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Abstract. Unconsolidated sediment cover thickness (D) above bedrock was estimated by using a publically available well

database from Norway, GRANADA. General challenges associated with such databases typically involve clustering and bias.

However, if information about horizontal distance to the nearest bedrock outcrop (L) is included, does the spatial estimation of

D improve? This idea was tested by comparing two cross-validation results: ordinary kriging (OK) where L was disregarded;

and co-kriging (CK) where cross-covariance between D and L was included. The analysis showed only minor differences5

between OK and CK with respect to differences between estimation and true values. However, the CK results gave in general

less estimation variance compared to the OK results. All observations were declustered and transformed to standard normal

probability density functions before estimation and back transformed for the cross-validation analysis. The semivariogram

analysis gave correlation lengths for D and L of approx. 10 km and 6 km. These correlations reduce the estimation variance

in the cross-validation analysis because more than 50% of the data material had two or more observations within a radius of10

5 km. The small-scale variance of D, however, was about 50% of the total variance, which gave an accuracy of less than 60%

for most of the cross-validation cases. Despite of the noisy character in the observations, the analysis demonstrated that L can

be used as a secondary information to reduce the estimation variance of D.

1 Introduction

Global warming and natural climate fluctuations give rise to urgent calls from water authorities to quantify impacts on the15

hydrological cycle. These needs are based on numerous indications of expected changes in the pattern of precipitation, tem-

perature and vegetation (Haddeland et al., 2013; Bierkens, 2015; Tang and Oki, 2016). A cardinal question in hydrological

modelling is the storage capacity of water in the catchment. Storage capacity determines catchment response to input from

rainfall or snow melt events. Storage volumes are therefore important for river discharge calculations and water balance as-

sessments (Meyles et al., 2003; Tromp-van Meerveld and McDonnell, 2006; Beven, 2006; Skaugen et al., 2015). The primary20

storage capacity in many catchments is governed by the spatial distribution of sediments in the landscape (Lamb et al., 1997).

Most hydrological models use lumped averages for physical parameters in space, either for large areas or for the entire

catchments (Beven and Binley, 1992; Devi et al., 2015). In some of these models, the storage volume is a calibration parameter
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that may be difficult to assess. In such cases the interpretation of the storage parameter may be misleading or even inconsistent

with physics (Skaugen and Onof, 2013). Thus, to increase prediction reliability, calibration parameters should be replaced by

physically based estimates as far as possible.

Soil properties have been registered and mapped by national authorities for many years, but the same attention has not been

directed towards the sediment thickness and the bedrock topography. Some remarkable exceptions do exist. One example is5

the bedrock topography map of Iowa, USA (Witzke et al., 2003). This map was constructed by using well data and digital

soil maps that also included observations of outcrops and sparse cover (<1 m) of sediments (Anderson, 2011). In the study

presented below, similar data sources were used: a public well database and geological maps showing exposed bedrock and

very thin cover of sediments. The intention with this paper is to test simple geostatistical methods to produce similar maps with

less consumption of time.10

Monitoring of environmental variables takes place as a response to an increasing awareness of human impact on nature. A

large number of such variables are available today in public databases. One example is the Norwegian well database GRANADA

(NGU, 2016a). According to Norwegian legislation, new wells, boreholes and probe drillings are reported to the Norwegian

Geological Survey (Lovdata, 1996). One of the variables stored in GRANADA is the thickness of unconsolidated sediments

at the borehole location D(ui). The purpose of this study was to explore the possibilities of using recordings of D(ui) to15

estimate sediment thickness E[D(u)], and estimation variance V ar[D(u)]. The number of recorded D(ui) is increasing for

every day, but the average spatial density of D(ui) is still relatively sparse. Hence, to improve the estimation quality, which

in this context means to minimize the estimation variance V ar[D(u)], an auxiliary function is attached to D(u), namely the

horizontal distance to the nearest outcrop L(u) (Fig. 1).

L(u) is interesting to explore as a secondary variable because it is easy to derive at any location of interest. The statistical20

relation, however, betweenD(u) and L(u) is not obvious except when the bedrock is exposed to the atmosphere. If L(uj) = 0,

then by definition D(uj) = 0. It does not imply, however, that if L(uj) is small, D(uj) is also small, because the bedrock

topography may be very irregular or even discontinuous in some places. The contrary is also true: If L(uj) is enormous, then

D(uj) is not necessarily always large. The reason is of course that the bedrock may undulate below a thin cover of sediments.

Even though there are local anomalies, there might exist a statistical relation between L(u) and D(u) that could be used to25

reduce the estimation uncertainty of D(u).

It should be emphasized that the relation between D(u) and L(u) depends on the geological setting. The data used for the

current study is taken from an area where the distribution of unconsolidated sediments is determined by the last glaciation

period.

Before presenting the data material in more detail, some statistical challenges should be mentioned. In brief these challenges30

are related to: asymmetric probability density functions (pdfs); clustering; and bias of empirical data.

High resolution environmental data usually deviate strongly from Gaussian pdfs. The experimental pdfs of D(ui) and L(ui)

reveal a majority of small values and a few extremely large values. Standard Gaussian statistics can therefore not be applied

directly, at least not without modifications. The challenge of non-Gaussian pdfs is relevant for all problems dealing with

processes at different scales. Bayesian statistics have given successful contributions to the estimation of non-Gaussian variables35
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by using Markov Chain Monte Carlo simulation algorithms (MCMC) and by including independent (a priori) information

(Omre and Halvorsen, 1989; Andrieu et al., 2003). Recently, an efficient numerical method has been introduced (Rue et al.,

2009). In this method the estimation is expressed as a stochastic partial differential equation and the pdfs are derived for

heterogeneous stochastic fields.

It is beyond the scope of this article to review the large number of different methods, but it should be kept in mind that5

there exist numerous of methods that are available for exploring environmental data. The present study use the normal score

transform (Deutsch and Journel, 1998), which means that after the transform, standard Gaussian statistics were utilized for

estimation and afterwards transformed back to the original sampling domain.

Environmental data are prone to preferential sampling. Preferential sampling usually implies clustering and bias. In this

context clustering means inhomogeneous sampling frequency in space, while bias is systematic over (or under) sampling with10

respect to low (or high) values. Bias and clustering may appear as independent processes but they may also be related to

each other by another (hidden) factor. The data material used for the current study was affected by serious clustering. The

reason is simply that wells, boreholes and probe drillings are located where people live. Urban areas account for a higher

density of observations than rural or remote areas (Fig. 2). Clustering affects the estimation of statistical moments, and the

effect of over- and under representation of observations should therefore be suppressed. Omre (1984) suggested calculating15

Thiessen polygons to control clustering effects. The area of the polygons is proportional to the weight coefficients associated

to the different observations. In other studies observations are iteratively removed in the calculations of statistical moments

(Olea, 2007). For the current study, a grid based method was applied where declustering weights were obtained by gridding

the sampling domain. The number of observations within each grid cell were used to calculate weight coefficients (Deutsch

and Journel, 1998). In this way areas with high density of observations received less weight than areas with less frequent20

observations.

Biased experimental data is ubiquitous in environmental science. A prominent example is observations of precipitation.

Several studies document a systematic deficit in the observations due to wind and turbulence (Wolff et al., 2015). In the context

of sediment thickness D(u), there are also reasons for systematic underrepresentation of observations with large D(ui). In

locations where D(u) is large, it is more likely that drilling is terminated before reaching basement because of the drilling25

costs than in locations with less sediment thickness. Abandoned wells are not recorded in the database, and the result is a

systematic overrepresentation of wells with minor D(ui). The working hypothesis is to use the statistical relation between

D(u) and L(u) to improve the estimates of D(u) in a similar way as wind speed is used as secondary information for better

estimates of precipitation (Wolff et al., 2015).

2 Material30

2.1 Point observations of sediment thickness

In 1996, Norwegian authorities implemented mandatory reporting of all drillings related to groundwater in mainland Norway

(Lovdata, 1996). The purpose of the legislation was to provide the society with relevant groundwater observations. The Ge-
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ological Survey of Norway (NGU) manages the regulations and store the data in the well database GRANADA. As a public

service, the data is freely accessible for downloading (NGU, 2016a). According to recent statistics about 44% of the recorded

boreholes were drilled for the purpose of energy extraction. (NGU, 2016b). At the startup of this study the total number of

recorded observations was 54194 (Tab. 1). Of these recordings, 48628 were boreholes, 3740 wells were in unconsolidated

sediments, and 1826 were probe drillings. Explicit documentation of D was not available for all GRANADA recordings. For5

boreholes however, it is possible to derive D with quite high precision by using information of the casing length. A casing is

necessary in locations with unconsolidated material to prevent sediments from entering the well. Because casing is a consid-

erable cost, the casing length is usually reported. Based on the GRANADA recordings, the casing was on average drilled 2 m

into the bedrock. Hence, in cases where only casing length was reported, D was set equal to the casing length minus 2 m. In

the following, the GRANADA recordings are referred to as boreholes because this is the vast majority of the data material.10

2.2 Land cover information

The secondary variable: L, was calculated from digital maps of unconsolidated sediments (NGU, 2016c). Total areal extension

of different sediments are listed in Tab. 1. The sediments are represented in terms of polygons in a Geographical Information

System (GIS). Sediments covered by water (lakes, rivers, and glaciers) are not included in Tab. 1. The total sum of land cover

polygons is 307104 km2, while the total area of mainland Norway is 323781 km2 (Kartverket, 2016). The difference should in15

principle be identical to the areal extension of lakes, rivers and glaciers. Thus, according to the land cover polygons (Tab. 1),

water covers 5.2% of mainland Norway. Updated figures from the Norwegian Mapping Authority, however, show that lakes

(5.7%), glaciers (0.8%) and rivers (0.4%) constitute together 6.9% of mainland Norway (Kartverket, 2016). The difference

(1.7%) indicate the irreducible uncertainty for this kind of statistics. The relative uncertainty for individual categories is higher

because positive and negative deviations cancel each other. It is also important to keep in mind that the actual uncertainty,20

with respect to areal information, increases with decreasing size of the land category. This precaution is relevant when point

information from one data source (GRANADA) is combined with areal information from another source (GIS-maps).

2.3 Geological setting

Before explaining the primary screening of boreholes, a few words on the geological setting are required. The vast bulk volume

of unconsolidated sediments on mainland Norway are from the last glaciation (Weichselian). More than 90% of the glacial25

erosion products were deposited off shore, and exposed bedrocks or sparse covers of sediments characterize the Norwegian

landscape (Olsen et al., 2013). Here, in the current study, the term ’exposed bedrock’ includes polygons identified as uncovered

bedrock (id. 130, Tab. 1). In addition polygons labeled as ’exposed bedrock or very thin cover of soil or organic matter’

were included (id. 100, 101 and 140, Tab. 1). Exposed bedrock constitutes about 35% of mainland Norway according to this

definition. Patchy and thin till material cover about 20% of the land area (id. 12, Tab. 1), and Olsen et al. (2013) include this30

category when they define areas classified as exposed bedrock. In that case exposed bedrock makes 55% of the land area.

Peatlands cover 5% of the country (id 90, Tab. 1). According to Olsen et al. (2013) the average thickness of the continuous till
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is approximately 6 m. They did not include any further discussion on the estimation of sediment thickness based on recorded

data. This issue will be elaborated further in the study presented below.

2.4 Data screening

There is no mandatory method for recording of drilling coordinates as part of the GRANADA standard. Quality tags were

therefore attached to the observations to identify the uncertainty of the geographical coordinates. Geographical precision is5

important to consider during inference on statistical structure of the data material, and it is decisive for spatial resolution of the

final estimates. Hence, for the purpose of the current study, observations with less precision than 10 m (18898) were cancelled

from further analysis. Wells located on unconsolidated sediments but without any information on D, were also omitted (3090)

from the analysis. The same was done for probe drillings without information about D (1186 locations). Finally, all boreholes

or probe drillings located inside polygons classified as ’exposed bedrock’ (10588) were omitted from further analysis. In these10

areas D is by definition given as: E[D|L= 0] = 0.

Summing up the cancelled locations (numbers given in parenthesis above), the primary screening reduced the number of

recordings from 54194 to 20432. The location of the remaining boreholes (Nt = 20432) are indicated in Fig. 2. Some of these

boreholes (750) had also recordings of D = 0, and these wells were also excluded from the statistical analysis. Thus, the

number of wells included in the further analysis were N = 19682. For these wells L > 0 and D > 0.15

2.5 Exploratory data analysis

Fig. 2 shows that both D and L deviate strongly from Gaussian (normal) probability density functions (pdfs). The same is also

true for the logarithmic values (Fig. 2). Mean value of D=5.5 m, which corresponds well to the value reported by Olsen et al.

(2013), but 50% of the recorded data had D <= 2 m, which implies a positively skewed pdf. Average horizontal distance to

outcrop L= 832 m, while 50% of the boreholes had L≤ 460 m.20

Clustering of boreholes (Fig. 2) can easily be seen on the GRANADA webpage (NGU, 2016a). This uneven spatial sampling

affects the inference of statistical moments and the spatial correlation structure.

Mean and standard deviation of D and L as a function of separation distance h, are given in Fig. 3 for ∆h= 20 m and

∆h= 150 m. It should be noted that the highest values of mean and standard deviation of D occur at small (h < 100 m)

separation distances. This is opposite to what is shown for mean and standard deviations of L, which are small for minor25

separation distances, and which increase to maximum values around h= 2.5 km, and then decay towards h= 10 km. From

Fig. 3 it is clear that when the separation distance h to the nearest borehole increases, the number of low values of D increase.

This feature might be caused by preferential sampling, which implies that there is a systematic overrepresentation of drillings

that has minor D values. Thus, Fig. 3 indicates a bias in the observations of D.
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3 Method

For the current study, multi-Gaussian methods were applied to estimate sediment thickness D(u), where u ∈ Ω and Ω is the

geographical domain covered by the database (in this case mainland Norway). Multi-Gaussian methods are well documented

in the literature (Isaaks and Srivastava, 1989; Journel and Huijbregts, 1989; Deutsch and Journel, 1998), but to make it easier

for interested readers to reproduce and improve the results, the most important equations and algorithm are presented in the5

following. As mentioned above, the main purpose of the study was to evaluate whether the secondary information L, can be

used to improve the estimates of the primary variable D, or not. This question was addressed by performing a conventional

cross-validation of the GRANADA boreholes by successively leaving out information on D (but not L), and estimate D at the

locations where observations of D were left out. First, the cross-validation was performed by including the primary variable D

only. Then secondly, the cross-validation was done by including the secondary variable.10

More formally expressed, two cumulative density functions (cdf ) were compared to each other for all borehole locations uj

where j = 1, ...,N , and N is the number of GRANADA boreholes (c.f. section above). If the function of interest is Gaussian

Z ∈N(0,1), then the complete cdf is described by the first two moments. Thus, the task was to compare estimates based on

D alone:

E[ZD(uj)|ZD(ui)], and V ar[ZD(uj)|ZD(ui)], (1)15

with estimates based on D and L:

E[ZD(uj)|ZD(ui);ZL(uj)], and V ar[ZD(uj)|ZD(ui);ZL(uj)], (2)

here, j = 1, ...,N , and i= 1, ..., j− 1, i 6= j,j+ 1, ...,N , where N is the number of observations (c.f. section 2.4). For this

case study Eq.( 1) was obtained by ordinary kriging (OK) and Eq.( 2) by co-kriging (CK). Before solving Eq.( 1) and Eq.( 2),

the experimental data needs preprocessing to suppress effects of preferential sampling, and since Gaussian estimation methods20

were applied, the data needs to be transformed to a standard normal pdf.

3.1 Declustering

The purpose of declustering is to compensate for uneven sampling. This was done by giving less weight to observations in

areas of high sampling density and a relative increase of weights in areas of sparse sampling. For this case study, the weights

were found by gridding of the sampling domain and counting the numbers of observations in each grid cell. The weights were25

set equal to the inverse of the number of boreholes in the corresponding grid cell. These weights, however, are grid dependent.

Hence, the following procedure was implemented to minimize the grid dependency:

1. Decide the size for the grid elements ∆u= (∆x,∆y) that constitute a uniform grid.

2. Choose an (arbitrary) origin u0 and make a regular mesh that covers the estimation area Ω. The mesh consists of ∆uk

elements, where k = 1, ...,M , and M is the number of grid elements.30
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3. Count the number of boreholes nk(u0), and calculate the declustering weights ck(u0), for each well in ∆uk:

ck(u0) =
1

nk(u0)
, k = 1, ...,M, (3)

where M is the number of grid elements in the mesh.

4. Because nk(u0) in Eq.( 3) depends on the grid origin u0, it is necessary to repeat step 2) to 3), and change the grid origin

to:5

ur = u0 + rδ, (4)

where r = 1, ...,p, and the lag δ�∆u. The number of iterations p, should be large enough to get a stable average.

Deutsch and Journel (1998) recommend p≥ 6. Here, in the current case study p= 7, and δ = 100 m.

5. Finally:

ci =
1

p

p∑
r=0

ck(ur), k = 1, ...,M, (5)10

where ci denotes the declustering weight for the individual boreholes in the database, i= 1, ...,N , where N is number

of boreholes.

The declustering coefficients c in Eq.( 5) imply that the total variance of the experimental data is reduced and the correlation

length is increased. This effect is called regularization in geostatistical terminology. It means that the declustering coefficients

also depend on the grid size ∆u. Thus, the final step is to repeat 1) to 5) above, but with a different grid size. The grid size that15

minimizes the regularization effect should be employed.

3.2 Normal score transform

Application of Gaussian interpolation methods imply that the estimated function Z belongs to a standard normal pdf N(0,1).

In this case, the stochastic function X = (D,L) is not Gaussian (/∈ N(0,1)), which means that a transformation is necessary.

The normal score transform implies that the quantiles pk in the original cdf, F (X), is corresponding to the quantiles in a20

standard normal Gaussian cdf, G(Z), where Z ∈N(0,1) (Goovaerts et al., 2005):

ZX(ui) = ϕ(X(ui)) =G−1[F (X(ui)] =G−1[p∗k], (6)

where p∗k is the quantiles in the standard normal cdf, and ϕ denotes the transformation of X corresponding to the inverse

Gaussian G−1 cdf of D or L. The transformation in Eq.( 6) was done by linear interpolation (or extrapolation) from the table

of regular sampled Z ∈N(0,1) based on the ranked values (percentiles) of X(ui) /∈N(0,1).25

The normal score transform requires a monotonic function to be unique. This is a problem if the data are censored (Huang

and Wellner, 1997; Deutsch and Journel, 1998; Goovaerts et al., 2005; Saito and Goovaerts, 2000) which means that the true

value is only observed within intervals. This is the case for the lower values in the current experimental data (D = [0.1;0.5;1]
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m), which indicate that the true depth is only roughly recorded. For the current study, the normal score transform was done

on declustered data which ’corrected’ the observations and thus removed over-representation of some observations, thus the

transformation to N(0,1) was unique.

3.3 Experimental semivariogram and cross-semivariogram

The spatial structure of the data Z was described by the experimental semivariogram function:5

γ̂(h) =
1

2N(h)

N(h)∑
i=1

[ZX(ui)−ZX(ui +h)]2, (7)

where N(h) is the number of data pairs in the separation interval h, and where ZX is the normal score transform (Eq. 6) of

either D or L.

In addition to the experimental semivariogram, the mean m(h) and the variance s2(h) were calculated as a function of h:

m(h) =
1

N(h)

N(h)∑
i=1

Zi, (8)10

and

s2(h) =
1

N(h)

N(h)∑
i=1

(Zi−m(h))2 =
1

N2(h)

N(h)∑
i=1

N(h)∑
j>i

(Zi−Zj)2, (9)

where N(h) is number of observations for the separation interval h.

The experimental cross-semivariogram was estimated by expressing the two functions ZD(h) and ZL(h) as a sum of each

other:15

W (h) = ZD(h) +ZL(h). (10)

This is possible because D and L were sampled in the same locations, and after the normal score transform (Eq. 6) we know

by definition that E[ZD] = 0 and E[ZL] = 0. In that case, the cross-semivariogram can be found by (Myers, 1982):

γ̂ZDZL
(h) = 1/2[γ̂W (h)− γ̂ZD

(h)− γ̂ZL
(h)], (11)

which is valid if ZD(h) and ZL(h) are stationary functions in space with finite variance. These properties are difficult to prove20

in practice, but Myers (1982) suggests that if:

|γ̂ZDZL
(h)| ≤ [γ̂ZD

(h)γ̂ZL
(h)]

1/2
, (12)

then Eq.( 11) is valid.
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3.4 Semivariogram - and cross-semivariogram maps

Anisotropy structures in the experimental data may be discovered by calculation of semivariogram and cross-semivariogram

maps. The same equations (Eq. 7 and Eq. 11) are applied, but instead of the separation vector h the intrinsic values are

calculated as a function of the north-south and east-west components (hx,hy) of the separation vector:

γ̂Z1Z2(hx,hy) =
1

2N(hx,hy)

N(hx,hy)∑
i=1

[Z1(ui)−Z2(ui + (hx,hy))]
2
, (13)5

where Z1 and Z2 denotes stochastic functions. If Z1 = Z2 (i.e. the normal score transform of D or L), then Eq.( 13) is

the semivariogram map for ZD or ZL. If Z1 = ZD and Z2 = ZL, then Eq.( 13) is equivalent to the cross-semivariogram

map between ZD and ZL. The semivariogram (or cross-semivariogram) maps are similar to the experimental semivariogram

function, but the semivariance is visualized in terms of a separation matrix instead of a separation vector. By calculating

the semivariance in terms of a separation matrix, it is possible to reveal large scale (systematic) directional dependencies10

- called anisotropy. If anisotropy in the observation material is evident, the next step is to calculate directional dependent

experimental semivariograms, where the direction of the searching sector is taken from the semivariogram map. The directional

dependent properties can be taken into account in the estimation procedure by using the directional dependent searching

directions derived from the semivariogram maps. An alternative is to transform the observation coordinates to an isotropic and

orthogonal coordinate system (Langsholt et al., 1998).15

3.5 Semivariogram - and covariance model

The semivariogram model fitted to the experimental semivariogram had the form:

γ(h) = C0 +C1

[
1− exp

(
β

(
h

a

)α)]
, (14)

where C0, C1, a, and α were the fitting parameters. In geostatistical terms C0 is called the nugget (the variance at h→ 0),

C0 +C1 is the sill (the variance at h→∞), a is the range, and α is the exponential coefficient (1≤ α≤ 2). The constant β20

determine the variance at h= a. In this case β =−ln(20), which is equivalent to 95% of γ(∞). Of that reason β is called the

practical range in the literature.

The model parameters in Eq.( 14) were obtained by minimizing the objective function Υ:

Υ(h) =
∑
i

|γ(hk)− γ̂(hk)|, k = 1, ...,K, (15)

where K is the number of distance-classes in the semivariogram. For the case study, the objective function was minimized by25

using the Simulated Annealing Algorithm (MATLAB, 2015).

The kriging equations below are expressed in terms of the covariance function:

C(h) = C0 +C1− γ(h) = C1exp

(
β

(
h

a

)α)
, (16)

where the constant β =−ln(20), and the parameters C0, C1, a, and α were found by minimizing Eq.( 15).
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3.6 Kriging and co-kriging equations

For this project the kriging and co-kriging equations were implemented in MATLAB (2015), which makes it convenient to

express the equations in terms of matrix notation. A thorough mathematical derivation of the equations can be found in (Myers,

1982). In matrix notation the estimation is expressed:

Ẑ = ZobsΛ, (17)5

where Ẑ is the estimated variable in location u. If k = 1, ...,m variables are involved, then Ẑ is a row vector with m entries

(1×m matrix), Zobs contains the observations in a 1×m matrix, and Λ is a m×m matrix where the columns vector are the

estimation weights. In this case, m= 2, thus in this case Eq.( 17) is written:

[
ẐD, ẐL

]
= [ZD(obs),ZL(obs)]

ΛDD ΛDL

ΛLD ΛLL

 . (18)

For the present case study, the observations: ZD(obs) and ZL(obs), were available in the same locations ui, i= 1, ...,n. The10

weights Λ, are found by solving the kriging equations (Myers, 1982):

X = C−1C0, (19)

where C−1 denotes the inverse of the matrix C, which in this case reads:

C =


CDD(h) CDL(h) ITDD ITDL

CLD(h) CLL(h) ITLD ITLL

IDD IDL 0 0

ILD ILL 0 0

 , (20)

where Ckk(h) is the covariance model (Eq. 16) and where k =D,L. IDD = ILL are row vectors of ones (1×n), and IDL =15

ILD are row vectors of either ones or zeros depending on whether all weights should sum up to one or not (IT is the transposed

of I). The matrix C0 denotes the covariance between the point of estimation (u) and the observations:

C0 =


C0DD(h) C0DL(h)

C0LD(h) C0LL(h)

1 0∗

0∗ 1

 , (21)

whereC0kk(h) is given in Eq.( 16) and where k =D,L. The symbol 0∗ indicates that the entry might be one or zero, depending

on the Lagrange condition that all weights should sum up to one or only the weights for the single variable estimation problem.20

Again, zero is the default value. The estimation weights Λkk(h) and the Lagrange multipliers µkk(h) (k =D,L) are contained
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in the X matrix:

X =


ΛDD ΛDL

ΛLD ΛLL

µDD µDL

µLD µLL

 . (22)

The estimation variance σ2
K can then be written (Myers, 1982):

σ2
K(u) = V ar[Z]−XTC0, (23)

where the total variance: V ar[Z] = V ar[ZD] for ordinary kriging, and V ar[Z] = V ar[ZDZL] for co-kriging. Hence, the total5

variance is equivalent to the sum of the diagonal entries in CDD(h) and CLL(h)), where C0 and X are given in Eq.( 21) and

Eq.( 22).

3.7 Absolute error, accuracy and precision

The quality of the estimation method depends on the absolute error AE , which is the difference between the observed value

and the estimated value:10

AE(ui) = |Zobs(ui)− Ẑ(ui)|. (24)

Average values for all estimates are given by the mean absolute error MAE :

MAE =
1

n

n∑
i

AE(ui), (25)

and the standard deviation of the absolute error SAE :

SAE =

(
1

n− 1

n∑
i

(AE(ui)−MAE)
2

)1/2

, (26)15

where n is the number of cross-validated observations.

In addition, it is necessary to quantify the precision of the estimates. Two concerns are taken into account in this study, first

if the estimate is within a given confidence interval (PR):

PR(ui) =AE(ui)−ωσK , (27)

where ω depends on the level of confidence. The accuracy AC , of the estimates is then given by:20

AC(ui) = 1 if PR(ui) ≤ 0 else AC(ui) = 0, (28)

and the accuracy is given as a fraction of total numbers of observations FAC :

FAC =
1

n

n∑
i

AC(ui), (29)
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where n is the number of cross-validated observations.

If two methods have the same level of accuracy, then the method that gives the best precision should be preferred. Precision

can be taken into account by scaling the absolute error by the estimation uncertainty:

ξ(ui) =AE(ui)/σK(ui), (30)

and the scaled precision SP , is written:5

SP (ui) = ξ(ui)AC(ui), (31)

and with the mean scaled precision MSP , expressed as:

MSP =
1

n

n∑
i

SP (ui), (32)

and standard deviation of mean scaled precision SSP :

SSP =

(
1

n− 1

n∑
i

(SP (ui)−MSP )
2

)1/2

, (33)10

where n is the number of cross-validated observations.

4 Results

4.1 Declustering and normal score transform

The GRANADA boreholes used in the current study, were clustered in urban areas (Fig. 2). To minimize the impact of this

uneven spatial sampling, declustering weights were calculated according to the procedure described in section 3.1. The window15

sizes (w = wx= wy) applied to calculate the declustering weights, were w = [500;1000;2000;4000] m. Average declustering

coefficients were calculated by moving the grid in seven steps p= 7, with an offset δ = 100 m (Eq. 4).

The skewness given by the ratio of the median to the mean for the different declustering windows w, shows that maximum

skewness appears for w = 500 m (Tab. 2). For w = 1000 m, however, the skewness was more similar to the original (raw)

observations, thus for the cross-validation analysis the declustering weights were calculated withw = 1000 m. The declustering20

coefficients shows that about 13% of the boreholes had ten or more boreholes located within a neighborhood of 5 km. More than

50% of the boreholes had two or more boreholes within a search radius of 5 km, and about 23% had no other wells within 5 km

neighborhood. The normal score transform (Eq. 6) yields per definition a normal pdf of the variables involved. The transform

relies, however, on the experimental data, which means that sampling of extreme values have impact on the results. The data

set used for calculations (N = 19682 samples) had a minimum observed D = 0.05 m and a maximum D = 229 m (Fig. 2).25

Some of the extreme high values may represent outliers or recording errors, thus for the cross-validation study boreholes with

recorded sediment thickness more than 100 m were not included in the calculations. The scatter plot of the raw observations
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shows the censored character of the data with high frequency of recordings at even numbers (0.10; 0.20; 0.30 m etc.). This is

very clear from 0.1 to 1 m, and to some degree between 1 and 10 m (Fig. 4a). After declustering, the censored character was

less obvious (Fig. 4b). The semivariogram analyses and the kriging procedures were employed on the normal score data (ZD

and ZL). After kriging, the estimation results were transformed back by inverse normal score transform Eq.( 6) and divided by

the declustering coefficients.5

4.2 Semivariogram maps

Semivariogram maps (Eq. 13) of depth to bedrock ZD, and horizontal distance to outcrop ZL, were calculated to detect large

scale anisotropy in the data material. Anisotropy might be identified in Fig. 5 for the range (correlation length) of ZD. The

range varies apparently as a function of direction with the slowest decay in the North-West direction (N35W - N45W) and with

a somewhat faster decay in the South-East direction. The number of observation pairs had, however, a similar structure, which10

indicates that the apparent anisotropy might be an artifact due to the clustering of the observations. This presumption was tested

by calculating artificial semivariogram maps based on the same borehole locations but where the observations were substituted

by a random number. The artificial semivariogram maps revealed similar structures that can be seen in Fig. 5. Hence, the

presumption of an artifact due to clustering cannot be ruled out. For this reason no directional experimental semivariograms

were calculated as part of this case study.15

4.3 Experimental semivariograms and cross-semivariogram

The results of the semivariogram analysis confirm the existence of a correlation structure in the data (Fig. 6) that might be

capitalized when estimating D(u). The model parameters given in Fig. 6 were obtained by minimizing the objective function

(Eq. 15) by the Simulated Annealing algorithm (MATLAB, 2015). First, all parameters [C0,C1,a,α] were optimized; and then

secondly, C0 was fixed and the remaining parameters [C1;a;α] were simulated. This automatic procedure gave the model20

parameters shown in Fig. 6. The minimum of the objective function is not well defined everywhere and different combinations

of model parameters gave almost similar results. The model parameters in Tab. 3 were evaluated in the cross-validation proce-

dure below. The automatic calibration procedure gave an optimal correlation length of about a= 10 km for depth to bedrock

ZD(h) (Fig. 6a). The most prominent feature, however, is the large nugget value C0, which in this case is about 50% of the

total variance: C0 +C1. The experimental semivariogram for the horizontal distance to outcrop ZL(h) had minor nugget value25

compared to the total variance (Fig. 6b). At the same time the correlation length (a= 5.9 km) was somewhat shorter com-

pared to ZD(h). The experimental cross-semivariogram between ZD(h) and ZL(h) was calculated according to Eq.( 10) and

Eq.( 11). The nugget value was about 10% of the total variance in this case with a correlation length of a= 2.7 km. Finally, the

cross-semivariogram was tested according to Eq.( 12), but none of the parameter combinations in Tab. 3 violated the criterion.
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4.4 Cross-validation

The purpose of the cross-validation was to evaluate the impact of using horizontal distance to outcrop as an additional variable

for estimation of sediment thickness above the bedrock. In this case, the cross-validation was performed by leaving one ob-

servation out. At the point where the observed value was left out, ordinary kriging (OK) and co-kriging (CK) were performed

by using the global model parameters given in Tab. 3. The differences between the estimation results and the observations left5

out, were used to quantify the quality of the estimation procedure. Three criteria were used to distinguish the two estimation

procedures: the mean absolute error (Eqs. 24 and 25); the accuracy of the estimation results (Eqs. 28 and 29); and the precision

of the estimation results (Eqs. 31 and 32).

In general, both OK and CK overestimate minor depths to bedrock and underestimate large depths (Fig. 7). The most

important estimation criterion is usually considered to be the mean absolute error (Eq. 25). With the model parameters tested in10

Tab. 3 there are only minor differences in the mean absolute error (Eq. 25) between the OK and CK estimates (Tab. 4). The CK

estimates have slightly lower mean absolute error than the OK estimates unless the nugget value (C0) for the cross-covariance

between D and L approaches half of the total variance: C0 +C1 (Tab. 4).

In cases with minor difference in the mean absolute error, the estimation results might be ranked according to criteria for

estimation accuracy (Eq. 28) and precision (Eq. 31). For the present case study, the definition of accuracy and precision were15

both related to the estimation variance (Eq. 23), and in this respect, CK was superior compared to OK (Fig. 8).

In Fig. 9 scaled precision (Eq. 31) is sorted and given as a function of cumulative accuracy SAC :

SAC = ΣjiAC(ui)/nmax, j = 1, ...,nmax, (34)

where nmax is the number of estimates where AC = 1.

As long as the absolute estimation errors (Eq. 24) are similar, OK yields higher accuracy than CK because CK has lower20

estimation variance. This result follows directly from the definitions in Eq.( 27) and Eq.( 28). With ω = 1 in Eq.( 27), the OK

estimates gave an accuracy from 60 to 65%, while CK had accuracy of 50-60%. At the same time CK yields an overall higher

precision than OK because of lower estimation variances (Fig. 9).

A final result that deserves some attention, is the location of estimates that did or did not fulfill the accuracy criteria. This is

illustrated for mainland Norway and the Oslo area in Fig. 10. Three categories were visualized: (i) Locations with low accuracy25

(AC = 0, Eq. 28); (ii) locations with good accuracy (AC = 1, Eq. 28) obtained either by OK or CK; and (iii) locations with

good accuracy (AC = 1, Eq. 28) obtained only by the CK method. For all cases ω = 1 (Eq. 27).

5 Discussion

Attention has been directed towards sediment thickness, D, in this article. The question has been raised whether information

derived from public well databases on D(ui) can be utilized for continuous estimation of D(u). A motivation for this attention30

has been the potential application of spatial estimates of D(u) in hydrology and geo-engineering. Combined with available

information on soil properties or digital terrain elevation, storage capacity of water or bedrock topography might be estimated
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within predefined uncertainties and with feasible resources. It should be emphasized, however, that the purpose of the appli-

cation should be taken into account when choosing the estimation method. In this case study, the normal score transforms

and Gaussian estimation methods were applied, but none of these methods provide robust estimates of extreme values. If for

example, maximum D(u) is an important issue, stochastic simulation or non-Gaussian methods should be taken into account.

Such topics, however, are left for further studies.5

5.1 Clustering and bias

For the current case study, D(u) was derived from the open access database GRANADA (NGU, 2016a). Public databases are

prone to preferential sampling. In this context, preferential sampling implies two specific challenges that need to be discussed,

namely clustering and bias. Clustering is due to the fact that wells and boreholes are located where people need them, thus

the spatial frequency of boreholes mirror the population density (Fig. 2). Clustering of observations has impact on statistical10

inference regarding statistical moments and semivariograms. Different approaches have been suggested to control the clustering

effects. Olea (2007) suggested removal of wells randomly in areas with high density of observations, and then recalculate the

experimental semivariograms based on the remaining observations. The experimental semivariograms, however, turned out to

be sensitive to the size of the searching window where clustered observations were removed. Thus, this method was disregarded

in the current case study because the algorithm did not yield robust results.15

Omre (1984) suggested controlling clustering effects in the semivariogram by calculating weights that were inversely pro-

portional to the Thiessen polygons for each observation. This method provides a set of weights that are mathematically sound,

but it is relatively expensive with respect to computer resources especially if the number of observations are large. Instead

of Thiessen polygons a less computer demanding algorithm was employed, namely the moving grid method (Deutsch and

Journel, 1998). By this method the declustering weights were inversely proportional to the average number of observations20

within the moving window (c.f. section 3.1). The declustering weights depend on the size of the window (Tab. 2). In general

it is recommended to use the window size w, that maximizes the skewness of the pdf(s), which in this case was w = 500 m.

However, w = 1000 m gave a skewness for D(u) that was closer to the original data, thus the semivariograms were based on

a declustering window w = 1000 m. The mean value from raw (not declustered) data was 5.5 m, but the declustered mean was

reduced to 3.4 m and 2.8 m for w = 500 and w = 1000 m respectively (Tab. 2).25

The problem of biased recordings of D(u) in the database is more difficult to assess. There are good reasons to expect that

bias exists and that minor sediment thicknesses are over represented in the database. One indication is that mean and standard

deviation are highest at minor separation distances, which indicate that willingness to continue drilling is less if D(u) is large,

and if there are no other wells in the close neighborhood (Fig. 3).

Biased observations are a common problem for datasets sampled in open large-scale environments. The impact of bias may30

be controlled if there exist independent information on processes related to the variable of interest. Goovaerts et al. (2005) did

a case study based on biased observations of arsenic concentration in groundwater. They used geological maps and utilized

knowledge of arsenic concentration in specific geological units to control the bias. Wolff et al. (2015) reported biased recordings

of precipitation from a meteorological gauge station. In this case the bias was due to turbulence in the wind field around the
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gauge equipment. They recorded wind speed and temperature together with precipitation and other meteorological variables,

and derived functions for bias correction by application of Bayesian statistics. A similar token was applied in the current study.

Here, horizontal distance to outcrop L(u) was evaluated as secondary information to control impact of biased observations of

sediment thickness D(u).

The cross-validation exercise presented here, cannot verify a general relation between D(u) and L(u), but the results show5

that the estimation uncertainty was reduced by using L(u) as a secondary function. Non-biased relations between D(u) and

L(u) ought to be investigated by further research for example by utilizing dataset from geotechnical probe drillings. Results

from such studies would increase the value of the GRANADA database and other similar databases.

5.2 Cross-validation

The cross-validation analysis indicates low estimation accuracy in urban areas. One reason for this result might be anthro-10

pogenic reallocation of unconsolidated matter, which includes removal of sediments in some places and deposition of uncon-

solidated matter in others. Similar problems might also be valid for identification of horizontal distance to outcrop. For further

studies such locations might be disregarded or given less weights. One option is to allocate a quality tag to theD(u) recordings

in the same manner as was done for recordings of geographical coordinates.

Both OK and CK overestimated small D(u) and underestimated large D(u) (Fig. 7). Such results are typical for Gaussian15

estimation methods applied on observations with positively skewed pdfs. Other case studies report similar results (Goovaerts

et al., 2005), but it should be noticed that the double logarithmic scale exaggerates the deviations especially for minor depths.

The observations of D(u) had a high fraction of small scale noise (C0 in Fig. 6) relative to the total variance: C0 +C1

(Fig. 6). Efforts should be taken to control C0. One abatement measure might be achieved by attaching a quality assurance tag

to D(u). In this way low quality recordings could receive less weights or be filtered out. This kind of measures would increase20

the quality of the GRANADA database.

Despite these uncertainties the cross-validation shows that the accuracy is higher than 60% for the model parameters with

highest scores (Tab. 4). For this case study, the estimation accuracy was set equal to one if the absolute estimation error was

less than one standard deviation of the estimation uncertainty and zero for all others (Eqs. 27 and 28). By this definition,

the accuracy increases by increasing estimation variance, which means that accuracy should be evaluated together with the25

estimation variance (Eq. 23 and Fig. 8). For stochastic simulation the precision of the estimates is of primary interest. In such

cases, the probability of extreme realizations may also be quantified. For such applications, the precision is more important than

the accuracy of the estimation method. The cross-validation results show that the precision in general is higher if the horizontal

distance to the outcrop L(u) was included (Fig. 9). Because precision increases as a function of decreasing estimation variance,

the cross-validations show that L(u) should be included despite the uncertainties in the experimental data.30

5.3 Further studies

These results indicate that more advanced estimation procedures should be considered. In this case study, the total estimation

domain (mainland Norway) was considered as homogeneous with respect to variance and correlation length. Methods that
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take local model parameters and local anisotropy into account may reduce the absolute estimation error but not necessarily the

estimation variance. The same is true with respect to estimation methods that are more robust with respect to estimation of

extreme realizations. For estimation of most likely minimum and maximum thickness of sediments within a given estimation

area, stochastic simulations are recommended.

After initiation of this case study, the number of recorded boreholes, wells, and probe drillings in the GRANADA database5

has increased (NGU, 2016b). The new recordings might be used as an independent dataset for cross-validation purposes. One

interesting candidate for further work is the approach suggested by Rue et al. (2009). They approximate the estimation problem

to stochastic partial differential equations. In this method non-stationarity of statistical moments are taken into account, but at

the same time less computer resources are spent on matrix inversions which is a challenge for applications with a large number

of observations. (Lindgren et al., 2011; Ingebrigtsen et al., 2014; Hu and Steinsland, 2016).10

Finally, it is appropriate to recall that the primary purpose of the GRANADA database is not the recording of sediment

thickness D(u) alone, but to provide information on groundwater resources in general (Lovdata, 1996). Hence, in this context,

the present study is a call to explore public data to obtain important estimates for science and society.

6 Summary and conclusions

The open access database GRANADA (NGU, 2016a) was used to derive point recordings of sediment thickness above the15

bedrock D(u). For each D(u) horizontal distance to nearest outcrop L(u) was derived from geological maps. The purpose

was to utilize L(u) as a secondary function for estimation of D(u). Two estimation methods were employed: ordinary kriging

(OK) and co-kriging (CK). A cross-validation analysis was performed to evaluate the additional information in the secondary

function L(u). L(u) was disregarded in OK-estimation but included in CK-estimation. The cross-validation results showed that

CK provided overall lower mean absolute error compared to the OK results, but the differences were minor. The estimation20

uncertainty determines the estimation accuracy and the precision. These quantities might be considered as equally important as

the mean absolute error. With respect to the estimation precision, the CK estimates were superior to OK estimates. This result

demonstrates the value of using L(u) as a secondary function for estimation ofD(u). The problem of clustering of observations

can be controlled by calculation of declustering weights, but the relation between D(u) and L(u) should be explored in further

studies to control the effect of biased observations.25

The semivariogram analysis revealed a correlation length (range) for D of approximately 10 km and about 6 km for L. The

cross-semivariogram between D and L gave a corresponding length of 2.7 km (Fig. 6). The recordings of D were affected by

an ample small-scale variance (nugget value). Despite this problem, the estimation accuracy was quite high (Tab. 4). Between

50% and 60% of the cross-validation recordings had an accuracy of less than one kriging error σK Eq.( 23).

Hence, continuous estimates of D(u) might be derived for mainland Norway based on the public well database GRANADA.30

The challenge, however, is to provide estimates within confined uncertainties. The present case study demonstrates that this

goal can be approached by using information embedded in the exposed bedrock.
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Figure 1. Surface topography T , sediment thickness D, and bedrock topography B. Observations of Di are indicated in three boreholes

(i= 1,2,3) and with the associated horizontal distance to nearest outcrop (Li). In areas where B is not exposed, B can be estimated by

using observations of D as primary variable and information of L as secondary information.
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Figure 2. Location of wells, boreholes and probe drillings in the GRANADA database (NGU, 2016a). 20432 number of observations (Nt)

were included in this study (see text for screening of observations). Black dots indicate locations where sediment thickness D(ui)> 0,

i= 1, ...,N , N =19682. Red dots indicate locations where D(uj) = 0, j = 1, ...,K, K =Nt−N =750. Horizontal distances to nearest

outcrop L(ui), were calculated for locations where D(ui)> 0. Histograms of log10(D|D > 0) and log10(L|D > 0) indicate significant

deviation from normal probability density functions (upper left corner). Statistical parameters and percentiles for D and L are given in lower

right corner.
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Figure 3. Mean and standard deviation as a function of separation distance h (m), sediment thickness D to the right (A), and horizontal

distance to outcrop L to the left (B).
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Figure 4. Scatter plot of sediment thickness D and horizontal distance to outcrop L. Original (obs) and declustered (dcl) observations to the

left (A), and normal score transforms ZD and ZL to the right (B). Black line indicate a ’perfect’ (1:1) relation between ZD and ZL.
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Figure 5. Semivariogram map (γ̂(hx,hy)) of normal score transformed sediment thickness ZD , grid cells of 100 × 100 m.
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Figure 9. Scaled precision (Eq. 31) plotted as a function of cumulative accuracy (Eq. 34) for estimation cases [A;B;C] to the left (A), and

[D;E;F ] to the right (B). Model parameters are given in Tab.3. Ordinary kriging (OK) yields highest accuracy for most cases, but co-kriging

CK gave overall highest precision.
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Figure 10. Outline of the Scandinavian countries (upper left). The boxes indicate the subsections of Norway: Northern Norway (upper right),

Southern Norway (lower left), and the Oslo region (lower right). The cross-validation results of GRANADA boreholes (NGU, 2016a) for case

F (Tab.3 and Tab.4). For this case, 37% of the locations did not fullfill the accuracy criteria (Eq. 28) indicated by red dots (AC=0); 63% of

the locatios did fulfill the accuracy criteria by either the OK or the CK method, indicated by blue dots (AC=1 from OK or CK)); for 3.5% of

the locations the accuracy criteria was fullfilled by the CK method and not the OK method, indicated by green dots (AC=1 for CK not OK)).

For 9.2% of the locations the accuracy criteria was met by the OK method only (not shown). Geographical coordinates are given for UTM

zone 33.
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Table 1. Land cover statistics of mainland Norway

Ida Land cover Ab
i (km2) Nc Fd

atm (%) Fe
tot (%)

130 Exposed bedrock 97000 9562 31.59 29.96

12f Till material, patchy or thin cover over bedrock 80719 10311 26.28 24.93

11g Till material, continuous cover, great thickness locally 65008 10640 21.17 20.08

90 Peat and swamps (organic material) 17000 1445 5.54 5.25

70h Weathered deposits, not divided by thickness 15600 3464 5.08 4.82

20i Fluvial sediments 8829 6095 2.87 2.73

41j Marine and coastal sediments, coherent, often great thickness 7600 5932 1.56 1.48

81k Avalanche materials and landslides 7272 235 2.37 2.25

43l Marine, beach sediments, patchy or thin cover over bedrock 2676 3625 0.87 0.83

14 Till modified by running water (ablation moraine) 1900 67 0.62 0.59

21m Glaciofluvial sediments 1769 683 0.58 0.55

15 Ice-marginal deposits 1000 264 0.33 0.31

120 Anthropogenic deposits, unspecified 350 1650 0.11 0.11

30n Glaciolacustrine and lake sediments 253 175 0.082 0.078

60 Eolian (Wind) sediments 100 46 0.033 0.031

88o Scree, clay slides, rock falls etc. 28 0 0.0091 0.0086

Sum 307104 54194 100.00 94.85

a) Land cover identificantion numbers (NGU, 2016d).
b) Area of land cover polygons exposed to the atmosphere,Aatm =

∑
Ai =307104 km2. The total area of mainland Norway is:Atot = 323781 km2

(Kartverket, 2016).
c) Number of recorded boreholes, wells, and probe drillings in GRANADA 2010 (NGU, 2016d).
d) Fraction of land cover polygons relative toAatm.
e) Fraction of land cover polygons relative toAtot. Mainland Norway covered by water:1−Aatm/Atot =1-0.9485=0.0514.
f ) Includes id. 12 (65000 km2), 100 (thin humus cover, 12000 km2), 140 (3500 km2), 101 (210 km2), 10 (5.8 km2) and 13 (3.5 km2).
g) Includes id. 11 (65000 km2) id. 16 (drumlin, 8 km2).
h) Includes id. 70 (7000 km2), 73 (5100 km2), 71 (2300 km2) and 72 (1200 km2).
i) Includes id. 20 (4700 km2), 50 (4000 km2), 54 (2600 km2), 55 (76 km2).
j ) Includes id. 41 (4800 km2), 42 (2800 km2).
k) Includes id. 81 (5000 km2), 82 (2200 km2), 80 (69 km2) and 301 (2.5 km2).
l) Includes id. 43 (2600 km2), 40 (76 km2).
m) Includes id. 21 (1700 km2), 22 (69 km2).
n) Includes id. 30 (190 km2), 36 (38 km2), 35 (25 km2).
o) Includes id. 88 (scree, 17 km2), 307, 102, 1, 122, 31, 304, 308, 313, 315, 53 and 316.
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Table 2. Median and mean of depth to bedrock D (m), and horizontal distance to outcrop L (m), for raw observations (window size = 0 m)

and declustered data with window [500;1000;2000;4000] m. The skewness index, skw=median/mean.

window size (m) 0 500 1000 2000 4000

D median 2.000 1.286 1.000 0.594 0.321

D mean 5.451 3.394 2.770 2.043 1.316

D skw 0.367 0.379 0.361 0.291 0.244

L median 458.63 227.94 156.79 91.64 47.67

L mean 827.46 491.69 382.14 268.67 169.06

L skw 0.554 0.464 0.410 0.341 0.282
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Table 3. Covariance and cross-covariance model parametersa (16) used for cross-validation.

Case C0 C1 a α

A CDD 2.09e-01 6.72e-01 4.478e+03 1.00

CDL 1.00e-01 1.10e-01 1.512e+03 1.65

CLD 1.00e-01 1.10e-01 1.512e+03 1.65

CLL 0.39e-01 6.06e-01 6.049e+03 1.05

B CDD 3.44e-01 5.18e-01 4.380e+03 1.00

CDL 0.00e+00 1.00e-01 1.512e+03 1.65

CLD 0.00e+00 1.00e-01 1.512e+03 1.65

CLL 0.39e-01 6.06e-01 6.049e+03 1.05

C CDD 2.09e-01 6.72e-01 4.478e+03 1.00

CDL 0.00e+00 1.00e-01 1.512e+03 1.65

CLD 0.00e+00 1.00e-01 1.512e+03 1.65

CLL 0.39e-01 6.06e-01 6.049e+03 1.05

Case C0 C1 a α

D CDD 4.65e-01 4.94e-01 10.320e+03 1.00

CDL 1.90e-02 2.12e-01 2.786e+03 1.01

CLD 1.90e-02 2.12e-01 2.786e+03 1.01

CLL 7.00e-03 6.38e-01 5.865e+03 1.02

E CDD 7.70e-02 7.26e-01 2.371e+03 1.00

CDL 1.90e-02 2.12e-01 2.786e+03 1.01

CLD 1.90e-02 2.12e-01 2.786e+03 1.01

CLL 7.00e-03 6.38e-01 5.865e+03 1.02

F CDD 7.70e-02 7.26e-01 2.371e+03 1.00

CDL 3.00e-03 2.07e-01 2.402e+03 1.01

CLD 3.00e-03 2.07e-01 2.402e+03 1.01

CLL 7.00e-03 6.38e-01 5.865e+03 1.02

a) All models are derived from declustered normal score transformed variables of

depth to bedrockD and horizontal distance to nearest outcrop L. Practical range,

β = log(0.05) for all models.
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Table 4. Cross-validation results from ordinary kriging (OK) and co-kriging (CK) with model parameters correponding to cases given in

Tab.(3).

Case MAE(m) SAE(m) FAC (-) MSP (-) SSP (-)

A OK 4.44 7.72 0.16 0.39 0.098

CK 4.52 7.58 0.40 0.37 0.125

B OK 4.36 7.57 0.65 0.34 0.062

CK 4.33 7.51 0.62 0.38 0.077

C OK 4.35 7.46 0.62 0.39 0.098

CK 4.31 7.40 0.57 0.44 0.116

Case MAE(m) SAE(m) FAC (-) MSP (-) SSP (-)

D OK 4.43 7.71 0.66b 0.31 0.039

CK 4.38 7.54 0.59 0.43 0.065

E OK 4.37 7.47 0.59 0.44 0.151

CK 4.29a 7.23 0.51 0.41 0.151

F OK 4.35 7.45 0.59 0.44 0.151

CK 4.30 7.27 0.53 0.49c 0.173

MAE - mean absolute error (Eq. 25).

SAE - standard deviation of absolute error (Eq. 26).

FAC - fraction of estimates that fulfill the accuracy criteria (Eq. 29).

MSP - mean scaled precision (Eq. 32).

SSP - standard deviation of scaled precision (Eq. 33).
a) - lowest mean absolute error.
b) - highest accuracy.
c) - highest precision.
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