Source	Reach					Valley					Catchment			
Jource	Geological-sediment size and hydraulic conductivity		Topographical	Ecological	Anthropogenic	Hydrological	Hydrogeological	Topographical	Ecological	Anthropogenic	Hydrological	Hydrogeological	Topographical	Anthropogenic
Angermann et al., 2012	midsize gravel, different sizes of sand, fine silty materials.	hydraulic conductivities: 10^{-3} to 10^{-5} ms ⁻¹ and 10^{-8} to 10^{-9} ms ⁻¹ (Krause et al., 2012)	Meander, pool-riffle-pool bedforms	1	1	Mean discharge is 0.9 m3 s-1 with Q95 of 0.4 m3s-1 and Q10 of 1.39 m3 s-1	/	lowland	/	agricultural	Europe, UK; Atlantic biogeographic region; River Tern; Rainfall 583 mm / yr	Dominant geology is Permo-Triassic sandstone	/	/
Anibas et al., 2012	loamy sand deposits; thick deposits of fluvioglacial sands and gravels which are covered by a variety of organic soil.	see Table 2 for hydraulic conductivities	meander and straight section steep banks	n banks mostly are covered wir reed plants.	h /	regular flood event after snowmelt in the upper catchment peatland is mostly groundwtaer fer	The morainic plateau is composed of heterogeneous loamy sand deposits. The flat alluvial valleys are filled with thick deposits of fluvioglacial sands and gravels which are covered by a variety of organi soils.	lowland mashes and peat lenses (5 cm)	oak-beech forests (2-reed vegetation in the center of the valley and sedges closer to the slope crack	, arable lands meandow and pastures in the lowe section of the catchment	Europe:Poland/Continen tal biogeographic region r 550-700mm/yr 3 subcatchments	n extensive depression n formed during the last glaciations. Uncinsolidated aquifers intermixed with confined ones	I	mostly natural but in the low areas of the catchment meadows and pastures
Anibas et al., 2009	fine sand and some organic material	thermal conductivity:	straight and canalized	1		/	1	lowland	1	agricultural landuse	Europe; Belgium; Continental	1	/	agricultural landuse and weirs structures
Arntzen et al., 2006	cobble (>64 to<=128mm) in a matrix of fine sand (>0.062 to<=0.5mm). At rkm 602 site, the median grain size—D50 was 57.7mm. At rkm 582 site, the dominant substrate was coarse gravel (>16 to<=64mm) in a matrix consisting mostly of fine sand (<0.062 to <=0.5 mm). The D50 at rk 582 was 355 mm. At rkm 777, the dominant substrate was coarse gravel (>16 to <=64mm) in a matrix consisting of fine sand. However, there was a site component at rkm 577 much larger than at the other two locations. The D50 at rk 577 was 22.3mm.	hydraulic conductivities: 9 8.8x10 ³ cms ⁴ to 2.9x10 cms ⁴ m	/ 	1	/	gaining condition	unconfined aquifer	various topography	/	1	hiogeographic region USA: Washington; Columbia Rive; Hanfor Reachr; Continental biogeographic region	Miocene to Pliocene of the A Ringold Formation, Pleistocene flood gravels of the Hanford Formation	/	/
Bourke et al., 2014	1	hydraulic conductivity 1500 and 3700md ⁻¹	straight, section with pools, riffles and glides bedforms	1	1	losing	1	lowland	/	1	Australia; Subtropical biogeographic region;	pisolitic goethite, chert and dolerite	/	mine
Briggs et al., 2010	hallow soils and glacial deposits	1	meander section	beaver activity and wood dams	Γ	1	1	med/low gradient	/	wetland, agricultura land, woodland and urbar areas	Marillana Creek I USA; Massachussets; Ipswich River; humid continental biogeographic region	1	1	three main stem anthropogenic dams
Czernuszenko et. al., 1998	1	/	Straight Low sinuosity	1	I	1	/	lowland	I	/	Europe;Moldavia; Botna,Byk and Kogilnik Rivers; Continantal	/	/	1
Datry et al 2008	gravels, cobbles, and small boulders	/	riffles, prafluvial bars, terraces	annual grasses and herbs	/	larger gaining and losing sections of the valley	/		shrubs	1	New Zealand; Selwyn River, Atlantic biogeographic region	confined and semi-confined aquifers	/	/
Dujardin et al 2014	silty and clay- loam	hydraulic conductivities see Table 2	1	/	/	/	1	lowland	/	/	Europe; Belgium; Continental biogeographic region ;Zenne River Rainfall	1	/	considerable chemical industrial activity
											852 mm/year			

Collection of worldwide field studies on the hyporheic exchange across a broad range of hydrogeological, topographical and geological settings. Table shows references, geographical zone and state, river name, and information on reach, valley and, catchment scale: geology (sediment size and hydraulic conductivity), topographical/morphological, ecological (inchannel vegetation), anthropogenic (agricultural or human infrastructure).

Duke et al 2007	clay-rich vertisol	0.104 cm h ⁻¹	/	J. ashei	/	/	1	/	Riparian forest: Ulmus crassifolia, Fraxinus texensis,Juniperus ashei	agriculture, small	USA; Texas;Cow Bayou Stream; Humid Subtropical biogeographic region Rainfall 82 cm/ yr	Eagle Ford shale	I	Dam structure agriculture and rangeland small riparian forest of Ulmus crassifolia, Fraxinus texensis, Juniperus ashei
Edwardson et al., 2003	cobble, gravel,peat but variaibe according to site	hydraulic conductivities see Table 3	pool riffles, meanders, Debris dam	1	I	/	/	braided, sinuous	Carex aquatilis and Eriophorum vaginatum Betula nana		USA;Alaska;Kuparuk River; Oceanic-Artic biogeographic region	1	1	1
Fernald et al., 2001	gravel Holocene deposit	10^{2} and 10^{1} m s 1	two large island complexes with anastomosing channels and extensive exposed gravels.	/	/	/	1	1	/	/	USA; Oregon;Willamette River; Humid-semiarid	Holocene alluvium	/	1
Gooseff et al., 2003	very porous	/	/	/	/	/	/	/	/	/	Antartica; Delta Stream and Green Creek; Polar	1	/	/
Haggard <i>et al.</i> , 2001	cobbles with some fines	/	/	1	/	/	shallow silt loams.	/	sycamore trees in Dry Creek and a mix of sycamore trees and other hardwoods in Cloud Creek and Cherokee Creek.	Dry Creek and Cherokee Creek has large grass pastures whereas the up-slope vegetation at Cloud Creek was characterized b underbrush and forest layers	biogeographic region USA; Okłahoma; 1 Dry Creek, Cloud Creek, and Cherokee Creek (Lake Eucha–Spavinaw Basin); y humid-subtropical	karstic	1	1
Hall et al., 2002	cobbles and boulders	/	debris dams	/	/	/	/	medium/low gradient	American beech sugar maple yellow birch		USA; New Hampshire; 13 Streams; Continantal Biogeographic region	bedrock superficial		forested: Fagus grandifolia Acer saccharum Betula alleghaniensis
Hart et el., 1999	gravel and cobbles, bedrock outcrops	/	boulders and debris dams an	re imput of deciduous forest: leaves	1	1	/	1	deciduous forest		USA; Tennessee; West Fork of Walker Branch; Continental	bedrock outcrops	/	/
Harvey and Fuller, 1998 Harvey et al., 2003	sand and gravel	/	straight section cobbles and channel parallel bars at side and central channel	1	1	1	1	medium/low gradient	tamarisk seedlings willows	ι.	biogeographic region USA; Arizona; Pinal Creek; semi-deser biogeographic region	regional aquifer composed of partially cemented basin fill, a more shallow one is present (sand and gravel). The aquifer presents igneous rock formations and can be	1	/
Jones et al., 2008	basalt gravel, cobbles, and boulders intermixed with silt and sand lenses	$300 \text{ to } 700 \text{ m day}^{-1}$	naturally anabranched	in-channel macrophytes vegetation (season dependent)	/	1	/	bedrock valley with spring	/	1	USA; Oregon; Umatilla River; humid-semidesertic biogeographic region	constricted Columbia Plateau basalt	naturally anabranched	1
Kasahara et al., 2003	coarse-textured gravel	/	1	1	/	/	/	upland bedrock contrained and unconstrained sections		1	USA; Oregon; Lookout Creek; Humid-semiarid biogeographic region rainfall 2300 -3550 mm/yr	/	1	forested Psudotsuga menziesii, Tsuga heterophylla, Thuja plicata, Alnus rubra and Salix spp.
Kasahara et al. , 2006	cobbles	<0.1m day ⁻¹ to >10 m d 1	ay riffles and step from restoration project	Ι	/	/	/	lowland	grass-vegetated floodplai	residential and agriculture fields	Canada; Ontario; Rouge River tributary 1 Rouge River tributary 2 Silver Creek; continental biogeographic region	unconfined aquifer	/	1
Kasahara et al. , 2007	gravel bed channel,silt and clay	0.3 to >20m day ⁻¹	gravel bar and menader bends were selected for studying		/	/	1	1	willows along the banks	agricultural (crop and soya beans)	Canada; Ontario; Boyne River and others continental biogeographic region	/	/	1

Kaser et al., 2013	soft sediment	2.7-2.8x10 ⁻⁵ ms ⁻¹	meander riffle-pool sequences	/	1	gaining	/	meanders within a narrow floodplain (<100)	/	/	Europe; UK; River Leith; Atlantic biogeographic Rainfall 900 mm/yr	aeolian Penrith Sandstone	/	1
Knust et al. , 2009	cobbles and boulders	1	straighter and wider	1	/	/	1	lowland	coniferous forest	/	USA; Nevada; Truckee River; Desert biogeographic	1	1	coniferous forests
Krause et al., 2013	Midsize gravel, Different sizes of sand Fine silty materials	hydraulic conductivities 10 ⁻³ to 10 ⁻⁵ ms ⁻¹	meandering section teep river banks, pool-riffle- pool sequences	1	1	/	1	lowland	/	extensive agricultural land use	Rainfall 18cm/year Europe; UK; River Tern; Atlantic biogeographic	Permo-Triassic sandstone	1	1
Laenen and Bencala, 2001	sands, silts, and clays	1	meandering and braided channel with many islands and sloughs.	1	/	/	1	lowland alluvial fans	1	/	USA; Oregon;Willamette River; Humid-semiarid	late Pleistocene	1	1
Lamontagne and Cook, 2007	coarse sand, gravel, and cobble	porosity of ~0.4	/	1	/	1	1		/	/	biogeographic Australia; Swamp Oak creek; Subtropical biogeographic region Rainfall (70 mm	/	/	/
Lansdown et al., 2012	sand, gravel, and cobbles on sands and silts	1	riffle and pool sequences	/	/	/	/	lowland	/	agricultural fields	Europe; UK; River Leith; Atlantic biogeographic	Permo-Triassic sandstone	:/	
Lautz and Siegel, 2006 Lautz and Siegel, 2007	gravel and fine sand but also silt	hydraulic conductivity st Table 1 Lautz and Siege 2006	ee meandering and straight I sections	/	debris dams and small log dams (natural and non)	1	1	upland	/	/	USA; Wyoming; Red Canyon Creek Semi-arid Intermountain province Rainfall 35 cm/yr	Phosphoria Formation. Chugwater Formation gravel terraces	/	livestock grazing
Malcolm et al., 2005	Podzols, gleys and peats	1	1	1	/	mean discharge of 0.5 m3 s-1, varying between <0.01 m3 s-1 in	1	upland	heather (Calluna) moorland	1	Europe; UK Glen Girnock; Atlantic	schists and gneisses	1	semi-natural heather (Calluna)
						the summer and >23 m3 s-1 during					biogeographic region			moorland
						the summer and >23 m3 s-1 during floods					biogeographic region Rainfall 1100 mm/yr			moorland
Malcolm et al. , 2010	overlain by glacial till and meltwater deposits and overlain by glacial and fluvioglacial deposits.	1	deepened and straightened pool riffles,bars	1	1	the summer and >23 m3 s-1 during floods	/	lowland	1	heather moorland, and commercial and semi-natural forest in the lower catchment	biogeographic region Rainfall 1100 mm/yr Europe; UK Newmills Burn Girnock Burn; Atlantic biogeographic region	psammite and pelite, granite and schist	1	moorland arable farming and livestook
Malcolm et al. , 2010 Malzone et al. , 2015	overlain by glacial till and meltwater deposits and overlain by glacial and fluvioglacial deposits. sand, gravel, clay, and till	1	deepened and straightened pool riffles,bars pool and riffles sequences	1	1	the summer and >23 m3 +1 during floods / gaining	1	lowland gaining stream	1	heather moorland, and commercial and semi-natural forest in the lower catchment /	biogeographic region Rainfall 1100 mm/yr Europe; UK Newmills Burn Gimock Burn Gimock Burn Gimock Jurn Burn Libon Creek Continental biogeographic region Rainfall	psammite and pelite, granite and schist Glaciated Appalachian Plateau	1	moorland arable farming and livestook Land use is primarily forest, dairy, and agriculture with few urban regions
Malcolm et al. , 2010 Malzone et al. , 2015 Morrice et al. , 1997	overlain by glacial till and meltwater deposits and overlain by glacial and fluvioglacial deposits. sand, gravel, clay, and till 2% gravel 46% sand 42% silt 10% clay 36% gravel 46% sand 94% silt 2% clay boulders cobbles gravel and sand	, ,	deepened and straightened pool riffles.bars pool and riffles sequences /	,	,	the summer and >23 m3 s-1 during floods / gaining /	1	lowland gaining stream upland	1	heather moorland, and commercial and semi-natural forest in the lower catchment /	biogeographic region Rainfall 1100 mm/yr Europe: UK Newmills Burn Gimock Burn; Atlantic biogeographic region USA: New York State; Elton Creek Continental biogeographic region Rainfall 760 and 1145mm USA: New Mexico:Aspen Creek; Semiarid biogeographic region	psammite and pelite, granite and schist Glaciated Appalachian Plateau Permian sandstone and slistone Bandelier turff granite/gneiss	1	moorland arable farming and livestook Land use is primarily forest, dairy, and agriculture with few urban regions /

Munz et al. , 2011	silt to coarse sand	/	meandering section of the river longitudinal pool-riffle-pool sequence	riparian reed and grass vegeta tion, wet grassland and sparse riparian soft-wood vegetation alongside	a- / 2	/	/	lowland narrow floodplain 100m wide steep slopes with occasional outcrops of the PTT by low devices of	grassland vegetation	livestock grazing	Europe; UK River Leith; Atlantic biogeographic region Rainfall 900 mm/yr	Permotriassic Sandstone	/	/
Mutz et al., 2000	Fine/ medium sand With some gravel	/	sinuous	Alnus glutinosa and Carpinus petulus In channel wood	/	1	/	lowland many springs and small streamlets draining from the valley slopes into the	1	/	Europe; Germany; Schlaube Stream; Continental biogeographic region	/	/	/
Mutz et al., 2003	coarse to fine sands	/	1	1	1	/	/	stream lowland	woodland	1	Europe; Germany; Schlaube Stream; Continental biogeographic region	/		/
O'Connor et al., 2008	boulders	/	riffle-pool slope of 0.026 sinuosity ratio of 1.1	1	/	1	1	lowland	/	/	USA; California; Elder Creek; Mediterranean biogeographic region	/	1	/
Ock et al., 2015	coarse gravel	/	4 channel-gravel features (bars and vegetated islands)	/	/	/	/	/	1	/	USA; California; The Trinity River; Mediterranean biogeographic region	1	/	Impounded by the Trinity Dam and the Lewiston Dam since 1964 Flow diverted into the Sacramento River for field irrigation
Pinay et al., 2009	gravel	$2 x 10^4$ and $3 x 10^3 \mbox{cms}^{-1}$	1	/	1	/	1	1	willow Salix sp.,moist tundra communities at low elevations; and extensive stands of green alder, Alnus crispa, at higher elevations. Little alder is found in riparian	/	Alaska: Lynx Creek; Artic biogeographic region	1	boreal forest association of white spruce, <i>Picea glauca</i> , interspersed with balsan poplar, <i>Populus</i> balsamifera	
Ruehl et al., 2006	1		1	1	/	mean daily discharge 0 and 610 m3/s from 1939 to 2003	/ k.	lowland	/	1	USA; California; Pajaro River; Mediterranean biogeographic region. Rainfall 33-55 cm/vr	Holocene deposits, the Aromas Formation (Pleistocene), Purisima Formation (Pliocene)	/	agriculture land use
Sawyer et al., 2012	Mix cobbles, gravel on silt	4.0 m d ⁻¹	two straight runs separated by a meander. Pool and riffle sequences	grasses and forbs.	1	1	/	lowland unconfined valley	1	/	USA; New Mexico; San Antonio Creek; Semiarid biogeographic region Rainfall 476 pm/or	1	/	1
Stofleth et al., 2008	silt and clay soils over sand	/	tortuous reach section mild channel slope	Ĩ	/	1	1	lowland straightened (upstream) and channelized (downstream) the chosen reach	1	Little Topashaw Creek: cultivated valley floors and forested hillslopes Goodwin Creek predominately is forest, pasture, and fallow lands	USA; Mississippi; Topashaw Creek; Continental biogeographic region	1	1	1
Stonedahl et al., 2012	gravel, pebble, and coarse sandy glacial	/	pools and riffles	1		/	/	lowland ditched and straightened	/	agricultural fields	USA; Indiana; Sugar Creek; Continental biogeographic region	/	/	1
Storey et al., 2003	recent alluvium	2 x 10 ⁻⁴ ms ⁻¹	1	1	1	/	1	lowland	/	/	Canada; Ontario; Speed River Continental biogeographic region	primary aquifer is in the dolomite bedrock. The bedrock is overlain by layers of low- permeability glacial till, kame, and outwash deposits	1	1
Swanson et al., 2010	sand and gravel	3.2x10 ⁻⁵	losing condition of the reach and pool-riffle-pool sequence	banks stabilized by dense communities of grasses	/	1	/	sinuous, with steep stream banks	/	/	USA; New Mexico; Jaramillo Creek; Semiarid biogeographic region	/	/	1
Thomas et al. , 2003	colluvial sediments coarse material	1	steep colluvial sections	arge oak-hickory stands with cove hardwoods common along the stream channel	1	1	/	steep	mountain laurel (Kalmia latifolia L.) and rhododendron (Rhododendron maximum L.)	/	USA; North Carolina; Snake Den Branch; Continental biogeographic region; Rainfall 200 cm/yr	crystalline rock, schists, gneiss	/	1

Triska <i>et al.</i> , 1993	gravel	1	1	/	/	1	/	1	/	/	USA; California; Little Lost Man Creek; Continental biogeographic region	/	1	/
Wagenhoff et al. , 2014	gravels and sand	/	wood logs in both streams	/	/	/	/	upland	/	/	New Zealand; Kiripaka Stream Whakakai Stream; Atlantic biogeographic region	sedimentary sandstones and siltstones	/	Kiripaka Stream native forest in the headwaters and intensive pasture grazed by sheep and cattle.
Wagner et al. , 2003	gravel to fine	/	steep slope in the upstream section. Downstream section characterized by wetland area between the hill and th left bank	Riparian vegetation: Salix caprea L., Salix myrsinifolia Picea abies L., Fraxinus excelsior L., Acer e pseudoplatanus L., Fagus sylvatica L. and Corylus aveilana L. Also present but less abundant are Acer platanoldes L., Alnus incana Cornus sanguinea L. and Crataegus monogyna	I	/	1	alpine	1	1	Europe; Austria; Oberer Seebach; Continental biogeographic region	,	/	Whalakai Stream evergreen polocarp- hardwood forest and /
Wondzell et al. , 2009	fine gravel to sand	I	low gradient	1	1	1	1	lowland	I	natural	USA; Alaska; Bambi Creek; Artic biogeographic region Rainfall 1600 mm/a	/	I	/
Wondzell et al. , 2006	boulders, cobbles, gravels and finer textured sediment	9.2 m day ⁻¹	steep channels	wood debris	/	1	/	unconstrained	/	/	USA; Oregon Andrews Experimental Forest; humid-semiarid	bedrock outcrops	/	1
Wroblicky et al., 1998	poorly sorted, gravelly, coarse sand with occasional cobbles and boulders.	see Table 2 for hydrauli conductivities	c /	/	1	/	/	variable	1	1	biogeographic region USA; New Mexico; Aspen Creek, Rio Calavera; semiarid biogeographic region	Lower Permian fine sandstones and siltstones of the Meseta Blanca Member of the Lower	/	1
Zametske et al., 2011	sand, gravel, cobbles, and boulders.	/	planebed and riffles 0.007 m m-1 (reach slope)	/	1	/	/		/	/	USA; Oregon Drift Creek; humid-semiarid biogeographic region. Rainfall 1190 mm/yr	reso rormation /	/	agriculture (lower catchment) forestry (upper catchment)

References

Angermann, L., Krause, S., and Lewandowski, J.: Application of heat pulse injections for investigating shallow hyporheic flow in a lowland river, Water Resources Research, 48, 1–16, 2012a.

Anibas, C., Verbeiren, B., Buis, K., Chorma'nski, J., De Doncker, L., Okruszko, T., Meire, P., and Batelaan, O.: A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza River, Poland, Hydrology and Earth System Sciences, 16, 2329–2346, 2012.

Anibas, C., Fleckenstein, J. H., Volze, N., Buis, K., Verhoeven, R., Meire, P., and Batelaan, O.: Transient or steady-state? Using vertical temperature profiles to quantify groundwater–surface water exchange, Hydrological Processes, 23, 2165–2177, 2009.

Arntzen, E. V., Geist, D. R., and Dresel, P. E.: Effects of fluctuating river flow on groundwater/surface water mixing in the hyporheic zone of a regulated, large cobble bed river, River Research and Applications, 22, 937–946, 2006.

Bourke, S. a., Cook, P. G., Shanafield, M., Dogramaci, S., and Clark, J. F.: Characterisation of hyporheic exchange in a losing stream using radon-222, Journal of Hydrology, 519, 94–105, http://dx.doi.org/10.1016/j.jhydrol.2014.06.057, 2014.

Briggs, M. a., Gooseff, M. N., Arp, C. D., and Baker, M. a.: A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage, Water Resources Research, 46, 1–13, doi:10.1029/2008WR006959, 2010.

Czernuszenko, W., RowiN[^] Ski, P.-M., and Sukhodolov, A.: Experimental and numerical validation of the dead-zone model for longitudinal dispersion in rivers, Journal of Hydraulic Research, 36, 269–280, doi:10.1080/00221689809498637, 1998.

Datry, T. and Larned, S. T.: River flow controls ecological processes and invertebrate assemblages in subsurface flowpaths of an ephemeral river reach, Canadian Journal of Fisheries and Aquatic Sciences, 65, 1532–1544, 2008.

Dujardin, J., Anibas, C., Bronders, J., Jamin, P., Hamonts, K., Dejonghe, W., Brouyère, S., and Batelaan, O.: Combining flux estimation techniques to improve characterization of groundwater–surface-water interaction in the Zenne River, Belgium, Hydrogeology Journal, pp.1657–1668, doi:10.1007/s10040-014-1159-4, http://link.springer.com/10.1007/s10040-014-1159-4, 2014.

Duke, J. R., White, J. D., Allen, P. M., and Muttiah, R. S.: Riparian influence on hyporheic-zone formation downstream of a small dam in the Blackland Prairie region of Texas, Hydrological Processes, 21, 141–150, doi:10.1002/hyp, 2007.

Edwardson, K. J., Bowden, W. B., Dahm, C., and Morrice, J.: The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska, Advances in Water Resources, 26, 907–923, doi:10.1016/S0309-1708(03)00078-2, 2003.

Fernald, a. G., Wigington, J., and Landers, D. H.: Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates, Water Resources Research, 37, 1681–1694, 2001.

Gooseff, M. N., McKnight, D. M., Runkel, R. L., and Vaughn, B. H.: Determining long time-scale hyporheic zone flow paths in Antarctic streams, Hydrological Processes, 17, 1691–1710, 2003.

Haggard, B. E., Storm, D. E., Tejral, R. D., Popova, Y. A., Keyworth, V. G., & Stanley, E. H. : Stream nutrient retention in three northeastern Oklahoma agricultural catchments. *Transactions of the ASAE*, *44*(3), 597, 2001

Hall RO Jr, Bernhardt ES, Likens GE.: Relating nutrient uptake with transient storage in forested mountain streams. Limnology and Oceanography 47: 255–265, 2002.

Hart DR, Mulholland PJ, Marzolf ER, DeAngelis DL, Hendricks SP.: Relationships between hydraulic parameters in a small stream under varying flow and seasonal conditions. Hydrological Processes 13: 1497–1510, 1999.

HarveyHarvey, J. W., Conklin, M. H., and Koelsch, R. S.: Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream, Advances in Water Resources, 26, 939–950, doi:10.1016/S0309-1708(03)00085-X, 2003.

Harvey, J. W., & Fuller, C. C.: Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. *Water Resources Research*, *34*(4), 623-636, 1998.

Jones, K. L., Poole, G. C., Woessner, W. W., Vitale, M. V., Boer, B. R., O'Daniel, S. J., Thomas, S. A., and Geffen, B. A.: Geomorphology, hydrology, and aquatic vegetation drive seasonal hyporheic flow patterns across a gravel-dominated floodplain, Hydrological Processes, 20 22, 2105–2113, 2008.

Kasahara, T. andWondzell, S.: Geomorphic controls on hyporheic exchange flow in mountain streams, Water Resources Research, 39, 1–14,30 doi:10.1029/2002WR001386, 2003.

Kasahara, T. and Hill, A. R.: Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada, Hydrological Processes, 20, 4287–4305, 2006.

Kasahara, T. and Hill, A. R.: Lateral hyporheic zone chemistry in an artificially constructed gravel bar and a re-meandered stream channel, Southern Ontario, Canada, Journal of the American Water Resources Association, 43, 1257–1269, 2007.

Käser, D., Binley, A., and Heathwaite, A.: On the importance of considering channel microforms in groundwater models of hyporheic exchange, River Research and Applications, 29, 528–535, 2013.

Knust, A. E., and J. J.Warwick: Using a fluctuating tracer to estimate hyporheic exchange in restored and unrestored reaches of the Truckee River, Nevada, USA, Hydrol. Processes, 23, 1119–1130, 2009.

Krause, S., Tecklenburg, C., Munz, M., and Naden, E.: Streambed nitrogen cycling beyond the hyporheic zone: Flow controls on horizontal patterns and depth distribution of nitrate and dissolved oxygen in the upwelling groundwater of a lowland river, Journal of Geophysical Research: Biogeosciences, 118, 54–67, 2013.

Laenen, A. and Bencala, K. E.: Transient storage assessments of dye-tracer injections in rivers of the willamette basin, oregon, JAWRA Journal of the American Water Resources Association, 37, 367–377, 2001.

Lamontagne, S. and Cook, P. G.: Estimation of hyporheic water residence time in situ using 222Rn disequilibrium, Limnol. Oceanogr: Methods, 5, 407–416, 2007.

Lansdown, K., Trimmer, M., Heppell, C., Sgouridis, F., Ullah, S., Heathwaite, A., Binley, A., and Zhang, H.: Characterization of the key pathways of dissimilatory nitrate reduction and their response to complex organic substrates in hyporheic sediments, Limnology and Oceanography, 57, 387–400, 2012.

Lautz, L. K., Siegel, D. I., and Bauer, R. L.: Impact of debris dams on hyporheic interaction along a semi-arid stream, Hydrological Processes, 20, 183–196, 2006.

Lautz, L. K., Siegel, D. I., and Bauer, R. L.: Dye tracing through Sinks Canyon: incorporating advanced hydrogeology into the University of Missouri's geology field camp, Journal of Geoscience Education, 55, 197–201, 2007.

Malcolm I, Soulsby, C., Youngson, F., and Hannah, D. M.: Catchment-scale controls on groundwater-surface water interactions in the hyporheic zone: Implications for salmon embryo survival, River Research and Applications, 21, 977–989, 2005.

Malcolm, I. a., Middlemas, C. a., Soulsby, C., Middlemas, S. J., and Youngson, a. F.: Hyporheic zone processes in a canalised agricultural stream: implications for salmonid embryo survival, Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176, 319–336, 10 doi:10.1127/1863-9135/2010/0176-0319, 2010.

Malzone, J. M., Anseeuw, S. K., Lowry, C. S., and Allen-King, R.: Temporal Hyporheic Zone Response to Water Table Fluctuations, Groundwater, 2015

Morrice, J. a., Valett, H. M., Dahm, C. N., and Campana, M. E.: Alluvial Characteristics, Groundwater–SurfaceWater Exchange and Hydrological Retention in Headwater Streams, Hydrological Processes, 11, 253–267, 1997.

Mouw, J. E. B., Stanford, J. A., and Alaback, P. B.: Influences of flooding and hyporheic exchange on floodplain plant richness and productivity, River Research and Applications, 25, 929–945, 2009.

Mutz, M.: Influences of woody debris on 5 flow patterns and channel morphology in a low energy, sand-bed stream reach, International Review of Hydrobiology, 85, 107–121, doi:10.1002/(SICI)1522-2632(200003)85:1<107::AID-IROH107>3.0.CO;2-L, 2000.

Munz, M., Krause, S., Tecklenburg, C., and Binley, A.: Reducing monitoring gaps at the aquifer-river interface by modelling groundwater surface water exchange flow patterns, Hydrological Processes, 25, 3547–3562, 2011.

Mutz, M. and Rohde, A.: Processes of Surface-Subsurface Water Exchange in a Low Energy Sand-Bed Stream, International Review of Hydrobiology, 88, 290–303, doi:10.1002/iroh.200390026, http://dx.doi.org/10.1002/iroh.200390026, 2003.

O' Connor, Ben L., and Judson W. Harvey. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems, Water Resources Research, 44.12, 2008.

Ock, G., Gaeuman, D., Mcsloy, J., and Kondolf, G. M.: Ecological functions of restored gravel bars, the Trinity River, California, Ecological Engineering, 83, 49–60, 2015.

Pinay, G., O'Keefe, T. C., Edwards, R. T., and Naiman, R. J.: Nitrate removal in the hyporheic zone of a salmon river in Alaska, River Research and Applications, 25, 367–375, 2009.

Ruehl, C., Fisher, a. T., Hatch, C., Huertos, M. L., Stemler, G., and Shennan, C.: Differential gauging and tracer tests resolve seepage fluxes in a strongly-losing stream, Journal of Hydrology, 330, 235–248, 2006.

Sawyer, A. H. and Cardenas, M. B.: Effect of experimental wood addition on hyporheic exchange and thermal dynamics in a losing meadow stream, Water Resources Research, 48, 2012

Stofleth, J. M., Shields, F. D., and Fox, G. a.: Hyporheic and total transient storage in small, sand-bed streams, Hydrological Processes, 22, 1885–1894, 2008.

Stonedahl, S. H., Harvey, J. W., Detty, J., Aubeneau, A., and Packman, A. I.: Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model, Water Resources Research, 48, 1–15, 2012.

Storey, R. G., Howard, K. W., and Williams, D. D.: Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three-dimensional groundwater flow model, Water Resources Research, 39, 2003.

Swanson, T. E. and Cardenas, 5 M. B.: Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat, Limnology and Oceanography, 55, 1741–1754, doi:10.4319/lo.2010.55.4.1741, 2010.

Thomas, S. a., Maurice Valett, H., Webster, J. R., and Mulholland, P. J.: A regression approach to estimating reactive solute uptake in advective and transient storage zones of stream ecosystems, Advances in Water Resources, 26, 965–976, 2003.

Triska, F. J., Duff, J. H., and Avanzino, R. J.: Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel-bottom stream: examining terrestrial-aquatic linkages, Freshwater Biology, 29, 259–274, 1993.

Wagenhoff, a. and Olsen, D.: Does large woody debris affect the hyporheic ecology of a small New Zealand pasture stream?, New Zealand Journal of Marine and Freshwater Research, 48, 547–559, doi:10.1080/00288330.2014.924539, http://www.tandfonline.com/doi/abs/10.1080/00288330.2014.924539, 2014.

Wagner, F. H. and Bretschko, G.: Riparian trees and flow paths between the hyporheic zone and groundwater in the Oberer Seebach, Austria, International Review of Hydrobiology, 88, 129–138, doi:10.1002/iroh.200390009, 2003.

Wondzell, S. M., LaNier, J., Haggerty, R., Woodsmith, R. D., and Edwards, R. T.: Changes in hyporheic exchange flow following experimental wood removal in a small, low-gradient stream, Water Resources Research, 45, 1–13, doi:10.1029/2008WR007214, 2009.

Wondzell, S. M.: Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA, Hydrological Processes, 20, 267–287, 2006.

Wroblicky, G. J., Campana, M. E., Valett, H. M., and Dahm, C. N.: Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems, Water Resources Research, 34, 317, 1998.