1-3), 5-26.
530 Wilczak, J. M., Oncley, S. P., & Stage, S. A. (2001). Sonic anemometer tilt correction algorithms. *Boundary-*
531 *Layer Meteorology*, 99(1), 127-150.
532 Williams, C. A., Hanan, N., Scholes, R. J., & Kutsch, W. (2009). Complexity in water and carbon dioxide fluxes
533 following rain pulses in an African savanna. *Oecologia*, 161(3), 469-480.
534 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., . . . Field, C. (2002). Energy
535 balance closure at FLUXNET sites. *Agricultural and Forest Meteorology*, 113(1), 223-243.
536 Xin, X., & Liu, Q. (2010). The two-layer surface energy balance parameterization scheme (TSEBPS) for
537 estimation of land surface heat fluxes. *Hydrology and Earth System Sciences*, 14(3), 491-504.
538 Yuling, F. (2005). Energy balance closure at ChinaFLUX sites.
539 Zuo, J. Q., Wang, J. M., Huang, J. P., Li, W., Wang, G., & Ren, H. (2011). Estimation of ground heat flux and its
540 impact on the surface energy budget for a semi-arid grassland. *Sci Cold Arid Region*, 3, 41-50.
541
542

Table 1: Measurements taken and instruments used at Skukuza flux tower

Instrument	Model/ brand	Measurement
Sonic anemometer	Gill Instruments Solent R3, Hampshire, England	3-dimensional, orthogonal components of velocity (u, v, w (ms^{-1})), <u>sonic temperature</u>
Closed path gas analyser	IRGA, LiCOR 6262, LiCOR, Lincoln	Water vapor, carbon dioxide concentrations
Radiometer	Kipp and Zonen CNR1, Delft, The Netherlands	Incoming and outgoing longwave and shortwave radiation
HFT3 plates	Campbell Scientific	Soil heat flux at 5 cm depth with 3 replicates, i.e. two under tree canopies and one on open space
Frequency domain reflectometry probes	Campbell Scientific CS615, Logan, Utah	Volumetric soil moisture content with two in the Acacia – dominated soils downhill of the tower at 3, 7, 16, 30, and 50 cm, and another two at 5, 13, 29, and 61 cm in the Combretum-dominated soils uphill

Table 2: Statistical summary of annual values of the energy balance components

Year	% data completion		H	LE	G	Rn
2000	14.16	Max	470.31	422.89	191.53	817.60
		Min	-139.77	-72.43	-61.60	-95.93
		Mean	45.82	36.11	5.32	91.46
2001	12.78	Max	790.82	513.09	292.87	899.90
		Min	-159.87	-85.95	-90.27	-116.58
		Mean	58.56	43.68	9.27	128.27
2002	17.77	Max	415.93	174.07	171.93	583.30
		Min	-117.66	-89.16	-86.00	-122.21
		Mean	61.35	10.29	4.10	90.72
2003	41.50	Max	556.21	308.71	217.60	879.30
		Min	-92.99	-97.81	-106.23	-116.04
		Mean	58.15	21.68	6.17	94.53
2004	28.21	Max	505.36	498.10	129.96	925.30
		Min	-150.08	-89.07	-69.76	-5.88
		Mean	56.46	17.99	7.97	156.10
2005	35.37	Max	606.28	737.43	288.20	933.20
		Min	-130.40	-97.00	-107.37	-4.92
		Mean	51.43	17.82	0.99	159.09
2006	7.59	Max	583.66	331.25	335.30	1003.30
		Min	-72.45	-119.09	-72.80	-6.56
		Mean	84.67	35.94	19.69	247.70
2007	48.77	Max	552.93	426.34	340.67	1011.30
		Min	-131.40	-130.79	-129.70	-6.71
		Mean	59.04	14.32	4.14	169.84
2008	54.30	Max	616.43	439.76	238.57	1038.50
		Min	-140.13	-144.97	-104.60	-5.91
		Mean	63.06	26.30	6.22	191.26
2009	42.69	Max	551.34	776.62	328.93	1060.50
		Min	-96.68	-135.43	-94.20	-155.90
		Mean	55.42	96.54	6.87	207.77
2010	57.65	Max	626.68	624.38	199.33	888.00
		Min	-173.11	-135.62	-66.35	-180.70
		Mean	57.23	52.54	3.74	105.10
2011	41.34	Max	591.16	688.46	171.27	832.00
		Min	-135.77	-127.02	-58.59	-96.50
		Mean	63.88	73.11	1.75	127.94
2012	27.62	Max	572.11	566.88	185.80	899.00
		Min	-171.83	-148.49	-50.92	-99.69
		Mean	59.25	52.49	2.16	111.31
2013	67.97	Max	570.79	665.48	146.03	845.58
		Min	-197.40	-149.10	-55.36	-107.70
		Mean	50.25	38.63	-1.22	92.80
2014	28.66	Max	533.46	726.31	89.50	893.00
		Min	-238.65	-134.39	-33.36	-89.70
		Mean	59.37	69.55	1.18	147.30

551
552 Figure 1: ~~Summaries~~ of ~~daily mean monthly anomalies of~~ (a) ~~average~~ air temperature, (b) ~~average~~ VPD, and (c) ~~total~~
553 rainfall from 2000 to 2014

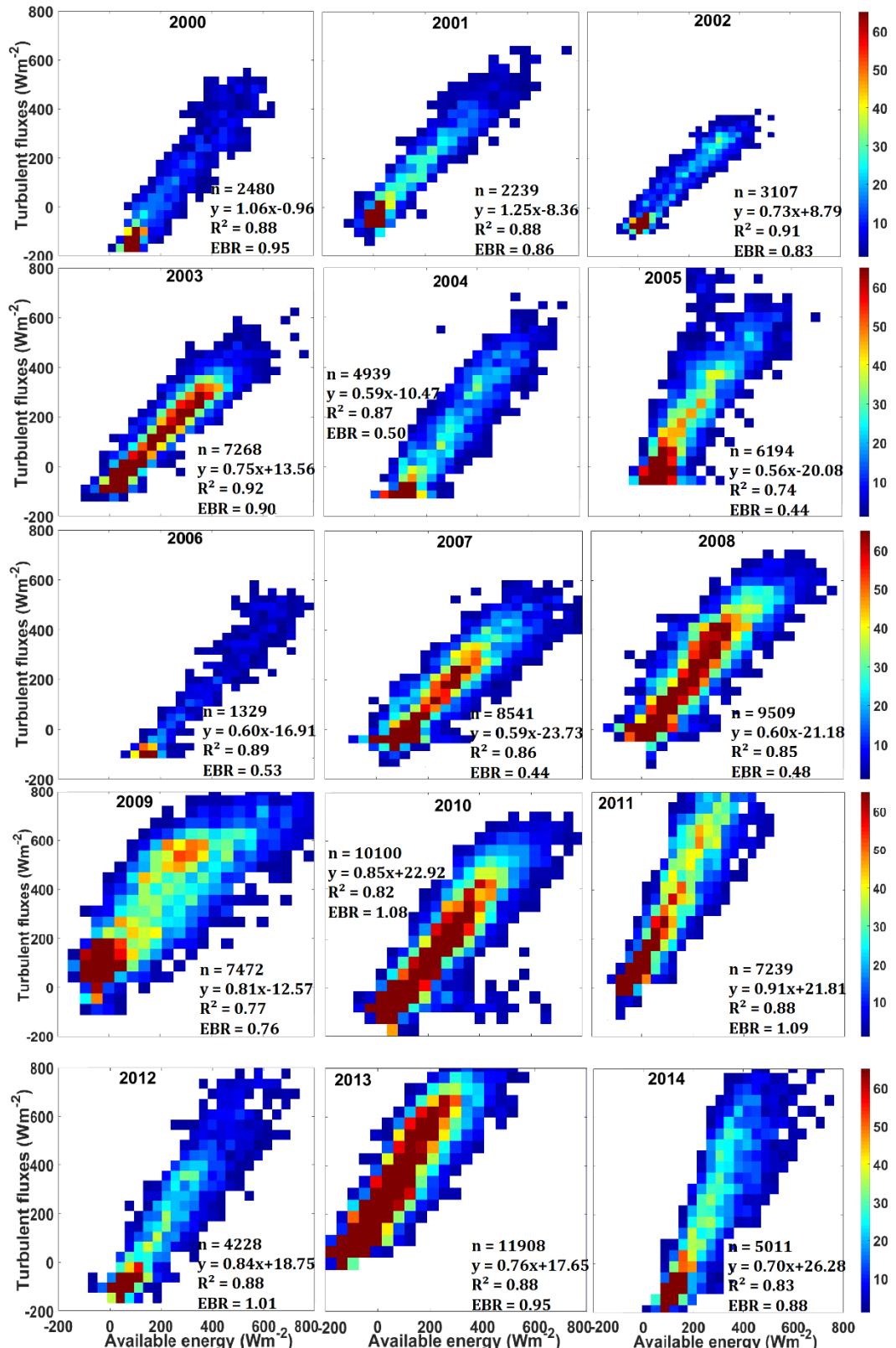
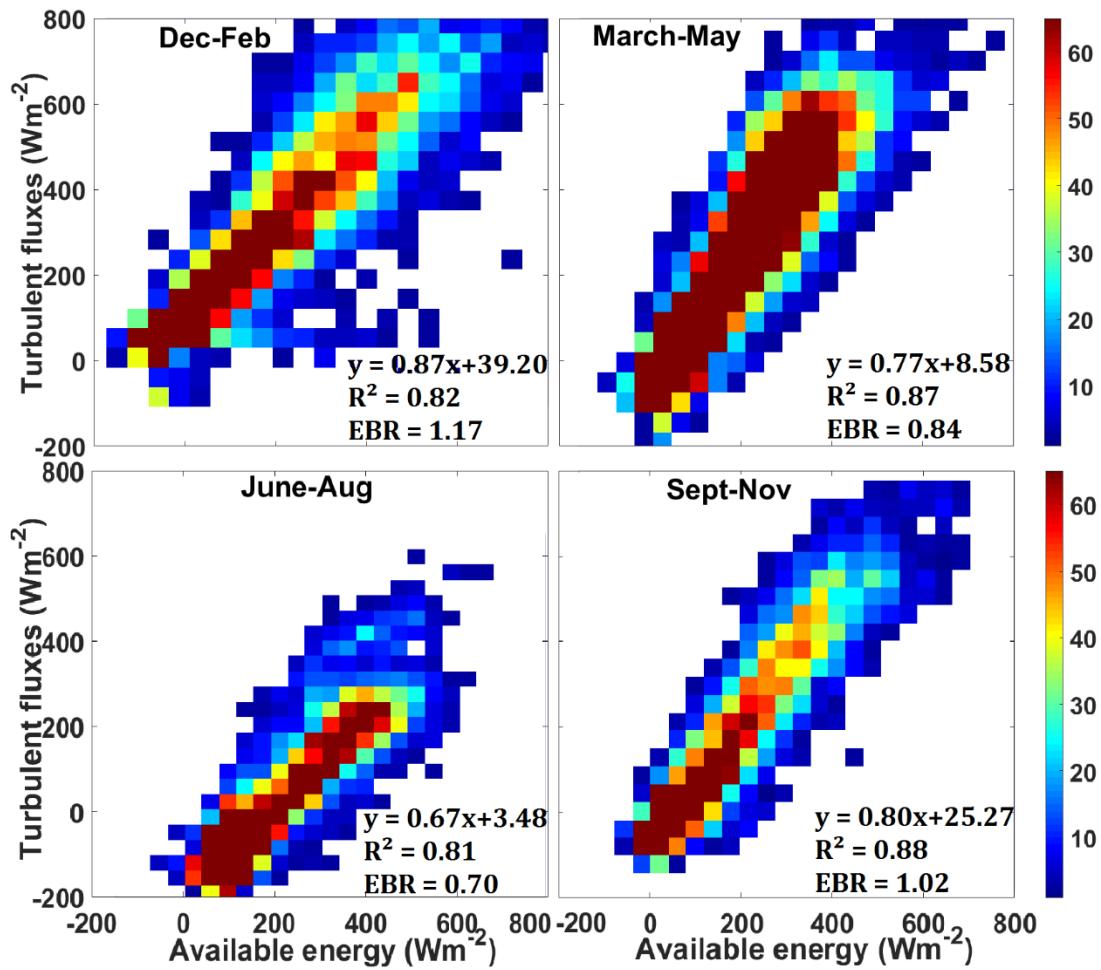
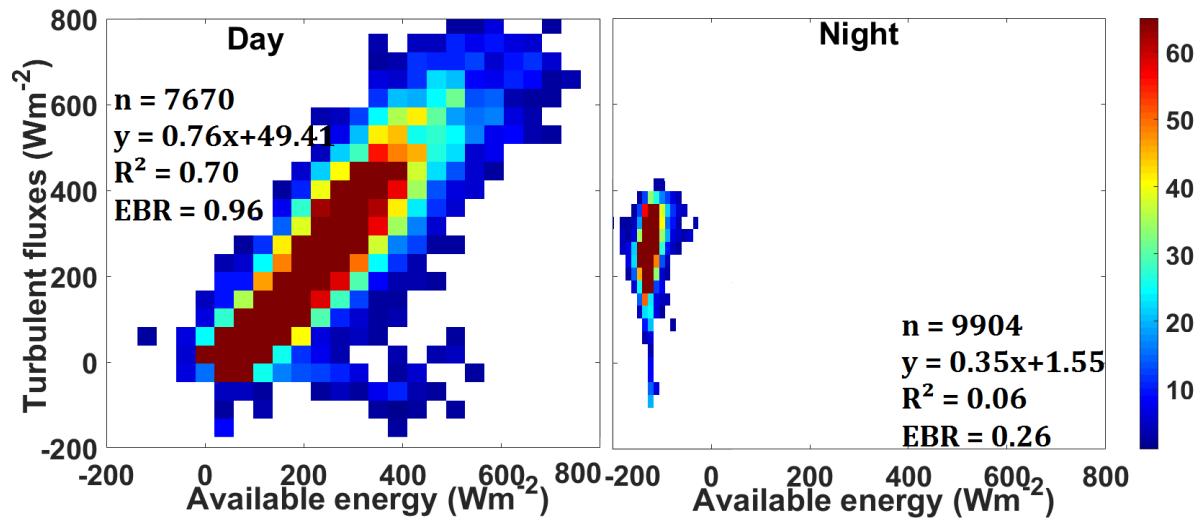
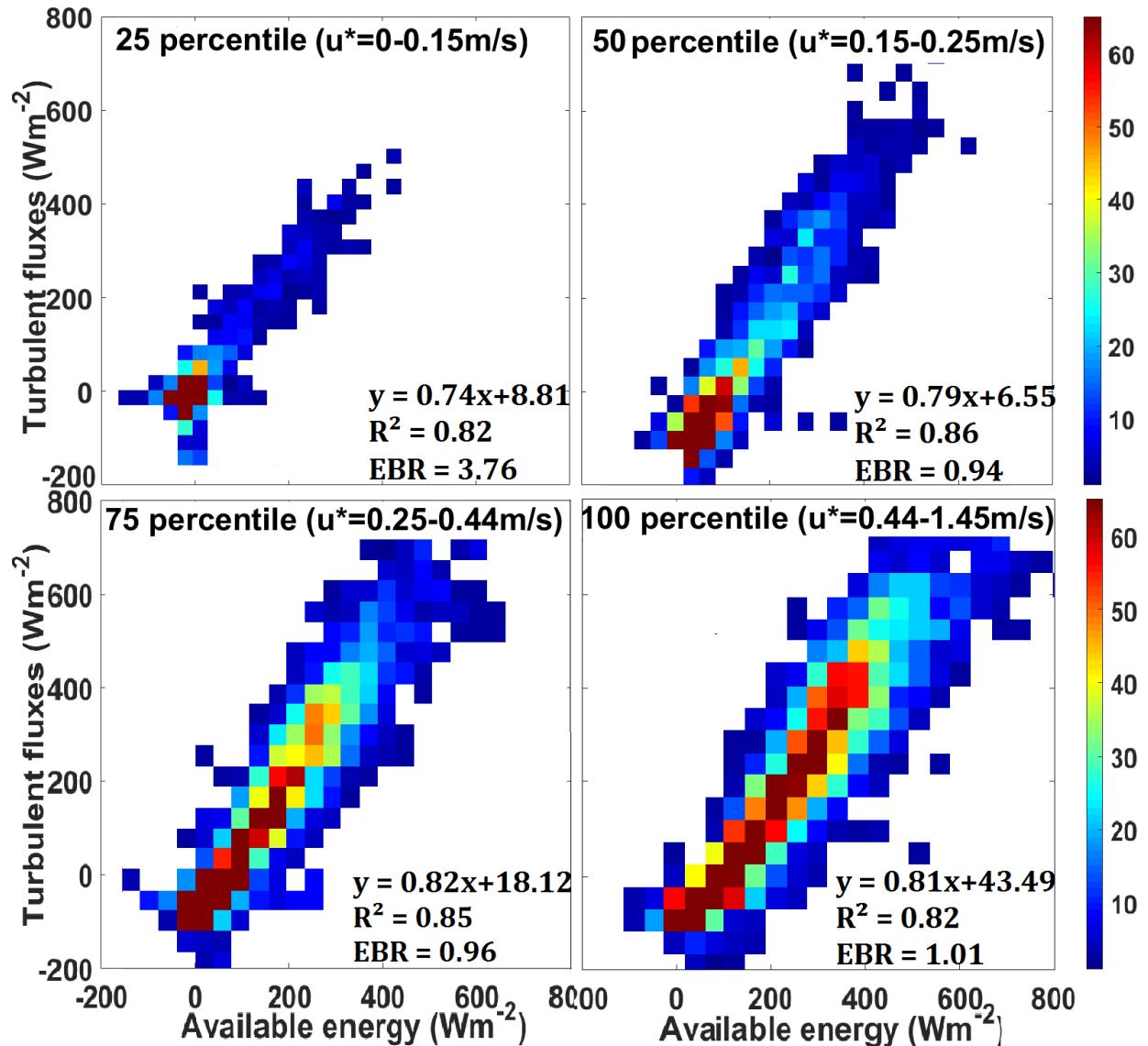




Figure 2: 15-year series of annual regression analysis of turbulent (sensible and latent) heat fluxes against available energy (net radiation minus ground **conduction** heat **flux**) from 2000 to 2014 at Skukuza, (SA). The colour bars represent the count of EBR values.

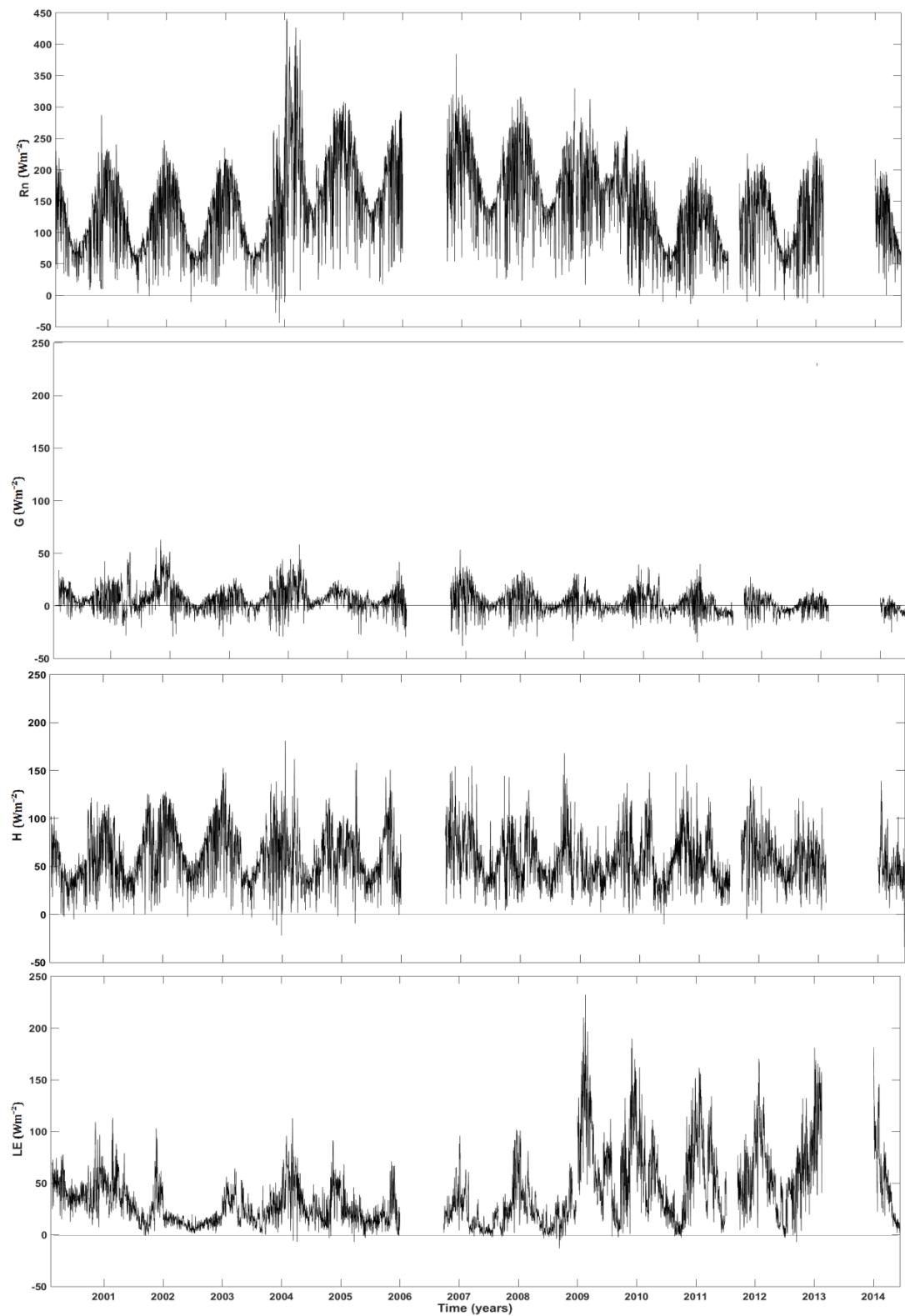
555
556
557
558



564
565 Figure 4: Turbulent fluxes correlation [to available](#) energy for daytime (a) and night-time (b), using the full (2000-2014)
566 15-year available data series. The colour bars represent the count of EBR values

567

568



569
570
571

Figure 5: OLS and EBR evaluations at different friction velocity sorted at four quartiles. The colour bar represents the count of EBR values. The colour bars represent the count of EBR values.

572

573

574
575
576

Figure 6: Time series of daily mean surface energy balance component fluxes from 2000 to 2014 at Skukuza flux tower site (SA)

577

578

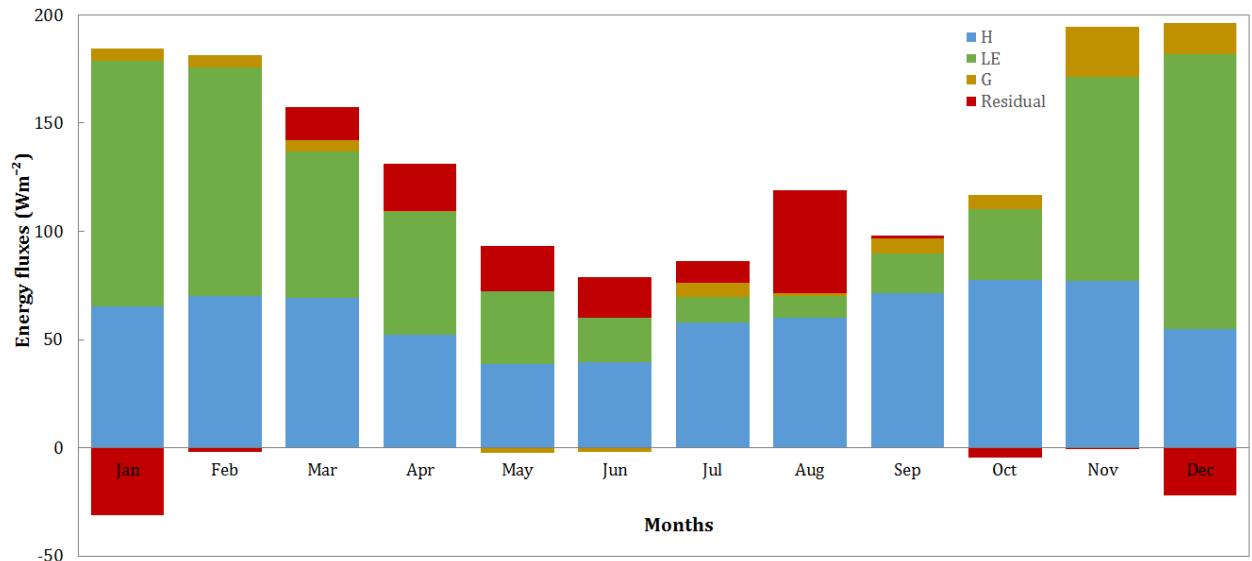
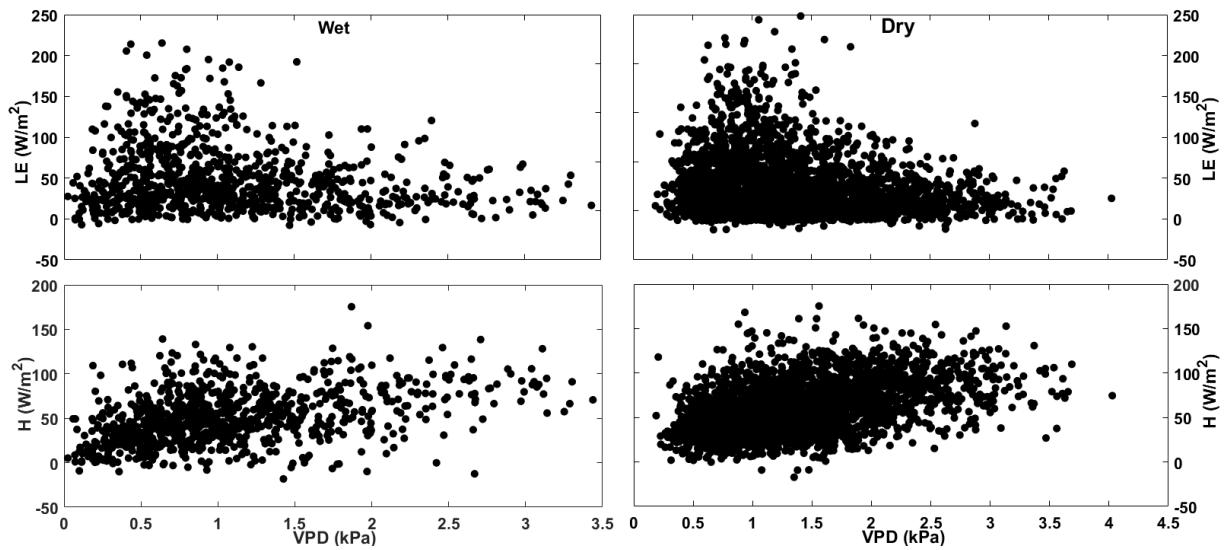


579
580
581

Figure 7: 15-year (2000-2014) monthly means of surface energy balance fluxes of Skukuza flux tower site (SA), highlighting the partitioning of Rn

582

583

584 **Figure 8: Relationship between the fluxes and VPD under wet and dry conditions**

585

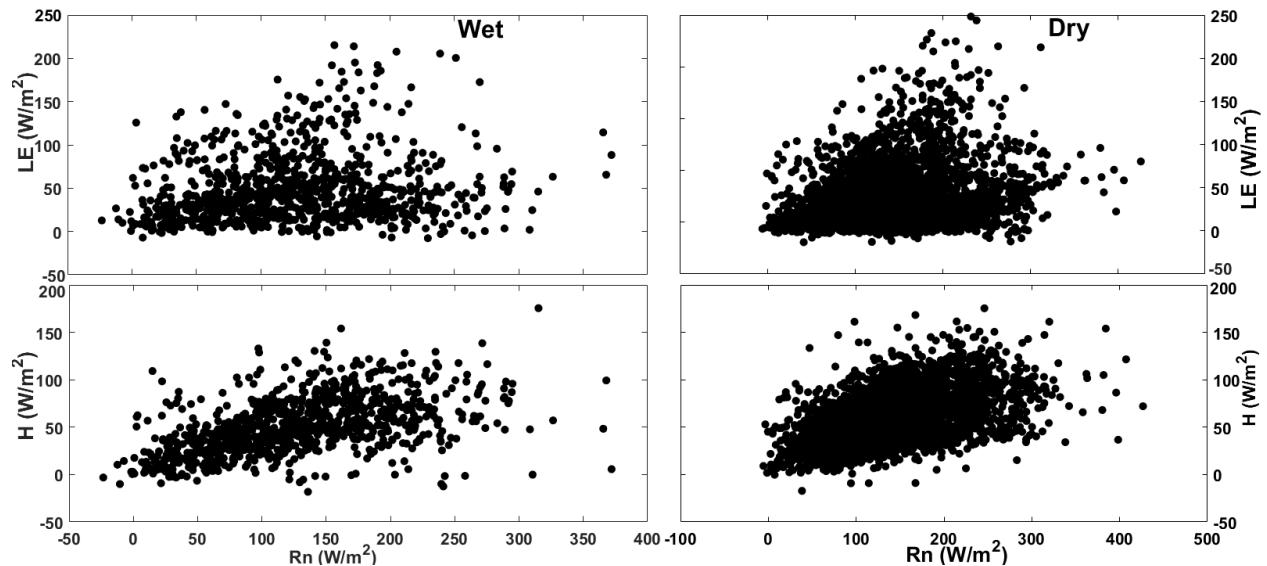


Figure 9: Effects of net radiation on LE and H under wet and dry conditions

586
587

588

589 **Reviewer #1**

590 **General**

591 The article presents an impressive multi-year dataset of energy fluxes over an under sampled part of the world.

592 The focus is on the energy balance closure.

593 *We thank the reviewer for his thorough and positive evaluation of this manuscript; his positive feedback
594 has contributed to its improvement. Further analysis of G was done to investigate how it impacts the
595 surface energy balance closure, as recommended by the reviewer. We hope that this effort will improve
596 the manuscript, by strengthening the weak points highlighted by the Reviewer. We tried to respond to the
597 comments of each reviewer with as much detail as possible to the best of our ability.*

598 **Major remarks**

600 The article points out the difficulties of collecting valid data over long periods of time.

601
602 My first question is if the cleaning procedures may have introduced any biases? For example, periods with rainfall
603 often produce problems with sonic anemometers. Could you comment on this?

604 **Response:** *Thank you for your comment.*

605 *When measuring the different variables using the eddy covariance system, apart from instrument failure,
606 instruments like the sonic anemometer and the net radiometer are affected by different phenomena, like
607 rainfall events and wind gusts, resulting in faulty diagnostic signals, outliers and data gaps, which are
608 sources of error and bias. Thus data cleaning, which involves screening, diagnosing and editing, of these
609 half-hourly surface energy data, was done to reduce bias and error.*

610 *In our study we used the Amelia II software, an R-program designed to impute missing data using
611 Expectation-Maximization with Bootstrapping (EMB) multiple imputation algorithm (Honaker et al.,
612 2011). This program resamples the original dataset using bootstrapping, where it then imputes the
613 missing data. The iterations done in this algorithm ensure that any bias is limited, if not completely
614 eliminated.*

615
616 The second is a pet peeve of mine and concerns the ground heat flux. If I understand correctly (the text is not so
617 clear, see also below under minor remarks), you report EBR per half hour. Over the period of half an hour, ground
618 heat flux can typically play an important role. Ground heat flux is also not very well captured with ground heat
619 flux plates, which basically measure the temperature difference between the top and bottom of a piece of plastic
620 in the ground. Even if the plates would work as intended, they are clearly biased as 2/3 of the plates are under
621 canopies while only 30% of the area has a canopy. I don't ask for you to go back and repeat the measurements
622 with better measurements of G but a critical discussion is needed. A simple way to get some idea is to compare
623 half hourly results with daily averaged EBRs. G will generally be negligible at daily scales while it can easily
624 make up 50% of the energy balance at a half hourly basis.

625 **Response:** *Thank you for the comment.*

626 *The authors agree that soil heat flux plays a significant role on the surface energy balance, as it
627 determines the amount of energy available for the turbulent fluxes. In this study, however, we did not do
628 detailed investigation of the influence G has on the surface energy balance, as this would be a subject of*

629 study on its own, especially in this study area. We, hence, only highlighted the effect G has on the surface
630 energy balance by calculating how the exclusion of G in the EBR computation $((H+LE)/Rn)$ affects the
631 results compared with the initial EBR $((H+LE)/(Rn-G))$ values. The results reported as follows:

632 Line 300-305: Soil heat flux (G) plays a significant role in the surface energy balance as it determined
633 how much energy is available for the turbulent fluxes, especially in areas with limited vegetation cover.
634 In this study, we examined how G , i.e., its presence or absence, impacts on the EBR. Our results revealed
635 a decrease of up to 7 %, with an annual mean of 3.13 ± 2.70 , in EBR when G was not included in the
636 calculation. During the daytime, the absence of G resulted in a decrease of approximately 10 % of the
637 initial EBR, while at night-time EBR was as low as 50 % of the initial EBR, showing that G has greater
638 impact on the surface energy balance at night.

639 Also, the G used was a weighted mean of the three measurements to avoid any biases associated with
640 the fact that 2/3 of the plates are under canopies while only 30% of the area is on bare ground.

641
642 Finally, the article would become ten times more valuable if you make the (cleaned?) dataset available online.

643 **Response:** Noted, thank you.

644 The issue of publishing this dataset will be discussed with all parties involved.

645
646 **Minor remarks**

647 Line 29: Winter & summer are not so obvious terms for people not familiar with Kruger National Park. Either use
648 months or, my preference, talk about dry and wet, as you do later under 2.1.

649 **Response:** Summer changed to wet, and winter changed to dry (Line 29, 30).

650
651 Line 36: characterized by or rather correlated with?

652 **Response:** Thank you, this has been changed (Line 37).

653
654 Line 41: Is the heat stored in the ground not the ground heat flux G ?

655 **Response:** Thank you for your comment.

656 The heat stored referred to in this context is the heat exchange between the ground and the depth of the
657 plate, and not the flux measured by the soil heat flux plate.

658
659 Line 47: Potential evapotranspiration is a problematic term. Better use “reference evaporation”.

660 **Response:** Changed, thank you (Line 48).

661
662 Line 58: “measured” instead of “measurable”

663 **Response:** Changed, thank you (Line 59).

664
665 Line 92: Here you use Earth, elsewhere earth. I have no preference but best stick to one.

666 **Response:** Noted, thank you.

667
668 Line 117: canopies instead of canopies

669 **Response:** Corrected, thank you (Line 122).

670
671 Line 125: Did you use any software? Is code available?

672 **Response:** The Eddysoft software was used to process the raw data (Line 129).

673
674 Line 126: You state that all upward fluxes are positive but later you clearly change this in Equation 1 and also
675 when you state that daytime Rn is positive.

676 **Response:** The statement has been removed.

677
678 Line 157: I surmised that you evaluated the dataset by looking at half hourly EBRs. The text here is, however, not
679 very clear on that. Please make explicit.

680 **Response:** The sentence now reads:

681 *Line 173: "...the half-hourly data were separated..."*

682
683 Line 198: Is the 0.11 the standard deviation in the estimate of the mean? Or is it the standard deviation? Also,
684 with EBR always being larger than zero, perfect at one, and not upwardly bounded, would a logarithmic averaging
685 scheme not make more sense?

686 **Response:** Thank you for your comment.

687 *± 0.11 is the standard deviation.*

688 *Our results show a few of the EBR values above 1, i.e. 2010-2012, December-February and September-
689 November, and the 25 and 100 percentiles, and the rest of the values are below zero. This is in line with
690 other studies that show that EBR is almost always less than 1, i.e. the measured available energy is
691 larger than the sum of the measured turbulent fluxes, as shown by different studies (Chen et al., 2009;
692 Were, Villagarcía, Domingo, Alados-Arboledas, & Puigdefábregas, 2007; Wilson et al., 2002; Xin &
693 Liu, 2010; Yuling, 2005). These studies also alluded to the concern within the micrometeorological
694 community that the turbulent fluxes (LE + H) are frequently (though not always) underestimated by
695 about 10–30% relative to estimates of available energy (Rn-G), making the EBR less than one.*

696
697 Lines 213 and further and in general throughout this part: You mix literature review with results. It is more
698 common not to introduce too much additional information from outside the study past the introduction. Would
699 probably be better to move this to intro (but don't make it too long!).

700 **Response:** Thank you for your observation.

701 *The authors agree that literature is mixed with the results. The results section is combined with the
702 discussion, hence the literature citations are found in this section.*

703
704 Line 230 and further: The Results and discussion focus on EBR and other outcomes in a very descriptive way.
705 Would be better to already include more physical insights here as to why you see what you see.

706 **Response:** Thank you for your observation.

707 *The descriptive way shown here is the explanation of the results, since the Results and Discussion
708 sections are combined.*

709

710 Line 264: Why the hurry? Here also please expand on role of G as mentioned above.

711 **Response:** *Thank you for the comment.*

712 *The authors have included how G, its inclusion and non-inclusion, impacts on the value of EBR. This*
713 *was fully explained above.*

714

715 Lines 334 and further: In general, there is a bit of a mix between the focus on EBR and the more general and the
716 probably more interesting general interpretation of results. The article is built up around EBR and only towards
717 the end do general energy & water availability considerations come up. Perhaps point to these earlier in the text.
718 In any case, please shift the perspective from starting with other studies, such as by Gu et al., and comparing those
719 with your results to a perspective that starts with your results and then compares those, preferably a bit more
720 systematically, with other studies.

721 **Response:** *Thank you for the observation.*

722 *The authors would like to point out that this study focuses on two issues, i.e. the energy balance closure*
723 *first, then how the available energy is partitioned over time in this ecosystem, based on the climate*
724 *conditions in the region, particularly, precipitation (a proxy of soil water availability), VPD and Rn*
725 *impact on this partitioning.*

726

727 References

- 728 Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., . . . Han, X. (2009). Energy balance and partition in
729 inner mongolia steppe ecosystems with different land use types. *Agricultural and Forest Meteorology*,
730 149(11), 1800-1809.
- 731 Were, A., Villagarcía, L., Domingo, F., Alados-Arboledas, L., & Puigdefábregas, J. (2007). Analysis of effective
732 resistance calculation methods and their effect on modelling evapotranspiration in two different patches
733 of vegetation in semi-arid se spain. *Hydrology and Earth System Sciences Discussions*, 11(5), 1529-
734 1542.
- 735 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., . . . Field, C. (2002). Energy
736 balance closure at fluxnet sites. *Agricultural and Forest Meteorology*, 113(1), 223-243.
- 737 Xin, X., & Liu, Q. (2010). The two-layer surface energy balance parameterization scheme (tsebps) for estimation
738 of land surface heat fluxes. *Hydrology and Earth System Sciences*, 14(3), 491-504.
- 739 Yuling, F. U. (2005). Energy balance closure at chinaflux sites.

740 **Reviewer #2**

741 We thank the Reviewer for the positive revision of this manuscript, and for contributing to its improvement.
742 According to their general comments, we added a discussion on the impact the exclusion of the soil heat storage
743 term has on the surface energy balance. We tried to answer every comment in detail.

744
745 **General comments**

746 The authors evaluated a 15-year EC data record of a savanna FLUXNET site in Kruger National Park. This is a
747 great and unique dataset. The authors focus in their analysis on the surface energy balance closure and energy
748 partitioning. The topic fits very well into the scope of HESS, and the dataset will be interesting for a broad
749 readership of HESS. The dataset is carefully evaluated for several aspect. The authors give interesting insight to
750 technical problems that showed up over the 15 years, and they analyzed, among others, the effect of the season as
751 well as the friction velocity on the EBR.

752 My major concern is related to the measurement of the ground heat flux.

753 Firstly, important information is missing. As far as I got it, the authors did not determine the heat storage change
754 in the layer above the heat flux plate (HFP). Please state this clearly in the Material and Method (MM) part.

755 **Response:** *Thank you for your comment.*

756 *The authors have included this information.*

757 *Line 169-171: "We did not account for the heat storage terms in the EBR, including soil and canopy*
758 *heat storage, and energy storage by photosynthesis and respiration, in this study. The significance of*
759 *neglecting these storage terms will be discussed."*

760
761 Moreover, it remains unclear how the three HFP readings were averaged. Two were installed under tree canopies
762 and one at open space. How did you compute the mean ground heat flux representative for the footprint? Did you
763 compute a weighted mean or did you compute simply the mean over the three plates. In the latter case the ground
764 heat flux would be systematically underestimated, because the areal fraction of tree canopy is only 30%.

765 **Response:** *Thank you for your comment.*

766 *The soil heat flux for the site was computed as a weighted mean of the three measurements, and this*
767 *information has been included:*

768 *Line 149-151: "Soil heat flux was then computed as a weighted mean of the three measurements, i.e.,*
769 *two taken under tree canopies and one on open space."*

770
771 Secondly, in general neglecting the heat storage term must result to a certain extent in a systematic underestimation
772 of the ground heat flux and hence to a systematic overestimation of the available energy and consequently to an
773 underestimation of the EBR. From own measurements (HFP were installed in 8 cm depth) I know that this storage
774 term can reach at unshaded surfaces 50 to 100 W/m². Please discuss in detail the magnitude of error that might
775 originate from your methodological approach.

776 **Response:** *Thank you for your comment.*

777 *In this study, the authors did not consider the heat storage terms, and have included this information in*
778 *the methodology (see above response). Furthermore, we have included a discussion on the expected*
779 *error that could result for this omission as suggested by the Reviewer.*

780 Line 304-317: While G plays a significant role on the surface energy balance closure, our study ignored
781 the different energy storage terms in determining the EBR, including the soil heat storage term. The
782 exclusion of this storage term results in the underestimation of G , as the real value of G is a combination
783 of the flux measured by the plate and the heat exchange between the ground and the depth of the plate.
784 This in turn contributes to overestimating the available energy, which then lowers the EBC. As reported
785 by different studies, the omission of the soil heat storage results in the underestimation of the energy
786 EBC by up to 7 %. For instance, Zuo et al. (2011) reported an improvement of 6 to 7 % when they
787 included the soil heat storage in their calculation of EBR, at the Semi-Arid Climate and Environment
788 Observatory of Lan-Zhou University (SACOL) site in semi-arid grassland over the Loess Plateau of
789 China. In their study in the three sites in the Badan Jaran desert, Li, Liu, Wang, Miao, and Chen (2014)
790 analysed the effect of including soil heat storage derived by different methods in the energy balance
791 closure; their EBR improved by between 1.5 % and 4 %. The improvement of the EBR in the study in a
792 FLUXNET boreal site in Finland by Sánchez, Caselles, and Rubio (2010) was shown to be 3 % when the
793 soil heat storage was included, which increased to 6 % when other storage terms (canopy air) were taken
794 into account.

795
796 Moreover, I wondered why the authors do not give any information on monthly or annual evapotranspiration rates
797 (in mm). With that information one could get a guess of the climatic water balance of that ecosystem. I think this
798 would be very interesting for the reader and would further strengthen the manuscript.

799 **Response:** Thank you for the comment.

800 This manuscript focuses on the surface energy balance and how solar radiation is partitioned in this
801 savanna site. The evapotranspiration part has been covered in a different manuscript.

802 803 Specific comments

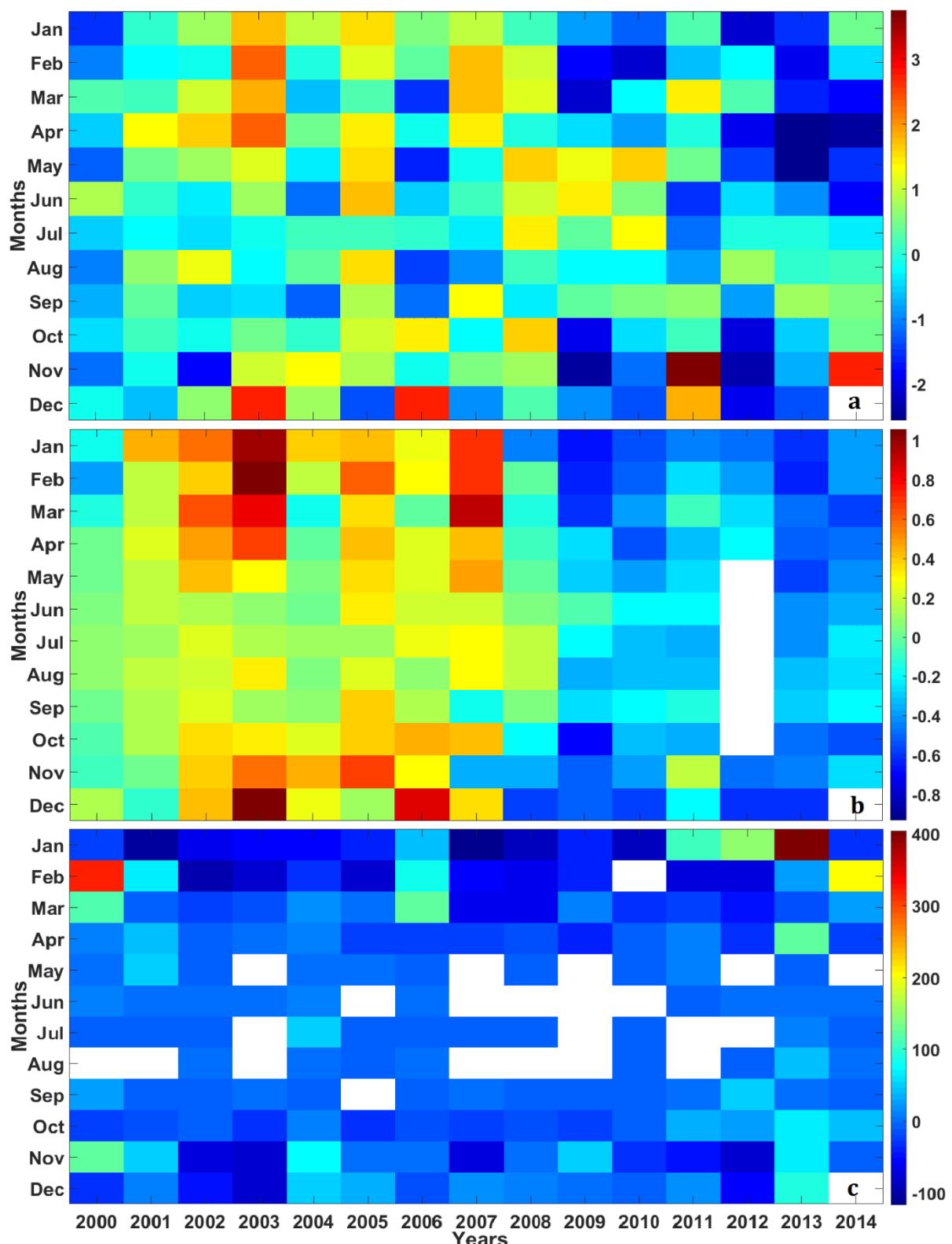
804 Line 132: Please state which software tool (e.g. TK3 or EddyPro) was used to process the EC raw data.

805 **Response:** Thank you for your comment. The information was added:

806 Line 129-130: "The Eddysoft software was used to process the raw data collected from the eddy
807 covariance system (Kolle & Rebmann, 2007)."

808
809 Line 135: How did you detect outliers? Please explain!

810 **Response:** Thank you for your comment. The information was added:


811 Line 144-145: "The data outliers were detected using the outlier detection procedure found in the
812 Statistica software."

813
814 Line 170: The intention of Figure 1 is to show temperature, VPD and rainfall anomalies between the years. I think
815 this way of displaying the data is not really optimal for this purpose. The authors should think about a better way
816 to present these anomalies. One way could be to compute for every month the difference from the 15- year mean
817 and list these differences in a table (rows: month; column: years). Months, for example, that were warmer than
818 the 15-year average get a red color, months that were colder get a blue color. The larger the difference the more
819 intensive the red and blue color.

820
821

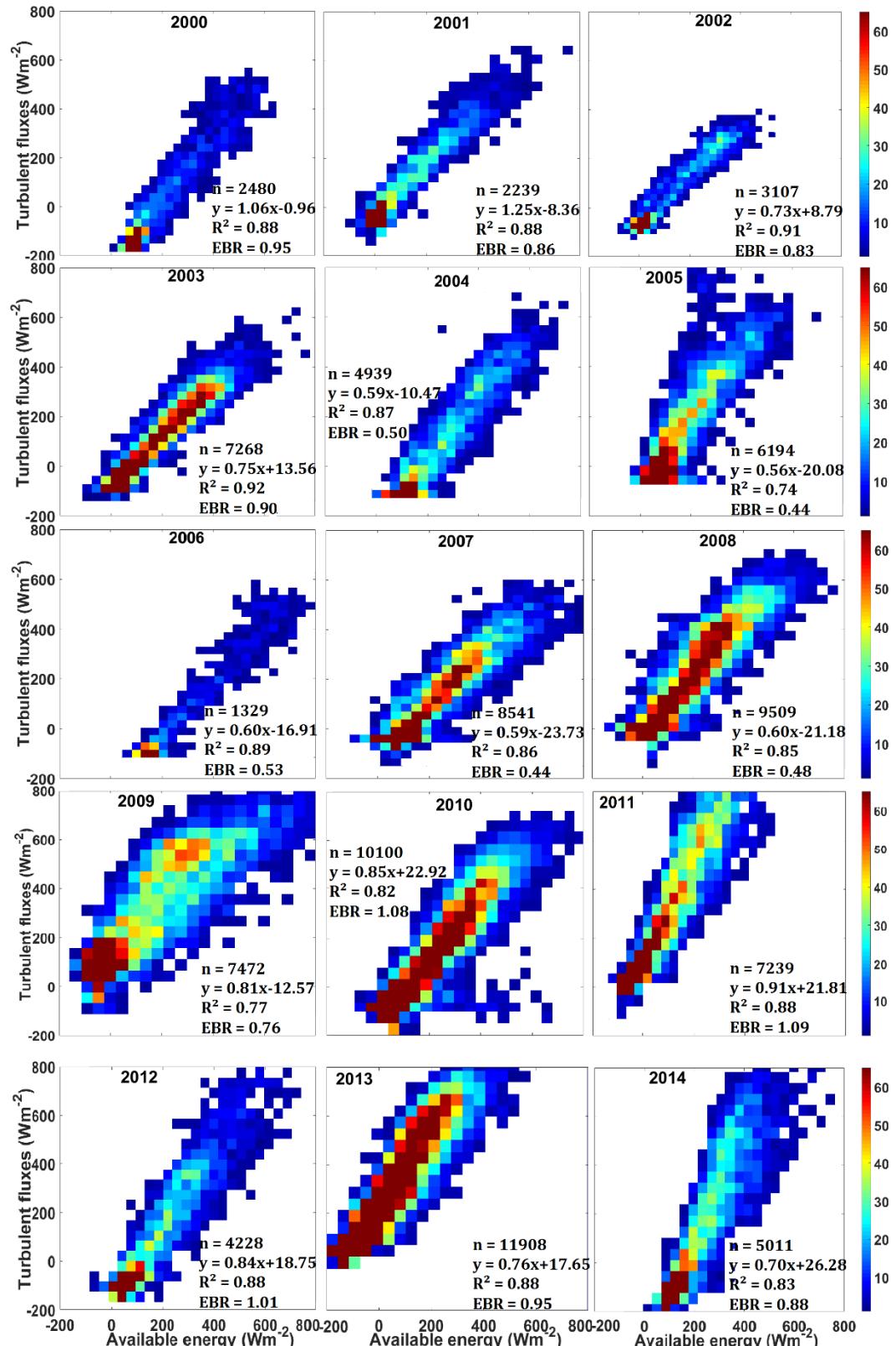
Response: Thank you for your comment.

Figure 1 has been redone as shown below.

822
823
824
825

Figure 104: Summary of mean monthly anomalies (a) air temperature, (b) VPD, and (c) rainfall from 2000 to 2014

826 Line 198: This is a little bit data cosmetic. The very good EBR is achieved thanks to the really bad year 2013,
827 which had an EBR of 3.76. If you remove this year as outlier the mean EBR reduces to 0.77. I suggest that the
828 authors start this chapter with explaining the technical problems that showed up over the years with the very low
829 EBR and the extremely high EBR in 2013. And after that the authors should refer only to the years with no data
830 or technical issues.


831 **Response:** Thank you for your comment.

832 *The authors first reported the yearly EBR, as well as the mean multiyear EBR of all years, including
833 those with low quality data. Here we also explained the technical problems that resulted in the low EBR.
834 Thereafter, we stated that further analysis excluded the years with low quality data (Line 232-233).*

835
836 Figure 2: In the OLS approach, the dependent variable (turbulent fluxes) is plotted against the independently
837 derived available energy. See for example Wilson et al. (2002). If you plot it the other way round, as you did, the
838 slope of the regression does not fit to the EBR. If the EBR is below one than the slope must also be below one. In
839 the year 2007, for example, the EBR is 0.44 but the slope is 1.46. That does not fit together. Moreover, if you use
840 the turbulent flux in a regression as independent variable your statistical model assumes that this variable has no
841 error. Please correct everywhere the figures and update the numbers for slopes and intercepts!

842 **Response:** Thank you for your comment.

843 *The authors have rectified this on Figures 2 to 5.*

844
845
846
847
848

Figure 112: 15-year series of annual regression analysis of turbulent (sensible and latent) heat fluxes against available energy (net radiation minus ground heat flux) from 2000 to 2014 at Skukuza, (SA). The colour bars represent the count of EBR values.

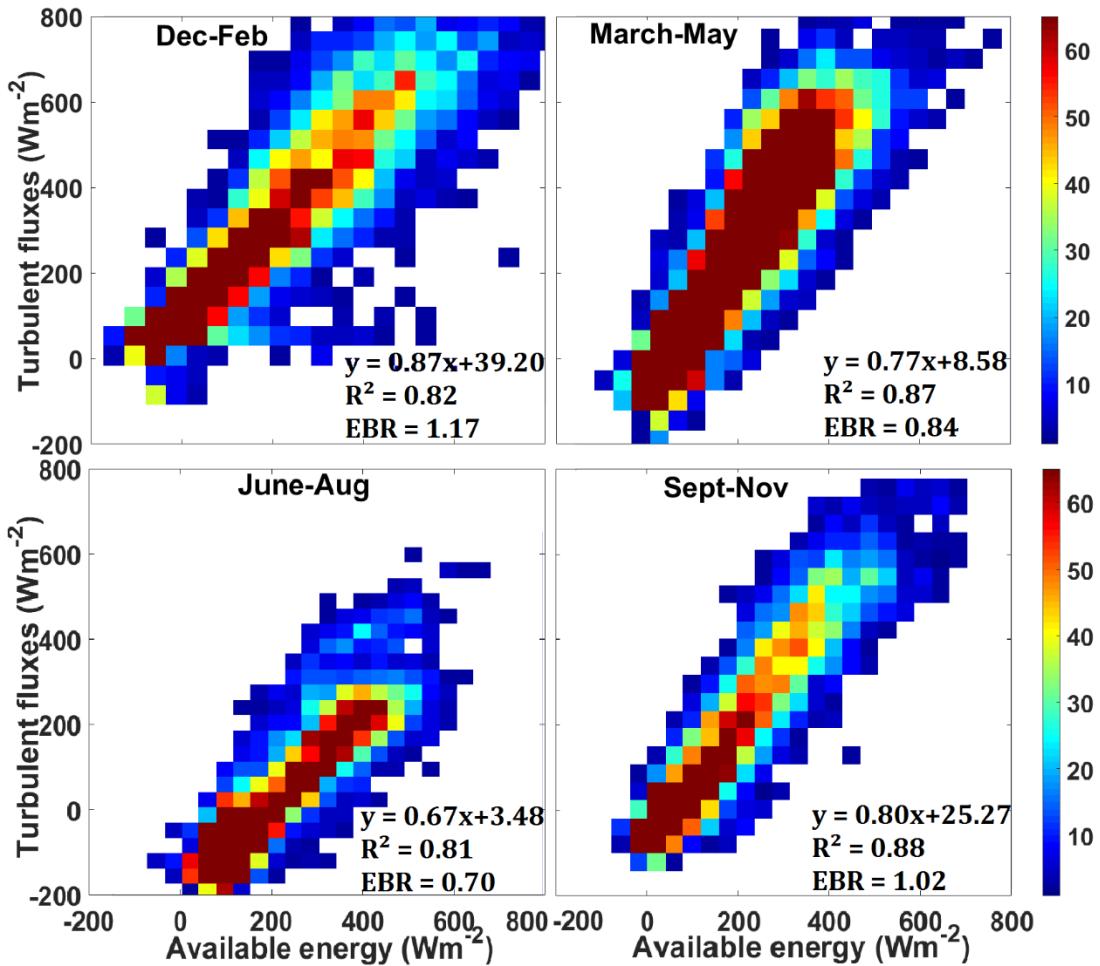


Figure 123: Seasonal turbulent fluxes (H+LE) correlation to available energy (Rn-G) for Skukuza flux tower from summer (Dec-Feb), autumn (March-May), winter (June-Aug), spring (Sept-Nov). The colour bars represent the count of EBR values

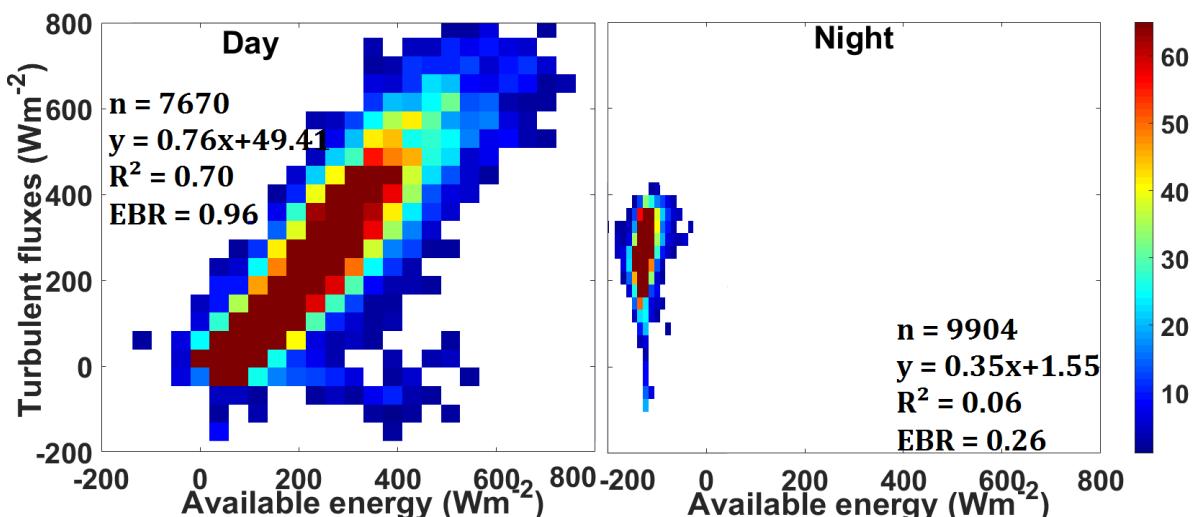


Figure 134: Turbulent fluxes correlation to available energy for daytime (a) and night-time (b), using the full (2000-2014) 15-year available data series. The colour bars represent the count of EBR values

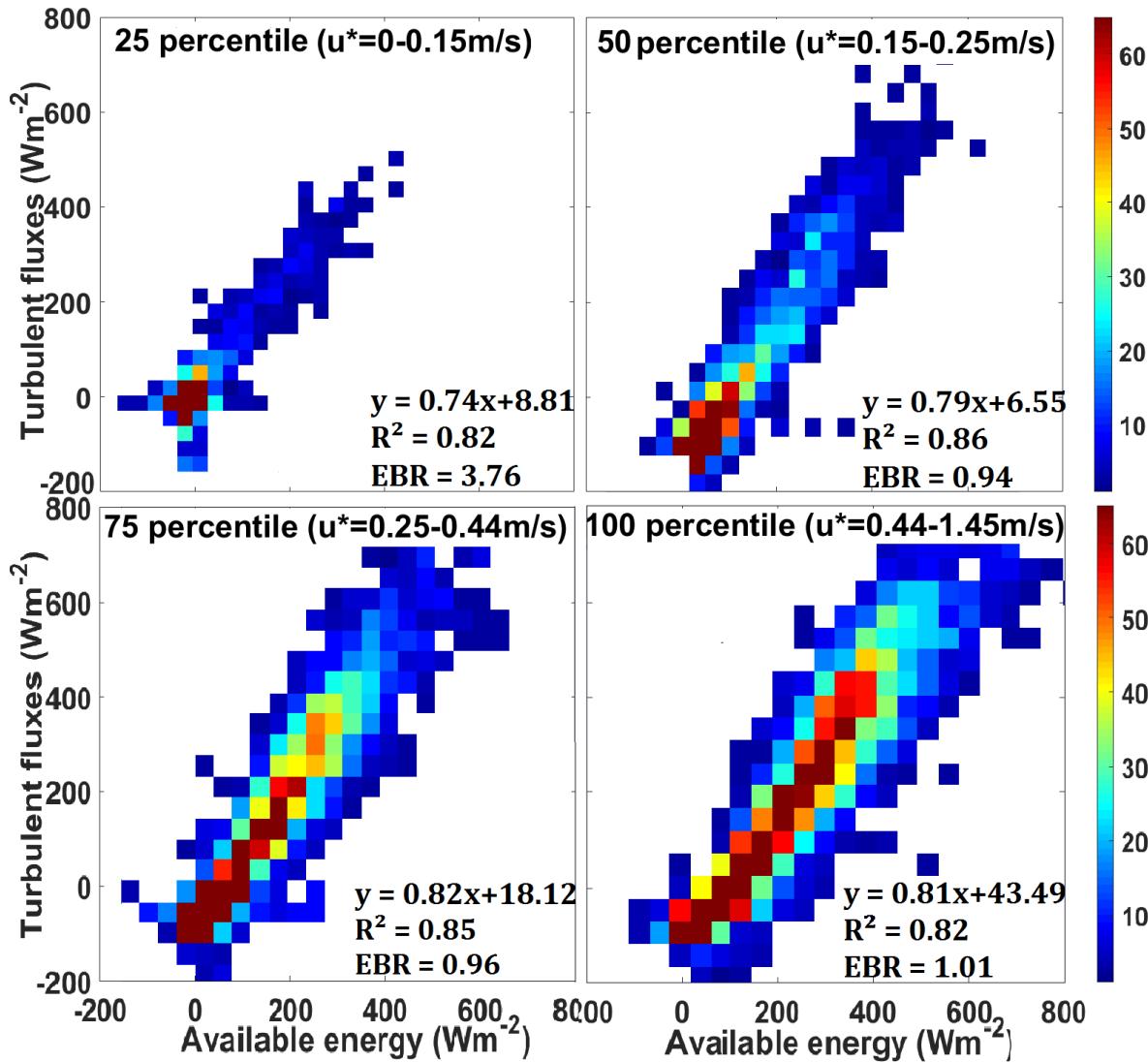


Figure 145: OLS and EBR evaluations at different friction velocity sorted at four quartiles. The colour bar represents the count of EBR values. The colour bars represent the count of EBR values.

Line 205: Here it would be important for the reader to know how you modeled the incoming and outgoing longwave radiation, so that they can avoid this mistake in future. Please describe this model in more detail.

Response: Thank you for your comment.

The authors do not have the detailed information on the methodology used to model incoming and outgoing longwave radiation during the 2004-2008 period. However, different methods that model net radiation from climatic variables (Irmak, Mutiibwa, & Payero, 2011; Ortega-Farias, Antonioletti, & Olioso, 2000; Sabziparvar & Mirgaloybayat, 2015) and remote sensing based methods (Kjaersgaard et al., 2009; Samani, Bawazir, Bleiweiss, Skaggs, & Tran, 2007; Sun et al., 2013; Wu et al., 2017) have been developed. It would also be of interest to evaluate these models using the Skukuza eddy covariance data, as an extension to this study.

Technical comments

Line 28: Avoid the wording bad and good data. Please use instead e.g. low- and high quality data

875 **Response:** Corrected, thank you.

876

877 Line 40: I would not count energy stored in ground as a minor flux term (see above). Please rephrase.

878 **Response:** The sentence has been rephrased as:

879 *Line 42: "...heat stored by the canopy, the ground and energy storage terms by photosynthesis."*

880

881 Line 83: If you start the sentence with first I expect that there comes a second item.

882 **Response:** The succeeding sentence was started as follows:

883 *Line 87: "Then, we examined how the surface energy partitioning...."*

884

885 Line 150: Replace "incorrect assumption" with "simplification".

886 **Response:** Corrected, Line 163.

887

888 Line 148: Introduce here the symbol "R2".

889 **Response:** Done (Line 161), thank you.

890

891 Line 158: Rewrite "4" in "four".

892 **Response:** Done (Line 173), thank you.

893

894 Line 224: Here it is unclear which storage term was included by Sanchez et al. (2010). Please rewrite!

895 **Response:** Thank you for your comment.

896 *This reference has been moved to the section which explains the effect of including storage terms in the EBR.*

897

898

899 Table 1: Why clayey? In the MM part you write that the texture ranged from sand to loamy sand. Please check!

900 **Response:** Thank you for your comment.

901 *The soil type has been removed in Table 1 to avoid confusion.*

902

903 Table 1: Campbell Scientific is not the manufacturer of the HFP. The manufacturer is Huskeflux. Please correct

904 that and mention whether you used self-calibrating plates or not.

905 **Response:** We used the HFT3 soil heat flux plate, which was manufactured by Campbell Scientific, not

906 the HFP soil heat flux plate, a product of Huskeflux.

907

908 Table 1: Beside the wind speed the anemometer measures also the sonic temperature. Please add this variable to

909 the list.

910 **Response:** Added, thank you.

911

912 Fig. 2, 3 etc.: Please mention in the MM part which software you used to create these graphs.

913 **Response:** Mentioned, thank you.

914

- 915 Line 498: Replace “ground conduction heat” with “ground heat flux”
916 **Response:** *Corrected, thank you.*
917
918 Line 239: Typo: “if” not “It”
919 **Response:** *Edited, thank you.*
920
921 Line 257-258: Please rewrite this sentence. This sentence is unreadable.
922 **Response:** *Edited, thank you.*
923 *Line 282-283: To understand the effect of friction velocity on the energy balance closure, surface energy*
924 *data which had corresponding friction velocity (u^*) data, were analysed.*
925
926 Line 323: From here on the numbering of the figures is wrong. In this line, for example, you refer to Fig. 8 not to
927 Fig. 9.
928 **Response:** *Corrected, thank you.*
929
930 **References**
931 Irmak, S., Mutiibwa, D., & Payero, J. O. (2011). Net radiation dynamics: Performance of 20 daily net radiation
932 models as related to model structure and intricacy in two climates. *Transactions of the ASABE*, 53(4),
933 1059-1076.
934 Kjaersgaard, J. H., Cuenca, R. H., Martínez-Cob, A., Gavilán, P., Plauborg, F., Mollerup, M., & Hansen, S. (2009).
935 Comparison of the performance of net radiation calculation models. *Theoretical and Applied*
936 *Climatology*, 98(1), 57-66. doi:10.1007/s00704-008-0091-8
937 Kolle, O., & Rebmann, C. (2007). EddySoft: Dokumentation of a Software Package to Acquire and Process Eddy
938 Covariance Data.
939 Li, Y., Liu, S., Wang, S., Miao, Y., & Chen, B. (2014). Comparative study on methods for computing soil heat
940 storage and energy balance in arid and semi-arid areas. *Journal of Meteorological Research*, 28, 308-
941 322.
942 Ortega-Farias, S., Antonioletti, R., & Olioso, A. (2000). Net radiation model evaluation at an hourly time step for
943 Mediterranean conditions. *Agronomie*, 20(2), 157-164.
944 Sabziparvar, A., & Mirgaloybayat, R. (2015). Evaluation of Some Existing Empirical and Semi-Empirical Net
945 Radiation Models for Estimation of Daily ET0. *Journal of Advanced Agricultural Technologies Vol*,
946 2(1).
947 Samani, Z., Bawazir, A. S., Bleiweiss, M., Skaggs, R., & Tran, V. D. (2007). Estimating daily net radiation over
948 vegetation canopy through remote sensing and climatic data. *Journal of Irrigation and Drainage*
949 *Engineering*, 133(4), 291-297.
950 Sánchez, J. M., Caselles, V., & Rubio, E. M. (2010). Analysis of the energy balance closure over a FLUXNET
951 boreal forest in Finland. *Hydrology and Earth System Sciences*, 14(8), 1487-1497.
952 Sun, Z., Gebremichael, M., Wang, Q., Wang, J., Sammis, T. W., & Nickless, A. (2013). Evaluation of clear-sky
953 incoming radiation estimating equations typically used in remote sensing evapotranspiration algorithms.
954 *Remote Sensing*, 5(10), 4735-4752.

- 955 Wu, B., Liu, S., Zhu, W., Yan, N., Xing, Q., & Tan, S. (2017). An Improved Approach for Estimating Daily Net
956 Radiation over the Heihe River Basin. *Sensors*, 17(1), 86.
- 957 Zuo, J.-q., Wang, J.-m., Huang, J.-p., Li, W., Wang, G., & Ren, H. (2011). Estimation of ground heat flux and its
958 impact on the surface energy budget for a semi-arid grassland. *Sci Cold Arid Region*, 3, 41-50.
- 959

960 **Editor response**

961
962 Thanks for your answers to the reviewer comments. MAJOR revisions are needed for the manuscript to be suitable
963 for publication within HESS.

964 *Thank you for taking time to edit our manuscript entitled Analysing surface energy balance and
965 partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa.*

966 *The authors have attempted to respond to the editor comments to the best of our ability, and hope the
967 responses have strengthened the manuscript to be quality that is suitable for publication in HESS.*

968 *The authors have responded to the point by point comments as shown below:*

- 969
- 970 1) Carefully revise the manuscript according to the responses given. In particular as was not entirely convinced
971 by your argumentation regarding the importance of ground heat flux within the study. The uncertainties
972 resulting from your assumptions would be elaborated more clearly.

973 **Response:** *Thank for your comment.*

974 *The authors have revised the manuscript according to the responses given. The changes are highlighted
975 on the edited manuscript.*

976 *The authors concur that although soil heat flux (G) is the smallest component of the surface
977 energy balance (SEB), it plays a significant role in the SEB as it determines the amount of energy
978 available for the turbulent fluxes. In some instances, G has been ignored based on the assumption that
979 G is generally negligible at daily scales on the basis that the heat stored during the day is released during
980 the night. Neglecting G in the surface energy balance, however, results in the overestimation of the
981 available energy and higher energy balance ratio (EBR). A handful of studies have focused on G ,
982 including its measurement techniques, how it varies with soil temperature and moisture, and the role it
983 plays on the surface energy balance (Heusinkveld et al. 2004; Russell et al. 2015; Santanello Jr & Friedl,
984 2003; Sauer & Horton, 2005; Yang & Wang, 2008).*

985 *Heat storage terms, which include soil and canopy heat storage, and energy storage by
986 photosynthesis and respiration were not accounted for in our study. Neglecting the soil heat storage term
987 has a significant effect on the surface energy balance, as the real value of G is a combination of the flux
988 measured by the plate and the heat exchange between the ground and the depth of the plate. This results
989 in the underestimation of G and hence to a systematic overestimation of the available energy and
990 consequently to an underestimation of the EBR. Soil heat storage term varies with the depth of the soil
991 heat flux plate, as demonstrated by Ochsner et al. (2006), who reported that at a depth of 1 cm, the
992 maximum G is up to 13% less than the maximum surface value, and at 10 cm maximum G is up to 70%
993 less than the surface value, so an exclusion of this term results in high error margin. Meyers and Tilden
994 (2004) showed that the ground heat storage term was as high as 40 W/m² early in the day, which is a
995 considerable amount to be ignored, and Heusinkveld et al. (2004) proved that failure to account for the
996 storage term can cause errors of 10–200 W/m² for bare soils or under sparse vegetation. Liu et al. (2017)
997 reported an increase in OLS slope of an average 8.8% and a mean daily EBR increase of 5% when the
998 soil heat storage term was considered in their study.*

999 Hence, a study that investigates the role of G and the different heat storage terms in the surface
1000 energy balance using this dataset would contribute to further understanding this component of the SEB
1001 in semi-arid savanna areas.

1002 With this in mind, to address the editor and reviewers comments on the importance of G and
1003 uncertainties related with the exclusion of the soil heat storage term, the authors have:

- 1004 i. Highlighted the impact G has on the surface energy balance closure, as depicted by the energy
1005 balance ratio (EBR), by showing how the inclusion $((H+LE)/(Rn-G))$ and exclusion of G
1006 $((H+LE)/Rn)$ varies the EBR values. This was done using the entire dataset, as well as on the day-
1007 night-time datasets.
- 1008 ii. Reviewed in detail the magnitude of error that might originate from the exclusion of the soil heat
1009 storage term in our study area based on different studies.

1010 The above have been added to the manuscript:

1011 Line299-330: Soil heat flux (G) plays a significant role in the surface energy balance as it determined
1012 how much energy is available for the turbulent fluxes, especially in areas with limited vegetation cover.
1013 Its exclusion in the surface energy balance results not only in the overestimation of the available energy,
1014 but also the overestimation of the EBR. Its exclusion in surface energy balance studies results not only
1015 in the overestimation of the available energy, but also the overestimation of the EBR. In this study, we
1016 examined how inclusion and exclusion of G impacts the surface energy balance closure. When G was
1017 excluded in the calculation, the multiyear EBR ranged between 0.73 and 1.07, with an annual mean EBR
1018 of 0.90 ± 0.11 , which is about 3 % lower than the initial EBR (0.93 ± 0.11). While the initial daytime EBR
1019 was 0.96, it was 0.87 when G was excluded, which is a decrease of approximately 10 %. The nighttime
1020 EBR was 0.13, as low as 50 % of the initial EBR (0.26), showing that G has greater significance on the
1021 surface energy balance at night. These results are in agreement with other studies, for instance, Ogee et
1022 al., (2001) showed that soil heat flux represents up to 50% of net radiation at midday and up to 80%
1023 during night-time. Stull (2012) also reported that during daytime G only accounts for 5-15% of net
1024 radiation, whereas at night, it is up to 50%.

1025 While G is an important component of the SEB, our study ignored the different energy storage
1026 terms in determining the EBR, including the soil heat storage term. The exclusion of the soil heat storage
1027 term results in the underestimation of G , as the real value of G is a combination of the flux measured by
1028 the plate and the heat exchange between the ground and the depth of the plate. This in turn contributes
1029 to the overestimation of the available energy, which then lowers the EBC. Among other factors
1030 (vegetation cover, soil moisture and temperature), this storage term varies with the depth of the soil heat
1031 flux plate as demonstrated by Ochsner et al. (2006), who reported that at a depth of 1 cm, the maximum
1032 G is up to 13% less than the maximum surface value, and at 10 cm maximum G is up to 70% less than
1033 the surface value, thus its exclusion results in similar error margins in the EBC. As reported by different
1034 studies, the omission of the soil heat storage results in the underestimation of the energy EBC by up to
1035 7%. For instance, Liu et al. (2017) reported an increase in OLS slope of an average 8.8% and a mean
1036 daily EBR increase of 5% when the soil heat storage term was considered in their study in the Taihu
1037 Lake region of the Southern China Plain. In their study in the three sites in the Badan Jaran desert, Li
1038 et al. (2014) analysed the effect of including soil heat storage derived by different methods in the energy

1039 balance closure; their EBR improved by between 1.5 % and 4 %. Zuo *et al.* (2011) reported an
1040 improvement of 6 to 7 % when they included the soil heat storage in their calculation of EBR, at the
1041 Semi-Arid Climate and Environment Observatory of Lan-Zhou University (SACOL) site in semi-arid
1042 grassland over the Loess Plateau of China. The improvement of the EBR in the study in a FLUXNET
1043 boreal site in Finland by Sánchez *et al.* (2010) was shown to be 3 % when the soil heat storage was
1044 included, which increased to 6 % when other storage terms (canopy air) were taken into account.
1045

- 1046 2) A clear answer is expected if the dataset will/ is published or not. What is the strategy?

1047 **Response:** Thank for your comment.

1048 The dataset will be published with the manuscript. However, if it is used for any research purpose this
1049 publication must be cited.

- 1050
- 1051 3) I also expect that future responses to the reviewer comments are made in a more structured way. Normally,
1052 answers to the reviewer comments are highlighted. This is not the case with your responses, which makes the
1053 document hard to read.

1054 **Response:** Thank for your comment.

1055 The authors have tried to address the comments in a more structured way.

1056 References

- 1057
- 1058 Heusinkveld, B., Jacobs, A., Holtslag, A., & Berkowicz, S. (2004). Surface energy balance closure in an arid
1059 region: Role of soil heat flux. *Agricultural and Forest Meteorology*, 122(1), 21-37.
- 1060 Liu, X., Yang, S., Xu, J., Zhang, J., & Liu, J. (2017). Effects of soil heat storage and phase shift correction on
1061 energy balance closure of paddy fields. *Atmósfera*, 30(1), 39-52.
- 1062 Meyers, T. P., & Hollinger, S. E. (2004). An assessment of storage terms in the surface energy balance of maize
1063 and soybean. *Agricultural and Forest Meteorology*, 125(1-2), 105-115.
- 1064 Ochsner, T. E., Sauer, T. J., & Horton, R. (2006). Field tests of the soil heat flux plate method and some
1065 alternatives. *Agronomy Journal*, 98(4), 1005-1014.
- 1066 Ogée, J., Lamaud, E., Brunet, Y., Berbigier, P., & Bonnefond, J. M. (2001). A long-term study of soil heat flux
1067 under a forest canopy. *Agricultural and Forest Meteorology*, 106(3), 173-186.
- 1068 Russell, E. S., Liu, H., Gao, Z., Finn, D., & Lamb, B. (2015). Impacts of soil heat flux calculation methods on the
1069 surface energy balance closure. *Agricultural and Forest Meteorology*, 214, 189-200.
- 1070 Santanello Jr, J. A., & Friedl, M. A. (2003). Diurnal covariation in soil heat flux and net radiation. *Journal of
1071 Applied Meteorology*, 42(6), 851-862.
- 1072 Sauer, T. J., & Horton, R. (2005). Soil heat flux.
- 1073 Stull, R. B. (2012). *An introduction to boundary layer meteorology* Springer Science & Business Media.
- 1074 Yang, K., & Wang, J. (2008). A temperature prediction-correction method for estimating surface soil heat flux
1075 from soil temperature and moisture data. *Science in China Series D: Earth Sciences*, 51(5), 721-729.
- 1076