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Abstract 15 

In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM) have proven 

applicable in hydrological studies. The Global Precipitation Measurement (GPM) mission, which provides the new 

generation of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in 

hydrological applications, however, has not yet been evaluated over the Andean and Amazonian regions. This study uses 

GPM data provided by the Integrated Multi-satellite Retrievals (IMERG) (product/final run) as input to a distributed 20 

hydrological model for the Amazon Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015) when 

all datasets are available. TRMM products (TMPA V7, TMPA RT datasets) and a gridded precipitation dataset processed 

from observed rainfall are used for comparison. The results indicate that precipitation data derived from GPM-IMERG 

correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data 

tend to overestimate, in comparison to observed rainfall (by 11.1% and 15.7 %, respectively). In general, GPM-IMERG, 25 

TMPA V7 and TMPA RT correlate with observed rainfall, with a similar number of rain events correctly detected (~20%). 

Statistical analysis of modeled streamflows indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in 

southern regions (Ucayali basin). GPM-IMERG, TMPA V7 and TMPA RT do not properly simulate streamflows in northern 

regions (Marañón and Napo basins), probably because of the lack of adequate rainfall estimates in northern Peru and the 

Ecuadorian Amazon. 30 
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1. Introduction 

Satellite-based precipitation data have been widely used for hydrometeorological applications, such as hydrological 5 

modeling, especially in data-sparse regions like the Amazon River basin [Collischonn et al, 2008; Getirana et al, 2011; Paiva 

et al., 2013, Zulkafli et al., 2014; Zubieta et al., 2015]. Rainfall is extremely variable in both space and time, particularly 

over regions characterized by topographic contrast, such as the western Amazon Basin [Espinoza et al., 2009; Lavado et al., 

2012]. In this region, the Andes Mountains contribute to high spatio-temporal variability of rainfall [Laraque et al., 2007, 

Espinoza et al., 2015]. To improve approximation and reduce uncertainty, detailed monitoring is needed using a high-density 10 

rain gauge network. Only a low-density rain gauge network is available in the Amazon basin (AB), however, which limits 

understanding of hydrological processes and hydrological modeling over the region [Getirana et al., 2011; Paiva et al., 

2013]. Satellite-based datasets offer an alternative for modeling hydrological events, because they are uniformly distributed 

in both space and time. Their usefulness in Andean-Amazon basins and their applicability as input to hydrological models 

have been evaluated recently by comparing modeled and observed datasets. Results indicate that these datasets could be used 15 

for operational applications [Zulkafli et al., 2014; Zubieta et al., 2015]. This could improve streamflow modeling and 

relationships between model parameters in unmonitored basins.   

Hydrological modeling and forecasting are still poorly developed in the Andean and Amazonian regions. It is important to 

improve this tool, especially because of an intensification of extreme hydrological events in the Amazon basin [Gloor et al., 

2013], such as intense droughts in 2005 and 2010 [Marengo et al., 2008; Marengo et al., 2011; Espinoza et al., 2011] and 20 

severe floods in 2009, 2012 and 2014 [Espinoza et al, 2012; 2013; 2014]. Moreover, a high percentage of total annual 

precipitation can fall in just a few days, causing soil erosion, landslides [Zubieta et al., 2016]  

In the last two decades, advances in satellite technology have improved rainfall estimation in much of the world [Huffman et 

al, 2007].  The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) precipitation 

dataset [Huffman et al, 2007] has been important to research and to many hydrological applications on Amazon regions, and 25 

there is consensus among studies using TMPA in Amazon regions [Collischonn et al, 2008; Getirana et al, 2011; Paiva et al., 

2013, Zulkafli et al., 2014; Zubieta et al., 2015]. The TRMM mission ended in April 8, 2015, however, after the spacecraft 

depleted its fuel reserves (https://pmm.nasa.gov/trmm/mission-end). Despite the actual demise of TRMM, this is not the 

substantive issue for some products, such as TMPA and TMPA–RT, which  are expected to run in parallel with the new 

GPM (Global Precipitation Measurement) satellite until mid-2017 [Huffman et al., 2015]. GPM, which was launched in 30 

February 2014, provides a new generation of rainfall estimation every three hours [Schwaller and Morris, 2011].  Recent 

studies highlight that the GPM Integrated Multi-satellite Retrievals (IMERG) estimations can adequately substitute TMPA 

estimations both hydrologically and statistically, even with its limited data availability [Liu, 2016; Tang et al., 2016].    
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The aim of this paper is to evaluate the use of rainfall estimates from the GPM-IMERG in obtaining streamflows over the 

Amazon Basin of Peru and Ecuador (ABPE) during a 16-month period (from March 2014 to June 2015) when all datasets 

are available. It provides a comparative analysis of the GPM-IMERG datasets and TRMM (TMPA RT and TMPA V7 

products). For comparison with satellite estimations, a precipitation dataset from observed rainfall was developed by spatial 

interpolation using the Peruvian National Meteorology and Hydrology Service (SENAMHI) network. Each precipitation 5 

dataset was used as input for the MGB-IPH hydrological model [Collischonn et al., 2007], which was recently adapted to 

ABPE [Zubieta et al., 2015]. The ABPE extends from the tropical Andes to the Peruvian Amazon, with elevations ranging 

up to 6,300 meters above sea level, a drainage area of 878, 300 km
2 

and a mean discharge of around ~35,500 m
3
/s at the 

Tabatinga station [Lavado et al., 2012]. The ABPE is located in the northwest of the AB (Fig. 1a), and its area corresponds 

to 14% of the AB. It consists mainly of basins such as the Ucayali basin (southern of the ABPE), Marañón basin (Western of 10 

the ABPE) and Napo basin (Northern of the ABPE) (Fig. 1b). 

2. Datasets used in hydrological modeling 

GPM and TRMM are satellite missions of the space agencies of the United States (NASA) and Japan (JAXA). They provide 

precipitation data derived from their products, which are evaluated in this study:  

a) GPM (product final IMERG-V03D) data at several of processing have been provided since March 2014 15 

(http://pmm.nasa.gov/GPM), using raw satellite measurements and making the best estimate of global precipitation 

maps using combinations of observations and other meteorological data (http://www.nasa.gov/gpm). IMERG was 

designed to improve the limited sampling available from single low earth orbit (leo) satellites by using as many leo-

satellites as possible, using geosynchronous-Earth-orbit (geo) infrared (IR) estimates to fill in gaps [Huffman et al., 

2015].  The temporal resolution of IMERG-V03D is half-hourly, and it has a 0.15-degree by 0.15-degree spatial 20 

resolution.  

b) TMPA 3B42 version 7 is obtained from a set of data provided by different satellite-based sensors between 1998 and 

April 2015, in both real and near-real time (TMPA 3b42 data are available at 

ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/3B42RT). TMPA has been essential for creating spatio-temporal 

average levels that are appropriate for user applications, with very good results in climate and hydrological studies in 25 

recent decades [Huffman et al., 2007]. The usefulness of TMPA for hydrological modeling in the Amazon basin has 

been evaluated, for example, in Paiva et al., 2013; Zulkafli et al., 2014; and Zubieta et al., 2015. 

c) TMPA RT (real time) precipitation data are related to TMPA V7, but do not include calibration measurements of rainy 

seasons, which are incorporated more than a month after the satellite data. 

(ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/3B42RT). As with TMPA V7, the final, gridded, sub-daily temporal 30 

resolution of TMPA RT is usually every three hours, with a 0.25-degree by 0.25-degree spatial resolution.  

d) To evaluate satellite-based datasets, a precipitation product was obtained using daily data series (PLU) from SENAMHI 

rainfall stations.  We collected daily rainfall data for 202 rain stations during the selected period. Quality control based 

on the Regional Vector Method (RVM) was used to select stations having the lowest probability of errors in their data 
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series [Hiez 1977; Brunet-Moret 1979]. Finally, 181 RVM-approved rainfall data series [distributed over 700,000
 
km

2

] 

were selected, with data between March 2014 and June 2015 (Fig. 1b). The area with the highest data availability 

covers around 81% of the ABPE (19% without availability is mainly located in the northern region), where the largest 

distribution of rainfall stations is in the Andean regions, rather than Amazonian regions, of the Ucayali and Huallaga 

basins (the Huallaga is a sub-basin of the Marañón basin). For comparison, both regions with and without availability 5 

of rainfall data were considered for hydrological modeling. Rainfall observations subsequently were spatially 

interpolated to a resolution of 0.1
◦ 

× 0.1
◦
 by ordinary kriging, and a spherical semivariogram model was used to 

generate a gridded daily rainfall dataset. To use each precipitation dataset as input to the hydrological model, sub-daily 

data (for example, TMPA datasets have temporal resolution of 3 hours) were rescaled to a daily time step. 

 10 

To evaluate model results, streamflow series from the SO-HYBAM Observatory (www.ore-hybam.org) and SENAMHI 

stations for the selected period were used; these were KM105 (KM), Mejorada (ME), Chazuta (CHA), Borja (BO), 

Bellavista (BE), Lagarto (LA), Pucallpa (PU), Requena (RE), San Regis (SR), Tamshiyacu (TAM) and Tabatinga (TAB) 

(Fig. 1b, Table 1). To describe climate characteristics, meteorological data from NCEP-DOE Reanalysis at surface level 

(Kanamitsu et al., 2002) were collected, including relative humidity, wind speed, solar radiation, air temperature and 15 

atmospheric pressure. Basin topography is derived from the Shuttle Radar Topography Mission (SRTM, version 2). Digital 

thematic maps correspond to vegetation and soil maps of Peru (http://www.fao.org) and a vegetation type map of Ecuador 

(http://sociobosque.ambiente.gob.ec/). A soil map of Ecuador (SECS-Ecuador, http: //www.secsuelo.org) and soil and land-

use maps of Colombia (IGAC-Colombia, http://geoportal.igac.gov.co) were also considered. GPM-IMERG, TMPA V7, 

TMPA RT and PLU datasets were selected for the period corresponding to observed streamflows.  20 

 

3. Methodology 

The MGB-IPH model [Collischonn et al., 2007] has been used to simulate the hydrological behavior of the ABPE. It consists 

of modules for calculating soil water budget, evapotranspiration, flow propagation within a cell, and flow routing through the 

drainage network. A HRU (hydrological response unit) [Kouwen et al., 1993) approach is used to perform soil water balance 25 

by mean spatial classification of all areas with a similar combination of soil and land cover, which are associated with model 

parameters. To create HRUs, the watershed is divided into regular elements (cells), which are interconnected by channels. A 

parameter set is calculated separately for each HRU of each pixel, considering only one layer of soil [Collischonn et al., 

2007]. The Muskingum-Cunge method is used for routing streamflows through the river network from runoff generated for 

different HRUs in the cells. Streamflows are adjusted for accuracy according to the stream reach length and slope. A detailed 30 

description of the MGB-IPH model is provided in Collischonn et al. [2007]. 

 

The comparison of precipitation datasets was performed in two steps: first, an analysis of monthly averages and detected rain 
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events at different precipitation thresholds (0.1, 1, 5, 10 and 20 mm/day) was conducted over the ABPE. The analysis was 

performed by computing the frequency bias index (FBI), probability of detection (POD), false alarm ratio (FAR), and 

equitable threat score (ETS) (see Table 2). These are calculated from a 2 x 2 contingency matrix composed of four 

parameters (a, b, c, d), where a is the number of observed rain events correctly detected, b is the number of observed rain 

events not detected, c is the number of rainfall events detected but not observed (false alarms), and d is the sum of cases in 5 

which neither observed nor detected rain events occurred. FBI allows analysis of overestimation or underestimation of rain 

events, PDO provides information about sensitivity to not-detected and detected events, FAR is a function of false alarms, 

while ETS indicates the fraction of observed and/or detected rain events that were correctly detected.  

Two performance coefficients were then used to evaluate the streamflow simulations: the Nash Sutcliffe (NS) coefficient, 

and the difference between volumes calculated and observed (ΔV), shown in equations 1 and 2: 10 

 

     
                  

   
   

                       
  
   

                    [1] 

 

    
                     

          
                           [2] 

With Q_obs observed and Q_cal modeled streamflows. The range of efficiency lies from −∞ to 1, an efficiency of 1 (E = 1) 15 

corresponds to a perfect fit of modeled streamflow and observed data. While, an efficiency of lower than zero indicates that 

the mean value of the time series (observed) would have been a better predictor than the model. A Taylor diagram was used 

to provide a graphic summary of how closely a pattern (or a set of simulated streamflows) matches observed streamflows. In 

this diagram, the similarity among three statistical patterns is quantified according to the amplitude of their coefficient of 

variation (CV %), correlation coefficient and centered root-mean-square difference (RMSD %) [Taylor, 2001). This can be 20 

used to analyze the relative ability of hydrological models to simulate the spatial pattern of mean streamflow.  

4. Results 

4.1  Comparison of GPM-IMERG and other rainfall datasets 

Total annual rainfall over the ABPE during the selected period is shown in Figs. 1c-f, using all four precipitation products. 

The satellite-based datasets (GPM-IMERG, TMPA V7 and TMPA RT) overestimate observations (PLU) during this period 25 

(by 11.1%, 15.7% and 27.7 %, respectively). As Figs. 1c-f show, the satellite-based products present similar spatial 

distributions. These products are comparable to the PLU over a) the Andean regions (for this paper, the Andean and Amazon 

regions are considered to be above and below 1500 meters above sea level, respectively, see Fig 1b), with precipitation 

mainly between 500 and 1500 mm/year, and b) the northern Amazon regions (3.0
o
S-6.0

o
S), with precipitation between 2000 

and 3000 mm/year. There are some spatial differences over the southern Amazon regions. This can be attributed to greater 30 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-656, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 14 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



6 

 

uncertainty of the PLU dataset, however, because there are fewer rainfall stations in those regions, particularly the eastern 

Ucayali basin (Fig 1b).   

A comparison of monthly rainfall over the Ucayali and Huallaga river basins (at the Requena and Chazuta stations) with 

satellite-based precipitation data during the selected period is shown in Figs. 2a and 3a, where the spatial distribution of 

rainfall stations is greater in the Andes region than the Amazon region. The TMPA V7 and GPM-IMERG datasets are very 5 

similar to each other in the Ucayali and Huallaga river basins. A monthly rainfall analysis shows that TMPA V7 and GPM-

IMERG tend to underestimate dry-season rainfall in the Ucayali basin (April to September), by 10.6%, compared to PLU 

dataset (Fig. 2a). Meanwhile, both datasets tend to slightly overestimates wet-season rainfall by 3% compared to PLU 

dataset. This overestimation is larger than obtained by TMPA V7 or GPM-IMER when TMPA RT is analyzed (17.5%). 

Moreover, GPM-IMERG, TMPA V7 and TMPA RT datasets tend to underestimate dry and wet-season rainfall in the 10 

Huallaga basin by 30.7%, 28.2% and 26.2%, respectively, compared to PLU (Fig. 3a).  

 

Building on the average number of total days of rain events (456), the number of rain events correctly detected (~ 20%) is 

similar for each satellite precipitation dataset, compared to PLU dataset over the Ucayali and Huallaga basins (Figs. 2b and 

3b). The average number of events correctly and not correctly detected is also consistent—that is, all precipitation datasets 15 

are clearly better at identifying low- and moderate-precipitation events (1 - 5 mm/day) than the number of high- and very 

low-precipitation events (higher than 5 mm/day and lower than 1 mm/day respectively) (Figs. 2b-c and 3b-c). Average FBI 

values obtained for all datasets indicate a low capacity in the detection of rain events greater than 5 mm/day, producing FBI 

values varying mainly between  1 and  2  in the Ucayali and Huallaga basins. This differs substantially from optimal 

conditions (~1) (Figs. 2f and 3f). This variation is due to the high number of rain events   that were not correctly detected 20 

(~80%) (Figs. 2c and 3c).   

Average POD values for all datasets indicate a moderate probability of detection (POD less than 0.55) rain events greater 

than 5 mm/day, this probability decreases to ~0.2 for others events in the Ucayali and Huallaga basins (Figs. 2g and 3g). The 

average number of events correctly and not correctly detected is also consistent—that is, all precipitation datasets are clearly 

better at identifying precipitation events between 1 and 5 mm/day. The low probability of detection is consistent with the 25 

fraction of rain events which were correctly detected (ETS) (Figs. 2i and 3i). This is due to a high rate of false alarms (FAR) 

between ~0.7 and ~0.9 for rain events higher than 5 mm/day and lower than 1 mm/day for all satellite precipitation datasets 

in both the Ucayali and Huallaga basins (Figs. 2h and 3h).  

The limited ability to represent rainfall events of more than 5 mm/day using satellite-precipitation datasets (GPM-IMERG, 

TMPA V7, TMPA RT), compared with PLU dataset (Figs. 2g and 3g), may be due to slight overestimation (in the Ucayali 30 

basin) or high overestimation (in the Huallaga basin) identified mainly during the wet season (Figs. 2a and 3a). Events 

exceeding 5mm/day are more likely to occur during that period. 
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4.2  Streamflow simulation  

In order to optimize the simulation of streamflows from precipitation datasets, different parameter sets were assigned to each 

basin in ABPE during calibration. The analysis by sub-basin is more reliable than assigning the same parameter set to the 

entire basin [Zubieta et al., 2015]. Simulated streamflows were compared to observations at 11 gauging stations (Fig. 1b, 

Table 3). The Ucayali and Huallaga basins (with greater availability of rainfall gauges) and the northern region of ABPE 5 

(without rainfall gauge availability) were considered in the comparative analysis. In general, streamflows obtained from all 

satellite-based precipitation datasets show the same spatial pattern as those obtained by using PLU (Figs. 4a-b) and are 

similar to those obtained by Zubieta et al. [2015]. This study shows that GPM-IMERG can also be a helpful alternative 

source of data (similar to TMPA V7 and TMPA RT) for rainfall–runoff simulation in areas where there is a lack of 

conventional rainfall data, such as the Andean-Amazon regions of the Ucayali basin. The performance analysis over the 10 

equatorial regions does not agree well with observed streamflows (NS lower than 0.60), probably because of the lack of 

adequate rainfall estimates. Similar results are also obtained using the satellite precipitation datasets TMPA V7 (Fig. 4c) and 

TMPA RT (Fig. 4d) in the hydrological modeling.  

Figs. 5a-f shows the ability of the MGB-IPH model to simulate observed streamflows using TMPA V7, TMPA RT, GPM-

IMERG and PLU precipitation datasets. Simulated streamflows match observations at six stations a) Chazuta (CHA) b) 15 

Km105 (KM), c) Lagarto (LA), d) Mejorada (ME), e) Pucallpa (PU), and e) Requena (RE). The location of each dataset on 

the plot quantifies how closely modeled streamflows match observed streamflows in terms of CV, correlation coefficient and 

RMSD. 

Fig. 5a shows a Taylor diagram for the Chazuta station (Huallaga basin), where modeled streamflows from PLU dataset 

agree better with observed streamflows (r=0.84, p<0.01), RMSD error (30%) and CV of 29%) than do those using data from 20 

satellite products (TMPA RT, TMPA V7 and GPM-IMERG). Analysis of the two smallest sub-basins (in the Ucayali basin) 

controlled at the KM (Fig. 5b) and ME (Fig. 5c) stations shows a correlation pattern of r= ~ 0.9 with RMSD of ~40% at KM 

and 24-40% at ME (Fig. 5b-c). These results indicate that the streamflows from PLU and TMPA RT are more similar to 

observed streamflow series mainly at ME, with RMSD lower than 30%. Both streamflow series at KM and ME have a 

high CV (40%-80%), due to rainfall seasonality.   25 

Analysis of the largest sub-basins (in the Ucayali basin) controlled at the LA, PU and RE stations shows greater similarity 

among them for the four streamflow series obtained from precipitation datasets (Fig. 5d-f). Their significant correlation 

patterns are between 0.8 and 0.9 (r > 0.9 at the PU station), and RMSD are mainly between 20% and 25% (PU and RE). It 

should be noted that streamflow data series have a lower CV in the larger sub-basins, such as LA, with CV of 55% (drainage 

area of 191,400 km
2
); PU, with CV ~ of 42% (drainage area of 260,400 km

2
); and RE, with CV of ~40% (drainage area of 30 

350,200 km
2
). This could be due to weaker seasonality of rainfall in the northern part of the basin. As for simulations using 

satellite-based precipitation datasets, the correlation between simulated and observed streamflows is mainly between 0.6 and 

0.9, and RMSD is relatively high (20% - 40%), suggesting that a hydrological model using these datasets can represent 

seasonal streamflows.  
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PLU dataset used as input to the hydrological model produced good results at the KM 105  (NS = 0.82 and ∆V =0.33%) 

(Fig. 6a), Mejorada (NS = 0.89 and ∆V = 4.2%) and Lagarto (NS = 0.74 and ∆V =-9.52%) stations in the Ucayali basin. This 

indicates its ability to represent extreme values (peak flow) with a low percentage of relative volume error (∆V < 10 %). 

However, the model's performance is low at the Pucallpa and Requena stations (NS < 0.51 and ∆V ~ 10%), where its 

predictions are not accurate. The low performance (NS < 0.60) is associated with drainage areas greater than the approximate 5 

threshold value of 200,000 km
2
 in the Ucayali basin. This could be due to greater uncertainty in the spatial distribution of 

rainfall in the Ucayali and Huallaga basins (northern region of the ABPE), because there are fewer rainfall stations in these 

regions. The Peruvian Andes are currently more instrumented than the Amazon regions (see Fig. 1b). 

 

To analyze the ability of GPM-IMERG datasets in hydrological modeling were analyzed hydrographs for the Ucayali basin 10 

monitored at Km 105 station (Fig. 6b), for comparison, streamflows from PLU, TMPA V7 and TMPA RT datasets were also 

considered (Fig. 6c-d). Visual analysis of the hydrographs shows that simulated streamflows using GPM-IMERG for the 

selected period agree fairly well with observed streamflows for the KM 105 station. Although the Nash–Sutcliffe efficiency 

coefficient is generally acceptable (NS = 0.90 and    = -0.25%), as shown in Fig. 6b, there is a slight streamflow 

overestimation during the wet season, which could be due to overestimation of rainfall during this wet season. Other results 15 

indicate that the model's performance is minimally acceptable in comparison to observed streamflow at the Pucallpa (NS = 

0.61, ∆V = -17.2%) (Fig. 6g), and Mejorada stations (NS = 0.61, ∆V = -18.5%). For the other stations, performance within 

the basin is less than zero.  

 

Similar results were observed using TMPA V7 and TMPA RT, which reproduce the seasonal streamflow regime with similar 20 

performance at the KM 105 (NS =0.80 and ∆V = -2.78%, NS =0.68 and ∆V = 11.5%, respectively) (Figs. 6c-d) and Pucallpa 

(NS =0.60 and ∆V = -17.8%, NS =0.89 and ∆V = -8.3%, respectively) stations in the Ucayali basin (Figs. 6h-i).  

 

5. Concluding Remarks 

Three satellite-based precipitation datasets (GPM-IMERG, TMPA V7, and TMPA RT) were evaluated against a rain-gauge-25 

based dataset (PLU) obtained by spatial interpolation over the Amazon basin of Peru and Ecuador. Each dataset was used as 

inputs for the MGB-IPH hydrological model to simulate streamflows for a 16-month period (from March 2014 to June 2015) 

in the Ucayali, Huallaga, Marañón, Napo, Amazonas and Solimões river basins.  

GPM-IMERG and TMPA V7 show high temporal and spatial similarity with PLU in the Ucayali basin, but they tend to 

underestimate PLU in the Huallaga basin during the wet season of the 2014-2015 period. TMPA RT tends to overestimate 30 

for the Ucayali basin, compared to other precipitation datasets (PLU, TMPA V7, GPM-IMERG), while it is more similar to 

other satellite-based precipitation datasets (TMPA V7, GPM-IMERG) in the Huallaga basin. 

GPM-IMERG datasets shows greater similarity with TMPA V7 than TMPA RT. This indicates that GPM-IMERG estimates 

are more similar to TMPA V7 both spatially and temporally when used as input for hydrological modeling over Andean and 
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Amazon basins. On average, rain event detection coefficients also suggest that GPM-IMERG, TMPA V7 and TMPA RT are 

similar to PLU in the number of rain events correctly detected (~20%) for the Ucayali and Huallaga basins. 

In general, the performance of the model when using GPM-IMERG datasets indicates that these data are useful for 

estimating observed streamflows in Andean-Amazonian regions (Ucayali basin, southern regions of the Peruvian and 

Ecuadorian Amazon Basin). These results are similar to those obtained from TMPA V7 estimates by Zubieta et al. [2015] for 5 

the 2003-2009 period. Streamflows obtained from GPM-IMERG, TMPA V7, TMPA RT datasets show the same spatial 

pattern as those obtained by using PLU, (low and high performance in the northern and southern regions of the ABPE, 

respectively). The ability to represent seasonal streamflows for the southern region using these four precipitation datasets is 

corroborated by statistical evaluation. Low performance of the model in the southern region is mainly related to the lack of 

adequate rainfall estimates, because it is consistent with estimated streamflows.  10 
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Table 1. Characteristics of streamflow gauging stations in the Amazon basin of Peru and Ecuador: Altitude, river, drainage 

area, annual mean streamflow (Q mean), maximum streamflow (Q max) and minimum streamflow (Q min) in m3/s. 

N Station Altitude River Area (Km 2) 

Q medio 

(m3/s) Q max (m3/s) Q min (m3/s) 

1 Km 105 (KM) 2275 Ucayali 9635 98 446 30 

2 Mejorada (ME) 2799 Ucayali 16930 186 651 76 

3 Chazuta (CHA) 226 Marañon 68685 3430 8921 936 

4 Borja (BOR) 163 Marañon 92302 6123 13250 1931 

5 Bellavista (BE) 90 Napo 100169 9338 13110 4654 

6 Lagarto (LA) 200 Ucayali 191428 6194 30460 1292 

7 Pucallpa (PU) 141 Ucayali 260418 10833 21830 3714 

8 Requena (RE) 94 Ucayali 350215 13669 20910 4088 

9 San Regis (SR) 92 Marañon 359883 20119 26610 9071 

10 Tamshiyacu (TAM) 88 Amazon 682970 37380 53840 15000 

11 Tabatinga (TAB) 62 Solimões 878141 45384 62190 19700 
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Table 2. Summary of rain event detection coefficients. 

Coefficient Name Equation* Range 

Optimal 

score 

FBI 

Frequency bias 

index FBI = (a+b)/(a+c) 0 - ∞ 1 

POD 

Probability of 

detection POD = a/(a+c) 0 - 1 1 

FAR False alarm ratio FAR = c / (a+c) 0 - 1 0 

ETS 

Equitable threat 

score ETS = (a+He)/(a+b+c-He) - ∞ to 1 1 

* He = (a+b). (a+c)/N where N is the total number of estimates 
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Table 3. Summary of modeling results at 11 gauging stations in the Amazon basin of Peru and Ecuador (to Tabatinga station 

in Brazil). 

N River Station 

OBSERVED 

RAINFALL 

(PLU) 

GPM-IMERG TMPA V7 TMPA RT 

NS ∆ V NS ∆ V NS ∆ V NS ∆ V 

1 Ucayali Km 105 (KM) 0.82 0.33 0.90 -0.25 0.80 -2.78 0.68 11.55 

2 Ucayali Mejorada (ME) 0.89 4.2 0.61 -18.5 0.61 -17.01 0.75 -6.49 

3 Ucayali Chazuta (CHA) 0.37 -18.27 -0.26 -31.96 -0.37 -33.51 -0.02 -29.55 

4 Ucayali Borja (BOR) -----  -----  -3.94 -47.98 -3.09 -42.39 -3.91 -47.53 

5 Ucayali Bellavista (BE) -----  -----  -2.17 -7.14 -18.24 -32.64 -20.93 -35.46 

6 Marañon Lagarto(LA) 0.74 -9.52 0.71 -0.13 0.80 -0.49 0.81 -0.18 

7 Marañon Pucallpa (PU) 0.48 -8.1 0.61 -17.2 0.60 -17.80 0.89 -8.3 

8 Marañon Requena (RE) 0.51 -10.6 -3.75 -23.59 -7.71 -33.28 -5.33 -23.32 

9 Napo San Regis (SR) -----  -----  -5.40 -24.82 -5.68 -25.59 -4.90 -24.72 

10 
Amazon 

Tamshiyacu 

(TAM) -----  -----  
-24.51 -32.22 -33.32 -37.57 -28.19 -33.19 

11 
Solimões 

Tabatinga 

(TAB) -----  -----  
-3.85 -10.28 -12.88 -19.51 -5.21 -10.74 
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 Figure 1. (a) Location of the Amazon basin in South America, (b) the Western Amazon basin, gauging and rainfall stations 

used in this work, intermittent line represents main isohypse 1500 m.a.s.l. Total annual precipitation estimated from (c) 

observed rainfall-PLU, (d) GPM-IMERG, (e) TMPA V7, (f) TMPA RT over the Amazon basin of Peru and Ecuador.   5 
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Figure 2. (a) Basin-average monthly rainfall for each precipitation dataset in the Ucayali basin up to Requena station, (b) the 

number of observed rain events correctly detected, (c) the number of observed rain events not correctly detected, (d) the 5 

number of rain events detected but not observed (false alarms), (e) the sum of cases when neither observed nor detected rain 

events occurred, (f) coefficient frequency bias index – FBI, (g) probability of detection-POD, (h) false alarm ratio – FAR, 

and (i) equitable threat score-ETS. 
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Figure 3. (a) Average monthly rainfall for each precipitation dataset in the Huallaga basin up to the Chazuta station, (b) the 

number of observed rain events correctly detected, (c) the number of observed rain events not correctly detected, (d) the 

number of rain events detected but not observed (false alarms), (e) the sum of cases when neither observed nor detected rain 5 

events occurred, (f) coefficient frequency bias index – FBI, (g) probability of detection-POD, (h) false alarm ratio – FAR, 

and (i)  equitable threat score-ETS. 
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Figure 4.  Nash–Sutcliffe efficiency coefficients map for simulations using: (a) Observed Rainfall (PLU), (b) GPM-IMERG, 

(c) TMPA V7 and (d) TMPA RT rainfall data. 
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Figure 5.  Taylor diagrams displaying a statistical comparison (coefficient of variation (%), the root mean square difference 

(%) and correlation coefficient) between observed streamflows and modeled streamflows from four precipitation datasets 

(TMPA V7 (V7), TMPA RT (RT), GPM-IMERG (GPM), observed rainfall (PLU)) for six basins controlled at stations: a) 

Chazuta (CHA), b) Km105 (KM), c) Mejorada (ME), d) Lagarto (LA), e) Pucallpa (PU), and f) Requena (RE). 5 
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Figure 6. Observed and simulated streamflow hydrographs at KM 105 station from March 12, 2014, to June 30, 2015, using 

precipitation datasets: (a) Observed rainfall, (b) GPM-IMERG, (c) TMPA V7, and (d) TMPA RT, (e) Location of the 

drainage area controlled at the KM station. Observed and simulated streamflow hydrographs at the Pucallpa station from 5 

March 12, 2014, to June 30, 2015, using precipitation datasets: (f) Observed rainfall, (g) GPM-IMERG, (h) TMPA V7, (i) 

TMPA RT; (j) Location of the drainage area controlled at the Pucallpa station. 
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