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Abstract. Statistical approaches to study extreme events require by definition long time-series of data. In many scientific 

disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of 

its extremes. Therefore the assumption of “stationarity” is violated and alternative methods to conventional stationary 

Extreme Value Analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, 

in this study we introduce the Transformed-Stationary (TS) methodology for non-stationary EVA. This approach consists of 15 

(i) transforming a non-stationary time-series into a stationary one to which the stationary EVA theory can be applied; and (ii) 

reverse-transforming the result into a non-stationary extreme value distribution. As a transformation we propose and discuss 

a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary 

Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD) models with constant shape parameter. A 

validation of the methodology is carried out on time-series of significant wave height, residual water level, and river 20 

discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are 

comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the 

established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For 

example, in contrast with (a), the proposed technique uses the whole time horizon of the series for the estimation of the 

extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b) it decouples the 25 

detection of non-stationary patterns from the fitting of the extreme value distribution. As a result the steps of the analysis are 

simplified and intermediate diagnostics are possible. In particular the transformation can be carried out by means of simple 

statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure 

is a stationary one with a few degrees of freedom and easy to implement and control. An open-source MATLAB toolbox has 

been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/. 30 

mailto:(lorenzo.mentaschi@jrc.ec.europa.eu)
https://github.com/menta78/tsEva/.
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1 Introduction 

Extreme Values Analysis (EVA) attains a great importance in several applied sciences, particularly in Earth Science, because 

it is a fundamental tool to study the magnitude and frequency of extreme events, and their changes (e.g. Alfieri et al., 2015; 

Forzieri et al., 2014; Jongman et al., 2014; Resio and Irish, 2015; Vousdoukas et al., 2016). Climatic extreme events are 

usually associated with disasters and damages with significant social and economic costs. A correct statistical evaluation of 5 

the strength of extreme events related to their average return period is crucial for impact assessment, for the evaluation of the 

risks affecting human lives and activities, and for planning actions regarding risk management and prevention (e.g. Hirsch 

and Archfield, 2015; Jongman et al., 2014). 

Often it is necessary to apply EVA to non-stationary time-series, i.e. series with statistical properties that vary in time due to 

changes in the dynamic system. In particular, climate change can induce variations in the statistical properties of time-series 10 

of climatic variables. For example, an intensification of the meridional thermal gradient at middle latitudes on a global scale 

would lead to an increase of the climatic variability (e.g. Brierley and Fedorov, 2010), resulting in a reduction of the average 

return period of storms with a given strength. Consequently, in the study of climate change, an accurate statistical estimation 

of middle to long-term extremes is inherently connected to the application of non-stationary methodologies. 

While a general theory about non-stationary EVA has not yet been formulated (Coles, 2001), there are several studies 15 

describing methodologies for the estimation of time-varying extreme value distributions on non-stationary time-series, which 

rely on the pragmatic approach of using the standard extreme value theory as a basic model that can be further enhanced with 

statistical techniques (e.g. Coles, 2001; Davison and Smith, 1990; Husler, 1984; Leadbetter, 1983; Méndez et al., 2006). 

An established technique consists in expressing the parameters of an extreme value distribution as time-varying parametric 

functions (M) of time, for some custom parameters (αi, βi, γi …). By means of a fitting process such as the Maximum 20 

Likelihood Estimator (MLE) it is then possible to fit the values of (αi, βi, γi …) to model the extremes of the non-stationary 

series. Appropriate implementations of such a methodology, hereinafter referred to as the established method (EM), produce 

meaningful results, as proved by a number of contributions (e.g. Cheng et al., 2014; Gilleland and Katz, 2015; Izaguirre et 

al., 2011; Méndez et al., 2006; Menéndez et al., 2009; Mudersbach and Jensen, 2010; Russo et al., 2014; Sartini et al., 2015; 

Serafin and Ruggiero, 2014). 25 

A drawback of this approach is that there is no general indication on how to formulate the function M. As a rule the model 

should be as simple as possible. For this reason, typically several formulations of M are tested, and then the best model is 

chosen through a balance between high likelihood and low degrees of freedom, for example by means of the Akaike criterion 

(Akaike, 1973). Furthermore, the choice of M depends on the statistical model chosen for the extreme value analysis: for 

example, for the same series the M used for the Generalized Extreme Value (GEV) model is different from the M used for 30 

the Generalized Pareto Distribution (GPD) model. Moreover the EM requires non-stationary statistical fitting techniques that 

are relatively complex to implement and control, because the detection of the time-varying properties of  the series is 

incorporated into the fitting of the extreme value distribution. 
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Another commonly used approach for dealing with non-stationary series is to divide them into quasi-stationary slices and 

apply the stationary theory to each slice (e.g. Vousdoukas et al., 2016). This technique is referred to in the text as “stationary 

on slice” (SS). Although this technique enables the detection of meaningful trends for short return periods, it has the 

drawback of reducing the size of the sample used for the EVA, implying larger uncertainty in the estimation of long return 5 

periods. 

This study aims to contribute to the field of non-stationary EVA by introducing the Transformed-Stationary (TS) extreme 

value methodology, which decouples the analysis of the non-stationary behavior of the series from the fitting of the extreme 

value distribution. For this purpose it introduces a standard methodology to model the variations of the statistical properties 

of the series.  10 

The remainder of the paper is structured as follows. In Sect. 2 the TS methodology is described and discussed in a general 

and theoretic way and implementation details are outlined. In Sect. 3 the validation of the methodology is presented. Section 

4 illustrates a comparison with other common approaches for the EVA of non-stationary series, such as EM and SS for 

modeling time-series characterized by seasonal cycles and time-series showing long-term trends. In Sect. 5 the results are 

discussed and in Sect. 6 the most important conclusions are drawn. 15 

2 Methods and data 

2.1 Theoretical background 

The TS methodology consists of three steps: transforming a non-stationary time-series y(t) into a stationary series x(t), 

performing a stationary EVA, and back-transforming the resulting extreme value distribution into a time-dependent one. 

The transformation )()( txty   we propose is:  20 
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where )(y tT  is the trend of the series, i.e. a curve representing the long-term, slowly varying tendency of the series, and 

)(y tC  is the long-term, slowly varying amplitude of a confidence interval that represents the amplitude of the distribution of 

)(ty . In particular, if )(y tC  equals the long-term varying standard deviation )(y tS  of the series )(ty , Eq. (1) reduces to a 

simple time-varying renormalization of the signal:  
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For simplicity, in the remainder of this paper we will limit our analysis to Eq. (2), knowing that all the considerations can be 25 

easily extended to any time-varying confidence interval )(y tC . 
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Equation (2) guarantees that the average of )(tx  and its standard deviation are uniform in time, which is a necessary 

condition for )(tx  to be stationary. In particular the transformed signal )(tx  has a mean equal to 0 and a variance equal to 

1. It is worth noting that the transformed series )(tx  is not necessarily stationary: a series with a constant trend and a 

uniform standard deviation may still have a time-dependent auto-covariance that would invalidate the hypothesis of 

“stationarity” (i.e. the condition of a series with statistical moments constant in time). Before proceeding with the analysis, 5 

therefore, a stationarity test should be carried out to ensure that )(tx  is stationary and that its annual maxima can be fitted 

by a stationary extreme value distribution. For example, a simple test can be performed to ensure that higher order statistics 

such as skewness and kurtosis are roughly constant along the series. 

Once the hypothesis of stationarity of )(tx  is verified we can estimate the distribution )(GEVX x  that best fits its extremes, 

for example through MLE. )(GEVX x is then given by 10 
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(3) 

where the shape ( x ), scale ( x ) and location ( x ) parameters do not depend on the time. To find the time-dependent 

distribution ),(GEVY ty that fits the non-stationary time-series )(ty  we  can write that: 

 )],([GEV)],(Pr[]),(Pr[])(Pr[)(GEV X
1

Y tyftyfXytXfytYy   , (4) 

where ),( tyf is the transformation from y to x given by Eq. (1), and ),(1 txf  is its inverse 

 ,)()()(),( yy
1 tTxtStytxf   (5) 

It is always possible to compute ),(GEVY ty  from )(GEVX x  because ),( tyf  is a monotonically increasing function of y 

for every time t, because the standard deviation )(y tS is always positive. 15 

Using Eqs. (3) and (5) in Eq. (4) we find 
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Therefore, if )(tx  is fitted by the stationary distribution )(GEVX x  then )(ty  is fitted by the time-dependent distribution 

),(GEV tyY  with shape, scale and location parameters given by 

 ,xy    (7) 

 ,)()( xyy   tSt  (8) 

 .)()()( yxyy tTtSt    (9) 

It can be shown that the time-dependent GEV parameters given by Eqs. (7-9) are the same as the time varying parameters 

ns , ns and ns  of a non-stationary distribution GEVns that would be obtained from a non-stationary MLE on the series 

)(ty  , and which are given by 5 

 ,.constns   (10) 

 ,)(yns atS   (11) 

 ,)()( yyns tTbtS   (12) 

for varying parameters a and b. In fact, if )(GX xp is the probability density function (PDF) associated with the distribution

)(GEVX x , then the MLE for )(GEVX x  is estimated so that 

 max)](log[ GX  xp , (13) 

which involves vanishing derivatives of Eq. (13) on the GEV parameters x , x  and x . For example considering the 

scale parameter x  
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The non-stationary MLE maximizes the log-likelihood of the non-stationary PDF ),(Gns typ  associated with GEVns, in 10 

function of the parameters a and b. For example considering the parameter a we impose 
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Let us assume that ),(Gns typ  coincides with the PDF ),(GY typ  associated with the distribution ),(GEVY ty  given by Eq. 

(6) and that xa . Considering that 
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we obtain 
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where the last step is possible because (t)S y  does not depend on x . 

The same principle can be applied differentiating 0)],,(log[ xGY  txp   on the location parameter x  to maximize the 

log-likelihood, finding the condition 

 
.0)],(log[)],,(log[ xGX

x
xGY

x







  





xptxp  

(18) 

Therefore, if x is stationary, the condition of maximum likelihood for )(GX xp  coincides with the condition of maximum 

likelihood for ),(GY typ , and applying MLE for fitting the stationary parameters  xx ,  is equivalent to fitting the 5 

parameters (a, b) of by Eqs. (10-12) by non-stationary MLE. The equivalence between the two methodologies suggests that 

the TS approach is dual to the EM approach, meaning that any implementation of EM is equivalent to an implementation of 

the TS approach for some transformation )()(:),( txtytyf   (see Appendix A for a more detailed discussion). One can 

also prove that Eq. (1) allows a general TS formulation with constant shape parameter, i.e. all the TS models with a constant 

εy can be connected to Eq. (1) (see Appendix A). This last result is remarkable, because it shows that Eq. (1) is exhaustive 10 

for all the TS models with constant shape parameter. 

The findings drawn above are general and can be applied also to Peak Over Threshold (POT) methodologies, because the 

GPD is formally derived from the GEV as the conditional probability that an observation beyond a given threshold u is 

greater than x. In particular, the POT / GPD parameters are given by 

 ,)()()( yxyy tTutStu   (19) 

 ,.constxy    (20) 

 ,)()]()([)()( xGPDyyyyyyGPD   tSttutt  (21) 

where )(tu x  and )(y tu  are the thresholds of the x and y time-series, xy    is the shape parameter, GPDx  and )(GPDy t  15 

are the GPD scale parameters of x and y, y  and y  are the scale and location parameters of a GEV associated with the 

GPD, which have been included in Eq. (19) to make it clear how the parameter )(GPDy t  can be derived. 

It is worth noting that the TS methodology is “neutral” for a stationary series, i.e., the application of this methodology to a 

stationary series leads to the same results as a stationary EVA with the same underlying statistical model. That is because in 

such case yT  and yS  are constant, and Eq. (2) reduces to a constant translation and scaling. 20 



7 
 

2.1.1 Modelling seasonality 

Often, we would like to model extreme events that show seasonality, for example with local winter extremes that differ in 

magnitude from summer extremes. A simple way to add the seasonal cycle to Eqs. (7-9) is by expressing the trend )(y tT  and 

the standard deviation )(y tS  as 

 ,)()()( T0yy tstTtT   (22) 

 ,)()()( S0yy tstStS   (23) 

where )(0y tT  and )(T ts  are, respectively, the long-term varying and seasonal components of the trend, )(0y tS is the long-5 

term varying standard deviation and )(S ts  is the seasonality factor of the standard deviation. In the notation the subscript “0” 

denotes the long-term varying components. Applying Eqs. (22-24) to Eq. (2) we obtain  
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The time-varying GEV parameters can be expressed as 

 ,.constxy    (25) 

 ,)()()( xS0yy   tstSt  (26) 

 ,)()()()()( T0yxS0yy tstTtstSt    (27) 

and the time-varying POT / GPD parameters can be expressed as 

 ,)()()()()( T0yxS0yy tstTutstStu   (28) 

 ,.constxy    (29) 

 .)()()( xGPDS0yyGPD   tstSt  (30) 

2.2 Implementation 10 

The implementation of the TS methodology is illustrated in Figure 1. The fundamental input is represented by the series 

itself, and the core of the implementation consists of a set of algorithms for the elaboration of the time-varying trend )(0y tT , 

standard deviation )(0y tS  and seasonality terms )(T ts  and )(S ts .  

In this study we propose algorithms based on running means and running statistics (see Sect. 2.2.1). Hence, an important 

aspect is the definition of a time window W for the estimation of the long-term statistics )(0y tT  and )(0y tS  and of a time 15 

window Wsn for the estimation of the seasonality. The computation of )(0y tT  and )(0y tS  acts as a low-pass filter removing 

the variability within W. Therefore W should be chosen short enough to incorporate in the analysis the variability above the 
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desired time scale but long enough to exclude noise, short-term variability and sharp variations in the statistical properties of 

the transformed series. For example, in studies of long-term climate changes a reasonable choice is to impose W=30 years, 

because this is the generally accepted time-horizon for observing significant variations in climate (e.g. Arguez and Vose, 

2011; Hirabayashi et al., 2013). It is worth stressing that the chosen value of W should be verified a posteriori to ensure that 

the transformed series is stationary. The time window Wsn is used to estimate the intra-annual variability of the standard 5 

deviation (see Sect. 2.2.1). In Figure 1 the input corresponding to the seasonal time-window Wsn is drawn in a dashed box 

because its value is easier to choose than the value of W. For the examined case studies a value of two months for Wsn always 

resulted in a satisfactory estimation of the seasonal cycle. 

In this implementation of the TS methodology the estimation of the long-term statistics is separated from the estimation of 

the seasonality. This allows to study the long-term variability of the extreme values as is typically done when studying 10 

extremes on an annual basis, as well as the combination of long-term and seasonal variability to evaluate extremes on a 

monthly basis. 

After the estimation of )(0y tT , )(0y tS , )(T ts  and )(S ts  we can apply Eq. (2) and perform a stationary EVA on the 

transformed series. It is important to stress that the stationary EVA is performed on the whole time-horizon. The stationarity 

of the transformed signal allows us to apply different techniques for the EVA. In this study we illustrate the GEV and GPD 15 

approaches, but an interesting development would be the elaboration of non-stationary techniques for other approaches such 

as those described by Goda (1988) or Boccotti (2000), based on the TS methodology. 

The final step of the implementation is the back-transformation of the fitted extreme value distribution into a non-stationary 

one as given by Eqs. (10-12) and (25-27) for GEV and by Eqs. (19-21) and (28-30) for GPD. 

2.2.1 Estimation of trend, standard deviation and seasonality 20 

There are several possible ways of estimating the slowly varying trend and standard deviation and their seasonality. We 

propose here a simple methodology based on a running mean and standard deviation. We formulate the trend )(0y tT  as a 

running mean of the signal y(t) on a multi-yearly time window W, 
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where tN  is the number of observations available during the time interval ]2/,2/[ WtWt  . The seasonality of the 

trend relative to a given month of the year can be estimated as the average monthly anomaly of the “de-trended” series. For a 25 

given month of the year the seasonality is then 
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where the subscript ][month ttt  indicates that the averaging operation is limited to time intervals within each considered 

month of the year. For example the seasonality of January is computed as the average for all months of January of the 

detrended signal. To estimate the slowly varying standard deviation we execute a running standard deviation with the same 

time window used to estimate )(0y tT : 
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where the subscript “ROUGH” stresses the fact that this expression is sensitive to outliers and that its direct employment 5 

leads to a relevant statistical error, as explained in Sect. 2.2.2. To overcome this problem we smooth 
ROUGH0y )(tS  with a 

moving average on a time window smaller than W, for example W/L with L=2: 
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It is worth stressing that, in general, a further smoothing of the results of running means and standard deviations is 

appropriate if it reduces the error and improves the detection of the slowly varying statistical behavior of the time-series. 

This is because the estimation of )(0y tT  and )(0y tS  involves a low-pass filter to smooth the signal on time scales lower than 10 

W and remove high frequency variability.  

To estimate the seasonality we perform another running standard deviation )(sn tS  on a time-window snW  much shorter than 

one year, in the order of the month, 
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The seasonality of the standard deviation can then be computed as the monthly average of the ratio between )(sn tS  and 

)(0y tS : 15 
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(36) 

The estimated seasonality terms Ts  and Ss  are periodic with a period of one year. In order to smooth them and remove any 

possible noise in the signal, we take into account only their first three Fourier components computed in a period of one year, 

corresponding to components with a periodicity of one year, six months and three months. 

2.2.2 Statistical error 

Since there is an inherent error in the estimation of the trend, standard deviation and seasonality given by Eqs. (32-36), we 20 

need to estimate this error and propagate it to the statistical error of the parameters of the non-stationary GEV and GPD 
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distributions. In general, given a sample d of data with size N, average s , variance )var(s  and standard deviation )(sS  we 

have: 

 ,)(][Err)var()var( NdSdNdd   (37) 

 .2)()]([Err)var(2)]var[var( 42 NdSdSNdd   (38) 

Equation (37) represents the error on the average and can be obtained by propagating the intrinsic error of each observation, 

given by the standard deviation  )(sS , to expression  Nss i . Eq. (38) represents the error on the standard deviation 

and can be evaluated considering that with a Gaussian approximation quantity )var(/2
i ssS

N
  follows a chi-squared 5 

distribution with standard deviation 2N.  

 

Using Eqs. (37) and (38) we can estimate the error on )(0y tT  and 
ROUGH0y )(tS  as 

 ,][Err t0y0y NST   (39) 

 .2][Err 4
t0yROUGH0y NSS   (40) 

As mentioned in Sect. 2.2.1, Eq. (40) tends to return rather high values of the error relative to )(0y tS . For example, if we are 

considering a time-window of 20 years with an observation every 3 hours we have 10 

 
.%6.7

][Err
59000

0y

ROUGH0y
t 

S

S
N  

(41) 

Using expression (34) for the estimation of )(0y tS  overcomes this issue because we can estimate the uncertainty in )(0y tS  

as the error of the standard deviation averaged over the time-window LW , which is significantly lower than the error given 

by Eq. (41). Using Eq. (37) we find 
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(42) 

We can estimate the error on the seasonality of the trend Ts  by adding the error estimated for )(0y tT  to that of the monthly 

mean. As the statistical error of independent Gaussian variables sum vectorially, we obtain: 15 

 ,][Err)](mntmean[Err][Err 0y
22

T Tys   (43) 

where the mntmean(y) operator represents the monthly average of y. If, for example, one considers the month of January, it 

is the average computed on all months of January in the time-series. Assuming the error on mntmean(y) as approximately 

constant within the year, it follows that  
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 ,12)](mntmean[Err tot0month0 NSNSy yy   (44) 

where monthN  is the number of observations corresponding to the considered month, totN  is the total number of elements of 

the series y(t), 12totmonth NN  . Therefore Eq. (43) can be rewritten as 

 ./1/12][Err ttot0yT NNSs   (45) 

The error on Ss  can be estimated as the error of the average ratio 0yS Ss . Using Eq. (38) the error of the ratio 0yS Ss  is 

given by 
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(46) 

where snN  is the average number of observations within the time-window snW  and assuming nt sNN  . We can then 5 

estimate the error on Ss  as the error of the monthly average of 0yS Ss : 
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(47) 

Using Eqs. (40), (45) and (47) we can estimate the error on the time-varying GEV parameters as 

 ,][Err][Err xy    (48) 

 ,)][Err()][Err(])[Err(][Err 2
xS0y

2
xS0y

2
xS0yy   sSsSsS  (49) 
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2
xS0yy   sSsSsS  (50) 

and the error on the time-varying GPD parameters as 
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 ,][Err][Err xy    (52) 
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2.3 Data and validation 

To assess the generality of the approach, the TS methodology has been validated on time-series of different variables, from 

different sources and with different statistical properties.  

The analysis of annual and monthly maxima has been carried out on time-series of significant wave height at two locations: 

the first located in the Atlantic Ocean, West of Ireland (coordinates -10.533°E, 55.366°N), and the second close to Cape 5 

Horn (coordinates 60.237°E, -57.397°N). The data have been obtained by means of wave simulations performed with the 

spectral model Wavewatch III®  (Tolman, 2014) forced by the wind data projections of the RCP8.5 scenario (van Vuuren et 

al., 2011) of the CMIP5 model GFDL-ESM2M (Dunne et al., 2012) on a time-horizon spanning from 1970 to 2100. This 

dataset is referred to from now on as GWWIII. Here the TS methodology is used in order to examine its applicability to 

climate change studies. The annual and monthly analyses have been repeated on a series of water-level residuals offshore of 10 

the Hebrides Islands (Scotland, coordinates -7.9E, 57.3N) obtained from a 35-year hindcast of storm surges at European 

scale (Vousdoukas et al., 2016) forced by the ERA-INTERIM  reanalysis data (Dee et al., 2011). This dataset is further 

referred to as JRCSURGES.  

For the annual maxima of the considered series we furthermore compare the TS methodology with the SS technique as 

implemented by Alfieri et al. (2015) and Vousdoukas et al. (2016). For this purpose we extracted time-series from 15 

projections of streamflow in the Rhine and Po rivers covering a time-horizon from 1970 to 2100 (Alfieri et al., 2015), from 

now on referred to as JRCRIVER. Also, the two series of significant wave height of West Ireland and Cape Horn extracted 

from the GWWIII dataset have been used in this comparison. 

Finally we compare the TS methodology and the EM for monthly maxima using time-series of significant wave height 

extracted from a 35-year wave hindcast database (Mentaschi et al., 2015) near the locations of La Spezia and Ortona. The 20 

analysis of this dataset, further referred to as WWIII_MED, focuses on a comparison between seasonal cycles modeled by 

the two approaches. 

3 Results 

3.1 Waves: annual extremes 

The validation of the TS methodology was performed first on the time-series of significant wave height of West Ireland and 25 

Cape Horn from the GWWIII dataset. We verified first the non-seasonal transformation given by Eq. (2) and the time-

dependent GEV and GPD given by Eqs. (7-9) and (19-21), respectively. By ignoring the seasonality, this formulation is 

suitable for finding extremes and peaks on an annual basis. For technical reasons the two series do not have data in two time 

intervals, from 2005 to 2010 and from 2092 to 2095. The impact of the missing data on the analysis is small, however, 

especially if we choose a time-window W large enough for the estimation of the trend and standard deviation using Eqs. (31) 30 
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and (33). In particular for this analysis we chose a time-window of 20 years, which is long enough to ensure the accuracy of 

the results and short enough to include the multi-decadal variability of a 130-year time-series.  

The results of the analysis for the two time-series are illustrated in Figure 2 and Figure 3. Panel (a) of each figure shows the 

original time-series and its slowly varying trend and standard deviation. Panel (b) illustrates the normalized series obtained 

through the transformation given by Eq(1), allowing an evaluation “at a glance” of the stationarity of the normalized series. 5 

The mean and the standard deviation of the normalized series plotted in panel (b) are 0 and 1, respectively. Higher order 

statistics such as skewness and kurtosis are included in the graphics to support the assumption of stationarity of the 

normalized series. From the normalized time-series we extracted the annual maxima and estimated the corresponding non-

stationary GEV as given by Eqs. (7-9) (see panel (c) of Figure 2 and Figure 3).  Moreover, we performed a Peak Over 

Threshold (POT) selection of the extreme events on the normalized series. The threshold was defined in order to have on 10 

average five events per year, following Ruggiero et al. (2010), corresponding for both of the series to the 97th percentile. 

From the resultant POT sample we estimated the corresponding non-stationary GPD as given by Eqs. (19-21) (see panel (d) 

of Figure 2 and Figure 3). In panels (c) and (d) of Figure 2 and Figure 3 the shape parameters ε estimated by the MLE for the 

GEV and the GPD are also reported. Inter-decadal oscillations in the annual maxima are modeled for both of the series, 

though they are more pronounced for the West Ireland time-series. Moreover, for both series there is a tendency for the 15 

annual maxima to increase. This is more pronounced for the Cape Horn series, where the increase in the annual maxima of 

significant wave height estimated by GWWIII is of about 2 meters.  

It is worth noting that for both the considered series, the statistical mode of GEV and GPD grows faster in time than the 

slowly varying trend )(tT y . This is due to the fact that the growth of the location parameter )(ty  of the non-stationary 

GEV (expression 7), and of the threshold )(tu y  of the non-stationary GPD (Eq. 19), are related not only to the growth of 20 

)(tT y  but also to the growth of )(tS y . The upper tail of the distributions grows even faster because also the scale parameter 

is proportional to )(tS y . 

The impact of the statistical error in the slowly varying trend and the standard deviation on the uncertainty of the distribution 

parameters have been examined using Eqs (48-50) and (51-53), which for the non-seasonal analysis reduce to 

 ,]Err[]Err[ xy    (55) 

 ,)]Err[(])Err[(]Err[ 2
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2
xyy   sS  (56) 
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for the GEV, and to 25 
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 ,]Err[]Err[ xy    (59) 

 ,)]Err[(])Err[(]Err[ 2
GPDxy

2
GPDxyGPDy   SS  (60) 

for the GPD. The result is that for the non-seasonal analysis the error due to the estimation of the trend and standard 

deviation is negligible with respect to the error associated with the stationary MLE. In Table 1 the values of the different 

components of the compared error in Eqs. (55-57) and (58-58) are reported together with the total error estimated for each 

parameter of the non-stationary GEV and GPD. Since the threshold ux of the stationary GPD was selected to have on average 

five events per year, the error has been computed as the uncertainty related to this definition. The percentage contribution to 5 

the squared error is also reported in Table 1 in a single column because the percentages estimated for the two series are 

roughly equal. The error for both GEV and GPD and for the two series is clearly dominated by the error associated with the 

estimation of the parameters of the stationary distributions ( ]]Err[[ xy S  and ]]Err[[ xy S  for the GEV and 

]][Err[ GPDxy S  and ]]Err[[ xy uS   for the GPD). 

3.2 Waves: monthly extremes 10 

The seasonal formulation of the approach is suitable to estimate extreme value distributions on a monthly basis. Hence, we 

applied Eq. (24) to estimate the normalized series, then fitted a stationary GEV of monthly maxima by means of a MLE that 

was back-transformed into a non-stationary GEV through Eqs. (25-27). It is worth stressing that for the stationary MLE the 

entire normalized series was used, covering a time-horizon of 130 years. For the GPD we selected the threshold in order to 

have on average twelve events per year, corresponding to the 93th percentile for both series. Results are displayed in Figure 4 15 

for the location of West Ireland and in Figure 5 for Cape Horn. To make the seasonal cycle distinguishable in these figures, 

we plotted only a slice of five years from 2085 to 2090. The meaning of the four panels in Figure 4 and Figure 5 is the same 

as in Figure 2 and 3. The non-stationary extreme value distribution estimated for the location of West Ireland presents a 

strong seasonal cycle with extremes higher and more broad-banded during winter. For Cape Horn the seasonal cycle is 

weaker, with the extremes of significant wave height slightly lower during the local summer. The estimated PDF for the 20 

seasonal GEV and GPD are significantly lower than those estimated for the non-seasonal analysis because in the seasonal 

analysis we consider monthly extremes, while in the non-seasonal one we consider annual extremes. 

It is worth stressing that in the study of the monthly maxima the long-term trend is also estimated even if it cannot be 

appreciated in Figure 4 and Figure 5 due to the short time-horizon represented. 

Table 2 reports the components of the statistical error due to the uncertainty in the estimation of the seasonality, together 25 

with the components of the stationary MLE. The error components relating to the uncertainty in the estimation of 0yT  and 

0yS  were omitted as they are negligible compared with the error associated with the fitting of the stationary extreme value 

distribution (see Sect. 3.1). In Table 2 we can see that, as for the non-seasonal analysis, the error for both GEV and GPD and 

for  the two series is clearly dominated by the uncertainty associated with the estimation of the parameters of the stationary 
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distributions, though in this case the error related to the stationary MLE is significantly smaller than that found for the non-

seasonal analysis due to the larger sample of data. 

3.3 Residual water levels 

To verify the performance of the TS methodology on a series from a different source, of a different size and with different 

statistical characteristics, we tested it on a series of water level residuals extracted from the JRCSURGES dataset for a 5 

location off-shore of the Hebrides Islands, Scotland, with coordinates (-7.9E, 57.3N). This series is characterized by a flat 

trend )(y tT  because the model results are approximately constant-averaged. Therefore almost all the variability is modeled 

by the TS methodology in the standard deviation )(y tS . Since the time-horizon of this series is shorter than that of the 

GWWIII projections, a time-window of six years was adopted for the computation of the trend to better identify its inter-

annual variability. The results of the TS analysis of the yearly maxima are shown in Figure 6. The series displays also a 10 

strong seasonal behaviour with annual maxima usually occurring during the local winter (for brevity the seasonal analysis is 

not illustrated).  

An interesting aspect is that the estimated standard deviation )(y tS  presents a strong correlation (ρ=0.79) with the annual 

means of the North Atlantic Oscillation (NAO) index. This is illustrated in Figure 7, where the scatter plot of )(y tS  versus 

the annual means of the NAO index (panel a) and the two time-series (panel b) are represented. As a consequence the 15 

estimated annual maxima are also correlated with the NAO index.  

4 Comparison with other approaches 

4.1 Stationary methodology on time slices for long trend estimation 

A comparison was carried out between the TS methodology and the SS technique, consisting of a stationary analysis on 

quasi-stationary slices of data. This analysis was carried out on river discharge projections for the Po and the Rhine extracted 20 

from the JRCRIVER dataset and on the projections of significant wave height extracted from the GWWIII dataset for the 

locations of West Ireland and Cape Horn. The TS methodology was applied with a time-window of 30 years to estimate a 

non-stationary GPD of annual maxima. The SS technique was carried out using a GPD approach on time slices of 30 years 

from 1970 to 2000, 2020 to 2050 and 2070 to 2100. For both methodologies the threshold was selected to have on average 

five peaks per year.  25 

Results are illustrated in Figure 8, where the return levels of the projected discharge of the Rhine are shown for three time 

slices. In Figure 8 the continuous black line and the green band represent the return levels and the 95% confidence interval 

estimated by the TS methodology, where the dashed black line represents the return levels estimated by the stationary EVA 

on the considered slice (labeled in the legend as SS). The return levels estimated for short return periods by the two 
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methodologies are close, while they tend to spread for high return periods. This fact is also evident from Figure 9, where the 

return levels estimated by the two methodologies are plotted against each other for the river discharge of the Rhine and the 

Po and for the significant wave height of West Ireland and Cape Horn. We can see that for the analyzed time-series the two 

methodologies are in good agreement for return periods below 30 years while they spread for larger return periods. Some 

quantitative data about this fact are shown in Table 3, which reports the normalized bias NBI of the return levels of the two 5 

methodologies, defined as 

 ,RL/)RL(RLNBI cmpcmpTS   (61) 

where RLTS and RLcmp are the return levels obtained by the TS and the SS methodology, respectively. Table 3 also includes 

the maximum deviation between the return levels estimated by the TS and by the SS methodology, as well as the 95% 

confidence interval amplitude expressed as a percentage of the return level. The NBI and the maximum deviations were 

obtained by comparing results of the two techniques on the three 30-year time windows. From Table 3 we can see that the 10 

maximum deviation for return periods up to 30 years is always below 6%, while for higher return periods it increases up to 

13% for the discharge of the Po. Moreover the confidence intervals estimated for SS are always larger than those for TS, 

especially for large return periods. This is mainly due to the fact that for the stationary analysis on the quasi-stationary time 

slices we consider a sample of only 30 years, which leads to wider uncertainty ranges especially in the estimation of large 

return periods such as 100 and 300 years. This also explains the sharp variations of high return levels that we find between 15 

the three time windows using the SS approach. These variations are likely more related to the uncertainty in estimating the 

levels associated with long return periods rather than to climatic changes. The TS methodology allows a more accurate 

estimation of high return levels because it uses the whole sample of 130 years, and this represents one of the strengths of the 

TS methodology versus SS. It is finally worth noting that the relative confidence interval estimated by both methodologies 

for the series of river discharge is larger than that estimated for the series of significant wave height. This is because for 20 

wave height data the minimum distance between two peaks has been set to at least three days, while for river discharge it has 

been set to seven days. 

4.2 Established non-stationary method for seasonal variability 

Section 3 shows that the TS methodology is mathematically equivalent to a particular implementation of the EM 

methodology as described for example by (Coles, 2001; Izaguirre et al., 2011; Menéndez et al., 2009; Sartini et al., 2015). 25 

For the sake of completeness, we show here the results of a comparison between the performances of TS and of a different 

formulation of the EM methodology. In its formulation the parameters of the non-stationary GEV of the monthly maxima are 

expressed as 
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(64) 

 

where β0, α0  and γ0 are the stationary components, βi, αi and γi  are the harmonics amplitudes, ω = 2πT-1 is the angular 

frequency, with T corresponding to one year, Nμ, Nσ and Nε are the number of harmonics and t is expressed in years. 

Therefore, the parameters βi, αi  and γi have been optimized through a non-stationary MLE in order to fit the monthly maxima 

of the non-stationary series. Different combinations of Nμ, Nψ and Nε have been tested and the best model was chosen as the 5 

one presenting the lowest value of the Akaike criterion (Akaike, 1973) given by 

  ,)log(22AIC Lk    
 

(65) 

where k is the number of degree of freedoms of the model, L is the likelihood. In particular the maximum value tested for Nμ, 

and Nψ is 3 while the maximum considered value of Nε is 2. In general this model can be extended to incorporate long-term 

trends, but the two series examined in this test display flat trends. Hence Eqs. (62-64) are adequate to model them. 

In the comparison, the EM and the seasonal TS methodology (GEV only) were applied to the same series of significant wave 10 

heights relative to the WWIII_MED dataset described in Sect.(2.3). For the transformed-stationary approach a ten-year time 

window was used for the computation of the long-term trend. The results of the two methodologies are similar, with a 

roughly flat trend and strong seasonal pattern. The comparison of the seasonal cycles estimated by the two techniques is 

represented in Figure 10 for the two series. Here, the continuous red and green lines are the location and scale parameters (μ 

and σ respectively) as estimated by the TS approach. The dashed red and green lines are the location and scale parameters 15 

estimated through the EM. The blue dots represent the monthly maxima, while the colour-scale represents the time-varying 

probability density estimated by the transformed-stationary methodology. Since for both of the series the models selected 

based on the Akaike criterion have a constant shape parameter ε, these are reported together with those estimated by the TS 

methodology.  

The GEV parameters estimated by the two approaches are in good agreement. The small differences have relatively small 20 

impact on the return levels as one can see in Figure 11, where the return levels estimated by the two methodologies for the 

month of January are plotted. For both series the return levels estimated by EM lie within the 95% confidence interval 

estimated by TS. Table 4 reports the values of normalized bias (NBI) between the return levels estimated by TS and EM, 

defined as in Eq. (61), and the mean 95% confidence interval amplitude expressed as a percentage of the return level. In 

Table 4 the values of NBI are reported for the four seasons for return periods of 5, 10, 30, 50 and 100 years, for both La 25 

Spezia and Ortona. In the definition of seasons that is used, winter starts on 1st December, spring on 1st March, summer on 1st 

June, and autumn on 1st September. We did not report return levels of periods greater than 100 years because the extension 

of the data covers only 35 years, hence the estimates for such periods are inaccurate for both methodologies. The average 
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deviation between RLTS and RLcmp for the considered time-series is rather small and remains below 7% for all seasons. The 

confidence intervals estimated for TS are smaller than those estimated for EM, because the stationary MLE of TS has fewer 

degrees of freedom than the non-stationary one of EM, and is therefore affected by smaller uncertainty. 

5 Discussion 

Extreme Value Analysis is a subject of broad interest not only for Earth Science, but also for other disciplines such as 5 

Economy and Finance (e.g. Gençay and Selçuk, 2004; Russo et al., 2015), Sociology (e.g. Feuerverger and Hall, 1999), 

Geology (e.g. Caers et al. 1996), and Biology (e.g. Williams, 1995), among others. As a consequence, non-stationarity of 

signals is a common problem (e.g. Gilleland and Ribatet, 2014). In this respect it is important to stress that the TS 

methodology is general, and its applicability only requires the stationarity of the transformed signal. Therefore, even if in 

this study the technique was applied only to series related to Earth Science, it can be employed in all disciplines dealing with 10 

extremes.  

Given that the extreme value statistical model is an important component of applications such as those discussed here (e.g. 

Coles, 2001; Hamdi et al., 2013), it is important to stress that the theory was formulated in a way that is not restricted to 

GEV and GPD, but can be extended to any statistical model for extreme values. In particular, since the GEV distribution is a 

generalization of the Gumbel, Frechet and Weibull statistics, TS can be reformulated separately for these three distributions; 15 

as well as for the commonly used r-largest approach statistics (e.g. Coles, 2001; Hamdi et al., 2013). Finally, an extension of 

TS to statistical models not based on the GEV theory (e.g. Boccotti, 2000; Goda, 1988) may open the way to their non-

stationary generalization and could be an interesting direction for future research. 

The transformation consists in simple, time-varying normalization of the signal through the estimation of trend, slowly 

varying standard deviation and seasonality, and allows different types of analysis. The first product of the methodology is its 20 

capability to estimating the extreme values of the signal. Next, the TS approach enables the analysis of long-term variability. 

As an example it was shown to be useful in relating the long-term trend of the signal with the NAO climatic index (see Sect. 

3.3). Finding correlations of natural parameters with climatic indices is a theme of common interest in Earth Science, 

especially in view of  climate change (e.g. Barnard et al., 2015; Dodet et al., 2010; Plomaritis et al., 2015). If a time-series is 

correlated to a climatic index in the long-term, an advantage of the TS methodology is that it can model extremes correlated 25 

to the index without considering it explicitly in the computation. Finally, the TS methodology allows to describing the 

seasonal variability of extremes, which is also critical for climate studies (e.g. Sartini et al. 2015; Menendez et al. 2009; 

Méndez et al. 2006). 

As shown in Sect. 4, the TS methodology has advantages over SS (e.g. Vousdoukas et al. 2016) and EM (e.g. Cheng et al., 

2014; Gilleland and Katz, 2015; Izaguirre et al., 2011; Méndez et al., 2006; Menéndez et al., 2009; Mudersbach and Jensen, 30 

2010; Russo et al., 2014; Sartini et al., 2015), both in terms of accuracy of the results and its conceptual and implementation 

simplicity. In particular in the comparison with the SS methodology for long-term variability, the return levels estimated by 
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the two techniques are similar for return periods for which the SS is accurate. The use of the whole time-horizon of the series 

represents a major advantage of TS over SS because it allows more accurate estimations of the return levels associated with 

long return periods. A conceptual advantage of the TS methodology over EM is that it decouples the detection of the non-

stationary behaviour of the series from the fitting of the extreme value distribution. The study of the time-varying statistical 

features of the series is delegated to the transformation, and takes place before the fitting of the extreme value distribution. 5 

This fact provides a simple diagnostic tool to evaluate the validity of the model applied to a particular series: the model is 

valid if the transformed series is stationary. This is useful for validating the output of the approach. Moreover the decoupling 

simplifies both the detection of non-stationary patterns and the fitting of the extreme values distribution. In particular the 

detection of non-stationary patterns can be accomplished by means of simple statistical techniques such as low-pass filters 

based on the running mean and standard deviation, and the fitting of the extreme value distribution can be obtained through a 10 

stationary MLE with a small number of degrees of freedom that is easier to implement and control. Moreover, unlike many 

implementations of EM (e.g. Cheng et al., 2014; Gilleland and Katz, 2015; Izaguirre et al., 2011; Méndez et al., 2006; 

Menéndez et al., 2009; Sartini et al., 2015; Serafin and Ruggiero, 2014), the detection of non-stationary patterns described in 

this paper does not require an input parametric function M for the variability. This makes the TS methodology well suited for 

massive applications with the simultaneous evaluation of many time-series, for which a common definition of M would be 15 

difficult (e.g. M. Vousdoukas et al., 2016). 

It is worth remarking that the EM implemented, for example, using Eq. (62), is able to model a shape parameter varying in 

time, unlike the TS using the transformation given by Eq. (1). While in principle this is a weak point of the TS methodology 

described here, assuming a constant shape parameter is a reasonable assumption for most cases, because in general simple 

models should be preferred to complex ones (e.g. Coles, 2001). In particular, using EM the Akaike criterion (Akaike, 1973), 20 

that favors simple models with fewer degrees of freedoms, often selects models with fixed shape parameter (e.g. Sartini et al. 

2015; Menendez et al. 2009). Moreover, the finding that a non-stationary GEV always corresponds to a transformation of the 

non-stationary time-series into a stationary one, shown in Appendix A, suggests that a generalization of the TS methodology 

is possible in order to include models with time-varying shape parameters.  

6 Conclusions 25 

This paper describes the TS methodology for non-stationary extreme value analysis. The main assumption underlying this 

approach is that if a non-stationary time-series can be transformed into a stationary one to which the stationary EVA theory 

can be applied, then the result can be back-transformed into a non-stationary extreme value distribution through the inverse 

transformation. The proposed methodology is general and, even if in this study we applied it only to series related to Earth 

Science, it can be employed in all disciplines dealing with EVA. Moreover, though we discussed it only for GEV and GPD, 30 

it can be extended to any other statistical model for extremes. 
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As a transformation we proposed a simple time-varying normalization of the signal estimated by means of a time-varying 

mean and standard deviation. This simple transformation was also adapted to describe the seasonal variability of the 

extremes. In addition, it was proved to provide a comprehensive model for non-stationary GEV and GPD distributions with a 

constant shape parameter, which means that it can be applied to a wide range of non-stationary processes. The formal duality 

between the TS and more established approaches has also been proven, suggesting that a complete generalization of the TS 5 

approach would allow to including models with time-varying shape parameter. 

The methodology was tested on time-series of different variables, sizes and statistical properties. An evaluation of the 

statistical error associated with the transformation showed that, for the examined series, this is negligible with respect to the 

error associated with the stationary MLE (the squared error is 2 orders of magnitude smaller) and to that related to the 

estimation of the threshold for GPD. 10 

The TS methodology was compared with a stationary EVA applied on quasi-stationary slices of non-stationary series (i.e. 

SS) for the estimation of the long-term variability of extremes, and with the established method (EM) to non-stationary 

EVA. The return levels estimated by TS are shown to be comparable to those obtained by these two methodologies. 

However, the TS approach has advantages over both SS and EM. With respect to SS, the TS uses the whole time-series for 

fitting the extreme value distribution, guaranteeing a more accurate estimation at larger return periods. With respect to EM, 15 

the TS decouples the detection of the non-stationarity of the series from the fit of the extreme value distribution, involving a 

simplification of both steps of the analysis. In particular the fit of the distribution can be accomplished using a simple MLE 

with a few degrees of freedom, easy to implement and control. The detection of non-stationarity can be performed by means 

of easily implemented and fast low-pass filters, which do not require as input any parametric function for the variability. 

This makes the methodology well suited for massive applications where the simultaneous evaluation of several time-series is 20 

required.  

An implementation of the TS methodology has been developed in an open-source matlab toolbox (tsEva), which is available 

at https://github.com/menta78/tsEva/. 

Appendix A 

Duality between the established method and the TS methodology 25 

Here we show that if the extremes of a time-series y(t) are fitted by a non-stationary distribution ),(GEVY ty  then there is a 

family of transformations )()(:),( txtytyf   such that )],([GEV),(GEV 1
XY txfty  , where )(GEVX x  is a 

stationary GEV fitting the extremes of a supposed stationary series x(t). 

To prove this we expand relationship )],([GEV),(GEV 1
XY txfty  , finding: 

https://github.com/menta78/tsEva/.
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(66) 

where )](),(),([ yyy ttt   are the time-varying parameters of ),(GEVY ty  and  ],,[ xxx   are the constant parameters 

of )(GEVX x . Solving for ),( tyf  we find 
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Equation (67) defines a family of functions because the values of the stationary GEV parameters ],,[ xxx   can be 

assigned arbitrarily. Furthermore if we chose 0x   then ),( tyf  is monotonic in y for every time t and can therefore be 

inverted, while for 0x   a Gumbel-specialized formulation can be derived from (66). 5 

In the particular case of xy .const    function ),( tyf  reduces to 
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(68) 

which is equivalent to Eq. (1) provided that yxxyy  T  and xyy C . Hence we can say that Eq. (1) allows 

a general TS formulation for models with constant shape parameter, because we can arbitrarily impose yx    in (67) if we 

assume a constant εy. This finding is remarkable because it proves that any non-stationary GEV model with constant εy can 

be connected to Eq. (1). 10 

Equation (67) alone is not enough to formulate a fully generalized TS approach, because in Eq. (67) the non-stationary GEV 

parameters )](),(),([ yyy ttt   are regarded as known variables, which is an incorrect assumption in practical applications. 

But it is enough to say that any implementation of the non-stationary established method is equivalent to a transformation 

into a supposed stationary series x(t). Therefore Eq. (67) could be used as a diagnostic tool for implementations of the 

established method: a condition for the validity of the non-stationary model is that the transformed x(t) series is stationary. 15 
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Yearly maxima: trend only analysis  

Error 

component  

(average) 

West Ireland 

error (m) 

Cape Horn  

error (m) 

%  

(err2) 

non-stationary GEV  

][Err xy S  0371.0  0372.0  100% 

xy ][Err S  410876.5   
410818.5   <0.1% 

][Err y  0371.0  0372.0  100% 

][Err xy S  0538.0  0536.0  97.7% 

xy ][Err S  3106.3   
3104.3   0.4% 

][Err yT  3104.7   
3100.7   1.85% 

][Err y  0538.0  054.0  100% 

non-stationary GPD  

][Err GPDxy S  0418.0  0310.0  100% 

GPDxy ][Err S  31012.1   
4109.8   <0.1% 

][Err GPDy  0418.0  0310.0  100% 

][Err xy uS   1489.0  1376.0  100% 

xy ][Err uS   3109.1   
3107.1   <0.1% 

][Err yu  1491.0  1278.0  100% 

Table 1: Average error components for the long term analysis of the projections of significant wave height extracted at West 
Ireland and Cape Horn, for non-stationary GEV and GPD. The error is dominated by the component due to the stationary 
Maximum Likelihood Estimator (MLE). 
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Monthly maxima: seasonal analysis  

Error component  

(average) 

West Ireland 

error (m) 

Cape Horn  

error (m) 

%  

(err2) 

non-stationary GEV  

][Err xS0y  sS  0135.0  0138.0  99.7% 

xS0y ][Err  sS  4102.7   
4106.7   0.3% 

][Err y  0135.0  0138.0  100% 

][Err xS0y  sS  019.0  020.0  96.6% 

xS0y ][Err  sS  0014.0  0017.0  0.7% 

][Err Ts  61086.4   
61025.5   <0.1% 

][Err y  0204.0  0214.0  100% 

non-stationary GPD  

][Err GPDxS0y  sS  025.0  029.0  100% 

GPDxS0y ][Err  sS  4104.9   
4109.9   <0.1% 

][Err GPDy  0253.0  0293.0  100% 

][Err xS0y usS   1061.0  1205.0  100% 

xS0y ][Err usS   0011.0  0014.0  <0.1% 

][Err yu  1063.0  1207.0  100% 

Table 2: Average error components for the seasonal analysis of the projections of significant wave height extracted at West Ireland 
and Cape Horn, for non-stationary GEV and GPD. The error is dominated by the component due to the stationary Maximum 
Likelihood Estimator (MLE). 
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Return period 5 y 10 y 30 y 100 y 300 y 

Rhine  

(river dis.) 

NBI -1.07% -1.51% -2.35% -3.43% -4.53% 

Max diff -3.58% -4.40% -5.92% -7.81% -9.69% 

Mean Conf. Int. (TS) 4.90%  5.54% 6.68% 8.01% 9.27% 

Mean Conf. Int. (SS) 17.99%  21.34% 26.87% 33.16% 39.04% 

Po  

(river dis.) 

NBI 1.47% 2.06% 2.92% 3.69% 4.25% 

Max diff 5.87% 4.88% 5.60% 9.57% 13.06% 

Mean Conf. Int. (TS) 5.08%  5.77% 7.00% 8.46% 9.84% 

Mean Conf. Int. (SS) 16.77%  20.07% 25.45% 31.47% 36.99% 

W. Ireland 

(waves Hs) 

NBI -0.28% -0.14% 0.07% 0.27% 0.43% 

Max diff -0.91% -1.14% -1.48% 2.06% 2.51% 

Mean Conf. Int. (TS) 1.97%  2.22% 2.63% 3.05% 3.41% 

Mean Conf. Int. (SS) 7.73%  9.01% 10.95% 12.91% 14.54% 

Cape Horn 

(waves Hs) 

NBI -1.07% -1.13% -1.17% -1.18% -1.18% 

Max diff -1.87% -2.36% -3.12% -3.92% -4.59% 

Mean Conf. Int. (TS) 1.74%  2.03% 2.52% 3.07% 3.57% 

Mean Conf. Int. (SS) 6.40%  7.70% 9.80% 12.09% 14.15% 

Table 3: Long-term variations of the extremes of projected river discharge for Rhine and Po, and of projected significant wave 
height for West Ireland and Cape Horn: normalized bias (NBI) and maximum difference (Max diff) between the return levels 
estimated with the Transformed Stationary (TS) methodology and the Stationary on Slice (SS) approach, and mean 95% 5 
confidence interval amplitude expressed as percentage of the return level, for return periods of 5, 10, 30, 100 and 300 years. 
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Return period 5 y 10 y 30 y 50 y 100 y 

La Spezia 

(waves Hs) 

NBI Winter 1.19% 1.51% 1.95% 2.14% 2.39% 

NBI Spring 0.59% 0.55% 0.59% 0.64% 0.71% 

NBI Summer 4.75% 5.28% 5.99% 6.27% 6.62% 

NBI Autumn -1.17% -1.03% -0.78% -0.66% -0.50% 

Mean Conf. Int.  (TS) 2.68%   3.05% 3.63% 3.90% 4.25% 

Mean Conf. Int. (EM) 5.90%  6.72% 8.01% 8.59% 9.35% 

Ortona 

(waves Hs) 

NBI Winter 3.74% 4.23% 4.91% 5.20% 5.57% 

NBI Spring 4.26% 4.39% 4.62% 4.74% 4.91% 

NBI Summer -3.66% -3.44% -3.07% -2.90% -2.66% 

NBI Autumn 1.41% 1.45% 1.59% 1.68% 1.81% 

Mean Conf. Int.  (TS) 3.18%  3.75% 4.70% 5.15% 5.78% 

Mean Conf. Int. (EM) 5.21%  5.92% 7.10% 7.67% 8.45% 

Table 4: Normalized bias between the return levels estimated by the Transformed Stationary (TS) methodology and the 
Established Method (EM) methodology for the estimation of the seasonal variations, and mean 95% confidence interval amplitude 
expressed as percentage of the return level, for return periods of 5, 10, 30, 50 and 100 years, for the four seasons, for significant 
wave height in La Spezia and Ortona. 5 
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Figure 1: Transformed Stationary (TS) methodology: block diagram. 
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Figure 2: Long-term analysis of the projections of significant wave height in Cape Horn; (a): series, its trend and standard 
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ε best fitted for the GEV and 
GPD distributions. 5 
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Figure 3: Long-term analysis of the projections of significant wave height in Cape Horn; (a): series, its trend and standard 
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ε best fitted for  the GEV 5 
and GPD distributions.  
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Figure 4: Seasonal analysis of the projections of significant wave height in West Ireland; (a): series, its trend and standard 
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ε best fitted for  the GEV 
and GPD distributions. For the sake of clarity only a 5-years time slice is reported. 5 
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Figure 5: Seasonal analysis of the projections of significant wave height in Cape Horn; (a): series, its trend and standard deviation; 
(b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-stationary 
GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ε best fitted for the GEV and GPD 
distributions. For the sake of clarity only a 5-years time slice is reported. 5 
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Figure 6: Long-term analysis of the residual water levels modeled at the Hebrides islands; (a): series, its trend and standard 
deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of annual maxima; (d): non-
stationary GPD of annual peaks. In panels (c) and (d) are reported the values of the shape parameter ε best fitted for the GEV and 
GPD distributions. 5 
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Figure 7: Time varying standard deviation Sy(t) estimated by means of the Transformed Stationary (TS) methodology versus the 
yearly average of the North Atlantic Oscillation (NAO) index, scatter plot (a) and time series (b). 
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Figure 8: Return level plots for the discharge of the Rhine river at its mouth, Transformed Stationary methodology (TS, black 
continuous line), 95% confidence interval for the TS methodology (green band) and Stationary on Slice methodology (SS, black 
dashed line), for the time slices 1970-2000, 2020-2050 and 2070-2100. 
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Figure 9: Return levels modeled by the Transformed Stationary methodology (TS, x axis) vs those modeled by the Stationary on 
Slice methodology SS (y axis) for the discharge of the Rhine and Po rivers and the significant wave height in West Ireland and 
Cape Horn. The three series of dots represent the three time slices. Dots color represents the return period. The blue lines 
represent the maximum 30 years return level. 5 
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Figure 10: Seasonal cycle estimated by Transformed Stationary methodology (TS) and by the Established Method (EM) for the 
series of significant wave height of La Spezia and Ortona. The red continuous (dashed) line represents the location parameter μ 
estimated by TS (EM). The green continuous (dashed) line represents the sum between the location parameter μ and the shape 5 
parameter σ estimated by TS (EM). The dots represent the monthly maxima. The shape parameters εTS and εEA estimated by the 
two methodologies have been also reported for the two series. 
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Figure 11: Return levels for La Spezia and Ortona for the month of January, estimated by the Transformed Stationary 
methodology (TS, black continuous line) and by the Established Method (EM, black dashed line labeled as EM). The green area 
represents the 95% confidence interval estimated by the TS approach. 5 

 


