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Abstract. Statistical approaches to study extreme events require by definition long time-series of data. In many scientific
disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of
its extremes. Therefore the assumption of “stationarity” is violated and alternative methods to conventional stationary
Extreme Value Analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change,
in this study we introduce the Transformed-Stationary (TS) methodology for non-stationary EVA. This approach consists of
(i) transforming a non-stationary time-series into a stationary one to which the stationary EVA theory can be applied; and (ii)
reverse-transforming the result into a non-stationary extreme value distribution. As a transformation we propose and discuss
a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary
Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD) models with constant shape parameter. A
validation of the methodology is carried out on time-series of significant wave height, residual water level, and river
discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are
comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the
established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For
example, in contrast with (a), the proposed technique uses the whole time horizon of the series for the estimation of the
extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b) it decouples the
detection of non-stationary patterns from the fitting of the extreme value distribution. As a result the steps of the analysis are
simplified and intermediate diagnostics are possible. In particular the transformation can be carried out by means of simple
statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure
is a stationary one with a few degrees of freedom and easy to implement and control. An open-source MATLAB toolbox has

been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/.
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1 Introduction

Extreme Values Analysis (EVA) attains a great importance in several applied sciences, particularly in Earth Science, because
it is a fundamental tool to study the magnitude and frequency of extreme events, and their changes (e.g. Alfieri et al., 2015;
Forzieri et al., 2014; Jongman et al., 2014; Resio and Irish, 2015; Vousdoukas et al., 2016). Climatic extreme events are
usually associated with disasters and damages with significant social and economic costs. A correct statistical evaluation of
the strength of extreme events related to their average return period is crucial for impact assessment, for the evaluation of the
risks affecting human lives and activities, and for planning actions regarding risk management and prevention (e.g. Hirsch
and Archfield, 2015; Jongman et al., 2014).

Often it is necessary to apply EVA to non-stationary time-series, i.e. series with statistical properties that vary in time due to
changes in the dynamic system. In particular, climate change can induce variations in the statistical properties of time-series
of climatic variables. For example, an intensification of the meridional thermal gradient at middle latitudes on a global scale
would lead to an increase of the climatic variability (e.g. Brierley and Fedorov, 2010), resulting in a reduction of the average
return period of storms with a given strength. Consequently, in the study of climate change, an accurate statistical estimation
of middle to long-term extremes is inherently connected to the application of non-stationary methodologies.

While a general theory about non-stationary EVA has not yet been formulated (Coles, 2001), there are several studies
describing methodologies for the estimation of time-varying extreme value distributions on non-stationary time-series, which
rely on the pragmatic approach of using the standard extreme value theory as a basic model that can be further enhanced with
statistical techniques (e.g. Coles, 2001; Davison and Smith, 1990; Husler, 1984; Leadbetter, 1983; Méndez et al., 2006).

An established technique consists in expressing the parameters of an extreme value distribution as time-varying parametric
functions (M) of time, for some custom parameters (o, 5i, 7i ...). By means of a fitting process such as the Maximum
Likelihood Estimator (MLE) it is then possible to fit the values of («;, i, 7i ...) to model the extremes of the non-stationary
series. Appropriate implementations of such a methodology, hereinafter referred to as the established method (EM), produce
meaningful results, as proved by a number of contributions (e.g. Cheng et al., 2014; Gilleland and Katz, 2015; Izaguirre et
al., 2011; Méndez et al., 2006; Menéndez et al., 2009; Mudersbach and Jensen, 2010; Russo et al., 2014; Sartini et al., 2015;
Serafin and Ruggiero, 2014).

A drawback of this approach is that there is no general indication on how to formulate the function M. As a rule the model
should be as simple as possible. For this reason, typically several formulations of M are tested, and then the best model is
chosen through a balance between high likelihood and low degrees of freedom, for example by means of the Akaike criterion
(Akaike, 1973). Furthermore, the choice of M depends on the statistical model chosen for the extreme value analysis: for
example, for the same series the M used for the Generalized Extreme Value (GEV) model is different from the M used for
the Generalized Pareto Distribution (GPD) model. Moreover the EM requires non-stationary statistical fitting techniques that
are relatively complex to implement and control, because the detection of the time-varying properties of the series is

incorporated into the fitting of the extreme value distribution.
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Another commonly used approach for dealing with non-stationary series is to divide them into quasi-stationary slices and
apply the stationary theory to each slice (e.g. Vousdoukas et al., 2016). This technique is referred to in the text as “stationary
on slice” (SS). Although this technique enables the detection of meaningful trends for short return periods, it has the
drawback of reducing the size of the sample used for the EVA, implying larger uncertainty in the estimation of long return
periods.

This study aims to contribute to the field of non-stationary EVA by introducing the Transformed-Stationary (TS) extreme
value methodology, which decouples the analysis of the non-stationary behavior of the series from the fitting of the extreme
value distribution. For this purpose it introduces a standard methodology to model the variations of the statistical properties
of the series.

The remainder of the paper is structured as follows. In Sect. 2 the TS methodology is described and discussed in a general
and theoretic way and implementation details are outlined. In Sect. 3 the validation of the methodology is presented. Section
4 illustrates a comparison with other common approaches for the EVA of non-stationary series, such as EM and SS for
modeling time-series characterized by seasonal cycles and time-series showing long-term trends. In Sect. 5 the results are

discussed and in Sect. 6 the most important conclusions are drawn.

2  Methods and data
2.1  Theoretical background

The TS methodology consists of three steps: transforming a non-stationary time-series y(t) into a stationary series x(t),
performing a stationary EVA, and back-transforming the resulting extreme value distribution into a time-dependent one.

The transformation y(t) — x(t) we propose is:

t)-T, (t 1)
x(t) =f (y,t) :M_

C, ()
where T (t) is the trend of the series, i.e. a curve representing the long-term, slowly varying tendency of the series, and
C, (t) is the long-term, slowly varying amplitude of a confidence interval that represents the amplitude of the distribution of
y(t). In particular, if C, (t) equals the long-term varying standard deviation S _(t) of the series y(t), Eq. (1) reduces to a

simple time-varying renormalization of the signal:

y(t)-T, (1) (2)
s,

For simplicity, in the remainder of this paper we will limit our analysis to Eq. (2), knowing that all the considerations can be

x(®)=f(y.t)=

easily extended to any time-varying confidence interval C (t).

3
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Equation (2) guarantees that the average of X(t) and its standard deviation are uniform in time, which is a necessary
condition for X(t) to be stationary. In particular the transformed signal X(t) has a mean equal to 0 and a variance equal to
1. It is worth noting that the transformed series X(t) is not necessarily stationary: a series with a constant trend and a

uniform standard deviation may still have a time-dependent auto-covariance that would invalidate the hypothesis of
“stationarity” (i.e. the condition of a series with statistical moments constant in time). Before proceeding with the analysis,
therefore, a stationarity test should be carried out to ensure that X(t) is stationary and that its annual maxima can be fitted
by a stationary extreme value distribution. For example, a simple test can be performed to ensure that higher order statistics
such as skewness and kurtosis are roughly constant along the series.

Once the hypothesis of stationarity of x(t) is verified we can estimate the distribution GEV, (x) that best fits its extremes,
for example through MLE. GEV , (X) is then given by

-1/ey
GEV, (x) =Pr(X < x) =exps - {1+ gx[ﬂﬂ , (3)

o

X

where the shape (¢, ), scale (o, ) and location (x, ) parameters do not depend on the time. To find the time-dependent
distribution GEV,, (y,t) that fits the non-stationary time-series y(t) we can write that:

GEV, (y) = PrlY (1) < yl=Pr[f *(X,0) < y]=Pr[X < f (y,)]=GEV,[ f (v, 1)], )
where f(y,t) is the transformation from y to x given by Eq. (1), and f ’1(X,t) is its inverse

fH(x0)=y(t)=S,t) x+T,(), )
It is always possible to compute GEV,, (y,t) from GEV, (x) because f(y,t) isamonotonically increasing function of y
for every time t, because the standard deviation S (t) is always positive.

Using Egs. (3) and (5) in Eq. (4) we find

-1y

y-T,(®)

Hy
S,(t)
GEV, (y,t)=GEV, [f(y,t)]=exp{—|1+¢,| ——— =
(o}

X

(6)

y—Txo—ufsxoym*

=expy—|1+eg,
[ .S,
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Therefore, if X(t) is fitted by the stationary distribution GEV, (x) then y(t) is fitted by the time-dependent distribution

GEV, (y,t) with shape, scale and location parameters given by

gy :gx y (7)
o,()=S,()-0,, )
1, ()=, 01, +T,0). ©

It can be shown that the time-dependent GEV parameters given by Eqgs. (7-9) are the same as the time varying parameters

& O and p o of a non-stationary distribution GEV,s that would be obtained from a non-stationary MLE on the series

ns?

y(t) , and which are given by

&,, =const., (10)
o,=S,(1)a, (11)
Hos =S, (1) -b+T, (1), (12)

for varying parameters a and b. In fact, if pg, (X) is the probability density function (PDF) associated with the distribution

GEV, (x), then the MLE for GEV (x) is estimated so that

> " log[ pex (x)] = max, (13)

which involves vanishing derivatives of Eq. (13) on the GEV parameters ¢, , o, and u, . For example considering the
scale parameter o,
0 (14)
D ——log[pe (x.5,)]=0.
0o,
The non-stationary MLE maximizes the log-likelihood of the non-stationary PDF p,. (Yy,t) associated with GEV,s in

function of the parameters a and b. For example considering the parameter a we impose

a (15)
zalog[ pGns (y! a,t)] = O .

Let us assume that p. (y,t) coincides with the PDF p,, (y,t) associated with the distribution GEV,, (y,t) given by Eq.
(6) and that a = o, . Considering that
0 0 Pox (X) (16)
1) =—GEV, (y,t)= X)— f(y,t) =3~
Pov (V1) Y v (¥:1) = Pox ( )ay (y,0) s, (1)

we obtain
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a a 8 GX 1Y x
Zglog[ Pors (¥, 8,1)] = Za'og[ Por (¥, 0] = 2 oo, Iog{ : S(y)zt;y )} i

=3 5o foal pes (5,01 001, 1} = 32 loal Py (1.0, =0. )

where the last step is possible because S (t) does not depend on o, .

The same principle can be applied differentiating » log[ p., (X, &, ,t)]=0 on the location parameter to maximize the
GY X Hy

log-likelihood, finding the condition

- 5 (18)
za—ﬂxlog[pm I Zalog[pex (% 4,)1=0.

Therefore, if x is stationary, the condition of maximum likelihood for p., (x) coincides with the condition of maximum

likelihood for pg, (y,t), and applying MLE for fitting the stationary parameters (O-x'lux) is equivalent to fitting the
parameters (a, b) of by Egs. (10-12) by non-stationary MLE. The equivalence between the two methodologies suggests that

the TS approach is dual to the EM approach, meaning that any implementation of EM is equivalent to an implementation of

the TS approach for some transformation f(y,t): y(t) — x(t) (see Appendix A for a more detailed discussion). One can

also prove that Eq. (1) allows a general TS formulation with constant shape parameter, i.e. all the TS models with a constant
&y can be connected to Eq. (1) (see Appendix A). This last result is remarkable, because it shows that Eq. (1) is exhaustive
for all the TS models with constant shape parameter.

The findings drawn above are general and can be applied also to Peak Over Threshold (POT) methodologies, because the
GPD is formally derived from the GEV as the conditional probability that an observation beyond a given threshold u is

greater than x. In particular, the POT / GPD parameters are given by

u,()=S,(t)-u, +T,(1), (19)
g, =&, = const., (20)
o-GPDy(t) :o-y (t)+8y[uy(t)_luy (t)] = Sy(t)'o-GPDx ' (21)

where u, (t) and u(t) are the thresholds of the x and y time-series, ¢ = ¢, is the shape parameter, o .y, and o gy, (t)
are the GPD scale parameters of x and y, o, and , are the scale and location parameters of a GEV associated with the
GPD, which have been included in Eq. (19) to make it clear how the parameter o, (t) can be derived.

It is worth noting that the TS methodology is “neutral” for a stationary series, i.e., the application of this methodology to a
stationary series leads to the same results as a stationary EVA with the same underlying statistical model. That is because in

such case T, and S, are constant, and Eqg. (2) reduces to a constant translation and scaling.
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2.1.1  Modelling seasonality

Often, we would like to model extreme events that show seasonality, for example with local winter extremes that differ in

magnitude from summer extremes. A simple way to add the seasonal cycle to Egs. (7-9) is by expressing the trend T, (t) and
the standard deviation S (t) as
T, (1) =Ty, () +5: (1), (22)
S, (t) =S, (t)-ss(t), (23)
where T, (t) and s, (t) are, respectively, the long-term varying and seasonal components of the trend, S, (t) is the long-

term varying standard deviation and s (t) is the seasonality factor of the standard deviation. In the notation the subscript “0”

denotes the long-term varying components. Applying Egs. (22-24) to Eg. (2) we obtain

YO -T, ) -5, (1) (24)
S, () s ()

The time-varying GEV parameters can be expressed as

X(t)

g, =&, =const., (25)

o,(t) =S, (t)-s(t) o, , (26)

fy (1) = So, (1) - S5 (1) - 41, + Ty, (1) +5:(1) (27)
and the time-varying POT / GPD parameters can be expressed as

u, (t) =S, (t)-ss(t)-u, +T,, (1) +5 (1), (28)

g, =&, = const., (29)

Ocppy (t) = S0y (t) *Sg (t) "Ogppy * (30)

2.2 Implementation

The implementation of the TS methodology is illustrated in Figure 1. The fundamental input is represented by the series

itself, and the core of the implementation consists of a set of algorithms for the elaboration of the time-varying trend T, (t),

standard deviation S, (t) and seasonality terms s, (t) and sy(t).

In this study we propose algorithms based on running means and running statistics (see Sect. 2.2.1). Hence, an important

aspect is the definition of a time window W for the estimation of the long-term statistics T, (t) and S, (t) and of a time
window Wi, for the estimation of the seasonality. The computation of T, (t) and S, (t) acts as a low-pass filter removing

the variability within W. Therefore W should be chosen short enough to incorporate in the analysis the variability above the
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desired time scale but long enough to exclude noise, short-term variability and sharp variations in the statistical properties of
the transformed series. For example, in studies of long-term climate changes a reasonable choice is to impose W=30 years,
because this is the generally accepted time-horizon for observing significant variations in climate (e.g. Arguez and Vose,
2011; Hirabayashi et al., 2013). It is worth stressing that the chosen value of W should be verified a posteriori to ensure that
the transformed series is stationary. The time window Wg, is used to estimate the intra-annual variability of the standard
deviation (see Sect. 2.2.1). In Figure 1 the input corresponding to the seasonal time-window Wy, is drawn in a dashed box
because its value is easier to choose than the value of W. For the examined case studies a value of two months for Wy, always
resulted in a satisfactory estimation of the seasonal cycle.

In this implementation of the TS methodology the estimation of the long-term statistics is separated from the estimation of
the seasonality. This allows to study the long-term variability of the extreme values as is typically done when studying
extremes on an annual basis, as well as the combination of long-term and seasonal variability to evaluate extremes on a

monthly basis.

After the estimation of T (t), S, (t), S;(t) and s¢(t) we can apply Eq. (2) and perform a stationary EVA on the

transformed series. It is important to stress that the stationary EVA is performed on the whole time-horizon. The stationarity
of the transformed signal allows us to apply different techniques for the EVA. In this study we illustrate the GEV and GPD
approaches, but an interesting development would be the elaboration of non-stationary techniques for other approaches such
as those described by Goda (1988) or Boccotti (2000), based on the TS methodology.

The final step of the implementation is the back-transformation of the fitted extreme value distribution into a non-stationary
one as given by Egs. (10-12) and (25-27) for GEV and by Egs. (19-21) and (28-30) for GPD.

2.2.1  Estimation of trend, standard deviation and seasonality

There are several possible ways of estimating the slowly varying trend and standard deviation and their seasonality. We

propose here a simple methodology based on a running mean and standard deviation. We formulate the trend T, (t) as a

running mean of the signal y(t) on a multi-yearly time window W,
t=tsW /2 (31)
T ()= D> y() /N,
tt=t-w /2

where N, is the number of observations available during the time interval [t —W /2,t +W /2]. The seasonality of the

trend relative to a given month of the year can be estimated as the average monthly anomaly of the “de-trended” series. For a

given month of the year the seasonality is then

[y() =T, ()]

emonth(t)
s, (month[t]) = > N temon® (32)

years month
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where the subscript ttemonth[t] indicates that the averaging operation is limited to time intervals within each considered
month of the year. For example the seasonality of January is computed as the average for all months of January of the
detrended signal. To estimate the slowly varying standard deviation we execute a running standard deviation with the same

time window used to estimate T, (t) :

SO =n:§/2\/[y(n)—;7(tte[t—w/2,t+W/2])]2/NWsn , (33)

tt=t-W /2

where the subscript “ROUGH?” stresses the fact that this expression is sensitive to outliers and that its direct employment
leads to a relevant statistical error, as explained in Sect. 2.2.2. To overcome this problem we smooth Soy('[)‘ROUGH with a

moving average on a time window smaller than W, for example W/L with L=2:

tt=t+W /2L (34)
So )= D LS, () . /N,

tt=t-W /2L

ROUGH

It is worth stressing that, in general, a further smoothing of the results of running means and standard deviations is
appropriate if it reduces the error and improves the detection of the slowly varying statistical behavior of the time-series.

This is because the estimation of T, (t) and S, (t) involves a low-pass filter to smooth the signal on time scales lower than

W and remove high frequency variability.
To estimate the seasonality we perform another running standard deviation S, (t) on a time-window W, much shorter than
one year, in the order of the month,
tt=t+Wg, /2 (35)
S, =Y. Iyt - y(tte[t-W, /2,t+W, /2])]*/N, .

tt=t-Wgp /2

The seasonality of the standard deviation can then be computed as the monthly average of the ratio between S_ (t) and
S()y (t) :

S, (tt) /S, (tt
sq(month [t]) = z[ 7S O,y : (36)

years tte month(t)

The estimated seasonality terms s, and s are periodic with a period of one year. In order to smooth them and remove any

possible noise in the signal, we take into account only their first three Fourier components computed in a period of one year,
corresponding to components with a periodicity of one year, six months and three months.
2.2.2  Statistical error

Since there is an inherent error in the estimation of the trend, standard deviation and seasonality given by Egs. (32-36), we

need to estimate this error and propagate it to the statistical error of the parameters of the non-stationary GEV and GPD
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distributions. In general, given a sample d of data with size N, average §, variance var(s) and standard deviation S(s) we
have:
var(d) = var(d)/N = Err[d]=S(d)/+/N , @37)
var[var( d)] ~ 2var(d)?/N = Err[S(d)] ~ S(d)-4/2/N . (38)
Equation (37) represents the error on the average and can be obtained by propagating the intrinsic error of each observation,

given by the standard deviation S(S), to expression §= ZSi / N . Eqg. (38) represents the error on the standard deviation
and can be evaluated considering that with a Gaussian approximation quantity S =Zsi2/ var(s) follows a chi-squared
N

distribution with standard deviation 2N.

Using Egs. (37) and (38) we can estimate the error on T, (t) and S, ('[)‘ROUGH as
Err[T, 1~ S, /N, . (39)
ErSe ], .0 = Soy - Y2/N, - (40)

As mentioned in Sect. 2.2.1, Eq. (40) tends to return rather high values of the error relative to S (t) . For example, if we are
considering a time-window of 20 years with an observation every 3 hours we have

Err[SOy]‘ (41)

N, ~59000 ROWGH ~ 7,606,

oy
Using expression (34) for the estimation of S, (t) overcomes this issue because we can estimate the uncertainty in S, (t)
as the error of the standard deviation averaged over the time-window W /L , which is significantly lower than the error given
by Eg. (41). Using Eq. (37) we find

Err[soy]|ROUGH - . 2L

INL N (42)

We can estimate the error on the seasonality of the trend s, by adding the error estimated for T, (t) to that of the monthly

E[SOy] ~

mean. As the statistical error of independent Gaussian variables sum vectorially, we obtain:

Errfs,]= \/Errz[mntmean (Y)1+Err’[T,, 1, (43)

where the mntmean(y) operator represents the monthly average of y. If, for example, one considers the month of January, it
is the average computed on all months of January in the time-series. Assuming the error on mntmean(y) as approximately

constant within the year, it follows that

10



10

Erffmntmean (Y)1~ Sy, /y/Namn = So, - 412/ Ny (44)

where N is the number of observations corresponding to the considered month, N, is the total number of elements of

month

the series y(t), N ~ N, /12. Therefore Eq. (43) can be rewritten as

month

Erts;]= Soy12/ Ny +1/N, . (45)

The error on sg can be estimated as the error of the average ratio Ss/Sq - Using Eq. (38) the error of the ratio Ss /Sy is

tot

given by

2 2
Er{si} ~ [—Err[SS"]J + [ SSZ” Err[Soy]J ~
Soy Soy Soy

2 25S°
—_—t [— =~

(46)
where N, is the average number of observations within the time-window W,, and assuming N, >> N_ . We can then

estimate the error on s, as the error of the monthly average of s /S

S,, - 12 2 288

Err[s.]~ Er{sw}/\/ N rontn = ss\/N_md\/N_sn = 554\/ NIN, (47)
Using Egs. (40), (45) and (47) we can estimate the error on the time-varying GEV parameters as

Erfe,]1=Enfe,], (48)

Erfo,1=/(Sy, -5 -Erto, 1)? + (S, - Erls,]-,)° + (ENS, 15, -0,)° | (49)

Eru,]1=/(So, -Se - ENla, )? + (S, - ENss]- 11,)° + (EMS,,) - S5 - 41, )° +Ere? (50)
and the error on the time-varying GPD parameters as

Erfu,]=/(S,, -Ss-Eru, 1) +(S,, -Enfs,]-u,)? +(EnS,, 15, -u,)* +Er? .. (51)

Err[e,]=Err[e,], (52)

53

Err[GGPDy] = \/(SOy “Sg Err[GGPDx])Z + (SOy : EI’I’[SS] : GGPDX)Z + (Err[SOy] - Sg 'GGPDx)2 ) ( )
where

Ert? = Er[T, ]+ Err’[s]. (54)

11
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2.3  Data and validation

To assess the generality of the approach, the TS methodology has been validated on time-series of different variables, from
different sources and with different statistical properties.

The analysis of annual and monthly maxima has been carried out on time-series of significant wave height at two locations:
the first located in the Atlantic Ocean, West of Ireland (coordinates -10.533°E, 55.366°N), and the second close to Cape
Horn (coordinates 60.237°E, -57.397°N). The data have been obtained by means of wave simulations performed with the
spectral model Wavewatch I1I® (Tolman, 2014) forced by the wind data projections of the RCP8.5 scenario (van Vuuren et
al., 2011) of the CMIP5 model GFDL-ESM2M (Dunne et al., 2012) on a time-horizon spanning from 1970 to 2100. This
dataset is referred to from now on as GWWIII. Here the TS methodology is used in order to examine its applicability to
climate change studies. The annual and monthly analyses have been repeated on a series of water-level residuals offshore of
the Hebrides Islands (Scotland, coordinates -7.9E, 57.3N) obtained from a 35-year hindcast of storm surges at European
scale (Vousdoukas et al., 2016) forced by the ERA-INTERIM reanalysis data (Dee et al., 2011). This dataset is further
referred to as JRCSURGES.

For the annual maxima of the considered series we furthermore compare the TS methodology with the SS technique as
implemented by Alfieri et al. (2015) and Vousdoukas et al. (2016). For this purpose we extracted time-series from
projections of streamflow in the Rhine and Po rivers covering a time-horizon from 1970 to 2100 (Alfieri et al., 2015), from
now on referred to as JRCRIVER. Also, the two series of significant wave height of West Ireland and Cape Horn extracted
from the GWWII1 dataset have been used in this comparison.

Finally we compare the TS methodology and the EM for monthly maxima using time-series of significant wave height
extracted from a 35-year wave hindcast database (Mentaschi et al., 2015) near the locations of La Spezia and Ortona. The
analysis of this dataset, further referred to as WWIII_MED, focuses on a comparison between seasonal cycles modeled by

the two approaches.

3 Results
3.1  Waves: annual extremes

The validation of the TS methodology was performed first on the time-series of significant wave height of West Ireland and
Cape Horn from the GWWIII dataset. We verified first the non-seasonal transformation given by Eq. (2) and the time-
dependent GEV and GPD given by Egs. (7-9) and (19-21), respectively. By ignoring the seasonality, this formulation is
suitable for finding extremes and peaks on an annual basis. For technical reasons the two series do not have data in two time
intervals, from 2005 to 2010 and from 2092 to 2095. The impact of the missing data on the analysis is small, however,

especially if we choose a time-window W large enough for the estimation of the trend and standard deviation using Egs. (31)
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and (33). In particular for this analysis we chose a time-window of 20 years, which is long enough to ensure the accuracy of
the results and short enough to include the multi-decadal variability of a 130-year time-series.

The results of the analysis for the two time-series are illustrated in Figure 2 and Figure 3. Panel (a) of each figure shows the
original time-series and its slowly varying trend and standard deviation. Panel (b) illustrates the normalized series obtained
through the transformation given by Eq(1), allowing an evaluation “at a glance” of the stationarity of the normalized series.
The mean and the standard deviation of the normalized series plotted in panel (b) are 0 and 1, respectively. Higher order
statistics such as skewness and Kkurtosis are included in the graphics to support the assumption of stationarity of the
normalized series. From the normalized time-series we extracted the annual maxima and estimated the corresponding non-
stationary GEV as given by Eqgs. (7-9) (see panel (c) of Figure 2 and Figure 3). Moreover, we performed a Peak Over
Threshold (POT) selection of the extreme events on the normalized series. The threshold was defined in order to have on
average five events per year, following Ruggiero et al. (2010), corresponding for both of the series to the 97" percentile.
From the resultant POT sample we estimated the corresponding non-stationary GPD as given by Egs. (19-21) (see panel (d)
of Figure 2 and Figure 3). In panels (c) and (d) of Figure 2 and Figure 3 the shape parameters ¢ estimated by the MLE for the
GEV and the GPD are also reported. Inter-decadal oscillations in the annual maxima are modeled for both of the series,
though they are more pronounced for the West Ireland time-series. Moreover, for both series there is a tendency for the
annual maxima to increase. This is more pronounced for the Cape Horn series, where the increase in the annual maxima of
significant wave height estimated by GWWIII is of about 2 meters.

It is worth noting that for both the considered series, the statistical mode of GEV and GPD grows faster in time than the

slowly varying trend T _(t) . This is due to the fact that the growth of the location parameter 4 (t) of the non-stationary
GEV (expression 7), and of the threshold u_ (t) of the non-stationary GPD (Eqg. 19), are related not only to the growth of
T, (t) butalso to the growth of S (t). The upper tail of the distributions grows even faster because also the scale parameter
is proportional to S (t).

The impact of the statistical error in the slowly varying trend and the standard deviation on the uncertainty of the distribution

parameters have been examined using Eqs (48-50) and (51-53), which for the non-seasonal analysis reduce to

Errle,1=Errfe,], (55)
Errlo,1=4/(S, -Eno, 1) + (Ens,]-0,)? , (56)
Errlu,1=1/(S, -Erlu,D)* + (ENr(T, ] ,)? + Erc[T, ], 7)

for the GEV, and to

Errlu,1=/(S, - Errfu,))* + (Err[S,]-u,)? + Er[T, ], (58)
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Err[e,]=Err[e,], (59)

EMO ooy 1=/(S, - EMlocen,])? + (ENTS,1- 0o, )? (60)

for the GPD. The result is that for the non-seasonal analysis the error due to the estimation of the trend and standard
deviation is negligible with respect to the error associated with the stationary MLE. In Table 1 the values of the different
components of the compared error in Egs. (55-57) and (58-58) are reported together with the total error estimated for each
parameter of the non-stationary GEV and GPD. Since the threshold uy of the stationary GPD was selected to have on average
five events per year, the error has been computed as the uncertainty related to this definition. The percentage contribution to
the squared error is also reported in Table 1 in a single column because the percentages estimated for the two series are
roughly equal. The error for both GEV and GPD and for the two series is clearly dominated by the error associated with the

estimation of the parameters of the stationary distributions ([S, -Err[o,]] and [S, -Err[u,]] for the GEV and

[S, -Err[ogmny 11 @nd [S, - Err[u,]] for the GPD).

3.2  Waves: monthly extremes

The seasonal formulation of the approach is suitable to estimate extreme value distributions on a monthly basis. Hence, we
applied Eqg. (24) to estimate the normalized series, then fitted a stationary GEV of monthly maxima by means of a MLE that
was back-transformed into a non-stationary GEV through Eqgs. (25-27). It is worth stressing that for the stationary MLE the
entire normalized series was used, covering a time-horizon of 130 years. For the GPD we selected the threshold in order to
have on average twelve events per year, corresponding to the 93" percentile for both series. Results are displayed in Figure 4
for the location of West Ireland and in Figure 5 for Cape Horn. To make the seasonal cycle distinguishable in these figures,
we plotted only a slice of five years from 2085 to 2090. The meaning of the four panels in Figure 4 and Figure 5 is the same
as in Figure 2 and 3. The non-stationary extreme value distribution estimated for the location of West Ireland presents a
strong seasonal cycle with extremes higher and more broad-banded during winter. For Cape Horn the seasonal cycle is
weaker, with the extremes of significant wave height slightly lower during the local summer. The estimated PDF for the
seasonal GEV and GPD are significantly lower than those estimated for the non-seasonal analysis because in the seasonal
analysis we consider monthly extremes, while in the non-seasonal one we consider annual extremes.

It is worth stressing that in the study of the monthly maxima the long-term trend is also estimated even if it cannot be
appreciated in Figure 4 and Figure 5 due to the short time-horizon represented.

Table 2 reports the components of the statistical error due to the uncertainty in the estimation of the seasonality, together

with the components of the stationary MLE. The error components relating to the uncertainty in the estimation of T, and
S,, Were omitted as they are negligible compared with the error associated with the fitting of the stationary extreme value

distribution (see Sect. 3.1). In Table 2 we can see that, as for the non-seasonal analysis, the error for both GEV and GPD and

for the two series is clearly dominated by the uncertainty associated with the estimation of the parameters of the stationary
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distributions, though in this case the error related to the stationary MLE is significantly smaller than that found for the non-

seasonal analysis due to the larger sample of data.

3.3  Residual water levels

To verify the performance of the TS methodology on a series from a different source, of a different size and with different
statistical characteristics, we tested it on a series of water level residuals extracted from the JRCSURGES dataset for a
location off-shore of the Hebrides Islands, Scotland, with coordinates (-7.9E, 57.3N). This series is characterized by a flat

trend T (t) because the model results are approximately constant-averaged. Therefore almost all the variability is modeled
by the TS methodology in the standard deviation S (t). Since the time-horizon of this series is shorter than that of the

GWWIII projections, a time-window of six years was adopted for the computation of the trend to better identify its inter-
annual variability. The results of the TS analysis of the yearly maxima are shown in Figure 6. The series displays also a
strong seasonal behaviour with annual maxima usually occurring during the local winter (for brevity the seasonal analysis is
not illustrated).

An interesting aspect is that the estimated standard deviation S (t) presents a strong correlation (p=0.79) with the annual
means of the North Atlantic Oscillation (NAO) index. This is illustrated in Figure 7, where the scatter plot of S (t) versus

the annual means of the NAO index (panel a) and the two time-series (panel b) are represented. As a consequence the

estimated annual maxima are also correlated with the NAO index.

4  Comparison with other approaches
4.1  Stationary methodology on time slices for long trend estimation

A comparison was carried out between the TS methodology and the SS technique, consisting of a stationary analysis on
quasi-stationary slices of data. This analysis was carried out on river discharge projections for the Po and the Rhine extracted
from the JRCRIVER dataset and on the projections of significant wave height extracted from the GWWIII dataset for the
locations of West Ireland and Cape Horn. The TS methodology was applied with a time-window of 30 years to estimate a
non-stationary GPD of annual maxima. The SS technique was carried out using a GPD approach on time slices of 30 years
from 1970 to 2000, 2020 to 2050 and 2070 to 2100. For both methodologies the threshold was selected to have on average
five peaks per year.

Results are illustrated in Figure 8, where the return levels of the projected discharge of the Rhine are shown for three time
slices. In Figure 8 the continuous black line and the green band represent the return levels and the 95% confidence interval
estimated by the TS methodology, where the dashed black line represents the return levels estimated by the stationary EVA

on the considered slice (labeled in the legend as SS). The return levels estimated for short return periods by the two
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methodologies are close, while they tend to spread for high return periods. This fact is also evident from Figure 9, where the
return levels estimated by the two methodologies are plotted against each other for the river discharge of the Rhine and the
Po and for the significant wave height of West Ireland and Cape Horn. We can see that for the analyzed time-series the two
methodologies are in good agreement for return periods below 30 years while they spread for larger return periods. Some
quantitative data about this fact are shown in Table 3, which reports the normalized bias NBI of the return levels of the two
methodologies, defined as

)/RL (61)

cmp !

NBI = (RL, —RL

cmp
where RLys and RLcy, are the return levels obtained by the TS and the SS methodology, respectively. Table 3 also includes
the maximum deviation between the return levels estimated by the TS and by the SS methodology, as well as the 95%
confidence interval amplitude expressed as a percentage of the return level. The NBI and the maximum deviations were
obtained by comparing results of the two techniques on the three 30-year time windows. From Table 3 we can see that the
maximum deviation for return periods up to 30 years is always below 6%, while for higher return periods it increases up to
13% for the discharge of the Po. Moreover the confidence intervals estimated for SS are always larger than those for TS,
especially for large return periods. This is mainly due to the fact that for the stationary analysis on the quasi-stationary time
slices we consider a sample of only 30 years, which leads to wider uncertainty ranges especially in the estimation of large
return periods such as 100 and 300 years. This also explains the sharp variations of high return levels that we find between
the three time windows using the SS approach. These variations are likely more related to the uncertainty in estimating the
levels associated with long return periods rather than to climatic changes. The TS methodology allows a more accurate
estimation of high return levels because it uses the whole sample of 130 years, and this represents one of the strengths of the
TS methodology versus SS. It is finally worth noting that the relative confidence interval estimated by both methodologies
for the series of river discharge is larger than that estimated for the series of significant wave height. This is because for
wave height data the minimum distance between two peaks has been set to at least three days, while for river discharge it has

been set to seven days.

4.2  Established non-stationary method for seasonal variability

Section 3 shows that the TS methodology is mathematically equivalent to a particular implementation of the EM
methodology as described for example by (Coles, 2001; lzaguirre et al., 2011; Menéndez et al., 2009; Sartini et al., 2015).
For the sake of completeness, we show here the results of a comparison between the performances of TS and of a different
formulation of the EM methodology. In its formulation the parameters of the non-stationary GEV of the monthly maxima are
expressed as

B0 = o+ D1y cos(ian) + B, sinCiat)] )
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ot)=a, + i[aﬂ_1 cos(iwt) + o, , sin(iwt)],

i=1

(63)

£(t) =7, + [ COS(iat) + 7, sin(iat)], 4

where S, ao and y, are the stationary components, i, o;and y are the harmonics amplitudes, @ = 227" is the angular
frequency, with T corresponding to one year, N,, N, and N, are the number of harmonics and t is expressed in years.
Therefore, the parameters f;, «; and y; have been optimized through a non-stationary MLE in order to fit the monthly maxima
of the non-stationary series. Different combinations of N, N,, and N, have been tested and the best model was chosen as the
one presenting the lowest value of the Akaike criterion (Akaike, 1973) given by

AIC =2k —2log(L), (65)
where k is the number of degree of freedoms of the model, L is the likelihood. In particular the maximum value tested for N,
and N, is 3 while the maximum considered value of N, is 2. In general this model can be extended to incorporate long-term
trends, but the two series examined in this test display flat trends. Hence Eqgs. (62-64) are adequate to model them.
In the comparison, the EM and the seasonal TS methodology (GEV only) were applied to the same series of significant wave
heights relative to the WWIII_MED dataset described in Sect.(2.3). For the transformed-stationary approach a ten-year time
window was used for the computation of the long-term trend. The results of the two methodologies are similar, with a
roughly flat trend and strong seasonal pattern. The comparison of the seasonal cycles estimated by the two techniques is
represented in Figure 10 for the two series. Here, the continuous red and green lines are the location and scale parameters (p
and o respectively) as estimated by the TS approach. The dashed red and green lines are the location and scale parameters
estimated through the EM. The blue dots represent the monthly maxima, while the colour-scale represents the time-varying
probability density estimated by the transformed-stationary methodology. Since for both of the series the models selected
based on the Akaike criterion have a constant shape parameter ¢, these are reported together with those estimated by the TS
methodology.
The GEV parameters estimated by the two approaches are in good agreement. The small differences have relatively small
impact on the return levels as one can see in Figure 11, where the return levels estimated by the two methodologies for the
month of January are plotted. For both series the return levels estimated by EM lie within the 95% confidence interval
estimated by TS. Table 4 reports the values of normalized bias (NBI) between the return levels estimated by TS and EM,
defined as in Eq. (61), and the mean 95% confidence interval amplitude expressed as a percentage of the return level. In
Table 4 the values of NBI are reported for the four seasons for return periods of 5, 10, 30, 50 and 100 years, for both La
Spezia and Ortona. In the definition of seasons that is used, winter starts on 1* December, spring on 1% March, summer on 1%
June, and autumn on 1% September. We did not report return levels of periods greater than 100 years because the extension
of the data covers only 35 years, hence the estimates for such periods are inaccurate for both methodologies. The average
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deviation between RLrs and RL¢y, for the considered time-series is rather small and remains below 7% for all seasons. The
confidence intervals estimated for TS are smaller than those estimated for EM, because the stationary MLE of TS has fewer

degrees of freedom than the non-stationary one of EM, and is therefore affected by smaller uncertainty.

5 Discussion

Extreme Value Analysis is a subject of broad interest not only for Earth Science, but also for other disciplines such as
Economy and Finance (e.g. Gencay and Selcuk, 2004; Russo et al., 2015), Sociology (e.g. Feuerverger and Hall, 1999),
Geology (e.g. Caers et al. 1996), and Biology (e.g. Williams, 1995), among others. As a consequence, non-stationarity of
signals is a common problem (e.g. Gilleland and Ribatet, 2014). In this respect it is important to stress that the TS
methodology is general, and its applicability only requires the stationarity of the transformed signal. Therefore, even if in
this study the technique was applied only to series related to Earth Science, it can be employed in all disciplines dealing with
extremes.

Given that the extreme value statistical model is an important component of applications such as those discussed here (e.g.
Coles, 2001; Hamdi et al., 2013), it is important to stress that the theory was formulated in a way that is not restricted to
GEV and GPD, but can be extended to any statistical model for extreme values. In particular, since the GEV distribution is a
generalization of the Gumbel, Frechet and Weibull statistics, TS can be reformulated separately for these three distributions;
as well as for the commonly used r-largest approach statistics (e.g. Coles, 2001; Hamdi et al., 2013). Finally, an extension of
TS to statistical models not based on the GEV theory (e.g. Boccotti, 2000; Goda, 1988) may open the way to their non-
stationary generalization and could be an interesting direction for future research.

The transformation consists in simple, time-varying normalization of the signal through the estimation of trend, slowly
varying standard deviation and seasonality, and allows different types of analysis. The first product of the methodology is its
capability to estimating the extreme values of the signal. Next, the TS approach enables the analysis of long-term variability.
As an example it was shown to be useful in relating the long-term trend of the signal with the NAO climatic index (see Sect.
3.3). Finding correlations of natural parameters with climatic indices is a theme of common interest in Earth Science,
especially in view of climate change (e.g. Barnard et al., 2015; Dodet et al., 2010; Plomaritis et al., 2015). If a time-series is
correlated to a climatic index in the long-term, an advantage of the TS methodology is that it can model extremes correlated
to the index without considering it explicitly in the computation. Finally, the TS methodology allows to describing the
seasonal variability of extremes, which is also critical for climate studies (e.g. Sartini et al. 2015; Menendez et al. 2009;
Méndez et al. 2006).

As shown in Sect. 4, the TS methodology has advantages over SS (e.g. Vousdoukas et al. 2016) and EM (e.g. Cheng et al.,
2014; Gilleland and Katz, 2015; Izaguirre et al., 2011; Méndez et al., 2006; Menéndez et al., 2009; Mudersbach and Jensen,
2010; Russo et al., 2014; Sartini et al., 2015), both in terms of accuracy of the results and its conceptual and implementation

simplicity. In particular in the comparison with the SS methodology for long-term variability, the return levels estimated by
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the two techniques are similar for return periods for which the SS is accurate. The use of the whole time-horizon of the series
represents a major advantage of TS over SS because it allows more accurate estimations of the return levels associated with
long return periods. A conceptual advantage of the TS methodology over EM is that it decouples the detection of the non-
stationary behaviour of the series from the fitting of the extreme value distribution. The study of the time-varying statistical
features of the series is delegated to the transformation, and takes place before the fitting of the extreme value distribution.
This fact provides a simple diagnostic tool to evaluate the validity of the model applied to a particular series: the model is
valid if the transformed series is stationary. This is useful for validating the output of the approach. Moreover the decoupling
simplifies both the detection of non-stationary patterns and the fitting of the extreme values distribution. In particular the
detection of non-stationary patterns can be accomplished by means of simple statistical techniques such as low-pass filters
based on the running mean and standard deviation, and the fitting of the extreme value distribution can be obtained through a
stationary MLE with a small number of degrees of freedom that is easier to implement and control. Moreover, unlike many
implementations of EM (e.g. Cheng et al., 2014; Gilleland and Katz, 2015; lzaguirre et al., 2011; Méndez et al., 2006;
Menéndez et al., 2009; Sartini et al., 2015; Serafin and Ruggiero, 2014), the detection of non-stationary patterns described in
this paper does not require an input parametric function M for the variability. This makes the TS methodology well suited for
massive applications with the simultaneous evaluation of many time-series, for which a common definition of M would be
difficult (e.g. M. Vousdoukas et al., 2016).

It is worth remarking that the EM implemented, for example, using Eq. (62), is able to model a shape parameter varying in
time, unlike the TS using the transformation given by Eq. (1). While in principle this is a weak point of the TS methodology
described here, assuming a constant shape parameter is a reasonable assumption for most cases, because in general simple
models should be preferred to complex ones (e.g. Coles, 2001). In particular, using EM the Akaike criterion (Akaike, 1973),
that favors simple models with fewer degrees of freedoms, often selects models with fixed shape parameter (e.g. Sartini et al.
2015; Menendez et al. 2009). Moreover, the finding that a non-stationary GEV always corresponds to a transformation of the
non-stationary time-series into a stationary one, shown in Appendix A, suggests that a generalization of the TS methodology

is possible in order to include models with time-varying shape parameters.

6 Conclusions

This paper describes the TS methodology for non-stationary extreme value analysis. The main assumption underlying this
approach is that if a non-stationary time-series can be transformed into a stationary one to which the stationary EVA theory
can be applied, then the result can be back-transformed into a non-stationary extreme value distribution through the inverse
transformation. The proposed methodology is general and, even if in this study we applied it only to series related to Earth
Science, it can be employed in all disciplines dealing with EVA. Moreover, though we discussed it only for GEV and GPD,

it can be extended to any other statistical model for extremes.
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As a transformation we proposed a simple time-varying normalization of the signal estimated by means of a time-varying
mean and standard deviation. This simple transformation was also adapted to describe the seasonal variability of the
extremes. In addition, it was proved to provide a comprehensive model for non-stationary GEV and GPD distributions with a
constant shape parameter, which means that it can be applied to a wide range of non-stationary processes. The formal duality
between the TS and more established approaches has also been proven, suggesting that a complete generalization of the TS
approach would allow to including models with time-varying shape parameter.

The methodology was tested on time-series of different variables, sizes and statistical properties. An evaluation of the
statistical error associated with the transformation showed that, for the examined series, this is negligible with respect to the
error associated with the stationary MLE (the squared error is 2 orders of magnitude smaller) and to that related to the
estimation of the threshold for GPD.

The TS methodology was compared with a stationary EVA applied on quasi-stationary slices of non-stationary series (i.e.
SS) for the estimation of the long-term variability of extremes, and with the established method (EM) to non-stationary
EVA. The return levels estimated by TS are shown to be comparable to those obtained by these two methodologies.
However, the TS approach has advantages over both SS and EM. With respect to SS, the TS uses the whole time-series for
fitting the extreme value distribution, guaranteeing a more accurate estimation at larger return periods. With respect to EM,
the TS decouples the detection of the non-stationarity of the series from the fit of the extreme value distribution, involving a
simplification of both steps of the analysis. In particular the fit of the distribution can be accomplished using a simple MLE
with a few degrees of freedom, easy to implement and control. The detection of non-stationarity can be performed by means
of easily implemented and fast low-pass filters, which do not require as input any parametric function for the variability.
This makes the methodology well suited for massive applications where the simultaneous evaluation of several time-series is
required.

An implementation of the TS methodology has been developed in an open-source matlab toolbox (tsEva), which is available
at https://github.com/menta78/tsEva/.

Appendix A

Duality between the established method and the TS methodology

Here we show that if the extremes of a time-series y(t) are fitted by a non-stationary distribution GEV,, (y,t) then there is a
family of transformations f(y,t):y(t) > x(t) such that GEV, (y,t) =GEV,[f *(x,t)] , where GEV,(x) is a
stationary GEV fitting the extremes of a supposed stationary series x(t).

To prove this we expand relationship GEV,, (y,t) = GEV, [ f *(x,t)], finding:
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where [¢,(t), 0, (t), u, (t)] are the time-varying parameters of GEV, (y,t) and [¢,,0,, u,] are the constant parameters

of GEV, (x) . Solving for f(y,t) we find

fly== a{u sya)(y;#(i)mﬂw — o ek,

X

(67)
Equation (67) defines a family of functions because the values of the stationary GEV parameters [¢,,0,, 1, ] can be
assigned arbitrarily. Furthermore if we chose ¢ = 0 then f(y,t) is monotonic iny for every time t and can therefore be
inverted, while for £, = 0 a Gumbel-specialized formulation can be derived from (66).

In the particular case of ¢, = const.= ¢, function f(y,t) reduces to

y—p,(t)+p, /o, o, (1) (68)
o,(t)/o, ’

which is equivalent to Eq. (1) provided that T =, — u /o, o, and C, = o, /o, - Hence we can say that Eq. (1) allows

f(y.t) =

a general TS formulation for models with constant shape parameter, because we can arbitrarily impose &, =& in (67) if we

assume a constant &,. This finding is remarkable because it proves that any non-stationary GEV model with constant ¢, can
be connected to Eq. (1).
Equation (67) alone is not enough to formulate a fully generalized TS approach, because in Eq. (67) the non-stationary GEV

parameters [, (t), o (t), 1, (t)] are regarded as known variables, which is an incorrect assumption in practical applications.

But it is enough to say that any implementation of the non-stationary established method is equivalent to a transformation
into a supposed stationary series x(t). Therefore Eqg. (67) could be used as a diagnostic tool for implementations of the

established method: a condition for the validity of the non-stationary model is that the transformed x(t) series is stationary.
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Yearly maxima: trend only analysis

Error West Ireland  Cape Horn %
component error (m) error (m) (err?)
(average)

non-stationary GEV

S, -Err[o,] 0.0371 0.0372 100%
Err[S,]- o, 5.876-10* 581810° <0.1%
Err[o, ] 0.0371 0.0372 100%
S, -Err[u,] 0.0538 00536  97.7%
Err[S,]- u, 3.6-10° 34-10° 04%

Err[T, ] 7.4-10° 70-10°  1.85%
Errfu,] 0.0538 0.054 100%

non-stationary GPD

S, Erfogn] 00418 0.0310  100%

Err[S,]- o cenx 1.12-10° 89.10%  <0.1%

Err[o gepy ] 0.0418 0.0310 100%
S, -Errfu,] 0.1489 0.1376 100%
Err[S,]-u, 1.9-10° 17-10° <0.1%
Errfu,] 0.1491 0.1278 100%

Table 1: Average error components for the long term analysis of the projections of significant wave height extracted at West
Ireland and Cape Horn, for non-stationary GEV and GPD. The error is dominated by the component due to the stationary
Maximum Likelihood Estimator (MLE).
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Monthly maxima: seasonal analysis

Error component West Ireland  Cape Horn %

(average) error (m) error (m) (err®)

non-stationary GEV

So - Ss - Err[o,] 0.0135 0.0138 99.7%
Sy -Errlss]-o, 7.2.10° 76-10¢  0.3%

Err[o,] 0.0135 0.0138 100%
Sy - Ss - Errfu,] 0.019 0.020 96.6%
S, - Err[ss]- u, 0.0014 0.0017 0.7%

Errfs,] 486-10°  52510° <0.1%
Errfu,] 0.0204 0.0214 100%

non-stationary GPD

Soy - Ss - EMogep, ] 0.025 0.029 100%
Sy “EMMSs] 0 enn 9.4.10° 9.9.10*  <0.1%
Err[o sy | 0.0253 0.0293 100%
S, - Ss - Errfu,] 0.1061 0.1205 100%
So, -Err[s]-u, 0.0011 0.0014 <0.1%
Errfu,] 0.1063 0.1207 100%

Table 2: Average error components for the seasonal analysis of the projections of significant wave height extracted at West Ireland
and Cape Horn, for non-stationary GEV and GPD. The error is dominated by the component due to the stationary Maximum
Likelihood Estimator (MLE).
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Return period 5y 10y 30y 100y 300y
Rhine NBI -1.07%  -151%  -2.35%  -343%  -4.53%
(river dis.)  Max diff -3.58%  -440%  -5.92%  -7.81%  -9.69%
Mean Conf. Int. (TS) 4.90% 5.54% 6.68% 8.01% 9.27%
Mean Conf. Int. (SS)  17.99%  21.34%  26.87%  33.16%  39.04%

Po NBI 1.47% 2.06% 2.92% 3.69% 4.25%
(river dis.)  Max diff 5.87% 4.88% 5.60% 9.57%  13.06%
Mean Conf. Int. (TS) 5.08% 5.77% 7.00% 8.46% 9.84%
Mean Conf. Int. (§S)  16.77%  20.07%  25.45%  31.47%  36.99%

W. Ireland NBI -0.28% -0.14% 0.07% 0.27% 0.43%
(waves Hs)  Max diff -0.91% -1.14% -1.48% 2.06% 2.51%
Mean Conf. Int. (TS) 1.97% 2.22% 2.63% 3.05% 3.41%
Mean Conf. Int. (SS) 7.73% 9.01% 10.95%  1291%  14.54%

Cape Horn NBI -1.07% -1.13% -1.17% -1.18% -1.18%
(waves Hs)  Max diff -1.87% -2.36% -3.12% -3.92% -4.59%
Mean Conf. Int. (TS) 1.74% 2.03% 2.52% 3.07% 3.57%
Mean Conf. Int. (SS) 6.40% 7.70% 9.80% 12.09%  14.15%

Table 3: Long-term variations of the extremes of projected river discharge for Rhine and Po, and of projected significant wave
height for West Ireland and Cape Horn: normalized bias (NBI) and maximum difference (Max diff) between the return levels
estimated with the Transformed Stationary (TS) methodology and the Stationary on Slice (SS) approach, and mean 95%
confidence interval amplitude expressed as percentage of the return level, for return periods of 5, 10, 30, 100 and 300 years.
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Return period 5y 10y 30y 50y 100y
La Spezia NBI Winter 1.19% 1.51% 1.95% 2.14% 2.39%
(waves Hs)  NBI Spring 0.59% 0.55% 0.59% 0.64% 0.71%
NBI Summer 4.75% 5.28% 5.99% 6.27% 6.62%
NBI Autumn -1.17%  -1.03%  -0.78%  -0.66%  -0.50%

Mean Conf. Int. (TS) 2.68% 3.05% 3.63% 3.90% 4.25%
Mean Conf. Int. (EM) 5.90% 6.72% 8.01% 8.59% 9.35%

Ortona NBI Winter 3.74%  423%  491%  520%  557%
(waves Hs)  NBI Spring 4.26%  439%  462%  4.74%  4.91%
NBI Summer  -3.66%  -3.44%  -3.07%  -2.90%  -2.66%
NBI Autumn 141%  145%  159%  1.68%  1.81%

Mean Conf. Int. (TS) 3.18% 3.75% 4.70% 5.15% 5.78%
Mean Conf. Int. (EM) 5.21% 5.92% 7.10% 7.67% 8.45%

Table 4: Normalized bias between the return levels estimated by the Transformed Stationary (TS) methodology and the
Established Method (EM) methodology for the estimation of the seasonal variations, and mean 95% confidence interval amplitude
expressed as percentage of the return level, for return periods of 5, 10, 30, 50 and 100 years, for the four seasons, for significant
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wave height in La Spezia and Ortona.
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Figure 1: Transformed Stationary (TS) methodology: block diagram.
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Figure 2: Long-term analysis of the projections of significant wave height in Cape Horn; (a): series, its trend and standard
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ¢ best fitted for the GEV and
GPD distributions.
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Figure 3: Long-term analysis of the projections of significant wave height in Cape Horn; (a): series, its trend and standard
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ¢ best fitted for the GEV
and GPD distributions.
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Figure 4: Seasonal analysis of the projections of significant wave height in West Ireland; (a): series, its trend and standard
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ¢ best fitted for the GEV
and GPD distributions. For the sake of clarity only a 5-years time slice is reported.
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Figure 5: Seasonal analysis of the projections of significant wave height in Cape Horn; (a): series, its trend and standard deviation;
(b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-stationary
GPD of annual peaks. In panels (¢) and (d) are reported the values of the shape parameter ¢ best fitted for the GEV and GPD
distributions. For the sake of clarity only a 5-years time slice is reported.
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Figure 6: Long-term analysis of the residual water levels modeled at the Hebrides islands; (a): series, its trend and standard
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ¢ best fitted for the GEV and
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Figure 7: Time varying standard deviation S(t) estimated by means of the Transformed Stationary (TS) methodology versus the
yearly average of the North Atlantic Oscillation (NAO) index, scatter plot (a) and time series (b).
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Figure 8: Return level plots for the discharge of the Rhine river at its mouth, Transformed Stationary methodology (TS, black
continuous line), 95% confidence interval for the TS methodology (green band) and Stationary on Slice methodology (SS, black
dashed line), for the time slices 1970-2000, 2020-2050 and 2070-2100.
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Figure 9: Return levels modeled by the Transformed Stationary methodology (TS, x axis) vs those modeled by the Stationary on
Slice methodology SS (y axis) for the discharge of the Rhine and Po rivers and the significant wave height in West Ireland and
Cape Horn. The three series of dots represent the three time slices. Dots color represents the return period. The blue lines
represent the maximum 30 years return level.
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Figure 10: Seasonal cycle estimated by Transformed Stationary methodology (TS) and by the Established Method (EM) for the
series of significant wave height of La Spezia and Ortona. The red continuous (dashed) line represents the location parameter p
estimated by TS (EM). The green continuous (dashed) line represents the sum between the location parameter p and the shape
parameter ¢ estimated by TS (EM). The dots represent the monthly maxima. The shape parameters srs and &g estimated by the
two methodologies have been also reported for the two series.
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Figure 11: Return levels for La Spezia and Ortona for the month of January, estimated by the Transformed Stationary
methodology (TS, black continuous line) and by the Established Method (EM, black dashed line labeled as EM). The green area
5 represents the 95% confidence interval estimated by the TS approach.
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