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Abstract. The Blue Nile Basin is confronted by land degradation problems, insufficient agricultural 17 

production, and limited number of developed energy sources. Hydrological models provide useful tools 18 

to better understand such complex systems and improve water resources and land management 19 

practices. In this study, SWAT was used to model the hydrological processes in the upper Blue Nile 20 

Basin. Comparisons between a Climate Forecast System Reanalysis (CFSR) and a conventional ground 21 

weather dataset were done under two sub-basin discretization levels (30 and 87 sub-basins) to create an 22 

integrated dataset to improve the spatial and temporal limitations of both datasets. A SWAT Error 23 

Index (SEI) was also proposed to compare the reliability of the models under different discretization 24 

levels and weather datasets. This index offers an assessment of the model quality based on precipitation 25 

and evapotranspiration. SEI demonstrates to be a reliable additional and useful method to measure the 26 

level of error of SWAT. The results showed the discrepancies of using different weather datasets with 27 

different sub-basins discretization levels. Datasets under 30 sub-basins achieved NS values of -0.51, 28 

0.74 and 0.84; p-factors of 0.53, 0.66 and 0.70; and r-factors of 1.11, 0.83 and 0.67 for the CFSR, 29 

ground and integrated datasets, respectively. While models under 87 sub-basins achieved NS values of 30 

-1.54, 0.43, and 0.80; p-factors of 0.36, 0.67 and 0.77; r-factors of 0.93, 0.68 and 0.54 for the CFSR, 31 

ground and Integrated datasets, respectively. Based on the obtained statistical results, the integrated 32 

dataset provides a better model of the upper Blue Nile Basin.  33 

 34 

 35 

Keywords.  SWAT, sub-basins discretization, CFSR, Integrated dataset, SWAT Error Index (SEI). 36 

 37 

 38 



2 
 

1 Introduction 1 

 2 

Water resources in the upper Blue Nile Basin are not being managed adequately; land use changes, fast 3 

population growth, land erosion and deforestation are some of the causes currently affecting the 4 

watershed. Therefore, in order to improve and provide better land use management practices and 5 

mitigate the alarmingly erosion problems researchers need to understand the hydrological conditions of 6 

the basin. Physically based, distributed models have provided a very efficient alternative for watershed 7 

researchers for analyzing the impact of land management practices on soil degradation, agriculture, 8 

water allocation and chemical yields (Setegn et al., 2008). Due to its versatility and applicability to 9 

complex watersheds, researchers have identified the Soil and Water Assessment Tool (SWAT) as one 10 

of the most intricate, consistent and computationally efficient models (Neitsch et al., 2009 and 11 

Gassman et al., 2007).  Recent studies are a prove that SWAT has become internationally and 12 

interdisciplinary accepted for modelling large and small watersheds (Malunjkar et al., 2015; Me et al., 13 

2015; Emam et al., 2016; Wang and Sun, 2016). SWAT provides a wide range of parameters to work 14 

with, allowing users to analyze several hydrological processes. It also has the advantage to have been 15 

developed to analyze the interaction of several hydrological parameters and the impact of land 16 

management practices specifically for large and complex basins, thus a good model to be applied in the 17 

upper Blue Nile Basin. However, due to the lack of a unifying theory to accurately model the 18 

interaction of the hydrological processes, complex hydrological models suffer from over-19 

parameterization and high predictive uncertainty (Sivapalan, 2006). Therefore, it is difficult to simulate 20 

the complex interactions of hydrological processes and weather conditions of watersheds without 21 

uncertainties. 22 

Among all the input parameters, the meteorological data has the most significant impact on the water 23 

balance of a watershed. However, a common problem to set up hydrological models of the upper Blue 24 

Nile Basin are related to data limitations. In developing countries the distribution of meteorological 25 

stations is irregular and dispersed (Worqlul et al., 2014).  Other weather data problems are related to 26 

measuring gauges; many weather data parameters contain missing data periods, and in several cases 27 

erroneous measurements are also possible. Thus, many models are often set up based on limited and 28 

incomplete data, which may lead to less reliable models. This lack of hydrological and climatic data 29 

has impeded in-depth studies of the hydrology of the upper Blue Nile Basin (Tekleab et al., 2011). 30 

Several previous studies have modeled the entire and also small catchments of the Nile Basin providing 31 

good and meaningful results (Tibebe and Bewket, 2011; Setegn et al. 2008; Setegn et al. 2010; 32 

Swallow et al. 2009 and Mulungu et al. 2007). However, most of the hydrological models are built for 33 

the Lake Tana basin and its sub-basins: Gummara, Ribb, Gilgel Abay and Koga (Chebud et al., 2009; 34 

Setegn et al., 2008, 2010 and Wale, 2008). Dessie et al. (2015) and Kebede et al. (2006) performed a 35 

very detailed daily water balance analysis and annual water budget for the Lake Tana basin where the 36 

runoff and outflows of ungauged catchment were estimated. Uhlenbrook et al. (2010) performed an 37 

analysis of the hydrological processes and responses of Gilgel Abay and Koga catchments applying the 38 

HBV model. Other studies have modeled the entire upper Blue Nile Basin, for instance, Abera et al. 39 

(2016) performed a water budget analysis in the upper Blue Nile Basin where precipitation, outflow 40 
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and evapotranspiration analyses were done. Betrie et al. (2011) and Easton et al. (2010) also modelled 1 

and calibrated the upper Blue Nile Basin using discharge data to estimate sediment yield and erodible 2 

areas of the basin, values of the calibrated parameters for flow and sediment were also shown. Dessie 3 

et al. (2014) also performed a runoff and sediment yield analysis in the upper Blue Nile Basin, 4 

although the main analysis was done at the Lake Tana region. Tekleab et al. (2011) also modeled the 5 

upper Blue Nile Basin where an interesting water balance analysis was done and monthly stream flows 6 

for several sub-catchments were modeled. However, most of the studies at large scale in the upper Blue 7 

Nile Basin do not provide detailed values for the each of the water balance components of the basin. 8 

Another important issue when setting up SWAT models is regarding the right number of sub-basins, 9 

because the number of meteorological stations to be used by SWAT will depend on the number of sub-10 

basins. For instance, if two stations are located within one sub-basin, SWAT will choose the station 11 

nearest to the center of the sub-basin, the other station will be disregarded. But if more sub-basins are 12 

created in a model, and these two stations lie in different sub-basins then both stations will be 13 

considered by SWAT, which provides different water balance results.  14 

Therefore, the first objective of this study has been the comparison of different weather datasets at 15 

large scale and under different sub-basin discretization levels. Two models were created using different 16 

sub-catchment discretization, 30 and 87 sub-basins, hereafter named SWAT30 and SWAT87, 17 

respectively (Figure 3). The time frame of the models was from 1990 to 2004, using a 4 years warm up 18 

period (1990-1993), a 6 years calibration period (1994-1999) and a 5 years validation period (2000-19 

2004). This comparison provided a better understanding of the effects of different sub-basin 20 

discretization levels on the total water balance of a watershed. It also helped to identify the temporal 21 

and spatial constraints of both datasets. Roth and Lemann (2016) performed a comparison between 22 

CFSR and conventional data in small catchments in the Ethiopian highlands, where they showed that 23 

the CFSR data provided unreliable results. However, Roth and Lemann (2016) made it clear that the 24 

CFSR data was tested only in very small catchments ranging from 112 to 477 hectares and not at large 25 

scale, also suggesting that CFSR data should be carefully checked and compared with conventionally 26 

measured data of similar climatic stations. Furthermore, this study proposes an integration of CFSR 27 

and conventional weather data to be used at large scale in the upper Blue Nile Basin with an area of 28 

approximately 199,812 km2. Additionally, the used CFSR stations were compared with conventionally 29 

measured data. Based on the obtained statistical results, the integration of these two datasets provides 30 

better models and a better representation of the magnitudes and distribution of the different weather 31 

variables in the upper Blue Nile Basin.  32 

After a hydrological model has been setup, a critical point to determine its quality is the water balance. 33 

Therefore, in addition to graphical assessments, other statistical indicators as Nash-Sutcliffe coefficient 34 

(NS), percent bias (PBIAS), and ratio of the root-mean-square error (RSR) to the standard deviation of 35 

measured data were proposed by Moriasi et al. (2007). Based on these commonly used statistical 36 

indicators most of the SWAT models provide very good results for discharge values at the outlet of a 37 

basin (Griensven et al., 2012). However, the evaluation of the models based on both evapotranspiration 38 

and water balance are not discussed in details, and the evapotranspiration behavior of a catchment is 39 

usually not presented. Several published documents could even report unrealistic parameter values 40 
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(Griensven et al., 2012). Therefore, the second objective of this study has been to propose an index, the 1 

SWAT Error Index (SEI), to quantify the level of error of a hydrological model. The SEI uses flexible 2 

weighting values for the relative Root Mean Square Error (rRMSE) obtained from measured flow 3 

discharge data and satellite evapotranspiration data. SEI showed to be an useful additional method to 4 

develop models that can provide a better representation of the water balance of a watershed. 5 

 6 

2 Materials and methods 7 

 8 

2.1 Study site 9 

 10 

The upper Blue Nile Basin, also known as Abay basin, is located in the northwestern highlands of 11 

Ethiopia, approximately between Latitude 7 40’N and 12 51’N, and Longitude 34 25’E and 39 49’ E, 12 

with elevations raging between 483 and 4248 m.a.s.l. The total area of the upper Blue Nile Basin is 13 

approximately 199,812 km2, including two sub-basins shared with Sudan in the northern region.  The 14 

climate in the upper Blue Nile Basin fluctuates from humid to semi-arid and it is mainly dominated by 15 

latitude and altitude, with average temperatures ranging from 13°C in the south eastern to 26°C in the 16 

south western regions. The lowest rainfall data detected during the current research period (1990-2004) 17 

corresponds to the eastern region, for the sub-basins of Beshelo, North Gojam, South Gojam, Welaka, 18 

Jemma, Muger, Guder and Fincha; where the precipitation drops below 1000 mm/year (Figure 1 and 19 

Figure 4). While the highest precipitation ranges belong to the western region: Didessa, Wenbera, 20 

Anger, Dabus and Beles; with precipitations above 1900 mm/year (Figure 1 and Figure 4). The 21 

topographic disparity and variations in altitude of the upper Blue Nile Basin have a great impact in the 22 

weather, soil and vegetation conditions. Consequently, rainy seasons are very variable in this watershed, 23 

for instance the total discharge peaks at the Eldiem gauging station can reach 7,000 m3/s; and dry 24 

seasons can go as low as 100 m3/s (Figure 7 and Figure 8). Soils in the upper Blue Nile Basin are 25 

mainly dominated by ten types (Figure 2): Eutric Nitosols, Eutric Cambisols, Humic Fluvisols, Cambic 26 

Arenosols, Chromic Vertisols, Dystric Cambisols, Eutric Fluvisols, Eutric Regosols, Orthic Acrisols 27 

and Pellic Versitols (FAO, 2015). 28 

 29 

2.2 Datasets 30 

 31 

A Shuttle Radar Topographic Mission Digital Elevation Model (SRTM DEM) from the Consultative 32 

Group on International Agricultural Research-Consortium for Spatial Information (CGIAR-CSI) was 33 

used to setup the model. This DEM has a resolution of 90 meters, and was used to perform an 34 

automatic watershed delineation of the upper Blue Nile Basin, where the flow direction, flow 35 

accumulation and streams network were automatically determined by SWAT. 36 

  37 

The second input dataset was a land use map, which was obtained from the GIS Portal of the 38 

International Livestock Research Institute (ILRI), and corresponds to the year 2004 39 

(http://data.ilri.org/geoportal/catalog/main/home.page). 40 

http://data.ilri.org/geoportal/catalog/main/home.page
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The soil map used for these models was developed by the Food and Agriculture Organization of the 1 

United Nations (FAO-UNESCO). This world soils map was prepared by FAO and UNESCO at 1:5 000 2 

000 scale (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-3 

the-world/en/). The information provided by this map was used in combination with the Harmonized 4 

World Soil Database v1.2, a database that combines existing regional and national soil information 5 

(http://www.fao.org/soils-portal/soil-survey/ soil-maps-and-databases/harmonized-world-soil-database-6 

v12/en/). 7 

 8 

The last input dataset was the meteorological information. Two weather datasets from different sources 9 

were used to setup the models. The first weather dataset was collected from the National Meteorology 10 

Agency of Ethiopia (NMA). The data used for these models correspond to 42 stations distributed in the 11 

upper Blue Nile Basin (Figure 3). However, only 15 of these stations are capable of measuring all 5 12 

parameters needed to set up SWAT: rainfall, temperature, relative humidity, solar radiation and wind 13 

speed. Moreover, few of these 15 station have available complete and continuous data for the entire 14 

period under study (1990-2004). For instance, the collected data for solar radiation was limited to 2 15 

stations only, wind speed was available for 4 stations; only maximum temperature was available for 4 16 

stations, relative humidity was available for 3 stations, and precipitation was available for all 42 17 

stations. Additionally, the quality of this observed data is somehow questionable. Many meteorological 18 

stations are more than 10 years old, and their constant technical failure due to the lack of continuous 19 

expert maintenance also questions the quality of the data. Large part of the available ground data has 20 

been collected from old stations that could have in many cases malfunctioning, defected and outdated 21 

devices. The second weather dataset was the Climate Forecast System Reanalysis (Figure 3), a dataset 22 

that has been produced by the National Centers for Environmental Prediction (NCEP) 23 

(http://globalweather.tamu. edu/). CFSR data brings several uncertainties due to its multiple spatial and 24 

temporal interpolations (Dile and Sriniavasan, 2014). It was generated using different assimilation 25 

techniques that include satellite radiances, advanced coupled atmospheric, oceanic and land surface 26 

modelling components. The global atmosphere resolution of CFSR data is approximately 38km. These 27 

atmospheric, oceanic and land surface output products are available at a 0.5°x0.5° latitude and 28 

longitude resolution. Both weather datasets used for these models correspond to the period 1990-2004. 29 

 30 

For the analysis of the quality of the SWAT models, monthly flow discharge data and 31 

evapotranspiration data were used. The flow discharge data was obtained from the Ministry of Water, 32 

Irrigation and Electricity of Ethiopia and corresponds to the gauging stations at Kessie and Eldiem at 33 

the main stream of the upper Blue Nile Basin (Figure 3). For the evapotranspiration analysis, data from 34 

the MOD16 Global Terrestrial Evapotranspiration Project (http://www.ntsg.umt.edu/project/mod16) 35 

was obtained. The global evapotranspiration data from MOD16 are regular 1 km2 land surfaces 36 

datasets for the 109.03 million km2 of vegetated area in the whole globe at different time interval: 8 37 

days, monthly and annual, from which monthly data generated specifically for the Nile basin was used. 38 

 39 

 40 

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/%20soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/%20soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.ntsg.umt.edu/project/mod16
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2.3 Water balance and evapotranspiration processes in SWAT 1 

  2 

Water balance in watersheds is one of the most important factors used to determine if a model is good 3 

enough for any particular application. Hence, analyses of the processes involved in the estimation of 4 

the water balance of a watershed (evapotranspiration, runoff and groundwater) can provide more 5 

details about the hydrological behavior of a watershed and can be used to understand the interaction of 6 

main hydrological processes (Zhang et al., 1999). For the input data processing and hydrological 7 

estimation SWAT is using two levels of discretization, sub-basins and Hydrologic Response Units 8 

(HRUs). HRUs are contained in the sub-basins and are defined based on the land use map, soil map 9 

and slope classes. HRUs allow the model to reflect differences in evapotranspiration and other 10 

hydrologic conditions for each crop and soil type. The water balance in SWAT is calculated for each 11 

HRU using the following formula (Neitsch et al., 2009): 12 

 13 

𝑆𝑊𝑡 = 𝑆𝑊0 +∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1

 14 

Equation (1) 15 

 16 

where SWt is the final soil water content (mm), SW0 
is the initial soil water content on day i 17 

(mm),  Rday 
is the amount of rainfall on day i (mm), Qsurf 

is the amount of surface runoff on day i (mm), 18 

Ea is the amount of evapotranspiration on day i (mm), Wseep 
is the amount of water entering the vadose 19 

zone from the soil profile on day i (mm), and Qgw 
is the amount of return flow on day i (mm). 20 

SWAT can estimate the evapotranspiration using several methods, from which Hargreaves and 21 

Penman-Monteith methods were compared in this study (Figures 11 and Figure 12). The Hargreaves 22 

method calculates the potential evapotranspiration using minimum and maximum daily temperature as 23 

input data (Hargreaves and Samani, 1982). This method was chosen as a better option for the upper 24 

Blue Nile Basin due to the data scarcity of the meteorological stations in the basin. Hargreaves 25 

equation can be used with the sole input of temperature data, while Penman-Monteith requires more 26 

data, for instance wind speed, solar radiation and relative humidity. Hargreaves method has been 27 

recommended for computing potential evaporation in cases when only the maximum and minimum 28 

temperatures are available (Allen et al., 1998). A study from Tekleab et al. (2011) was also able to 29 

successfully use the Hargreaves equation to calculate the potential evaporation in the upper Blue Nile 30 

Basin. Several improvements were made to the original equation since 1975 (Hargreaves and Samani, 31 

1982). The final form of the Hargreaves equation used in SWAT and published in 1985 (Hargreaves et 32 

al., 1985) is as follows (Neitsch et al., 2009): 33 

𝜆𝐸0 = 0.0023 ∗ 𝐻0 ∗ (𝑇𝑚𝑥 − 𝑇𝑚𝑛)
0.5 ∗ (�̅�𝑎𝑣 + 17.8) 34 

Equation (2) 35 

where λ is the latent heat of vaporization (MJ kg-1), E0 is the potential evapotranspiration (mm d-1), H0 36 
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is the extraterrestrial radiation (MJ m-2d-1), Tmx and Tmn are the maximum and minimum air temperature 1 

for a given day (°C), respectively, and Tav is the mean air temperature for a given day. 2 

Following the potential evapotranspiration, the actual evapotranspiration must be calculated. Initially, 3 

SWAT calculates the evaporated water intercepted by the canopy, then, maximum transpiration and 4 

soil evaporation are calculated. Evaporation from canopy is very significant in forested areas and in 5 

several cases can be higher than transpiration. Transpiration for the Hargreaves equation is calculated 6 

as (Neitsch et al., 2009): 7 

𝐸𝑡 =
𝐸0
′ ∙𝐿𝐴𝐼

3.0
  8 

Equation (3) 9 

 10 

where 𝐸𝑡  is the maximum transpiration on a given day (mm H2O), 𝐸0
′  is the potential 11 

evapotranspiration adjusted for evaporation of free water in the canopy (mm H
2
O), and LAI is the leaf 12 

area index. 13 

Evaporation from the soil on a given day is calculated with following equation (Neitsch et al., 2009): 14 

𝐸𝑠 = 𝐸0
′ ∙  𝑐𝑜𝑣𝑠𝑜𝑙  15 

Equation (4) 16 

where 𝐸𝑠  is the maximum soil evaporation on a given day (mm H
2
O), 𝐸0

′  is the potential 17 

evapotranspiration adjusted for evaporation of free water in the canopy (mm H
2
O), and 𝑐𝑜𝑣𝑠𝑜𝑙  is the 18 

soil cover index. 19 

2.4 Weather data processing and integration  20 

 21 

If input data is used without the respective analyses, models will provide less reliable results. And even 22 

small errors in temperature or precipitation can result in considerable inaccuracies and impacts on the 23 

models results (Maraun et al., 2010). Tekleab et al. (2011) and Uhlenbrook et al. (2010) checked the 24 

data quality of stream flow data in the upper Blue Nile Basin based on comparisons graphs and 25 

additionally a double mass analysis. In this study the data quality and consistency of the time series on 26 

monthly basis in terms of magnitude and spatial distribution of the five input variables required by 27 

SWAT were also analyzed through comparison graphs (Figure 4, Figure 5 and Figure 6) to determine 28 

the deficiencies of the two datasets (CFSR and ground datasets) and to form an integrated dataset.   29 

 30 

In the first case, the ground dataset was used without alterations to create the SWAT models. This 31 

ground dataset obtained from the NMA corresponds to 42 stations in the upper Blue Nile Basin, where 32 

most of the meteorological stations were located in the eastern part of the watershed (Figure 3). 33 

Additionally, the data obtained from these stations had several months of missing data, leading to 34 

temporal uncertainties. 35 
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For the second case, the SWAT models were setup using the CFSR dataset, also without alterations. 1 

This dataset is evenly distributed at 38 km resolution, with over 100 stations available for the upper 2 

Blue Nile Basin, and is temporally continuous. 3 

However, after performing a quality check through a comparison of maps and graphs between the 4 

ground and CFSR datasets (Figures 4, Figure 5 and Figure 6), it was noticed that not all the weather 5 

variables from CFSR are reliable. The precipitation distribution appeared to be underestimated in the 6 

eastern region of the upper Blue Nile Basin and overestimated in the western region (Figure 4). The 7 

map created from the ground stations (Figure 4, right) showed a precipitation distribution in the 8 

western region that is the result of SWAT using the precipitation values from the nearest stations. Two 9 

stations in the eastern part, Alemketema and Adet (Figure 5A, 5B, and Figure 6A, 6B), showed the 10 

underestimation of the CFSR rainfall at the eastern region; and Ayehu (Figure 5C and Figure 6C) 11 

showed the overestimation of the CFSR rainfall in the western region. For this reason, additional CFSR 12 

rainfall stations were not used in the integrated dataset. However, the graphical and statistical 13 

comparisons of the few available stations for relative humidity, temperature and solar radiation showed 14 

an acceptable level of agreement between the ground and CFSR datasets. The seasonal behavior and 15 

magnitudes of the values for these variables are similar, additionally the 1-1 graphs showed an 16 

acceptable degree of matching (Figure 6). For instance, the values for relative humidity for Debre 17 

Tabor and Aykel with both datasets show very similar values (Figure 5D, 5E and Figure 6D, 6E). The 18 

comparisons of maximum temperature for Aykel also showed good degree of matching (Figure 5G and 19 

Figure 6G), although for Bahir Dar the results were not very good showing a slight underestimation 20 

(Figure 5H and Figure 6H). The solar radiation comparison at Bahir Dar (Figure 5I and Figure 6I) also 21 

showed a good agreement between both datasets, although results at Debre Tabor (Figure 5J and Figure 22 

6J) showed slightly different results. The exception was the wind speed data, which in both cases at 23 

Adet and Ayehu (Figure 5K, 5L and Figure 6K, 6L) was overestimated by the CFSR dataset. 24 

 25 

Therefore, these two datasets were integrated to form a third input dataset for SWAT with the objective 26 

of overcoming their spatial and temporal limitations. Tekleab et al. (2011) and Uhlenbrook et al. (2010) 27 

filled in missing stream flow data of the upper Blue Nile Basin using regression analysis, which is also 28 

a good approach to fill in missing meteorological values. However in this study, the missing values of 29 

the ground dataset refer to complete time series of a specific station and variable. Thus, to create the 30 

integrated dataset, the 42 rainfall stations of the ground dataset were taken as basis, this means that the 31 

location of the weather stations of the final integrated dataset correspond to the location of the 42 32 

rainfall stations of the ground dataset. From there, the missing variables (relative humidity, temperature 33 

and solar radiation values) of those 42 rainfall stations were completed by using the variables of their 34 

nearest CFSR stations. The integrated dataset has 42 stations where the data for each variable was 35 

combined as follows: the precipitation is formed by 42 rainfall stations taken entirely from the ground 36 

dataset; the relative humidity is formed by 3 stations from the ground dataset and 39 stations from the 37 

CFSR dataset; the maximum temperature is formed by 4 stations from the ground dataset and 38 38 

stations from the CFSR dataset, the values for the minimum temperature were taken totally from the 39 

CFSR dataset; the solar radiation was formed by 2 stations from the ground dataset and 40 stations 40 
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from the CFSR dataset; no wind speed data was used in the models. However, missing daily values 1 

within a variable were completed by the built-in SWAT weather generator. This integrated dataset 2 

contained more data than the ground dataset, and also provided more reliable precipitation values and 3 

distribution than those provided by the CFSR dataset.  4 

 5 

2.5 Parameterization for the calibration and validation of the models 6 

 7 

One of the major constrains of hydrological modeling is the difficulty of the parameterization of 8 

different variables (Hauhs and Lange, 2008). The correct combination of the values of the parameters 9 

influencing the ground water, runoff and evapotranspiration processes is a key point on a model 10 

calibration. The characterization of watersheds considering their most influential variables is a good 11 

approach to determine the predictive capabilities of a model (McDonnell et al., 2007). Initially, it is 12 

recommended to perform calibrations for annual discharge values, once acceptable results are acquired; 13 

a calibration based on monthly values can be performed to achieve more detailed results (Neitsch et al., 14 

2009). During a model calibration, a potential value can be assigned for each parameter and for each 15 

HRU, which would generate a large number of parameters. However, these values can also be applied 16 

as a global modification to estimate parameters by multiplying or adding values. Table 2 shows the 17 

parameterization applied to the respective regions in the watershed to calibrate stream flows at Kessie 18 

and Eldiem, where r stand for relative values and v for values to be replaced. The same 19 

parameterization was applied to all the models with different sub-catchment delineations and data 20 

sources.  Land coverage, soil types and slope have a great impact on the total water balance, and a 21 

calibration with wrong parameters values will only produce models with good statistical results but 22 

with less realistic representation of the actual properties of the watershed. Therefore, the values of the 23 

parameters were modified within the ranges specified by the SWAT Input/Output Documentation 2012 24 

(Arnold et al., 2012). For instance, the available water content of the soils were calibrated in such a 25 

way that they did not change the physical properties of the soils. The Curve Number 2 (CN2) values 26 

were defined within different ranges based on the type of land cover.  27 

 28 

2.6 Statistical indices and SWAT quality analyses 29 

 30 

2.6.1 Calibration and validation with flow discharge 31 

 32 

In the case of hydrological modeling, limitation with the data quality and capabilities of the model to 33 

represent the complexity of the hydrological process often constitute obstacles. Therefore, models must 34 

be calibrated, and a statistical analysis is also required to determine how reliable the results of the 35 

model are prior to their applications (Bastidas et al., 2002). Since sediment data for the upper Blue Nile 36 

Basin is very limited, the calibration and validation of the models were done using flow discharge data 37 

only. The calibrated stations were Kessie and Eldiem at the mainstream of the Blue Nile River (Figure 38 

3). For the automatic calibration the Sequential Uncertainty Fitting version 2 (SUFI-2) was used to 39 

efficiently calculate the coefficient of determination (R2) and Nash Sutcliffe coefficient (NS) as 40 
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likelihood measures, trying to catch the seasonal dynamics and magnitudes of the measured discharge 1 

data.  2 

SUFI-2 is a sequential parameter estimation method that operates within parameter uncertainty 3 

domains (Tanveer et al. 2016). SUFI-2 performs several iterations, where each iteration provides better 4 

results than the previous iteration and reduces the parameters ranges. In SUFI-2 the objective is to 5 

capture most of the observed values within the 95PPU (95% prediction uncertainty) range at the same 6 

time that thinner 95PPU range is preferable. The 95PPU represents the uncertainty in the model outputs. 7 

Therefore, the simulation starts assuming large and physically meaningful parameter ranges, so that the 8 

measure data falls within the 95PPU, and continuously decreases the ranges of the 95PPU and 9 

produces better results. The final 95PPU is the 95% of the observed data captured within the final 10 

95PPU band, which is defined by the final parameters intervals. Therefore, the best simulation is the 11 

best iteration within the 95PPU, and considering that is difficult to claim a specific parameter range for 12 

a certain watershed, then any solution within the 95PPU should be an acceptable solution. The fit of 13 

simulated results within the 95PPU is quantified through the p-factor and r-factor. The p-factor is the 14 

percentage of observed data falling within the 95PPU and ranges from 0 to 1, while r-factor is the 15 

thickness of the 95PPU band and ranges from 0 to the infinity. The quality of a calibration and the 16 

prediction uncertainty are judged based on how close p-factor is to 1 and how close r-factor is to 0 17 

(Yang et al., 2007). A p-factor of 1 and r-factor of 0 represents the measured data. As the number of 18 

iterations increases SUFI-2 continues to reduce the 95PPU thickness and produces smaller values for p-19 

factor and r-factor, trying to find a better combination of the parameter values. The uncertainty in 20 

SUFI‐2 is expressed as an uniform distribution of parameters ranges, and parameters uncertainties are 21 

considered for any possible source in variables, for instance model inputs, model structure, model 22 

parameters and also measured data (Abbaspour et al., 2015). The uncertainties in the outputs are 23 

expressed as the 95PPU. The uncertainty analysis in SUFI-2 is based on the concept that a single 24 

parameter value generates a single model response, while a parameter range or propagation of the 25 

parameter uncertainty leads to the 95PPU.  26 

 27 

The coefficient of determination (R2) is a measure of how well the regression line represents the data 28 

and gives a measure of the proportion of the fluctuation of a variable that is predictable from another 29 

variable. The values for this coefficient denote the strength of the linear relation between 𝑄𝑚 and 𝑄𝑠, 30 

representing the percentage of the data closest to the line of best fit.  The R2 objective function 31 

provided in SWAT-CUP is as follows: 32 

 33 

𝑅2 =
[∑ (𝑄𝑚,𝑖 − �̅�𝑚)(𝑄𝑠,𝑖 − �̅�𝑠)

𝑛
𝑖=1 ]

2

∑ (𝑄𝑚,𝑖 − �̅�𝑚)
2𝑛

𝑖=1 ∑ (𝑄𝑠,𝑖 − �̅�𝑠)
2𝑛

𝑖=1

 34 

Equation (5) 35 

 36 

where Q are discharge values, m and s stand for observed and simulated values, respectively, and i is 37 

the ith measured or simulated data. 38 

 39 
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Nash-Sutcliffe coefficient (NS), is widely used as goodness-of-fit indicator that expresses the potential 1 

predictive ability of a hydrological model (Nash and Sutcliffe, 1970). The Nash-Sutcliffe objective 2 

function provided in SWAT-CUP is as follows: 3 

 4 

𝑁𝑆 = 1 −
∑ (𝑄𝑚 − 𝑄𝑠)𝑖

2𝑛
𝑖=1

∑ (𝑄𝑚,𝑖 − �̅�𝑚)
2𝑛

𝑖=1

 5 

Equation (6) 6 

 7 

where Q are discharge values, m and s stand for observed and simulated data, respectively, and the bar 8 

stands for the average values.  9 

 10 

2.6.2 Actual evapotranspiration analysis 11 

 12 

Additional to the calibration and validation of the SWAT models with flow discharge, comparisons 13 

with evapotranspiration data could also provide more details to quantify the reliability of hydrological 14 

models. Therefore, actual evapotranspiration data for the upper Blue Nile Basin was obtained from the 15 

MODIS Global Terrestrial Evapotranspiration Project (MOD16). This is a global estimated data from 16 

land surface by using satellite remote sensing data. This data is intended to be used to calculate 17 

regional water balances, hence a very important source of data for watershed management and 18 

hydrological models analyses. The original MOD16 ET algorithm (Mu et al., 2007) was based on the 19 

Penman-Monteith equation (Monteith, 1965), while the current MOD16 ET has used the improved 20 

evapotranspiration algorithm (Mu et al., 2011). In this improved algorithm, the sum of the evaporation 21 

from the wet canopy surface, transpiration from the dry canopy surface and evapotranspiration from 22 

the soil surface constitute the total daily ET (Mu et al., 2011). The formulae for the total daily ET (𝜆𝐸) 23 

and potential ET (𝜆𝐸𝑃𝑂𝑇) are: 24 

 25 

𝜆𝐸 = 𝜆𝐸𝑤𝑒𝑡_𝐶 + 𝜆𝐸𝑡𝑟𝑎𝑛𝑠 +  𝜆𝐸𝑆𝑂𝐼𝐿 26 

𝜆𝐸𝑃𝑂𝑇 = 𝜆𝐸𝑤𝑒𝑡_𝐶 + 𝜆𝐸𝑃𝑂𝑇_𝑡𝑟𝑎𝑛𝑠 +  𝜆𝐸𝑤𝑒𝑡_𝑆𝑂𝐼𝐿 + 𝜆𝐸𝑆𝑂𝐼𝐿𝑃𝑂𝑇 27 

Equation (7) 28 

 29 

where 𝜆𝐸𝑤𝑒𝑡_𝐶 is the evaporation from the wet canopy surface, 𝜆𝐸𝑡𝑟𝑎𝑛𝑠 is the transpiration from the dry 30 

canopy surface (plant transpiration), 𝜆𝐸𝑆𝑂𝐼𝐿  is the evaporation from the soil surface, 𝜆𝐸𝑃𝑂𝑇_𝑡𝑟𝑎𝑛𝑠 is the 31 

potential plant transpiration, 𝜆𝐸𝑆𝑂𝐼𝐿𝑃𝑂𝑇 is the potential soil evapotranspiration. 32 

 33 

Previous studies have already shown that the annual ET derived from the MOD16 algorithm are lower 34 

than those provided by hydrological models, principally when using the Hargreaves method. For 35 

instance, Ruhoff et al. 2013, detected an underestimation of 21% in the evapotranspiration provided by 36 

MOD16 in the Rio Grande basin, Brazil, where the underestimation was mainly caused by the 37 

misclassification of the land use. Sun et al., 2007, also identified certain disadvantages in the MOD16 38 

evapotranspiration. Nevertheless, in this study the evapotranspiration estimations from SWAT were 39 
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compared with satellite evapotranspiration data. This was done only as comparison and not with 1 

objective of calibrating the models, and also as a test to understand the performance of the proposed 2 

SWAT Error Index (SEI).  3 

Evapotranspiration estimations shown as percentage of the average annual precipitation are frequently 4 

given for the upper Blue Nile Basin. But these percentages would yield totally different amounts 5 

depending on the average annual precipitation provided by different weather data sources and under 6 

different sub-basin discretization. Therefore, a comparison of the actual evapotranspiration data 7 

provided by MOD16 with the values calculated by SWAT under Hargreaves and Penman-Monteith 8 

equations was done to show the level of discrepancy between data sets (Figure 11, Figure 12 and 9 

Figure 14). MOD16 ET data is available only for the period 2000-2010, hence, the comparison was 10 

done only for 5 years (2000-2004).  11 

 12 

2.6.3 SWAT Error Index (SEI) 13 

 14 

A common problem of hydrological models is the wrong combination of the values of the calibrated 15 

parameters, which can also lead to good graphical results, consequently good statistical values, but 16 

wrong water balance values. Consequently, good R2 and NS values do not always denote the reliability 17 

of a model. R2 and NS are common statistical parameters used to evaluate and compare time series in 18 

hydrological models (Abbaspour, 2015; De Almeida Bressiani et al., 2015; Dile and Srinivasan, 2014; 19 

and Gebremicael et al., 2013). Additionally, rainfall distribution, parameterization and 20 

evapotranspiration are also crucial points to be considered in any hydrological model. Therefore, in this 21 

study, after good calibration and validation values for R2 and NS were achieved, and after a 22 

comparison between the SWAT ET and MOD16 ET values was done, an index to quantify the models 23 

quality has been introduced, the SWAT Error Index (SEI). This index is intended to be used only as an 24 

additional indicator to assess the reliability of the SWAT model, where the relative Root Mean Square 25 

Error (rRMSE) was chosen as fitting function.  26 

 27 

Several reliable measured flow discharge datasets are available for rivers, but that is not the case for 28 

evapotranspiration data. However, satellite evapotranspiration data is available for most watersheds in 29 

the world. Furthermore, the measured discharge dataset and the satellite estimated evapotranspiration 30 

dataset do not have the same level of reliability. Therefore, SWAT Error Index uses different weighting 31 

values (W1 and W2) to define differences in the level of reliability of the datasets, 0.7 for flow discharge 32 

and 0.3 for evapotranspiration. The proposed equation for SEI is as follows: 33 

 34 

𝑆𝐸𝐼 = 𝑊1

(

 
 
(√
∑ (𝑄𝑜𝑖−𝑄𝑠𝑖)

2𝑛
𝑖=1

𝑁
)

(𝑄𝑜 𝑚𝑎𝑥−𝑄𝑜 𝑚𝑖𝑛)

)

 
 
+𝑊2

(

 
 
(√
∑ (𝐸𝑇𝑜𝑖−𝐸𝑇𝑠𝑖)

2𝑛
𝑖=1

𝑁
)

(𝐸𝑇𝑜 𝑚𝑎𝑥−𝐸𝑇𝑜 𝑚𝑖𝑛)

)

 
 

 35 

Equation (8) 36 

 37 

 38 
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The first part of the equation corresponds to the rRMSE of the values obtained from the discharge data, 1 

where, Qoi is the observed discharge data (m3/s), Qsi is the simulated discharge data (m3/s), Qomax is 2 

the maximum value of the observed discharge data and Qomin is the minimum value of the observed 3 

discharge dataset. The second part of the formula corresponds to the rRMSE achieved from the 4 

evapotranspiration data that was obtained from MOD16, where, EToi is the MOD16 evapotranspiration 5 

values, ETsi is the SWAT simulated evapotranspiration data, ETomax and ETomin are the maximum and 6 

minimum values of the MOD16 evapotranspiration data, respectively. W1 and W2 are the assigned 7 

weighted values for discharge and evapotranspiration, respectively.  8 

 9 

SEI ranges from 0 to +∞, with 0 corresponding to the ideal value. The closer the SEI value of the 10 

model is to 0, the model will have a better match with the flow discharge and the evapotranspiration 11 

data. Since SEI includes the rRMSE values for discharge and evapotranspiration data, a model with a 12 

good SEI results represents a model with a good agreement between these two hydrological processes, 13 

which are two important processes influencing the water balance of a watershed. By analyzing the SEI 14 

results, the quality of the combination of the parameter used for the calibration could also be evaluated 15 

and is less expectable to have a wrong parameterization. SEI was tested for two cases, the first one in 16 

whole upper Blue Nile Basin and the second in the Ribb sub-catchment in the Lake Tana region. 17 

 18 

3 Results and discussions 19 

  20 

3.1 Impact of different sub-catchment discretization levels and rain gauge combinations 21 

 22 

After analyzing the different datasets under different discretization levels, it was detected that not only 23 

the input data and the parameterization have a critical impact on the water balance, but also the sub-24 

basins distribution. The water balance analysis was done for two calibrated stations, three datasets, and 25 

two different sub-basins distributions. Water balance results for the upper Blue Nile Basin and also the 26 

values for the different hydrological processes and models are given in Table 3, values for these 27 

hydrological processes from literature are also given in Table 1 (Cherie, 2013 and Mengistu et al., 28 

2012).  The average annual precipitation in the upper Blue Nile Basin differs between literature (Table 29 

1) and also between datasets sources (Table 3). The uncertainty of the rainfall in the upper Blue Nile 30 

Basin basin is also noticeable when models with different sub-basin delineations are compared and 31 

show different values (Table 3, Figure 7 and Figure 8 for Eldiem; Figure 9 and Figure 10 for Kessie; 32 

with SWAT30 and SWAT87, respectively). With the values provided in Table 2 was possible to obtain 33 

good statistical values for the calibrated models (Table 4).  34 

 35 

Figure 7 and Figure 8 show the magnitude and dynamics of the measured and estimated monthly 36 

discharge flow at Eldiem. The integrated dataset provided good statistical values for R2 and NS (Table 37 

4) under both discretization levels. The other models using the ground and CFSR datasets also showed 38 

good R2 results, but very low NS values, with the exception of SWAT87 with ground data (Table 4, 39 

Figure 7 and Figure 8). Although R2 is always high in all the models, R2 is a coefficient that measures 40 
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only the dynamic of a model. Meaning that the models behave with accuracy matching the seasonality 1 

of the rainfalls and dry periods in the upper Blue Nile Basin. However, NS is probably a more 2 

important factor to be considered as it can be used to quantitatively describe the accuracy of models 3 

outputs. Calibrations and validations at Kessie showed good statistical values for the models using the 4 

ground and integrated datasets, achieving good R2 and NS values (Table 4, Figures 9 and Figure 10). 5 

 6 

SWAT30 under the CFSR dataset provides an average annual precipitation of 1253 mm (Table 3). 7 

While SWAT87 shows an average annual precipitation increases to 1481 mm. This rainfall increase 8 

provided by the CFSR dataset is caused by the number of sub-basins, SWAT87 considered more 9 

stations than the SWAT30. However, both average annual precipitation values compared to the other 10 

two datasets and to the literature (Table 1) is still within acceptable ranges for upper Blue Nile Basin, 11 

and it is not the main factor affecting the water balance, but its distribution in the watershed (Figure 4). 12 

Figure 9 and Figure 10 showed how CFSR data is underestimating the precipitation in the eastern part 13 

of the basin (at Kessie) compared to that provided by the ground and integrated datasets. Figure 9 and 14 

Figure 10 also showed the effect of the number of sub-basins on the simulated discharge flow. The 15 

flow discharge provided by the CFSR data is slightly higher in SWAT87 compare to SWAT30, 16 

although in both cases this dataset continues to underestimate the flow discharge at Kessie. As the 17 

precipitation in the watershed changes in magnitude and distribution, the parameterization for the 18 

calibration of the models will be different. Therefore, in order to meet good R2 and NS for the model 19 

with a wrong precipitation distribution (in this case the CFSR data), the values of the parameters 20 

needed to be modified to unrealistic values. 21 

 22 

3.2 Average annual evapotranspiration and the impact of different data sources and PET 23 

methods 24 

 25 

The evapotranspiration has been another critical factor subject to analysis in this study. Depending on 26 

the weather dataset, the evapotranspiration values in the upper Blue Nile Basin varied from 729 27 

mm/year in SWAT30 with the CFSR dataset up to 932 mm/year in SWAT30 with the integrated 28 

dataset. SWAT models using the ground and integrated datasets and the Hargreaves equation showed 29 

acceptable discharge values and trends compared to those of measured discharge data (Figures 7 and 30 

Figure 8). However, the models overestimated the evapotranspiration values compared to those 31 

provided by MOD16 (Figure 11). Nevertheless, when using the Penman-Monteith method, the SWAT 32 

models using the ground and integrated datasets provided more similar evapotranspiration values, 33 

better R2 and NS values compared to the values given by the MOD16 evapotranspiration data (Figure 34 

12). The best match with the evapotranspiration values provided by MOD16 are obtained using the 35 

CFSR dataset, this model provided low evapotranspiration values (Figure 12) consequently 36 

overestimated the flow discharges (Figure 7 and Figure 8). For the second case done in the Rib sub-37 

catchment the evapotranspiration rates provided by the ground and CFSR datasets are much better 38 

having relatively good statistical values compared to those obtained at large scale in the upper Blue 39 

Nile Basin (Figure 13 and Figure 14). 40 
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3.3 SWAT Error Index (SEI) evaluation 1 

 2 

In the first case, SEI results for the Eldiem station (Table 5) showed that the behavior and capability of 3 

SEI to quantify the level of error of a model through an evaluation of both flow discharge and 4 

evapotranspiration estimations is good. For instance, values in Table 5 showed that the lower the value 5 

of the discharge data is, the value for evapotranspiration tends to increase. This is because the flow 6 

discharge data is being matched, however the evapotranspiration increases and tends to overestimate 7 

those value provided by MOD16 ET. If MOD16 ET had a good representation of the 8 

evapotranspiration data of a watershed, then the rRMSE values for both discharge and 9 

evapotranspiration values should be closer to 0, which could provide better SEI values (second test 10 

done at Ribb sub-catchment). However, SEI showed that the models using the integrated datasets are 11 

more reliable than the other two datasets, achieving a SEI values of 0.29 and 0.27 for SWAT30 and 12 

SWAT87, respectively. It also demonstrated that the CFSR dataset is less accurate, with SEI values of 13 

0.4 for both SWAT30 and SWAT87. In the second test done at the Ribb sub-catchment, the calibration 14 

with flow discharge data provided good statistical results, where the CFSR dataset achieved R² and NS 15 

values of 0.81 and 0.75, respectively; and the Ground dataset achieved R² and NS values of 0.85 and 16 

0.83, respectively (Figure 13 and Table 6). Unlike the SEI test performed for the entire upper Blue Nile 17 

Basin, the statistical results obtained from the comparison of the evapotranspiration data in the Ribb 18 

sub-catchment are significantly better. The CFSR dataset achieved R² and NS values of 0.78 and 0.47, 19 

respectively; while the ground dataset achieved R² and NS values of 0.59 and 0.24, respectively 20 

(Figure 14 and Table 6). SEI showed better values than those obtained from the first test done in the 21 

whole BLUE NILE BASIN. The CFSR dataset provided better R² and NS values than the ground 22 

dataset for the evapotranspiration analysis, however the ground dataset performed better during the 23 

calibration with outflow data (Table 6).  SEI values for both datasets were 0.16, a much better value 24 

that those obtained in the first test (Table 5). This second test provides a better understanding of how 25 

SEI works, it also proved how using reliable evapotranspiration data can improve the SEI values. 26 

 27 

4 Conclusions 28 

 29 

The CFSR dataset and a conventional observed ground dataset were analyzed in terms of statistical 30 

results, water balance and precipitation distribution in the upper Blue Nile Basin. After detecting their 31 

limitations and disadvantages, an integration of both datasets was proposed with the purpose of 32 

overcoming their uncertainties and limitations. This data integration method was effectively used in the 33 

upper Blue Nile Basin to create a better SWAT model and can also be applied in other watersheds 34 

where observed data is limited and incomplete. However, data analyses and tests should always be 35 

performed before performing an integration for other watersheds. Despite its limitations, the CFSR 36 

datasets continuous to be an important source that can be very useful in regions where conventional 37 

measured data is not available. 38 

 39 
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A comparison of the three datasets under different discretization levels was also performed. This 1 

comparison was important to obtain a better understanding of how crucial the sub-basin discretization 2 

process is during a SWAT model setup. The comparisons showed that the three input datasets, under 3 

models with different number of sub-basins, yield different results. The number of sub-basins in a 4 

SWAT model will affect the magnitude of the flow discharge, hence the total water balance of a 5 

watershed.  6 

The comparison of the results of SWAT30 demonstrates that the values for the total annual average 7 

precipitation at Eldiem are similar for the three datasets. Nevertheless, only the model using the CFSR 8 

dataset was not able to achieve good water balance results under similar parameterization. The quality 9 

of the CFSR rainfall data is not reliable for the upper Blue Nile Basin, although this case cannot be 10 

generalized for other watersheds in the world. However, this dataset needs to be equally verified in 11 

other watersheds before using it. For the second case, the three datasets were analyzed in more details 12 

using SWAT87, and although an exact number of the correct precipitation amounts in the upper Blue 13 

Nile Basin cannot be given, CFSR data showed an overestimation of the rainfall and also a wrong 14 

precipitation distribution compared to the other datasets. Additionally, the model under 87 sub-basins 15 

was the model that provided more details in terms of number of HRUs, and also achieved better 16 

statistical values. Therefore, this study proposes that 87 is a suitable number of sub-basins for the upper 17 

Blue Nile Basin. SWAT87 is more suitable to perform several types of hydrological analyses and 18 

propose watershed management practices in the Blue Nile Basin.  19 

 20 

Furthermore, the SWAT Error Index (SEI) has proved to be an useful additional tool to express the 21 

level of error of SWAT models. This index used the weighted relative Root Mean Square Error 22 

(rRMSE) of the discharge and evapotranspiration data. SEI was tested in two locations, being the 23 

second case done at the Ribb sub-catchment more accurate. Nevertheless, further tests and 24 

improvements should be done to this index. SEI also showed that the integrated dataset successfully 25 

achieved better and more reliable results than the ground and CFSR datasets.  The integrated dataset 26 

improved the results of the model, obtaining better R2, NS and SEI values.  27 

Although further improvements must done in the methods proposed in this study, the integration of 28 

datasets, the sub-basin delineation and the application of the SEI, are important approaches that can be 29 

applied in other watersheds and can significantly help to develop better hydrological models. 30 

 31 
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7 List of tables 1 

 2 

Table 1: Average annual water balance components in the upper Blue Nile Basin based on different literature. 3 

 4 

Cherie, 2013 

Hydrologic parameters 
Calibration period 1976-1982 

(mm/year) 

Validation period 1992-1995 

(mm/year) 

Precipitation 1338 1348 

Evapotranspiration 962 960 

Revap/shallow aquifer 59 58 

Surface runoff 143 151 

Return flow 70 38 

Transmission losses 9 9 

Mengistu et al., 2012 

Hydrologic parameters 
Calibration period 1991-1996 

(mm/year) 

Validation period 1997-2000 

(mm/year) 

Precipitation 1422 1547 

Evapotranspiration 820.9 816 

Groundwater in the 

shallow aquifer 
264.8 302 

Surface runoff 314.4 410 

Transmission losses 11 12 

Groundwater recharge 286 327 

 5 

 6 

Table 2: Parameterization of the SWAT models using the SUFI-2 algorithm for the period 1990-2004. 7 

 8 

 9 

 10 

Parameter Description 
Type of 

change 

Threshold 
Fitted 

value 

Ranges of fitted absolute 

values for the BLUE 

NILE BASIN calibration 
Min Max 

CN2 
Curve number for 

moisture condition II 
r -0.1 0.1 -0.05 60-87 

SOL_AWC 
Available water 

capacity of the soil 
r -2 2 1.7 0.095-0.49 

ESCO 

Soil evaporation 

compensation factor 

HRU 

v 0.01 1 0.01 0.01 

EPCO 

Plant uptake 

compensation factor 

HRU 

v 0.01 1 0.01 1 

ESCO 

Soil evaporation 

compensation factor 

BSN 

v 0.01 1 0.01 0.01 

EPCO 

Plant uptake 

compensation factor 

BSN 

v 0.01 1 0.01 1 

CANMX 
Maximum canopy 

storage 
v 0 100 100 57 

RCHRG_DP 
Deep aquifer 

percolation fraction 
v 0.01 1 0.01 0.01 
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 1 

 2 

 3 

Table 3: Water balance analysis in the upper Blue Nile Basin (1990-2004). 4 

 5 

Water balance in the Blue Nile Basin (All values in mm/year) 

Hydrological 

Component 

SWAT30 SWAT 87 

CFSR 

Data 

Ground 

Data 

Integrat

ed 

Data 

CFSR 

Data 

Ground 

Data 

Integrat

ed 

Data 

Precipitation 1253 1301 1270 1481 1209 1243 

Evapotranspiration 729 887 932 848 798 860 

Revap/shal. aquifer 27 31 31 27 27 28 

Surface runoff 172 167 114 228 166 125 

Return flow 274 107 139 307 136 147 

Lateral flow 40 50 50 80 73 74 

Perc. to deep aquifer 313 199 175 349 168 181 

Rechg. deep aquifer 16 10 9 17 8 9 

 6 

 7 

 8 

Table 4: Statistical results for the calibrations and validations with outflow data at Eldiem and Kessie gauging 9 

stations. 10 

 11 

 
CFSR dataset Ground dataset Integrated dataset 

Sub-basins 30 87 30 87 30 87 

Eldiem 

Calibration 

R2 0.94 0.96 0.86 0.92 0.88 0.92 

NS -0.51 -1.54 0.74 0.43 0.84 0.80 

p-factor 0.53 0.36 0.66 0.67 0.70 0.77 

r-factor 1.11 0.93 0.83 0.68 0.67 0.54 

Validation 
R2 0.92 0.89 0.96 0.95 0.92 0.94 

NS -0.48 -0.05 0.45 0.85 0.91 0.91 

Kessie 

Calibration 

R2 0.87 0.77 0.74 0.77 0.74 0.77 

NS 0.46 0.37 0.72 0.72 0.74 0.72 

p-factor 0.49 0.57 0.60 0.63 0.60 0.63 

r-factor 0.61 0.71 0.72 0.59 0.72 0.59 

Validation 
R2 0.86 0.74 0.78 0.80 0.76 0.78 

NS 0.49 0.37 0.74 0.76 0.74 0.78 

 12 

 13 

 14 

 15 

 16 
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 2 

 3 

Table 5: SWAT Error Index results for the upper Blue Nile Basin. 4 

 5 

SWAT30 

Process Weighting 

CFSR Dataset Ground Dataset Integrated Dataset 

rRMSE 
Weighted 

rRMSE 
rRMSE 

Weighted 

rRMSE 
rRMSE 

Weighted 

rRMSE 

Water Discharge 0.7 0.33 0.231 0.17 0.119 0.098 0.068 

Evapotranspiration 0.3 0.58 0.174 0.70 0.21 0.75 0.225 

SWAT Error Index 0.4 0.33 0.29 

SWAT87 

Process Weighting 

CFSR Dataset Ground Dataset Integrated Dataset 

rRMSE 
Weighted 

rRMSE 
rRMSE 

Weighted 

rRMSE 
rRMSE 

Weighted 

rRMSE 

Water Discharge 0.7 0.37 0.259 0.17 0.119 0.1 0.07 

Evapotranspiration 0.3 0.46 0.138 0.58 0.174 0.66 0.198 

SWAT Error Index 0.4 0.29 0.27 

 6 

 7 

 8 

Table 6: Statistical results for the Ribb sub-catchment in the Lake Tana region of the upper Blue Nile Basin. 9 

 10 

Statistical results for the Ribb sub-catchment 

Process Weighting 

CFSR Dataset Ground Dataset 

R² NS rRMSE 
Weighted 

rRMSE 
R² NS rRMSE 

Weighted 

rRMSE 

Water 

Discharge 
0.7 0.81 0.75 0.13 0.091 0.85 0.83 0.11 0.077 

Evapotrans

piration 
0.3 0.78 0.47 0.23 0.069 0.59 0.24 0.28 0.084 

SWAT Error Index 0.16 0.16 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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8 List of figures 1 
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 19 

Figure 1: Official sub-basin distribution of the upper Blue Nile Basin. 20 

 21 
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 34 

 35 
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 37 

 38 

Figure 2: FAO/UNESCO soil map of the upper Blue Nile Basin. 39 
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Figure 3: Weather and hydrometric gauging stations in the upper Blue Nile Basin under two discretization 20 

levels, 30 and 87 sub-basins (SWAT30 and SWAT87). 21 
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 34 

Figure 4: Spatial annual rainfall variation in the upper Blue Nile Basin using two different data sources: 35 

CFSR dataset (Left) and Ground dataset (Right). 36 

 37 
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 36 

 37 

Figure 5: Comparisons between the Ground and CFSR weather datasets. A, B and C are average monthly 38 
precipitation; D, E and F are average monthly relative humidity; G and H are average monthly maximum 39 
temperatures; I and J are average monthly solar radiation; K and L are average monthly wind speed. 40 
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 36 

Figure 6: Significance of matching between the Ground and CFSR weather datasets. A, B and C are 37 
average monthly precipitation; D, E and F are average monthly relative humidity; G and H are average 38 
monthly maximum temperatures; I and J are average monthly solar radiation; K and L are average 39 
monthly wind speed. 40 
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 15 

Figure 7: Calibration and validation of SWAT30 at Eldiem. Calibration results achieved R2 and NS values of: 16 

Integrated data: 0.88, 0.84; Ground data: 0.86, 0.74; CFSR data: 0.94, -0.51; respectively. Validation results 17 

achieved R2 and NS of: Integrated data: 0.92, 0.91; Ground data: 0.96, 0.45; CFSR data: 0.92, -0.48; 18 

respectively. 19 
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 33 

Figure 8: Calibration and validation of SWAT87 at Eldiem. Calibration results achieved R2 and NS values of: 34 

Integrated data: 0.92, 0.80; Ground data: 0.92, 0.43; CFSR data: 0.96, -1.54; respectively. Validation results 35 

achieved R2 and NS of: Integrated data: 0.94, 0.91; Ground data: 0.95, 0.85; CFSR data: 0.89, -0.05; 36 

respectively. 37 

 38 

 39 

 40 
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Figure 9: Calibration and validation of SWAT30 at Kessie. Calibration results achieved R2 and NS values of: 16 

Integrated data: 0.74, 0.74; Ground data: 0.74, 0.72; CFSR data: 0.87, 0.46, respectively. Validations results 17 

achieved R2 and NS values of: Integrated data: 0.76, 0.74; Ground data: 0.78, 0.74; CFSR data 0.86, 0.49; 18 

respectively. 19 
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 33 

Figure 10: Calibration and validation of SWAT87 at Kessie. Calibration results achieved R2 and NS values of: 34 

Integrated data: 0.77, 0.72; Ground data: 0.77, 0.72; CFSR data 0.77, 0.37; respectively. Validations results 35 

achieved R2 and NS values of Integrated data: 0.78, 0.78; Ground data: 0.80, 0.76; CFSR data 0.74, 0.37; 36 

respectively. 37 

 38 

 39 

 40 
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Figure 11: Average monthly evapotranspiration analysis using SWAT87 and the Hargreaves method, with R2 16 

and NS values of Integrated dataset: 0.63, -2.32; Ground dataset: 0.60, -1.32; CFSR dataset: 0.63, -1.20; 17 

respectively, compared to the MOD16 data. 18 
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 33 

Figure 12: Average monthly evapotranspiration analysis using SWAT87 and the Penman-Monteith method, 34 

with R2 and NS values of Integrated dataset: 0.36, -0.02; Ground dataset: 0.34, -0.10; CFSR dataset: 0.74, 0.03; 35 

respectively, compared to the MOD16 data. 36 
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Figure 13. Flow discharge in the Ribb sub-catchment. Calibration with outflow data achieved R2 and NS 16 

values of CFSR dataset: 0.81, 0.75 and Ground dataset: 0.85, 0.83; respectively. 17 
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Figure 14. Average monthly evapotranspiration in the Ribb sub-catchment. Statistical results achieved R2 and 33 

NS values of CFSR dataset: 0.78, 0.47 and Ground dataset: 0.59, 0.24; respectively, compared to the MOD16 34 

data. 35 

 36 

 37 

 38 

 39 

 40 


