May 30, 2017

Memorandum

To: Pro. Nunzio Romano, Editor of *Hydrology and Earth System Sciences*

Subject: Revision of hess-2016-654

Dear Pro. Nunzio Romano:

Upon your request, we have carefully addressed all the comments made by the two anonymous reviewers on our manuscript (hess-2016-654) entitled "Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China" and revised the manuscript accordingly. The comments have helped us greatly improve the overall quality of the manuscript. We added Jianjun Zhang, Yu Liu and Zheng Ning to the author list as a result of their important contributions to the revision of this paper. The following is the point-point response to all the comments. The page and line numbers in the following response refer to the revised manuscript with changes marked.

Response to Anonymous Referee #1:

General comments:

The authors investigated the effects of precipitation variability and land use/cover changes (LUCC) on sediment yield in the Loess Plateau (LP), China. The author presents a detailed examination of the relationship between precipitation/LUCC and sediment yield in different catchments in the middle part of the LP during three periods. However, there are quite a few issues in this manuscript, hence I suggest some major revisions.

Reply: All the issues have been carefully considered and modifications have been done accordingly (see the following point-to-point replies to the comments).

My major concerns are:

1. Comment:

About the linear regression model for attribution analysis, nearly half of the catchments do not show statistically significant relationship between precipitation and sediment load during the reference period (Table 3). Therefore, it is very questionable to apply these linear regression models to the validation period for detecting the precipitation-induced (or LUCC-induced) sediment load change.

Reply: We have changed the linear regression model (SSY=aP+b) for attribution analysis (see P.10, Lines 289-293). Rustomji et al. (2008, Water Resources Research, 44, W00A04, doi:10.1029/2007WR006656) found that the square root of sediment yield in the catchments of the Loess Plateau was linearly related to the precipitation. This was used in this study as the motivation to develop the precipitation-sediment yield relationship during the reference period:

$$\sqrt{SSY} = aP + b \tag{1}$$

Within this new regression model, the sediment yield was correlated with precipitation at 0.05 level in eleven catchments and 0.1 level in three catchments, and the R² value also improved much compared to the original linear regression model (see Table 1). Therefore, this new regression model was satisfactory to detect the precipitation-induced (or LUCC-induced) sediment load change (see P.16, Lines 527-534).

Table 1. The linear regression equations between square root of specific sediment yield and annual precipitation ($\sqrt{SSY} = aP + b$) during the reference period (1961-1969).

ID	Catchment	Regression equation	R^2	р
1	Huangfu	y = 0.341x + 12.041	0.78	0.002
2	Gushan	<i>y</i> =0.349 <i>x</i> +8.237	0.84	0.001
3	Kuye	y = 0.323x + 9.939	0.67	0.007
4	Tuwei	y = 0.218x + 12.635	0.87	0.000
5	Jialu	y = 0.382x + 6.976	0.78	0.004
6	Wuding	y = 0.174x + 20.544	0.53	0.027
7	Qingjian	y = 0.232x + 20.923	0.48	0.040
8	Yanhe	y = 0.243x + 0.741	0.39	0.070
9	Shiwang	y = 0.070x + 10.935	0.27	0.150
10	Qiushui	y = 0.257x + 30.738	0.60	0.014
11	Sanchuan	y = 0.191x + 15.053	0.36	0.089
12	Quchan	y = 0.202x + 34.590	0.72	0.016
13	Xinshui	y = 0.202x - 6.593	0.71	0.004
14	Zhouchuan	y = 0.207x + 20.226	0.33	0.090
15	CSHC	y = 0.218x + 5.689	0.70	0.005

2. Comment:

Even though this is just a "preliminary" study, as the author mentioned, I do not feel it is a complete work presented in this manuscript. There is a need for further discussion or analysis at some places. If the focus of this paper is on both spatial and temporal pattern of precipitation/LUCC-sediment relationships, there is lack of discussion on possible reasons for the spatial variability. Also, is it possible to investigate the effect of intra-annual variability of precipitation (or precipitation extremes) on sediment load since the authors have noted the effect is important (L328-330; L369-385)? Additionally, what are equation 6 and 7 for?

Reply: This is a good comment.

First, we have showed the spatial distribution of catchment characteristics (including precipitation, soil, slope, LAI and LUCC), which are the possible reasons for the spatial variability of precipitation/LUCC-sediment relationships (see Figs. 1-3). The precipitation/LUCC-sediment relationships were also presented in maps to indicate spatial pattern rather than grouped scatter plots used in the original version (see Figs. 4-5).

Second, we have compared the precipitation/LUCC-sediment relationships in different parts of the study area, and discussed the effects of catchment characteristics on the variability of relationships among catchments (see P.16, Lines 535-545; P.18, Lines 710-711, 718-724; P.21, Lines 800-810). We have also investigated the effects of potential factors (precipitation, percentage area of forestland, grassland, construction land, terracing and check-dams, and LAI) on sediment yield change in different stages (see P.15, Lines 469-476). It was found that check-dam construction was the dominant factor for sediment yield reduction from reference period to period-2, and pasture plantation and check-dam construction acted the dominant factors for sediment yield from reference period to period-3 (see Table 2). The increase of precipitation mitigated the reduction of sediment yield to some degree from period-2 to period-3 (see Table 2).

Third, for the effect of intra-annual variability of precipitation (or precipitation extremes) on sediment load, we have investigated the correlation between sediment yield and storm events (including storm numbers, precipitation amount of storms) in the study area during different decades (see P.19, Lines 738-745). The analysis showed that the sediment yield was significantly correlated with storm numbers in the 1960s, 1970s and 1980s (p<0.05), and precipitation amount of storms in the 1960s and 1970s (p<0.05) (see Table 3). This result indicated the critical role of storm events in sediment yield, especially during the periods before substantial LUCC took effect. Furthermore, we have chosen a catchment as an example and compared the within-year rainfall pattern and sediment load in nearby two years (see Fig. 6). The comparison also indicated the important role of distribution of storm events in sediment yield (see P.19, Line 746 to P.20, Line 764).

Fourth, we have deleted equations 6 and 7 which are somewhat misleading, and reframed the analysis about the spatio-temporal patterns of the impacts of precipitation and LUCC on sediment yield (see *P.15*, Line 477 to *P.16*, Line 525). We divided the study period into three stages including reference period and validation periods (period-2 and period-3). We used the maps to show the spatial distribution of precipitation-sediment relationships in the three stages and investigated the reason for the spatial-temporal variability (see Figs. 4-5). In the reference period before LUCC took effect, the variation of SSY mainly depends on precipitation and land surface conditions. During the validation period (period-2 and period-3) with LUCC increased and took effect, the temporal changes of SSY depend more on the fraction of treated surface area and precipitation played a secondary role. The spatial pattern of the impacts of precipitation on sediment yield was dependent on the landscape properties among catchments, and it changed considerably especially in period-3 as the combined effects of engineering measures and vegetation restoration project.

Finally, it should be noted that the focus of this study is to present the spatio-temporal patterns of effects of precipitation variability and LUCC on long-term changes in sediment yield, and it is a "preliminary" study to investigate the detailed effects of intra-annual variability of precipitation and catchment characteristics on sediment yield, which need more detailed processes-based studies on fine scales. This is the next immediate step in our investigations (see P.18, Lines 722-727; P.23, Lines 884-892).

Figure 1. Spatial distribution of (a) annual mean precipitation (1961-2011), (b) growing season leaf area index (LAI, 1982-2011), (c) soil type and (d) slope in the study area.

Figure 2. Land use and cover of the study area in (a) 1975, (b) 1990, (c) 2000 and (d) 2010.

Figure 3. Long-term trends in growing season LAI changes over (a) 1982-2011, (b) 1982-1999 and (c) 2000-2011 in the study area. Inset in each figure shows the frequency distribution of the LAI trends.

Figure 4. Spatial distribution of slope *a* in the regression equation $\sqrt{SSY} = aP + b$ during (a) reference period (1961-1969), (b) period-2 (1970-1999) and (c) period-3 (2000-2011). *SSY* is specific sediment yield, and *P* is precipitation.

Figure 5. Spatial distribution of slope *m* in the regression equation $\overline{SC} = -mA_c + n$. \overline{SC} is the decadal average sediment coefficient, and A_c is the fraction area treated with soil and water conservation measures.

Period	Regression model	R^2	р
Reference period vs. Period-2	$\Delta SSY = -0.135 - 0.850 \times \Delta Dam$	0.886	0.000
Reference period vs. Period-3	$\Delta SSY = -0.067 - 0.659 \times \Delta Dam - 0.081 \times \Delta Pasture$	0.928	0.023
Period-2 vs. Period-3	$\Delta SSY = -0.105 - 0.488 \times \Delta Dam + 0.058 \times \Delta P - 0.129 \times \Delta Pasture$	0.905	0.003

Table 2. The regression models for sediment yield change (ΔSSY) in different stages.

 Δ Dam and Δ Pasture are changes in percentage area of check-dams and pasture plantation, respectively. Δ *P* is changes of annual precipitation over the two compared periods.

Table 3. Pearson correlation coefficients (r) and two-tailed significance test values (p) between sediment yield and annual precipitation (P), number of storms (N_{storm}) and precipitation amount of storms (P_{storm}) during different decades of the CSHC region.

Daardaa		Р	Ν	storm	P_s	torm
Decades	r	р	r	р	r	р
1960s	0.772	0.015*	0.808	0.008**	0.718	0.029*
1970s	0.266	0.458	0.714	0.020*	0.695	0.026*
1980s	0.775	0.009**	0.633	0.050*	0.527	0.117
1990s	0.865	0.001***	0.591	0.072	0.572	0.084
2000s	0.118	0.715	0.006	0.986	0.138	0.669

***, ** and * indicate the significance levels of 0.001, 0.01 and 0.05, respectively.

Figure 6. Daily precipitation and sediment load of the Yanhe catchment during rainy season (May-October) in (a) 2003 and (b) 2004.

3. Comment:

As the spatial pattern is the focus in section 3.4-3.6, I suggest to present the precipitation/LUCC-sediment relationships in maps rather than grouped scatter plots.

Reply: This is a good suggestion. We have used maps to present the spatial pattern of the precipitation/LUCC-sediment relationships (see Figs 4-5).

Specific comments:

1. Comment:

P1, L22-23: Is the "70%" and "30%" a part of the conclusion in this study? If yes, I didn't see any of them in the results (section 3.3). Figure 5 does not support this statement either. If not, where are the

numbers from? It would be better to also include it in the introduction.

Reply: The attribution analysis indicated that the contribution of LUCC to sediment load was 74.39% from the reference period to period-2, and it was 88.67% from the reference period to period-3 (see *P.14, Lines 436-439*). Therefore, it can be considered that "The human induced land use/cover change (LUCC) was the dominant factor with contributing over 70% of the sediment load reduction, whereas the contribution of precipitation was less than 30%" (see *P.2, Lines 31-33*).

2. Comment:

P5, L106: The introduction above is mainly about the whole TP, why is only the middle part of LP investigated?

Reply: Most of sediment yield of the LP was produced in the Coarse Sandy Hilly Catchments (CSHC) region in the central region of the LP, which supplied over 70% of total sediment load in the YR, especially coarse sand. The CSHC region was the focus of our efforts to investigate the variation of sediment load within the LP (see P.5, Line 130 to P.6, Line 137).

3. Comment:

P6, L129: Any reference?

Reply: These two percentages were determined with the observed hydrological data during 1961-2011 by us (see P.7, Lines 173-174).

4. Comment:

P7, L139-140: It would be better to describe the data first, then show the figure.

Reply: We have described the changes of annual precipitation, streamflow and sediment load of the CSHC region with the data first, and then showed the figure (see P.7, Lines 185-190).

5. Comment:

P7, L146-150: The whole sentence is a little bit confusing. SSY, SC, and Cs were estimated based on P, Q, and A?

Reply: *We have rephrased this sentence. The SSY, SC and C_s* was estimated based on the observed *P*, *Q*, *S* and *A* (*SSY*=*S*|*A*, *SC*=*S*|(*Q*.*A*), *C*_s=*SSY*|*P*) (see *P*.8, Lines 208-212).

6. Comment:

P8, L158: What does vegetation cover mean? The vegetation fraction in each grid cell?

Reply: The LAI was used in this study to indicate vegetation cover (see P.8, Lines 218-220).

7. Comment:

P13, L287-301: I am very confused that the authors proposed this "framework" but didn't show any results of it. What is its purpose here?

Reply: We have reframed the analysis about the spatio-temporal patterns of precipitation and LUCC impacts on sediment yield. Please see the fourth point of the response to #2 main comment.

8. Comment:

P15, L313-316: It would be better to describe the grouping at the beginning of this paragraph.

Reply: We have described the spatial distribution and grouping of the precipitation-sediment yield relationships at the beginning of the paragraph (see P.16, Lines 539-545).

9. Comment:

P17, L355-356: Does this indicate that the precipitation-sediment relationship gets stronger in some regions but weaker in some other regions? Is the strengthened (or weakened) relationship related to the SWCM or vegetation change in these catchments?

Reply: We have deleted this misleading sentence. In period-3, as a result of the combined effects of *SWCM* and vegetation restoration project, the precipitation-sediment relationship became much weaker in all the catchments, and slope of the regression equation decreased sharply in all the catchments, especially for some catchments the slope was even negative (see Fig. 5). Furthermore, the spatial pattern of precipitation-sediment relationship had somewhat change compared to that in the reference period and period-2 (see P.17, Lines 658-670).

10. Comment:

P20, L425: The same issue as (P13, L287-301). What is k0 and k1?

Reply: We have deleted this misleading equation and the related statements.

Response to Anonymous Referee #2:

1. Comment:

The author's attempt to determine the drivers of changes in sediment yield within the Coarse Sandy Hill Catchments region of the Loess Plateau. The authors attribute changes in sediment yield to both land-use change and changes in precipitation. Although the authors do a great job characterizing changes in precipitation, land cover, and sediment yield, their statistical analysis leaves much room for improvement and many of their figures could be clarified.

Reply: We have improved the statistical analysis (see response to the main comment #1 of reviewer #1), clarified many figures in map not in bar graphs or scatter plots (see Figs. 1-5), and addressed all the following comments.

2. Comment:

While land-use change (specifically crop to forest) and precipitation change are certainly major drivers in changes in sediment yield, soil properties, topography, and changes in urban cover must also play some role, and thus warrant some discussion as to their exclusions, or what excluding them might mean for the paper's results. Moreover, as the author's bring up, the intensity of certain storms are not always captured when one looks at annual average precipitation, but these intense storm greatly affect sediment yield. Thus, analyzing the number of intense events along with average precipitation may prove insightful.

Reply: We have investigated the possible effects of catch characteristics (soil, slope, LUCC and LAI) on the changes of sediment yield (see the second point of the response to #2 main comment of reviewer

#1). We have also investigated the effects of storm events on sediment yield (see the third point of the response to #2 main comment of reviewer #1).

3. Comment:

Lines 35-36. The effect of precipitation is also temporally variable, yet it is framed in the abstract and throughout most of the paper as only being spatially variable.

Reply: Yes, the effect of precipitation was both temporally and spatially variable. We have reframed the analysis about the spatio-temporal patterns of precipitation impacts on sediment yield (see the fourth point of the response to #2 main comment of reviewer #1).

4. Comment:

Lines 144-145. Although the author's provided a robust motivation for their analysis of the their 14 chosen catchments within the CSHC, a sentence or two explaining why they are studying the CSHC would be useful.

Reply: We have explained the reason for focusing on the CSHC region in this study (see the response to #2 specific comment of reviewer #1).

5. Comment:

Line 179. Why resample the AVHRR data?

Reply: We have changed the data source of LAI data. LAI was derived from the Global Land Surface Satellite (GLASS) NDVI series with spatial resolution of 1 km (see P.8, Lines 218-220).

6. Comment:

Lines 179-185. What is meant by vegetation cover? Do the authors estimate vegetation cover using NDVI or a different vegetative index?

Reply: The LAI was used in this study to indicate vegetation cover (see P.8, Lines 218-220).

7. Comment:

Lines 183-185. It seems as though the authors have useful spatial information regarding the total areas impacted by conservation measures (the Yao et al. 2011) dataset, yet it's unclear where this comes into play in their analysis.

Reply: We only had the total area of conservation measures, not the spatial information (see P.8, Lines 220-222). It is necessary to obtained them with field survey and high-resolution satellite data, and investigate the detailed effects of conservation measures on streamflow and sediment yield.

8. Comment:

Lines 192-194. Did you test your variables after performing the TFPW to see if any residual autocorrelation remained?

Reply: *There was no residual autocorrelation remaining after performing the TFPW (see P.9, Lines 257-258).*

9. Comment:

Lines 220-226. What was the land-cover during the study period which the authors consider their

reference period where "the effects of human activities were slight and could be mostly ignored." Here and throughout, presenting the spatial data as maps rather than bar graphs or scatter plots will more clearly to the audience. Especially given in the results and discussion where the authors often reference the differences in spatial patterns.

Reply: The land use and cover in 1975, 1990, 2000 and 2010 was shown in this study, and the land use in 1975 was thought to be the substitute during the reference period (see Fig. 2). We have presented the spatial data including the catchment characteristics (see Figs. 1-3) and the precipitation/LUCC-sediment relationships (see Figs. 4-5) as maps.

10. Comment:

Line 254. As mentioned above, need to be clear about the proxy used for vegetation cover.

Reply: The LAI was used as the proxy for vegetation cover (see P.12, Lines 357-365).

11. Comment:

Line 260, 263. Average annual LAI?

Reply: The growing season (April-October) LAI was used as nearly all the sediment yielded during this period (see P.12, Lines 357-365).

12. Comment:

Line 278-288. Why use the coefficient of variation and not standard deviation? What do these results tell us?

Reply: The coefficient of variation is equal to the ratio of standard deviation and average value, and it is better to compare the inter-annual variability of precipitation, streamflow and sediment load among the catchments with distinct different average value (see P.13, Lines 410-412). The results indicated that both the annual value and variability of precipitation decreased, and the annual value of streamflow and sediment load decreased significantly, whereas their inter-annual variability presented somewhat increase, especially for sediment load. The above results indicate the substantially different behaviors of the changes among precipitation, streamflow and sediment load (see P.14, Lines 429-430).

13. Comment:

Section 3.3. In Equation 6, precipitation is also a temporally variable component, and 'area treated with erosion control measures' is also a spatially variable component. And it seems as though other factors (steeper slopes, soil properties, impermeable surface area, etc) may also play a role in affecting SSY. Moreover, it seems likely that changes in precipitation and land-use change may interact to affect sediment yield. The authors may want to rethink the way they've framed their analysis. Especially as 6/14 catchments in their analysis exhibited no significant correlation. A multiple regression analysis with an interaction term may be a more appropriate means of analysis.

Reply: First, we have used new regression model to analyze the precipitation-sediment relationship and it improved much compared to the original linear regression model (see response to the main comment #1 of reviewer #1).

Second, we have deleted Eq. (6) and reframed the analysis about the spatio-temporal patterns of the impacts of precipitation and LUCC on sediment yield (see the fourth point of the response to the main comment #1 of reviewer #1). Both the temporally variability of precipitation and spatial variability of

fraction of area treated with erosion control measures were included in the framework. Furthermore, we have also investigated the possible effects of catch characteristics on the changes of sediment yield (see the second point of the response to #2 main comment of reviewer #1).

14. Comment:

Lines 387 and throughout: Authors often discuss a 'clear spatial pattern' present in their results, thus maps would be more useful as figures than scatter plots.

Reply: We have used maps as figures (see Figs. 1-5).

15. Comment:

Line 393 and 419. Remove undoubtedly.

Reply: We have removed it (see P.18, Line 716).

16. Comment:

Lines 449-454. Not quite sure how this resulting empirical relationship follows from the preceding analysis. What are k0 and k1. Also, once better explained, the authors could prove this empirical relationship is robust by showing how accurately it predicts SSY when they input observational data.

Reply: We have deleted this empirical equation and the related statements.

17. Comment:

Table 2: Add an ID column.

Reply: The ID column has been added in Table 2.

If you have any further questions about this revision, please contact us.

Sincerely Yours,

Dr. Guangyao Gao (gygao@rcees.ac.cn)

Pro. Bojie Fu (bjf@rcees.ac.cn)

Pro. Murugesu Sivapalan (sivapala@illinois.edu)

1	Spatio-temporal patterns of the effects of precipitation variability	
2	and land use/cover changes on long-term changes in sediment yield	
3	in the Loess Plateau, China	
4		
5	Revised manuscript submitted to <i>Hydrology and Earth System Sciences</i> (hess-2016-654)	
5	revised manuscript submitted to right ology and Darm System Sciences (ness 2010-05-1)	
6		
7	Guangyao Gao ^{1,2} , <u>Jianjun Zhang¹, Yu Liu³, Zheng Ning¹,</u> Bojie Fu ^{1,2} , and Murugesu	101117A 44 1 - 200 3
8	Sivapalan	
9		• TT E I E H / VAIEN
10	¹ State Key Laboratory of Urban and Regional Ecology, Research Center for	
11	Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China	
12	² Joint Center for Global Change Studies, Beijing 100875, China	
13	³ Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical	
14	Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,	
15	China	
16	⁴ Department of Geography and Geographic Information Science, University of Illinois at	 删除的内容: 3
17	Urbana-Champaign, Champaign, Illinois, USA	
18	⁵ Department of Civil and Environmental Engineering, University of Illinois at	 删除的内容:4
19	Urbana-Champaign, Urbana, Illinois, USA	
20		
21	Correspondence to: Guangyao Gao (gygao@rcees.ac.cn)	
22		
23	Abstract	
24	Within China's Loess Plateau there have been concerted revegetation efforts and	
25	engineering measures over the last 50 years aimed at reducing soil erosion and land	
	1	

30	degradation. As a result, annual streamflow, sediment yield and sediment concentration		
31	have all decreased considerably. Human induced land use/cover change (LUCC) was the		
32	dominant factor, contributing over 70% of the sediment load reduction, whereas the		
33	contribution of precipitation was less than 30%. In this study, we use 50-year time series		删除的内容: , with reductions of annual precipitation contributing the
34	data (1961-2011), showing decreasing trends in the annual sediment loads of fifteen		remaining 30%
35	catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation	l	删除的内容: data on
36	variability on sediment yield. The space-time variability of sediment yield was expressed		
37	notionally as a product of two factors representing: (i) effect of precipitation and (ii)	{	删除的内容: (spatially variable)
38	fraction of treated land surface area, Under minimal LUCC, the square root of annual	{	删除的内容: (temporally variable)
39	sediment yield varied linearly with precipitation, with the precipitation-sediment load		
40	relationship showing coherent spatial patterns amongst the catchments. As the LUCC		
41	increased and took effect, the changes of sediment yield pattern depended more on		
42	engineering measures and vegetation restoration campaign, and the within-year rainfall		
43	patterns (especially storm events) also played an important role. The effect of LUCC is	{	删除的内容: On the other hand, t
44	expressed in terms of a sediment coefficient, i.e., ratio of annual sediment yield to annual		
45	precipitation, Sediment coefficients showed a steady decrease over the study period,	1	删除的内容: , which is equivalent to the slope of the sediment
46	following a linear decreasing function of the fraction of treated land surface area. In this		yield-precipitation relationship
47	way, the study has brought out the separate roles of precipitation variability and LUCC in		
48	controlling spatio-temporal patterns of sediment yield at catchment scale.		
49			
50	Keywords: Loess Plateau, sediment yield, land use/land cover change, climate change,		
51	precipitation variability		

63	1 Introduction
64	Streamflow and sediment transport are important controls on biogeochemical processes
65	that govern ecosystem health in river basins (Syvitski, 2003). Changes in soil erosion on
66	landscapes and the resulting changes in sediment transport rates in rivers have great
67	environmental and societal consequences, particularly since they can be brought about by
68	climatic changes and human induced land use/cover changes (LUCC) (Syvitski, 2003;
69	Beechie et al., 2010). Understanding the dominant mechanisms behind such changes at
70	different time and space scales is crucial to the development of strategies for sustainable
71	land and water management in river basins (Wang et al., 2016).
72	In recent decades, streamflows and sediment yields in large rivers throughout the world
73	have undergone substantial changes (Milly et al., 2005; Nilsson et al., 2005; Milliman et al.,
74	2008; Cohen et al., 2014). Notable decreases in sediment yields have been observed in
75	approximately 50% of the world's rivers (Walling and Fang, 2003; Syvitski et al., 2005).
76	Many studies have investigated the dynamics of streamflows and sediment yields at
77	different spatial and temporal scales (Mutema et al., 2015; Song et al., 2016; Gao et al.,
78	2016; Tian et al., 2016). In addition to climate variability, LUCC, soil and water
79	conservation measure (SWCM) and construction of reservoirs and dams have substantially
80	contributed to the sediment load reductions (Walling, 2006; Milliman et al., 2008; Wang et
81	al., 2011). While previous studies have certainly provided valuable insights into the
82	streamflow and sediment load changes, the distinctive roles of LUCC and precipitation
83	variability in changing sediment loads still need further investigation in large domains and

删除的内容:s

85	across gradients of climate and land surface conditions (Walling, 2006; Mutema et al.,
86	2015). A particularly useful approach to the development of generalizable understanding of
87	the effects of precipitation variability and LUCC is a comparative analysis approach
88	focused on extracting spatio-temporal patterns of sediment yields based on observations in
89	multiple locations within the same region, or even across different regions. This is
90	especially valuable and crucial in areas with severe soil erosion and fragile ecosystems, e.g.,
91	the Loess Plateau (LP) in China. This is the motivation for the work presented in this paper.
92	The LP lies in the middle reaches of the Yellow River (YR) Basin, and contributes
93	nearly 90% of the YR sediment (Wang et al., 2016). The historically severe soil erosion in
94	the LP is due to sparse vegetation, intensive rainstorms, erodible loessial soil, steep
95	topography and a long agricultural history (Rustomji et al., 2008). To control such severe
96	soil erosion, several SWCMs including terrace and check-dam construction, afforestation
97	and pasture reestablishment have been implemented since the 1950s (Yao et al., 2011; Zhao
98	et al., <u>2017</u>). A large ecological restoration campaign, the Grain-for-Green (GFG) project
99	converting farmland on slopes exceed 15° to forest and pasture lands, was implemented in
100	1999 (Chen et al., 2015). Furthermore, the climate in the LP region has been showing both
101	warming and drying trends (i.e., increased potential evapotranspiration and reduced
102	precipitation) since the 1950s (Zhang et al., 2016).
103	These substantial LUCC have notably altered the hydrological regimes in the LP
104	combined with the climate change. Consequently, the sediment yields within the LP have
105	showed a predictable decline trend over the past 60 years (Zhao et al., 2017), resulting in
106	approximately a 90% decrease of sediment yield in the YR (Miao et al., 2010, 2011; Wang

删除的内容: 2016

删除的内容:by

删除的内容:6

110	et al., 2016). Many other studies have detected the influences of LUCC and precipitation	
111	variability on sediment load changes within the LP. Rustomji et al. (2008) estimated that	
112	the contributions of catchment management practices to the decrease of annual sediment	
113	yield ranged between 64% and 89% for eleven catchments in the LP during 1950s-2000.	
114	Zhao et al. (2017) examined the spatio-temporal variation of sediment yield from 1957 to	 删除的内容:6
115	2012 across the LP. Zhang et al. (2016) pointed out that the combined effects of climate	
116	aridity, engineering projects and vegetation cover change have induced significant	
117	reductions of sediment yield between 1950 and 2008. Wang et al. (2016) found that	
118	engineering measures for soil and water conservation were the main factors for the	
119	sediment load decrease between 1970s-1990s, but large-scale vegetation restoration	
120	campaigns also played an important role in reducing soil erosion since the 1990s.	
121	On the basis of the outcomes of these previous studies, it is now generally accepted that	 删除的内容: In terms of the resul
122	the largest reductions of sediment yield within the LP resulted from LUCC. However, this	 删除的内容: were
123	is general knowledge covering the whole region, and given the significant variability of	
124	climate and catchment characteristics across the LP (Sun Q et al., 2015; Sun W et al., 2015),	
125	it is important to go further and explore how these might affect spatio-temporal patterns of	
126	sediment yield. Exploration of these patterns is important for sustainable ecosystem	
127	restoration and water resources planning and management within the LP. They also will	
128	serve as the basis for future research aimed at the development of more generalizable	
129	understanding of landscape and climate controls on sediment yields at the catchment scale.	
130	Most of the sediment yield of the LP was produced in the Coarse Sandy Hilly	
131	Catchments (CSHC) region (Fig. 1) in the central region of the LP, which supplied over 70%	

135	of total sediment load in the YR, especially coarse sand (Rustomji et al., 2008). The CSHC
136	region was the focus of our efforts to investigate the variation of sediment load within the
137	LP. The specific objectives of this study therefore are to: (1) attribute the temporal changes
138	in sediment yield to changes in both precipitation variability and LUCC over the entire
139	study period (1961-2011) within the <u>CSHC region</u> (2) extract spatio-temporal trends in
140	sediment yields on the basis of annual sediment yield data from 15 catchments within the
141	region, (3) separate the contributions of precipitation variability and fractional area of
142	LUCC to the observed spatio-temporal patterns of sediment yields, and pave the way for
143	more detailed process-based studies in the future.
144	2 Materials and methods
145	2.1 Study area
146	The CSHC region covers the area between the Toudaoguai to Longmen hydrological
146 147	Th <u>e CSHC region covers the area between</u> the Toudaoguai to Longmen hydrological stations in the mainstream of the YR (Fig. 1). The main stream that flows through the
146 147 148	Th <u>e CSHC region covers the area between the Toudaoguai to Longmen hydrological</u> stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10 ⁴ km ² , accounting for 14.8%
146 147 148 149	Th <u>e CSHC region covers the area between the Toudaoguai to Longmen hydrological</u> stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10 ⁴ km ² , accounting for 14.8% of the entire YR Basin. The CSHC region is characterized by arid to semi-arid climate
146 147 148 149 150	The CSHC region covers the area between the Toudaoguai to Longmen hydrological stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10^4 km ² , accounting for 14.8% of the entire YR Basin. The CSHC region is characterized by arid to semi-arid climate conditions. The annual precipitation in the CSHC region during 1961-2011 is 437 mm on
 146 147 148 149 150 151 	The CSHC region covers the area between the Toudaoguai to Longmen hydrological stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10 ⁴ km ² , accounting for 14.8% of the entire YR Basin. The CSHC region is characterized by arid to semi-arid climate conditions. The annual precipitation in the CSHC region during 1961-2011 is 437 mm on average, and varied from 580 mm in the southeast to lower than 300 mm in the northwest
 146 147 148 149 150 151 152 	The CSHC region covers the area between the Toudaoguai to Longmen hydrological stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10 ⁴ km ² , accounting for 14.8% of the entire YR Basin. The CSHC region is characterized by arid to semi-arid climate conditions. The annual precipitation in the CSHC region during 1961-2011 is 437 mm on average, and varied from 580 mm in the southeast to lower than 300 mm in the northwest (McVicar et al., 2007). The precipitation that occurs during the flood season
 146 147 148 149 150 151 152 153 	The CSHC region covers the area between the Toudaoguai to Longmen hydrological stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10 ⁴ km ² , accounting for 14.8% of the entire YR Basin, The CSHC region is characterized by arid to semi-arid climate conditions. The annual precipitation in the CSHC region during 1961-2011 is 437 mm on average, and varied from 580 mm in the southeast to lower than 300 mm in the northwest (McVicar et al., 2007). The precipitation that occurs during the flood season (June-September) is usually in the form of rainstorms with high intensity and accounts for
 146 147 148 149 150 151 152 153 154 	Th <u>e CSHC region covers the area between the Toudaoguai to Longmen hydrological</u> stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10^4 km ² , accounting for 14.8% of the entire YR Basin. The CSHC region is characterized by arid to semi-arid climate conditions. The annual precipitation in the CSHC region during 1961-2011 is 437 mm on average, and varied from 580 mm in the southeast to lower than 300 mm in the northwest (McVicar et al., 2007). The precipitation that occurs during the flood season (June-September) is usually in the form of rainstorms with high intensity and accounts for 72% of the annual rainfall total. Correspondingly, about 45% of the annual runoff and 88%
 146 147 148 149 150 151 152 153 154 155 	The CSHC region covers the area between the Toudaoguai to Longmen hydrological stations in the mainstream of the YR (Fig. 1). The main stream that flows through the CSHC region is 733 km long and covers an area of 12.97×10^4 km ² , accounting for 14.8% of the entire YR Basin. The CSHC region is characterized by arid to semi-arid climate conditions. The annual precipitation in the CSHC region during 1961-2011 is 437 mm on average, and varied from 580 mm in the southeast to lower than 300 mm in the northwest (McVicar et al., 2007). The precipitation that occurs during the flood season (June-September) is usually in the form of rainstorms with high intensity and accounts for 72% of the annual rainfall total. Correspondingly, about 45% of the annual runoff and 88% of the annual sediment yield within the CSHC region are produced during the flood season.

删除的内容: middle part of the LP

删除的内容: is study is conducted in the central region of the LP

删除的内容:, from

删除的内容: This area is usually referred to as the Coarse Sandy Hilly Catchments (CSHC) region.

删除的内容: . The CSHC region

删除的内容:s

删除的内容:, but supplies over 70% of total sediment load in the YR, especially coarse sand (Rustomji et al., 2008)

finely dissected (Rustomji et al., 2008). 170

171	Fourteen main catchments along the north-south transect within the CSHC study area		
172	were chosen for the study (Fig. 1). These catchments account for 57.4% of the CSHC area,		
173	and contribute about 70% and 72% of streamflow and sediment load of the overall CSHC,		
174	respectively, based on observed hydrological data during 1961-2011. Characteristics of		
175	these catchments are shown in Table 1 <u>and Fig. 2</u> . It can be seen that the catchments		
176	present strong climate and land surface gradients. The catchments in the northwestern part		
177	(#1-6) have relatively lower mean annual precipitation (380 mm < \overline{P} <445 mm, where \overline{P}		
178	is mean annual precipitation over 1961-2011) and low growing season (April-October) LAI		删除的内容: vegetation cover
179	$(0,41 \le LAI \le 0,48)$, where LAI is the leaf area index), while the corresponding values for		删除的内容: 32
180	catchments in the southeastern part (#7-14) are 470-570 mm and 0.63 <lai<<u>3.26,</lai<<u>	`	删除的内容: 37 删除的内容: 216
181	respectively.		Malan H 1 1 . T . 5.10
182	The entire CSHC region is considered as an additional "catchment" and it is also		
183	examined independently. The streamflow and sediment load for the whole CSHC region		
184			删除的内容: as
185	were taken to be equal to the differences of corresponding measurements between the	1	
	Toudaoguai and Longmen gauging station. The average annual precipitation, streamflow		删除的内容: value
186	were taken to be equal to the differences of corresponding measurements between the Toudaoguai and Longmen gauging station. <u>The average annual precipitation, streamflow</u> and sediment load of the CSHC region during 1961-2011 was 437.27 mm, 33.30 mm and		删除的内容: value
186 187	were taken to be equal to the differences of corresponding measurements between the Toudaoguai and Longmen gauging station. <u>The average annual precipitation, streamflow</u> and sediment load of the CSHC region during 1961-2011 was 437.27 mm, 33.30 mm and 5.17 Gt, respectively. Both the annual river discharge and sediment load across the CSHC		删除的内容: value
186 187 188	were taken to be equal to the differences of corresponding measurements between the Toudaoguai and Longmen gauging station. The average annual precipitation, streamflow and sediment load of the CSHC region during 1961-2011 was 437.27 mm, 33.30 mm and 5.17 Gt, respectively. Both the annual river discharge and sediment load across the CSHC region showed significant decreasing trends (-0.82 mm yr ⁻¹ , p <0.001 and -0.19 Gt yr ⁻¹ ,		删除的内容: value
186 187 188 189	were taken to be equal to the differences of corresponding measurements between the Toudaoguai and Longmen gauging station. The average annual precipitation, streamflow and sediment load of the CSHC region during 1961-2011 was 437.27 mm, 33.30 mm and 5.17 Gt, respectively. Both the annual river discharge and sediment load across the CSHC region showed significant decreasing trends (-0.82 mm yr ⁻¹ , p<0.001 and -0.19 Gt yr ⁻¹ , p<0.001, respectively) over the past five decades, whereas precipitation decreased only		删除的内容: value
186 187 188 189 190	were taken to be equal to the differences of corresponding measurements between the Toudaoguai and Longmen gauging station. The average annual precipitation, streamflow and sediment load of the CSHC region during 1961-2011 was 437.27 mm, 33.30 mm and 5.17 Gt, respectively. Both the annual river discharge and sediment load across the CSHC region showed significant decreasing trends (-0.82 mm yr ⁻¹ , p <0.001 and -0.19 Gt yr ⁻¹ , p<0.001, respectively) over the past five decades, whereas precipitation decreased only slightly (-0.93 mm yr ⁻¹ , p =0.25) (Fig. 3).		删除的内容: value 删除的内容: Fig. 2 shows the changes of annual practicitien
186 187 188 189 190	were taken to be equal to the differences of corresponding measurements between the Toudaoguai and Longmen gauging station. The average annual precipitation, streamflow and sediment load of the CSHC region during 1961-2011 was 437.27 mm, 33.30 mm and 5.17 Gt, respectively. Both the annual river discharge and sediment load across the CSHC region showed significant decreasing trends (-0.82 mm yr ⁻¹ , p <0.001 and -0.19 Gt yr ⁻¹ , p<0.001, respectively) over the past five decades, whereas precipitation decreased only slightly (-0.93 mm yr ⁻¹ , p =0.25) (Fig. 3).		删除的内容: value 删除的内容: Fig. 2 shows the changes of annual precipitation, streamflow and sediment load for the

203	Monthly streamflow and sediment load data during 1961-2011 were provided by the		
204	Yellow River Conservancy Commission of China. Daily rainfall data from 1961 to 2011 at		
205	66 meteorological stations in and around the CSHC region were obtained from the National		
206	Meteorological Information Center of China. The spatially average of rainfall data was		
207	carried out using the co-kriging interpolation algorithm with the DEM as an additional		删除的内容: ere determined by
			删除的内容: input of
208	input. With the hydro-meteorological data (including annual precipitation, P [mm],		删除的内容: ,
209	streamflow, Q [mm], and sediment load, S [t]), specific sediment yield defined as SSY=S/A		删除的内容:
210	[t km ⁻²], where A is the drainage area of the hydrological station [km ²], sediment	1	删除的内容: S is sediment load, t,
			删除的内容: ,
211	concentration defined as $SC=S/(Q.A)$ [kg m ⁻³] and the sediment coefficient defined as		
212	$C_s = SSY/P$ [t km ⁻² mm ⁻¹] were estimated for each catchment.		删除的内容: for each catchment
213	The mean catchment slope based on the ASTER GDEM data with a resolution of 30 m		
214	and soil data (scale 1:500,000) were provided by the National Earth System Science Data	/	删除的内容: 86,
214	and son data (scale 1.500,000) were provided by the National Earth System Science Data_		删除的内容: 1997
215	Sharing Infrastructure (http://www.geodata.cn). The land use information as at 1975, 1990,		删除的内容: waste
216	2000, and 2010 was determined with Landsat MSS and TM remote sensing images at a spatial		删除的内容: annual
			删除的内容: Inventory Modelling
217	resolution of 30 m. Six land use types were classified, i.e., forestland, cropland, grassland,		High Resolution Radiometer (GIMMS
218	construction land, water body, and barren Jand. The LAI data during 1982-2011 were	" ' " '	AVHRR) data set
		; ;	(http://www.glcf.umd.edu/data/lai/)
219	obtained from the Global Land Surface Satellite (GLASS) NDVI Series with spatial	/	which has a
220	resolution of 1 km (www landcover org. Zhao et al. 2013). The total areas impacted by	ľ	删除的内容:8
220			删除的内容: resampled to 1 km) and
221	various SWCMs (i.e., afforestation, grass plantation, terraces and check-dams) in each		
222	estebment during 1960s 2000s were obtained from Vac at al. (2011)	1	咖酥的內容: Vegetation cover in the summer or autumn of 1978, 1998 and
222	<u>caterinent</u> during 1900s-2000s were obtained from 1ao et al. (2011).		2010 was determined with Landsat
223	2.3 Methods		MSS, Landsat TM and HJ CCD which
		1	has a spatial resolution of 56 m, 30 m

and 30 m, respectively.

删除的内容: the

2.3.1 Trend test 224

8

252	The non-parametric Mann-Kendall (M-K) test method proposed by Mann (1945) and	
253	Kendall (1975) was used to determine the significance of the trends in annual	
254	meteorological and hydrological time series. A precondition for using the MK test is to	
255	remove the serial correlation of climatic and hydrological series. In this study, the	
256	trend-tree pre-whitening (TFPW) method of Yue and Wang (2002) was used to remove the	
257	auto-correlations before the trend test. There was no residual autocorrelation remaining	
258	after performing the TFPW. A Z _s tatistic was obtained from the M-K test on the whitened	删除的内容:
259	series. A negative value of Z indicates a decrease trend, and vice versa. The magnitude \underline{of}	
260	<u>the</u> slope of the trend (β) was estimated by (Sen, 1968; Hirsch et al., 1982):	
261	$\beta = \text{Median}\left[\frac{x_j - x_i}{j - i}\right] \text{for all } i \le j \tag{1}$	
262	where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i> , respectively.	
262 263	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>, 	删除的内容: load
262 263 264	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of 	删除的内容: load
262 263 264 265	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>yield</u>, changes. This method is primarily 	删除的内容: load 删除的内容: load
 262 263 264 265 266 	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>yield</u>, changes. This method is primarily designed to determine the differences in hydrological time series between different periods 	删除的内容: load 删除的内容: load
 262 263 264 265 266 267 	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>yield</u>, changes. This method is primarily designed to determine the differences in hydrological time series between different periods (reference and validation periods) with different LUCC conditions (Zhang et al., 2011). In 	删除的内容: load 删除的内容: load
 262 263 264 265 266 267 268 	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>yield</u>, changes. This method is primarily designed to determine the differences in hydrological time series between different periods (reference and validation periods) with different LUCC conditions (Zhang et al., 2011). In this method, the regression equation between precipitation and sediment <u>yield</u>, is developed 	删除的内容: load 删除的内容: load 删除的内容: load
 262 263 264 265 266 267 268 269 	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>yield</u>, changes. This method is primarily designed to determine the differences in hydrological time series between different periods (reference and validation periods) with different LUCC conditions (Zhang et al., 2011). In this method, the regression equation between precipitation and sediment <u>yield</u> is developed and evaluated during the reference period, and the established equation is then used to 	删除的内容: load 删除的内容: load 删除的内容: load
 262 263 264 265 266 267 268 269 270 	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>yield</u>, changes. This method is primarily designed to determine the differences in hydrological time series between different periods (reference and validation periods) with different LUCC conditions (Zhang et al., 2011). In this method, the regression equation between precipitation and sediment <u>yield</u> is developed and evaluated during the reference period, and the established equation is then used to estimate sediment <u>yield</u>, during the validation period. The difference between measured and 	删除的内容: load 删除的内容: load 删除的内容: load
262 263 264 265 266 267 268 269 270 271	 where x_i and x_j are the sequential data values in periods <i>i</i> and <i>j</i>, respectively. 2.3.2 Attribution analysis of changes in sediment <u>vield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>vield changes</u>. This method is primarily designed to determine the differences in hydrological time series between different periods (reference and validation periods) with different LUCC conditions (Zhang et al., 2011). In this method, the regression equation between precipitation and sediment <u>vield is developed</u> and evaluated during the reference period, and the established equation is then used to estimate sediment <u>vield</u> during the validation period. The difference between measured and predicted sediment <u>vields</u> during the validation period represents the effects of LUCC, and 	删除的内容: load 删除的内容: load 删除的内容: load 删除的内容: load 删除的内容: load
 262 263 264 265 266 267 268 269 270 271 272 	where <i>x_i</i> and <i>x_j</i> are the sequential data values in periods <i>i</i> and <i>j</i> , respectively. 2.3.2 Attribution analysis of changes in sediment <u>yield</u>. The time-trend analysis method was used to determine the quantitative contributions of LUCC and precipitation variability to sediment <u>yield</u> changes. This method is primarily designed to determine the differences in hydrological time series between different periods (reference and validation periods) with different LUCC conditions (Zhang et al., 2011) . In this method, the regression equation between precipitation and sediment <u>yield</u> is developed and evaluated during the reference period, and the established equation is then used to estimate sediment <u>yield</u> during the validation period. The difference between measured and predicted sediment <u>yields</u> during the validation period represents the effects of LUCC, and the residual changes are caused by precipitation variability. The governing equations of the	删除的内容: load 删除的内容: load 删除的内容: load 删除的内容: load 删除的内容: load

280	$SSY_1 = f(P_1)$	(2)
	1 6 (1)	

$$SSY_2' = f(P_2) \tag{3}$$

$$\Delta SSY^{\text{LUCC}} = \overline{SSY_2} - \overline{SSY_2'}$$
(4)

283
$$\Delta SSY^{Pre} = \left(\overline{SSY_2} - \overline{SSY_1}\right) - \Delta SSY^{LUCC}$$
(5)

284	where SSY' is the predicted sediment yield, subscripts 1 and 2 indicate the reference and	 删除的内容: load
285	validation periods, respectively. $\overline{SSY_1}$ and $\overline{SSY_2}$ represent mean measured sediment <u>yield</u>	删除的内容: load
286	during the reference and validation periods, respectively, and $\overline{SSY'_2}$ represents mean	
287	predicted sediment <u>yield</u> , during the validation period. ΔSSY^{LUCC} and ΔSSY^{Pre} are sediment	删除的内容: load
288	vield changes during the validation period associated with LUCC and precipitation	 删除的内容: load
289	variability, respectively. Rustomji et al. (2008) found that the square root of annual	
290	sediment yield in the catchments of the Loess Plateau was linearly related to annual	
291	precipitation. This was used in this study as the motivation to develop the	
292	precipitation-sediment yield relationship during the reference period:	
293	$\sqrt{SSY} = aP + b $ (6)	
293 294	$\sqrt{SSY} = aP + b$ (6) In this study, the full data period of 1961-2011 was divided into three phases	
293 294 295	$\sqrt{SSY} = aP + b$ (6) In this study, the full data period of 1961-2011 was divided into three phases (1961-1969, 1970-1999 and 2000-2011). The first period was considered the reference	
 293 294 295 296 	$\sqrt{SSY} = aP + b$ (6) In this study, the full data period of 1961-2011 was divided into three phases (1961-1969, 1970-1999 and 2000-2011). The first period was considered the reference period as the effects of human activities were slight and could be ignored (Wang et al.,	 删除的内容: mostly
 293 294 295 296 297 	$\sqrt{SSY} = aP + b $ (6) In this study, the full data period of 1961-2011 was divided into three phases (1961-1969, 1970-1999 and 2000-2011). The first period was considered the reference period as the effects of human activities were slight and could be ignored (Wang et al., 2016). During the second stage, numerous SWCMs were implemented. For the third stage,	 删除的内容: mostly 删除的内容: A linear function was used to develop
 293 294 295 296 297 298 	$\sqrt{SSY} = aP + b $ (6) In this study, the full data period of 1961-2011 was divided into three phases (1961-1969, 1970-1999 and 2000-2011). The first period was considered the reference period as the effects of human activities were slight and could be ignored (Wang et al., 2016). During the second stage, numerous SWCMs were implemented. For the third stage, a large ecological restoration campaign (GFG project) was launched in 1999.	 删除的内容: mostly 删除的内容: A linear function was used to develop precipitation-sediment load relationship during the reference
 293 294 295 296 297 298 299 	$\sqrt{SSY} = aP + b $ (6) In this study, the full data period of 1961-2011 was divided into three phases (1961-1969, 1970-1999 and 2000-2011). The first period was considered the reference period as the effects of human activities were slight and could be ignored (Wang et al., 2016). During the second stage, numerous SWCMs were implemented. For the third stage, a large ecological restoration campaign (GFG project) was launched in 1999. 3 Results and discussion	 删除的内容: mostly 删除的内容: A linear function was used to develop precipitation-sediment load relationship during the reference period.
 293 294 295 296 297 298 299 300 	$\sqrt{SSY} = aP + b $ (6) In this study, the full data period of 1961-2011 was divided into three phases (1961-1969, 1970-1999 and 2000-2011). The first period was considered the reference period as the effects of human activities were slight and could be ignored (Wang et al., 2016). During the second stage, numerous SWCMs were implemented. For the third stage, a large ecological restoration campaign (GFG project) was launched in 1999. 3 Results and discussion 3.1 Changes of land use/cover	 删除的内容: mostly 删除的内容: A linear function was used to develop precipitation-sediment load relationship during the reference period.

312	SWCM and vegetation restoration projects (e.g., the GFG project). Fig. 4 shows the
313	distribution of land use types of the CSHC region in <u>1975, 1990, 2000 and 2010. More than</u>
314	90% of the whole area is occupied by the cropland, forestland and grassland. The area of
315	cropland decreased by <u>26.72</u> % and forestland increased by <u>53.15</u> %, and there was no
316	obvious change for the area of grassland (increase of 4.21%) in the CSHC region from
317	<u>1975</u> -2010. The majority of changes occurred during <u>2000</u> -2010 due to the GFG
318	(reforestation) project (26.67% decrease and 36.21% increase for cropland and forestland,
319	respectively). The transition from cropland to forestland was greater in the catchments of
320	the southeastern part (especially in catchments #7-#9) than that in the northwestern part
321	(Fig. 4). From 1975 to 2000, the increase of forestland was 26.34% and 4.55% in the
322	southeastern and northwestern part, respectively, and the change of cropland was negligible
323	(only -0.39% and 0.22%, respectively). During 2000-2010, the forestland increased by
324	47.79% and 18.30%, and the cropland decreased by 44.84% and 21.04% in the
325	southeastern and northwestern part, respectively,
326	The SWCMs implemented in the LP included both biotic treatments (e.g., afforestation
327	and grass-planting) and engineering measures (e.g., construction of terrace and check-dam
328	and gully control projects). Afforestation, grass-planting and construction of terraces are
329	seen as the slope measures, while building of check-dams and gully control projects are the
330	measures on the river channel. Although the utilized area of engineering measures was
331	much smaller than the biotic treatments, they can immediately and substantially trap
332	streamflow and sediment load. The fraction of the treated area (area treated by erosion
333	control measures relative to total catchment area) within the CSHC increased from 3.95%

删除的内容: 3a

删除的内容: 1986, 1997

删除的内容: 19.47 删除的内容: 59.65

删除的内容: 1986 删除的内容: 1997 删除的内容: 18.58 删除的内容: 40.71

删除的内容: 86 删除的内容: 1 删除的内容:

删除的内容: water body area increased by 88.05% due to construction of reservoirs, and construction land increased by about twenty times because of the urbanization and extensive infrastructure construction.

删除的内容: 3b

删除的内容: For the fourteen sub-catchments, vegetation cover increased from $29.19 \pm 21.09\%$ in 1978 to $31.69 \pm 17.18\%$ in 1998, and then increased sharply to 44.10 \pm 14.62% in 2010. In the whole CSHC region, the amounts of vegetation cover in 1978, 1998 and 2010 were 23.61%, 25.68% and 38.71%, respectively. The increase of

vegetation cover for the catchments in the northwestern part (48.95% from 1978 to 1998 and 65.98% from 1998 to 2010) was greater than that in the southeastern part (-1.48% from 1978 to1998 and 28.72% from 1998 to 2010). The annual LAI of the fourteen sub-catchments increased by

15.50% from 1982-1999 to

删除的内容: For

删除的内容: 51 **删除的内容:**55 删除的内容: 7.31

删除的内容:, the annual LAI

2000-2011, and the relative change in the catchments of northwestern part is 27.08%, which is greater than that in the southeastern part (6.82%).

1111 1111

355	during the 1990s as some of the erosion control measures undertaken were then	
356	subsequently destroyed.	
357	The growing season LAI of the whole CSHC region changed from 0.74 during	
358	1982-1999 to 0.81, during 2000-2011, an increase of 10.16% (Fig. 5). The LAI did not	
359	show significant increase during 1982-1999 (0.003 yr ⁻¹ , $p=0.11$), and it increased	
360	significantly during 2000-2011 (0.024 yr ⁻¹ , $p < 0.01$). The increase of growing season LAI	
361	during 1982-2011 was greater for the catchments in the southeastern part (0.009 yr ⁻¹)	
362	compared to the northwestern part (0.004 yr ⁻¹), especially after 2000 (Fig. 6). From the	
363	period of 1982-1999 to 2000-2011, the average increase of growing LAI of the fourteen	
364	sub-catchments is 0.088 yr ⁻¹ (0.010-0.183 yr ⁻¹), with the increase of 0.114 yr ⁻¹ and 0.053	
365	yr ⁻¹ in the southeastern and northwestern part, respectively.	
366	3.2 Trends of hydro-meteorological and sediment yield variables	100 100 100 100
367	Table 2 shows the trends in annual P , Q , SSY , SC and C_s of the fifteen catchments during	
368	1961-2011. The annual P showed a decline trend in all catchments but <u>is</u> only significant in	11 11 1
369	the Xinshui and Zhouchuan catchments ($p < 0.05$). The annual Q , SSY, SC and C_s showed	
370	significant decreasing trends in all the catchments, and most of the decreases were at the	
371	0.001 significance level. For the fourteen sub-catchments, the average decrease rates of	
372	annual values of Q , SSY, SC and C_s were 0.86 mm yr ⁻¹ (0.24-1.66 mm yr ⁻¹), 190.06 t km ⁻²	
373	yr^{-1} (26.47-398.82 t km ⁻² yr ⁻¹), 2.73 kg m ⁻³ yr ⁻¹ (0.69-4.70 kg m ⁻³ yr ⁻¹) and 0.38 t km ⁻² mm ⁻¹	

in the 1960s to 28.61% in the 2000s (Fig. 5). The increase of the treated area was greatest

during the 1980s as a result of comprehensive management of small watersheds and during

the 2000s due to the GFG project since 1999. Some decreases in these areas occurred

352

353

354

403	yr^{-1} (0.04-0.87 t km ⁻² mm ⁻¹ yr ⁻¹), respectively. For the whole CSHC region, the	
404	corresponding change rates of Q, SSY, SC and C_s were -0.85 mm yr ⁻¹ , -131.52 t km ⁻² yr ⁻¹ ,	
405	-2.06 kg m ⁻³ yr ⁻¹ and -0.27 t km ⁻² mm ⁻¹ yr ⁻¹ , respectively. The annual average reductions in	
406	the whole CSHC region are equivalent to 2.56%, 3.30%, 2.01% and 3.07% of the mean	
407	annual values of Q , SSY, SC and C_s , respectively.	
408	The mean and the coefficient of variation, C_v , representing inter-annual variability of	
409	annual values of P , Q , SSY, SC and C_s of the fifteen catchments during the three phases	
410	(reference period-1, period-2 and period-3) are shown in Fig. <u>7</u> . <u>Compared to standard</u>	
411	deviation, the C_{v} value was better able to indicate the inter-annual variability of precipitation,	
412	streamflow and sediment load among the catchments with distinct different average values.	
413	Compared to the reference period, the mean annual precipitation decreased by 11.73%	
414	(6.36 <u>%</u> -15.69%) and 10.64% (5.88 <u>%</u> -16.7%) on average in period-2 and period-3,	
415	respectively. From period-2 to period-3, the change of mean annual precipitation was slight	
416	(increased by 1.32% on average) with <u>a</u> decrease of 2.45%-5.87% in four catchments and <u>an</u>	
417	increase in <u>the</u> remaining catchments (0.35% - 8.29%). The variability of annual <i>P</i> also	
418	decreased as indicated by the reductions of C_v values during period-2 and period-3 (Fig. <u>7a</u>).	删除
419	In contrast to annual P , the reductions of mean annual Q , SSY, SC and C_s were clearly more	
420	evident. With respect to the reference period, the reduction was 34.41% (9.45%-54.72%),	
421	48.02% (17.98%-67.61%), 24.20% (-9.93%-47.77%) and 39.31% (4.64%-63.5%) for <i>Q</i> , <i>SSY</i> ,	
422	SC and C_s during period-2, and the decreasing rate was even more in period-3 with values of	
423	64.82% (36.72%-84.19%), 88.23% (64.94%-97.64%), 67.81% (17.28%-91.12%) and 85.85%	
424	(63.51%-96.97%), respectively. C_v of annual Q increased in eight catchments, with the	

删除的内容: 4

删除的内容: 4a

删除的内容:

428	remaining ones showing decreasing trends (Fig. <u>7b</u>), while C_v values for SSY, SC and C_s	 删除的内容: 4b
429	increased in all catchments (Figs <u>7c-7e). The above results indicate the substantially different</u>	 删除的内容: 4c
430	behaviors of the changes among precipitation, streamflow and sediment load.	 删除的内容: 4e
431	3.3 Quantitative attribution of sediment <u>yield</u> decline	 删除的内容: load
432	The effects of precipitation change and LUCC on sediment yield reductions in period-2 and	
433	period-3 were quantified using Eqs. (2-6) and the results are shown in Fig. 8. The analysis	删除的内容: 5
434	showed that both decreased precipitation and increased area treated with erosion control	 删除的内容: 5
435	measures contributed to the observed sediment load reduction, and that LUCC played the	
436	major role. On average, the LUCC and precipitation change contributed 74,39% and	删除的内容: 1
437	2 <u>5.61</u> %, respectively, to sediment load reduction from the reference period to period-2, and	 删除的内容:01 删除的内容:8 99
438	their contributions were, respectively, <u>88,67%</u> and <u>11.33%</u> to sediment load reduction from	 删除的内容: 84
439	the reference period to period-3, respectively. The effect of LUCC in period-3 was greater	删除的内容: 77
440	than that in period-2 as the land use/cover (see Figs. 4-5) and vegetation coverage (see Fig.	加陈的闪谷: 5.2
441	6) had undergone substantial changes due to the ecological restoration campaigns launched	
442	during period-3, From period-2 to period-3, the contribution of precipitation was negative	 删除的内容: (see Fig. 3)
443	for sediment yield reduction in eleven catchments where the annual precipitation slightly	
444	increased during these two periods, and thus the contribution of LUCC was larger than 100%	
445	(Fig. <u>&c</u>). In the remaining four catchments, the average contribution of LUCC increased to	 删除的内容: 5c
446	8 <u>3.96</u> %	 删除的内容: 6.15
447	In broad terms there are two factors that govern annual sediment yield of a catchment:	 删除的内容:
	provinitation and landscope properties (soil tor some her and expectation). Descinitation is the	
448	precipitation and landscape properties (soil, topography and vegetation). Precipitation is the	
449	primary driver of runoff and, therefore, directly influences the sediment transport capacity	

466	of streamflow and sediment yield at the catchment scale. Higher precipitation means higher
467	streamflow, which is the immediate driver of erosion and sediment transport. Landscape
468	properties not only have an impact on the volume or intensity of streamflow, but also
469	determine the erodibility of the soil. We have investigated the correlations between the
470	potential factors (precipitation, percentage area of afforestation, pasture plantation,
471	terracing, check-dams and construction land, and LAI) and sediment yield change between
472	different stages (see Table 4). It was found that check-dam construction was the dominant
473	factor for sediment yield reduction from reference period to period-2, and pasture
474	plantation and check-dam construction acted the dominant factors for sediment yield from
475	reference period to period-3. The increase of precipitation mitigated the reduction of
476	sediment yield to some degree from period-2 to period-3.
477	Based on the above results, in the reference period before LUCC took effect, the
478	variation of SSY mainly depends on precipitation, and any spatial patterns of SSY among
479	catchments may be controlled by differences in annual precipitation and land surface
480	conditions. During the validation period (period-2 and period-3) with LUCC increased and
481	took effect, SSY decreased considerably whereas the decrease of precipitation was
482	insignificant, LUCC contributing over 70% of the sediment yield reduction. In this case,
483	the temporal changes of SSY depend more on the fraction of treated surface area and
484	precipitation possibly might play a secondary role. The spatial pattern of the impacts of
485	precipitation on sediment yield is dependent on the landscape properties among catchments.
486	Guided by this framework, we next organize the data analysis to generate separate
487	spatial and temporal patterns that constitute the respective components of the

删除的内容: On the basis of the field evidence, we can hypothesize that the annual sediment yield SSY can be expressed as a product of a spatially variable component, which is only a function of a spatially variable annual precipitation, P, and a temporally variable component, which is only a function of a temporally variable fraction of a rea treated with erosion control measures, A_{cc} .

 $SSY(\boldsymbol{x},t) = SSY_0.f_1[P(\boldsymbol{x})].f_2[\boldsymbol{x}]$

(6).

where SSY_0 is the sediment yield in the reference period, t represents time and x is a vector that represents spatial location of the catchments, and f_1 and f_2 are appropriate (yet to be determined) functional forms that reflect the net effects of sub-catchment scale and sub-annual runoff on sediment generation processes. In this framework, the variation of SSY during the reference period mainly depends on precipitation, and any spatial patterns of SSY among catchments may be controlled by differences in annual precipitation and land surface conditions before LUCC took effect. As LUCC increased and took effect, the temporal changes of SSY may depend more on the fraction of treated surface area and precipitation possibly might play a secondary role.

525	spatio-temporal	patterns.
-----	-----------------	-----------

526	3.4 Spatial <u>-temporal</u> pattern of the impacts of precipitation on sediment yield		
527	The regression <u>equations of $\sqrt{SSY} = aP + b$</u> are shown in <u>Table 3, and the spatial</u>		
528	distributions of precipitation-sediment relationships during the three stages are shown in		
529	Fig. 9, During the reference period, most of the catchments showed strong correlation		
530	between precipitation and sediment yield. The coefficient of determination (R^2) ranged		
531	from 0.27, to 0.87, and the correlation was significant in <u>eleven</u> catchments ($p < 0.05$) (Table		
532	3). Overall, the regressed equations were significant for most of the catchments, and were		
533	suitable for estimating the relative contributions of LUCC and precipitation variability to		
534	sediment yield changes. Furthermore, the precipitation-sediment yield relationship varied		
535	from catchment to catchment and showed a spatial pattern. The correlation coefficient		
536	between precipitation and sediment yield was greater for catchments in the northwestern		
537	part with average R^2 value of $0, \frac{75}{2}$ and p value of $0, \frac{007}{2}$ compared to those in the		
538	southeastern part where the average R^2 and p values were 0.48 and 0.059, respectively		
539	(Table 3). Based on the slopes of the regression equations between annual precipitation and		
540	sediment yield, the fourteen catchments were classified into four groups (Group-1: a>0.3,		
541	<u>Group-2: 0.2<a<0.3, 0.1<a<0.2="" 0<a<0.1)<="" and="" group-3:="" group-4:="" u="">, which indicate that the</a<0.3,></u>		
542	sediment production capability of annual precipitation is different among the catchments		
543	(Fig. 9a). The four catchments in the northwestern part had the greatest slopes of $a \ge 0.3$ and		
544	the Shiwang catchment had the lowest slope of 0.07. Most of the catchments in the		
545	southeastern part were in the second group of 0.2 < a < 0.3.		
546	Compared to the reference period, the correlation between precipitation and sediment		

删除的内容: during Period 1
删除的内容: relationships between
annual precipitation and sediment
yield during the reference period
删除的内容: Fig. 6
删除的内容: M
删除的内容: linear
删除的内容: 4
删除的内容: 5
删除的内容: eight
已移动(插入) [2]
删除的内容: linear
删除的内容: load
删除的内容: load
删除的内容: 69
删除的内容: 017
删除的内容: 36
删除的内容: 118
删除的内容: if
删除的内容: 6
删除的内容: three catchments of the
first group in Fig. 6a [2]
删除的内容: (85-95)
删除的内容: in Fig. 6d
删除的内容: 7.26
删除的内容: The average slope of
the five catchments in Group-2 was
57.57 (50-70), and the slope value of
the six catchments in Group-3 was
30.88 (20-40)
已上移 [2]: Overall, the regressed
linear equations were significant for
most of the catchments, and wara
已下移 [1]: Differences in catchment
删除的内容: Differences in [6]
删除的内容: 3.5 Spatial pattern of

651	yield during the period-2 decreased in the catchments, as indicated by the reductions of R^2	6
652	value in Table 3. The slope of the regression line in the period-2 decreased in most of the	1
653	catchments with respect to the reference period, except in some catchments (e.g., Huangfu,	 -
654	Gushan and Kuye) with slight increase. Furthermore, the spatial patterns of the	- 1
655	precipitation-sediment yield relationship during these two periods were somewhat different	
656	(Figs. 9a and 9b), From the reference period to period-2, Jialu catchment moved from	 -
657	Group-1 to Group-2 and <u>five</u> catchments moved from Group-2 to Group-3.	
658	During period-3, the correlation between precipitation and sediment yield was much	
659	weaker compared to that during the reference period and period-2 (Table 3). The	
660	relationship between precipitation and sediment yield was non-significant in all <u>of</u> the	
661	catchments (Table 3), The slope of the regression line during period-3 decreased sharply	
662	(Table 3), and for six catchments the regression slope (five in the north-western part and	
663	one in the south-eastern part) was even negative (Fig. 9c). This result indicates that the	
664	sediment production capability of annual precipitation reduced greatly during period-3, and	
665	the increase of precipitation amount in some catchments did not lead to an increase of	
666	sediment yield. Furthermore, the spatial pattern of precipitation-sediment relationship	
667	during period-3 was much different from those during the reference period and period-2	
668	based on comparisons of Fig. 9c with Figs. 9a-9b. There were only three groups with two	^ · -{
669	catchments having regression slopes of $0.1 \le a \le 0.2$, six catchments having regression slopes	
670	of 0.1 <a<0.2 and="" catchments="" having="" negative="" regression="" six="" slopes.<="" td=""><td></td></a<0.2>	
671	The aforementioned analysis of <u>the precipitation-sediment yield relationship</u> in	
672	different periods clearly indicates that the impacts of precipitation on sediment <u>yield</u>	

删除的内容: and the increased
scatter of the linear relationship in
Fig. 7
删除的内容: but
删除的内容: the reduction in the
slope was slight
删除的内容: showed a similar
spatial pattern
删除的内容: In period-2, the fifteen
studied catchments could also be
classified into four groups using the
decrease of slope of the regression
line from Group-1 to Group-4 (Fig. 7)
删除的内容: only
删除的内容: Yanhe
删除的内容: (Figs. 6 and 7)
删除的内容: In
删除的内容: and Fig. 8
删除的内容:, and the scatter of the
data points in Fig. 8 was notable
删除的内容: ome
删除的内容: 8d
删除的内容: at
删除的内容: during
删除的内容: through
删除的内容: 8
删除的内容: 6
删除的内容: 7
删除的内容: As shown in Fig. 8,
most of the catchments were
distributed in Group-1 and Group-4,
which displayed considerable
variability in the
precipitation-sediment relationship
among the catchments.
删除的内容: load

709	declined with time, and the impacts were different among catchments, with a clear spatial	
710	pattern. The effects of precipitation on the sediment yield were greater in the north-western	
711	part compared to those in the south-eastern part. The decreased effects of precipitation on	
712	sediment vield with time were consistent with the significant reductions of sediment	 删除的内容: load
713	coefficient (Table 2) and the decreased contribution of precipitation to sediment load	
714	reduction (2 <u>5.61</u> % and 1 <u>1.33</u> % in period-2 and period-3, respectively). During period-2,	删除的内容: 8.99
715	the LUCC were mainly induced by SWCM, especially engineering measures. During	删除的内容: 5.23
716	period-3, the combined effects of substantial vegetation cover and conservation measures	 删除的内容: undoubtedly
717	further weakened the effects of precipitation on sediment load reduction.	
718	Differences in catchment characteristics, including land use/cover, soil properties and	 (已移动(插入) [1]
719	topography, as well as precipitation characteristics, are clearly the reason for the spatial	
720	patterns in the precipitation-sediment yield relationship (Morera et al., 2013; Mutema et al.,	
721	2015). The lower vegetation cover was the main reason for the greater effects of	
722	precipitation on sediment yield in the northwestern part. To fully explore this, the mapping	
723	of information of catchment characteristics into sediment yield models and simulations	
724	under different climate scenarios are needed (Ma et al., 2014; Achete et al., 2015). In this	删除的内容: ng
725	context, the inter-annual and intra-annual patterns of variability of precipitation, including	 删除的内容: is
726	the distribution of storm events, may also contribute to the observed spatial patterns of	
727	precipitation-sediment yield relationship.	 删除的内容:
728	As LUCC took effect during period-2 and period-3, and despite the much reduced role	
729	of precipitation in driving changes in sediment yield, within-year temporal rainfall patterns	
730	did play an important role in the observed changes of sediment yield, given that most of the	

J

738	sediment yield was produced during a few key storm events. The correlation between	
739	sediment yield and storm events with daily precipitation amount larger than 20 mm	
740	(including storm numbers, precipitation amount of storms) in the CSHC region during	
741	different decades were investigated (see Table 5). The analysis showed that the sediment	
742	yield was significantly correlated with storm numbers in the 1960s, 1970s and 1980s	
743	($p \le 0.05$), and precipitation amount of storms in the 1960s and 1970s ($p \le 0.05$). This result	
744	indicated the critical role of storm events in sediment yield, especially during the periods	
745	before substantial LUCC took effect.	
746	Looking into this in more detail, taking the Yanhe catchment as an example, the	 删除的内容: T
747	precipitation amount during the rainy season (May-October when sediment load was	
748	measured) in 2003 and 2004 was 514.31 mm and 389.05 mm, respectively, whereas the	
749	sediment load in 2004 (2427.37×10 ⁴ t) was about over four times of that in 2004	
750	$(590.04 \times 10^4 \text{ t})$. As shown in Fig. <u>10</u> , there were six days with precipitation amounts over	 删除的内容:9
751	20 mm and the maximum daily precipitation amount on 25th August was 27.85 mm in	
752	2003, and the values in 2004 were five days and 46.34 mm on 10th August. Furthermore,	
753	heavy rainfall events were distributed in every month in 2003, whereas they were	
754	concentrated in July and August in 2004. There were five evident peaks of sediment load	
755	with the sum of 1646.24×10^4 t (67.82% of annual total) in 2004, especially the one on 10th	
756	August produced 784.53×10^4 t sediment load (32.32% of annual total) (Fig. <u>10b</u>). In	 删除的内容:9
757	contrast, there were three peaks of sediment load in 2003, and the maximum value was	
758	only 139.97×10 ⁴ t (Fig. <u>10a</u>). Therefore, apart from annual precipitation amounts,	 删除的内容: 9a
759	within-year rainfall patterns should also be considered to investigate the effects of	

764	precipitation on temporal-spatial changes of streamflow and sediment load.	
765	3, <u>5</u> Spatial <u>-temporal</u> pattern of the impacts of land use/cover on sediment <u>yield</u>	// [;
766	The sediment load reductions in the LP were primarily caused by the LUCC and the	
767	implementation of SWCM. The cropland area decreased <u>9733.91</u> km ² (8.73% of region area)	
768	and the forestland area increased $7_{662.50}$ km ² (6.87% of region area) from 1975 to 2010.	
769	Most of the increase in forestland area was converted from cropland area induced by the GFG	
770	or reforestation project. As a result of the land use change, vegetation cover increased greatly	
771	and it substantially contributed to the decreases of runoff and sediment production. The	
772	SWCM ^s , such as afforestation and engineering measures were the major interventions in the	
773	study area to retain precipitation and consequently reduce streamflow and sediment load.	
774	Establishing perennial vegetation cover was considered as one of the most effective measures	
775	to stabilize soils and minimize erosion (Farley et al., 2005; Liu et al., 2014). It was reported	
776	that both runoff coefficient and sediment concentration of catchments in the LP decreased	
777	significantly and linearly with the vegetation cover (Wang et al., 2016). The engineering	
778	structures mainly included creation of terrace and building of check-dams and reservoirs,	
779	which reduced flood peaks and stored water and sediment within the catchment. There were	
780	about 110, 000 check-dams in the LP which trapped about 21 billion m ³ of sediment during	
781	the past six decades (Zhao et al., 2017). Over time, the effectiveness of engineering measures	1
782	decreased as they progressively fill with sediments, and vegetation restoration must in future	
783	play a greater role in control of soil erosion for the LP.	
784	To quantify the effects of SWCM on sediment load reduction, the relationship between	
1		

785 the <u>decadal</u> sediment coefficient and the fraction of area treated with erosion control

删除的内容: 6
删除的内容:
删除的内容: load change
删除的内容: 6233.13
删除的内容: 5.54
删除的内容: 246.45
删除的内容: 44
删除的内容: 86

删除的内容:6

删除的内容: Fig. 10

7	96	5

797

798

795

area $(\underline{A_c})$ in all catchments:

 $\overline{SC} = -mA_c + n$

measures in the 15 catchments was analysed and the results are presented in Table 6. The

<u>decadal</u> sediment coefficient (\overline{SC}) decreased linearly with the fraction of treated land surface

799	The correlation was significant in eleven catchments ($p < 0.05$) with R^2 ranging from 0.78
800	to 0.99 (Table 6). The effects of SWCM on sediment load change show a spatial pattern. The
801	correlation between sediment coefficient and conservation measures was stronger in
802	catchments located in the north-western part compared to that in the south-eastern part (Table
803	<u>6</u>). Based on the slope of the regression equation between the sediment coefficient and
804	fraction of the treated area, the catchments were classified into three groups in Fig. 11
805	(Group-1: 0.8< <i>m</i> <1.2, Group-2: 0.4< <i>m</i> <0.8 and Group-3: 0< <i>m</i> <0.4), which indicated that the
806	degree of sediment load impacted by conservation measures was different among the
807	catchments. The average <i>m</i> value was 0.73 and 0.37 for the catchments in the north-western
808	and south-eastern part, respectively, Half of the catchments in the north-western part were in
809	Group-1 and the other half were in Group-2, whereas six of the eight catchments in the
810	south-eastern part were in Group-3 with lowest regression slope
811	4 Conclusions
812	The Loess Plateau has undergone major changes in land use/land cover over the last 50
813	years as part of a concerted effort to cut back on soil erosion and land degradation and
814	sediment yield of rivers. These included terrace and check-dam construction, afforestation,
815	and pasture reestablishment. Over the same period the region has also experienced some
816	reduction in rainfall, although this is relatively insignificant. Through analyses of

删除的内容:

(7)

删除的内容:4

删除的内容: Note that the temporal				
variations presented in Figure 10 are				
not based on annual data (such data				
does not exist), but longer-term				
(decadal) averages				
删除的内容: -				
删除的内容: -				
删除的内容: 4				
删除的内容: 15				
删除的内容:(
删除的内容: 0)				

删除的内容: four catchments of the first group

删除的内容: in Fig. 10a had the greatest slopes over 0.85, followed by the four catchments in Group-2 (0.50~0.65) and seven catchments in Group-3 (less than 0.30). Finally, inspired by the hypothesis presented in Eq. 6 and on the basis of the observed linear relationships, it is now plausible to construct an empirical relationship between a decadal average of sediment yield and the combination of decadal

average precipitation, \overline{P} , and the area under land use/cover change, A_c , of the following form: .

 $SSY = k_0 \cdot \overline{P} \cdot (1 - k_1 A_c)$ (7)

850	hydrological and sediment transport data, this study has brought out the long-term
851	decreasing trends in sediment loads across fifteen large sub-catchments located in the
852	region. The study was particularly aimed at extracting spatio-temporal patterns of sediment
853	yield and attributing these patterns to the broad hydro-climatic and landscape controls.
854	Over the study period (1961-2011), the total area undergoing erosion control treatment
855	went up from only 4% to over 30%. This included to decrease of cropland by <u>27</u> %, increase
856	of forestland by 53% and grassland by 4% from 1975-2010. Over the same period annual
857	precipitation decreased by not more than 10%. As a result of the erosion control measures,
858	over the entire 50-year period, there have been major reductions in streamflow (65%),
859	sediment yield (88%), sediment concentration (68%) and sediment efficiency, i.e., annual
860	sediment yield/annual precipitation (86%).
861	The observed data in the 15 study catchments also exhibits interesting spatio-temporal
862	patterns in sediment yield. The study attempted to separate the relative contributions of
863	annual precipitation and LUCC to these spatio-temporal patterns. Before LUCC took effect
864	the data indicates a linear relationship between square root of annual sediment yield and
865	annual precipitation in all 15 catchments, with highly variable slopes of the relationship
866	between the catchments, which exhibited systematic spatial patterns, in spite of some
867	scatter. As LUCC increased and took effect, the scatter increased and the slopes of the
868	sediment yield vs precipitation relationship became highly variable and lost any predictive
869	power. The study then looked at the controls on sediment coefficient instead of sediment
870	yield (thus eliminating the effect of precipitation and enabling a direct focus on landscape
871	controls). The results of this analysis found that sediment coefficient was heavily

删除的内容:20

删除的内容: o

删除的内容:f60

删除的内容: over the 40 years (grasslands remained unchanged), and an increase in water body area by 90% (through the building of reservoirs)

删除的内容: considerable

881	dependent on the area under land use/cover treatment, exhibiting a linear (decreasing)	
882	relationship. Even here, there was a considerable variation in the slope of the relationship	
883	between the 15 catchments, which exhibited a systematic spatial pattern.	
884	Preliminary analyses presented in this study suggest that much of the sediment yield in	 删除的内容: s
885	the LP may be caused during only a few major storms. Therefore, the seasonality and	
886	intra-annual variability of precipitation may play important roles in annual sediment yield,	
887	which may also explain the spatial patterns of sediment yield and the effects of the various	
888	LUCC. Also, the precipitation threshold for producing sediment yield would have increased	
889	greatly as a result of SWCM and vegetation restoration in the LP. Exploration of these	
890	questions in detail will require a more physically based model that can account for fine	
891	scale rainfall variability and catchment characteristics. This is the next immediate step in	
892	our investigations, and will be reported on in the near future.	
893		
894	Acknowledgements	
895	This research was funded by the National Key Research and Development Program of China	
896	(no. 2017YFA0604703), the National Natural Science Foundation of China (no. 41471094),	 删除的内容: 41390464 and
897	the Chinese Academy of Sciences (no. GJHZ 1502) and the Youth Innovation Promotion	
898	Association CAS (no. 2016040). We thank the Ecological Environment Database of Loess	
899	Plateau, the Yellow River Conservancy Commission, and the National Meteorological	
900	Information Center for providing the hydrological and meteorological data. We thank the two	
901	anonymous reviews for their valuable comments which greatly improve the quality of this	
902	manuscript.	删除的内容: Jianjun Zhang for help in doing some figures and Zheng Ning
		for collecting the hydrological date

23

for collecting the hydrological data.

908

- 910 Achete, F.M., van der Wegen, M., Roelvink, D., and Jaffe, B.: A 2-D process-based model
- 911 for suspended sediment dynamics: a first step towards ecological modeling, Hydrol.
- 912 Earth Syst. Sci., 19, 2837-2857, 2015.
- 913 Beechie, T. J., Sear, D.A., Olden, J.D., Pess, G.R., Buffington, J.M., Moir, H., Roni, P., and
- Pollock, M.M.: Process-based principles for restoring river ecosystems, Bioscience, 60,
 209-222, 2010.
- Chen, Y.P., Wang, K.B., Lin, Y.S., Shi, W.Y., Song, Y., and He, X.H.: Balancing green and
 grain trade, Nat. Geosci., 8, 739-741, 2015.
- 918 Cohen, S., Kettner, A.J., and Syvitski, J.P.M.: Global suspended sediment and water
- 919 discharge dynamics between 1960 and 2010: continental trends and intra-basin
- 920 sensitivity, Glob. Planet. Chang., 115, 44-58, 2014.
- 921 Farley, K.A., Jobbágy, E.G., and Jackson, R.B.: Effects of afforestation on water yield: a
- global synthesis with implications for policy, Glob. Chang. Biol., 11, 1565-1576, 2005.
- 923 Hirsch, R.M., Slack, J.R., and Smith, R.A.: Techniques of trend analysis for monthly water
- 924 quality data, Water Resour. Res., 18, 107-121, 1982.
- 925 Kendall, M.G.: Rank Correlation Measures, Charles Griffin, London, UK, 1975.
- 926 Liu, X.Y., Yang, S.T., Dang, S.Z., Luo, Y., Li, X.Y., and Zhou X.: Response of sediment
- 927 yield to vegetation restoration at a large spatial scale in the Loess Plateau, Sci. China
- 928 Tech. Sci., 57, 1482-1489, 2014
- Mann, H.B.: Nonparametric tests against trend, Econometrica, 13(3), 245-259, 1945.

930	Ma, X., Lu, X.X., van Noordwijk, M., Li, J.I., and Xu, J.C.: Attribution of climate change,
931	vegetation restoration, and engineering measures to the reduction of suspended sediment
932	in the Kejie catchment, southwest China, Hydrol. Earth Syst. Sci., 18, 1979-1994, 2014.
933	McVicar, T.R., Li, L.T., Van Niel, T.G., Zhang, L., Li, R., Yang, Q.K., Zhang, X.P., Mu, X.M.,
934	Wen, Z.M., Liu, W.Z., Zhao, Y.A., Liu, Z.H, and Gao, P.: Developing a decision support
935	tool for China's re-vegetation program: simulating regional impacts of afforestation on
936	average annual streamflow in the Loess Plateau, For. Ecol. Manag., 251, 65-81, 2007.
937	Miao, C.Y., Ni, J.R., and Borthwick, A.G.L.: Recent changes of water discharge and
938	sediment load in the Yellow River basin, China, Prog. Phys. Geogr., 34, 541-561, 2010.
939	Miao, C.Y., Ni, J.R., Borthwick, A.G.L, and Yang, L.: A preliminary estimate of human and
940	natural contributions to the changes in water discharge and sediment load in the Yellow
941	River, Glob. Planet. Chang., 76, 196-205, 2011.
942	Milliman, J.D., Farnsworth, K.L., Jones, P.D., Xu, K.H., and Smith, L.C.: Climatic and
943	anthropogenic factors affecting river discharge to the global ocean, 1951-2000, Glob.
944	Planet. Chang., 62, 187-194, 2008.
945	Milly, P.C.D., Dunne, K.A., and Vecchia, A.V.: Global pattern of trends in streamflow and
946	water availability in a changing climate, Nature, 438, 347-350, 2005.
947	Morera, S.B., Condom, T., Vauchel, P., Guyot, JL., Galvez, C., and Crave, A.: Pertinent
948	spatio-temporal scale of observation to understand suspended sediment yield control
949	factors in the Andean region: the case of the Santa River (Peru), Hydrol. Earth Syst. Sci.,
950	17, 4641-4657, 2013.

951 Mutema, M., Chaplot, V., Jewitt, G., Chivenge, P., and Blöschl, G.: Annual water, sediment,

- 952 nutrient, and organic carbon fluxes in river basins: A global meta-analysis as a function
- 953 of scale, Water Resour. Res., 51, doi:10.1002/2014WR016668, 2015.
- Nilsson, C., Reidy, C.A., Dynesius, M., and Revenga, C.: Fragmentation and flow regulation
 of the world's large river systems, Science, 308, 405-408, 2005.
- 956 Rustomji, P., Zhang, X.P., Hairsine, P.B., Zhang, L., and Zhao J.: River sediment load and
- 957 concentration responses to changes in hydrology and catchment management in the
- Loess Plateau of China, Water Resour. Res., 44, W00A04, doi:10.1029/2007WR006656,
 2008.
- Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat.
 Assoc., 63, 1379-1389.
- 962 Song, C.L., Wang, G.X., Sun, X.Y., Chang, R.Y., and Mao, T.X.: Control factors and scale

analysis of annual river water, sediments and carbon transport in China, Sci. Rep.,

- 964 6:25963, doi:10.1038/srep25963, 2016.
- 965 Sun, Q.H., Miao, C.Y., Duan, Q.Y., and Wang, Y.F.: Temperature and precipitation changes
- 966 over the Loess Plateau between 1961 and 2011, based on high-density gauge
- 967 observations, Glob. Planet. Chang., 132, 1-10, 2015.
- 968 Sun, W.Y., Song, X.Y., Mu, X.M., Gao, P., Wang, F., and Zhao, G.J.: Spatiotemporal
- 969 vegetation cover variations associated with climate change and ecological restoration in
- 970 the Loess Plateau, Agric. For. Meteorol., 209, 87-99, 2015.
- 971 Syvitski, J.P.M.: Supply and flux of sediment along hydrological pathways: Research for the
- 972 21st century, Glob. Planet. Chang., 39, 1-11, 2003.
- 973 Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J., and Green, P.: Impact of humans on the flux

- 974 of terrestrial sediment to the global coastal ocean, Science, 308, 376-380, 2005.
- 975 Walling, D.E. and Fang, D.: Recent trends in the suspended sediment loads of the world
- 976 rivers, Glob. Planet. Chang., 39, 111-126, 2003.
- 977 Walling, D.E.: Human impact on land-ocean sediment transfer by the world's rivers,
- 978 Geomorphology, 79, 192-216, 2006.
- 979 Wang, H.J., Saito, Y., Zhang, Y., Bi, N.S., Sun, X.X., and Yang, Z.S.: Recent changes of
- 980 sediment flux to the western Pacific Ocean from major rivers in east and south-east Asia,
- 981 Earth Sci. Rev., 108, 80-100, 2011.
- 982 Wang, S., Fu, B., Piao, S., Lü, Y., Philippe, C., Feng, X., and Wang, Y.: Reduced sediment

transport in the Yellow River due to anthropogenic changes, Nat. Geosci., 9, 38-41,

- 984 2016.
- 985 Yao, W.Y., Xu, J.H., and Ran, D.C.: Assessment of Changing Trends in Streamflow and
- 986 Sediment Fluxes in the Yellow River Basin, Yellow River Water Conservancy Press,
- 987 Zhengzhou, China, 2011 (in Chinese).
- 988 Yue, S. and Wang, C.Y.: Applicability of pre-whitening to eliminate the influence of serial
- 989 correlation on the Mann-Kendall test, Water Resour. Res., 38, 1068,
- 990 doi:10.1029/2001WR000861, 2002.
- 291 Zhang, B.Q., He, C.S., Burnham, M., and Zhang, L.H.: Evaluating the coupling effects of
- 992 climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China,
- 993 Sci. Total Environ., 539, 436-449, 2016.
- 994 Zhang, L., Zhao, F.F., Chen, Y., and Dixon, R.N.M.: Estimating effects of plantation
- 995 expansion and climate variability on streamflow for catchments in Australia, Water

996	Resour. Res., 47, W12539, doi:10.1029/2011WR010711, 2011.		
997	Zhao, G.J., Mu, X.M., Jiao, J.Y., An, Z.F., Klik, A., Wang, F., Jiao, F., Yue, X.L., Gao, P., and		
998	Sun, W.Y.: Evidence and causes of spatiotemporal changes in runoff and sediment yield		
999	on the Chinese Loess Plateau, Land Degrad. Dev., <u>28, 579-590</u> , 2017.	{	删除的内容: doi:10.1002/ldr.2534
1000	Zhao, X., Liang, S.L., Liu, S.H., Yuan, W.P., Xiao, Z.Q., Liu, Q., Cheng, J., Zhang, X.T., Tang,	{	删除的内容: 6
1001	H.R., Zhang, X., Liu, Q., Zhou, G.Q., Xu, S., Yu, K.: The global land surface satellite		
1002	(GLASS) remote sensing data processing system and products, Remote Sens., 5,		
1003	<u>2436-2450, 2013.</u>		
1004			

Figure captions		
Figure 1. Location of the studied catchments in the Coarse Sandy Hilly Catchments		
(CSHC) region within the Loess Plateau.		
Figure 2. Spatial distribution of (a) annual precipitation (1961-2011), (b) growing season		
leaf area index (LAI, 1982-2011), (c) soil type and (d) slope in the study area.		
Figure <u>3</u> , Annual precipitation, streamflow and sediment load for the whole CSHC region	(删除的内容: 2
during 1961-2011.		
Figure <u>4</u> , Land use and cover of the study area in (a) 1975, (b) 1990, (c) 2000 and (d)	(删除的内容: 3
<u>2010.</u>		
Figure 5. The changes of soil and water conservation measures area and growing season		删除的内容: (a) land use, (b)
LAI in the study area.	[删除的内容: (c) vegetation cover 删除的内容: (d)
Figure 6. Long-term trends in growing season LAI changes over (a) 1982-2011, (b)		
1982-1999 and (c) 2000-2011 in the study area. Inset in each figure shows the		
frequency distribution of the LAI trends.		
Figure 7, The changes of (a) precipitation, (b) streamflow, (c) sediment yield, (d) sediment	(删除的内容: 4
concentration and (e) sediment coefficient during different stages (1961-1969,		
1970-1999 and 2000-2011).		
Figure 8, Contributions of precipitation and land use/cover to reductions of sediment load	(删除的内容: 5
from (a) reference period (P1) to period-2 (P2), (b) reference period (P1) to period-3 (P3)		
and (c) period-2 (P2) to period-3 (P3).		
Figure <u>9</u> . Spatial distribution of slope <i>a</i> in the regression equation $\sqrt{SSY} = aP + b$ during	,,,,{	删除的内容:6
(a) reference period (1961-1969), (b) period-2 (1970-1999) and (c) period-3		
	 Figure captions Figure 1. Location of the studied catchments in the Coarse Sandy Hilly Catchments (CSHC) region within the Loess Plateau. Figure 2. Spatial distribution of (a) annual precipitation (1961-2011), (b) growing season leaf area index (LAI, 1982-2011), (c) soil type and (d) slope in the study area. Figure 3. Annual precipitation, streamflow and sediment load for the whole CSHC region during 1961-2011. Figure 4. Land use and cover of the study area in (a) 1975, (b) 1990, (c) 2000 and (d), 2010. Figure 5. The changes of soil and water conservation measures area, and growing season	 Figure captions Figure 1. Location of the studied catchments in the Coarse Sandy Hilly Catchments (CSHC) region within the Loess Plateau. Figure 2. Spatial distribution of (a) annual precipitation (1961-2011), (b) growing season leaf area index (LAL 1982-2011), (c) soil type and (d) slope in the study area. Figure 3. Annual precipitation, streamflow and sediment load for the whole CSHC region during 1961-2011. Figure 4. Land use and cover of the study area in (a) 1975, (b) 1990, (c) 2000 and (d) 2010. Figure 5. The changes of goil and water conservation measures area, and growing season. J. Al in the study area. Figure 6. Long-term trends in growing season LAI changes over (a) 1982-2011. (b) 1982-1999 and (c) 2000-2011 in the study area. Inset in each figure shows the frequency distribution of the LAI trends. Figure 7. The changes of (a) precipitation, (b) streamflow, (c) sediment yield, (d) sediment concentration and (e) sediment coefficient during different stages (1961-1969, 1970-1999 and 2000-2011). Figure 8. Contributions of precipitation and land use/cover to reductions of sediment load from (a) reference period (P1) to period-2 (P2), (b) reference period (P1) to period-3 (P3) and (c) period-2 (P2) to period-3 (P3). Figure 9. Spatial distribution of slope <i>a</i> in the regression equation √SSY = <i>a</i>P+<i>b</i> during (a) reference period (1961-1969), (b) period-2 (1970-1999) and (c) period-3.

1037	(2000-2011). SSY is specific sediment yield, and P is precipitation.	1	删除
			betw
1038	Figure <u>10</u> , Daily precipitation and sediment load of the Yanhe catchment during rainy		perio
1039	season (May-October) in (a) 2003 and (b) 2004.		删除
		,	relati
1040	Figure 11. <u>Spatial distribution of slope <i>m</i> in the regression equation $SC = -mA_c + n$. SC is</u>		preci
		N.	durir
1041	the decadal average sediment coefficient, and A_c is the percentage of the area affected by	i i	Figu
		$\frac{1}{W}$	annu
1042	soil and water conservation measures in the catchments	$\frac{H}{H} = \frac{1}{L}$	preci
		111.1	(200

删除的内容: The relationship between annual precipitation and sediment yield during the reference beriod (1961-1969).

删除的内容: Figure 7. The relationship between annual precipitation and sediment yield during the period-2 (1970-1999). . Figure 8. The relationship between annual sediment yield and precipitation during the period-3 (2000-2011). .

删除的内容:9

删除的内容:0

删除的内容·^R

删除的内容:^{elationships between}the

删除的内容: The data points represent the average values of 1960s, 1970s, 1980s, 1990s, and 2000s.