First of all we would like thank the editor for his interest in our work, and the reviewers for their time
spent reading carefully the paper, and for the comments and the suggestions to improve the quality of
the work. Follows a item-by-item reply to the reviewer comments.

Reviewer 1:

The present paper provides a methodology to estimate extreme values from non stationary
time series data. The methodology is well explained and documented and is

adequately compared with other methods that normally used for non-stationary data.

It has to be mentioned that the approach is mainly applicable to forecast or hintacast

data because it is designed for very long time-series.

The paper is very well written and with good and extensive documentation of the statistical
methodology. Furthermore, the method is applied to 3 time series of different

geophysical data. | believe that the paper is interesting and of significant scientific

quality and | am suggesting it for publication.

As a general comment | would say that the mathematical documentations is a bit extensive
but in line with the presentation of a new mathematical method.

Some minor comments are presented below than can improve

Page 4 Line 6: MLE is already defined in page 2
The second definition has been removed

Page6 line 23: What is : sn (t) probably you mean std (t)
Corrected as indicated by the reviewer.

Page 8 lines 15-25: If | am not mistaken the authors describe the methodology of
calculating the seasonal anomalies, i.e. the deviations of the monthly data from a
given climatology. If this is the case please state, on the contrary please indicate the
differences and the error differences with e standard methodology. The inclusion of the
equations is not necessary since an open source code is available but | agree that may
help in the implementation.
This is what we mean with formula 21. Thanks to the reviewer for suggesting a clearer
explanation of the meaning of the formula.

Figure 1: In the season variability time window the ‘sn’ is misplaced.
Corrected as indicated by the reviewer.

Page 12 line 24: Transformation 1. Do you mean Transformation using Eq (1)?
Yes. Changed with “transformation given by Eq(1)”.

Reviewer 2:
This article introduces a transformed-stationary (TS) method for extreme value analysis in earth science.
Authors did a good job illustrating the specific procedures of the TS approach. Tables and figures speak



for themselves with titles and labels. The results comparison among three methods — TS approach,
established approach (EA), and stationary on slice (SS) approach — demonstrated that TS method is
sufficient for the estimates of distribution parameters and return levels when adopting EA as the
benchmark.

The uncertainty in extreme value analysis can be very large even without nonstationarity. Besides using
EA as a benchmark, it would be better if the uncertainties (bias or standard errors) of the estimator (for
either the distribution parameters or return levels) are also compared among three approaches.
Thank you for the suggestion. The mean confidence intervals for the return levels estimated by
TS, SS and EA have been added in tables 3 and 4, and have been commented in paragraphs 4.1
and 4.2.

The use of English language is not perfect. Some sentences are too long and hard to
understand. The use of prepositions in some phrases/sentences are awkward.
Specific comments in the text:

1. Page 5 line 1. Add "as" in the middle of the sentence. “It can be shown that the timedependent
GEV parameters given by Eq.(7) are the same” as “that would be obtained
from...”

Amended as requested

2. Page 6 line 1. The notation x in mu_x should be a subscript.
Corrected

3. Page 5 line 3. “it is maximum also” —> it is also the maximum
Amended as requested

4. Page 9 footnote line 1. Suspected grammar error in the first half sentence.
The sentence was reformulated hoping to make it clearer:
“We can evaluate the error on the average of the observations by propagating the intrinsic error
of each observation, which is given by the standard deviation of s, to expression ...”

5. Page 12 line 3-4 citation format. “implemented by (Alfieri et al., 2015) and (Vousdoukas
et al., 2016)” —> implemented by Alfieri et al. (2015) and Vousdoukas et al.
(2016)

Amended as requested

6. Page 14 line 11-12. “The estimated seasonal GEV and GPD are significantly lower
than. ..” Does the “estimated GEV/GPD” refer to estimated pdf or estimated return of
levels? The text is not clear enough.

In the specific we refer to the pdf. Clarified as requested



7. Page 19 conclusion. The generality of TS method has been described in the first

paragraph in session 5 (page 17). It seems redundant.
The reviewer is right that this concept is repeated. However we prefer to stress it once again in
the conclusions, as we regard this as a major aspect of the TS approach.

8. Figure 1. Resolution is not high enough (based on the size of 100% in PDF file).
Figure 1 has been replaced and the resolution increased.
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Abstract. Statistical approaches to study extreme events require by definition long time series of data. The climate is subject
to natural and anthropogenic variations at different temporal scales, leaving their footprint on the frequency and intensity of
climatic and hydrological extremes, therefore assumption of stationarity is violated and alternative methods to conventional
stationary Extreme Value Analysis (EVA) need to be adopted. In this study we introduce the Transformed-Stationary (TS)
methodology for non-stationary EVA. This approach consists in (i) transforming a non-stationary time series into a
stationary one to which the stationary EVA theory can be applied; and (ii) reverse-transforming the result into a non-
stationary extreme value distribution. As a transformation we propose and discuss a simple time-varying normalization of
the signal and show that it allows a comprehensive formulation of non stationary GEV/GPD models with constant shape
parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and
river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach
are comparable with the ones from (a) a stationary EVA on quasi-stationary slices of non stationary series and (b) the
previously applied non stationary EVA approach. However, the proposed technique comes with advantages in both cases, as
in contrast to (a) it uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate
estimation of large return levels; and with respect to (b) it decouples the detection of non-stationary patterns from the fitting
of the extreme values distribution. As a result the steps of the analysis are simplified and intermediate diagnostics are
possible. In particular the transformation can be carried out by means of simple statistical techniques such as low-pass filters
based on running mean and standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom
and easy to implement and control. An open-source MATLAB toolbox has been developed to cover this methodology,
available at https:H#bitbucket-org/menta78/tsevahttps://github.com/menta78/tsEva/.

1 Introduction

Extreme Values Analysis (EVA) attains a great importance in several applied sciences, particularly in Earth Science, because

it is a fundamental tool to study the magnitude and frequency of extreme events, and changes therein (e.g. Alfieri et al.,

1
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2015; Forzieri et al., 2014; Jongman et al., 2014; Resio and Irish, 2015; Vousdoukas et al., 2016). Climatic extreme events
are usually associated to disasters and damages with relevant social and economic cost. A correct statistical evaluation of the
strength of extreme events related to their average return period is crucial for impact assessment, for the evaluation of the
risks affecting human lives and activities, and for planning actions connected to risk management and prevention (Jongman
etal., 2014).

Often it is required to apply EVA to non-stationary time series, i.e. series with statistical properties varying in time due to
changes in the dynamic system. In particular, relevant climate changes are usually associated to variations in the statistical
properties of time series of climatic variables. For example an intensification of the meridional thermal gradient at middle
latitudes on global scale would lead to an increase of the climatic variability (e.g. Brierley and Fedorov, 2010) which would
involve a reduction of the average return period of storms with a given strength. Consequently in the study of climate
changes an accurate statistical estimation of middle-long term extremes is inherently connected to the application of non-
stationary methodologies.

While a general theory about non stationary EVA has not yet been formulated (Coles, 2001) there are several studies
describing methodologies for the estimation of time-varying extreme value distributions on non stationary time series, which
rely on the pragmatic approach of using the standard extreme value theory as a basic model that can be enhanced by means
of further statistical techniques (e.g. Coles, 2001; Davison and Smith, 1990; Husler, 1984; Leadbetter, 1983; Méndez et al.,
2006).

An established technique consists in expressing the parameters of an extreme value distribution as time-varying parametric
functions M of time, for some custom parameters (o;, Bi, i ...). By means of a fitting process such as the Maximum
Likelihood Estimator (MLE) it is then possible to fit the values of (a;, Si, 7i ...) to model the extremes of the non-stationary
series. Appropriate implementations of such a methodology, hereinafter referred to as ‘“established approach” and
abbreviated as EA, produce meaningful results, as proved by a number of contributions (e.g. Cheng et al., 2014; Gilleland
and Katz, 2015; Izaguirre et al., 2011; Méndez et al., 2006; Menéndez et al., 2009; Mudersbach and Jensen, 2010; Russo et
al., 2014; Sartini et al., 2015; Serafin and Ruggiero, 2014).

A drawback of this approach is that there is no general indication on how to formulate the function M. As a rule the model
should be parsimonious, i.e. simpler models should be preferred. For this reason often several test formulations of M are
used together, and then the best model is chosen through a balance between high likelihood and low degrees of freedom, for
example by means of the Akaike criterion (Akaike, 1973). Furthermore the choice of M depends on the statistical model we
choose for the extreme value analysis: for example for the same series the M used for the Generalized Extreme Value (GEV)
model is different from the M used for the Generalized Pareto Distribution (GPD) model. As in this approach the estimation
of the time-varying properties of the series is incorporated into the fitting of the extreme value distribution, non-stationary
fitting methods are required despite being relatively complex to implement and control.

Another widespread approach to deal with non-stationary series is dividing them into quasi-stationary slices and applying the

stationary theory to each slice (e.g. Vousdoukas et al., 2016). This technique will be hereinafter referred to as “stationary on
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slice” and abbreviated as SS. Although this technique allows to detect meaningful trends for short return periods, its use has
the drawback of reducing the size of the sample used for the EVA, implying larger uncertainty in the estimation of long
return periods.

This research aims to contribute to the field of non-stationary EVA by introducing the Transformed-Stationary extreme value
methodology, hereinafter referred to as TS, which allows to decouple the study of the non stationary behavior of the series
from the fit of the extreme value distribution. To this purpose it introduces a standard methodology to model the variations
of the statistical properties of the series.

In section 2.1 the TS methodology is discussed and outlined in a general and theoretic way, while section 2.2 describes its
implementation. Section 3 is dedicated to the validation of the methodology, and section 4 illustrates a comparison with
other widespread approaches for the EVA of non stationary series such as EA and SS for modeling time series characterized
by seasonal cycles and time series showing long term trends. In section 5 the results are discussed and in section 6 some

conclusions are drawn.

2 Methods and data
2.1 Theoretical background

The TS methodology consists in three steps: transforming of a non-stationary time series y(t) into a stationary series x(t),
performing a stationary Extreme Value Analysis (EVA), and back-transforming the resulting extreme value distribution into
a time dependent one.

The transformation y(t) — x(t) We propose is:

y() - tr, (1) ()
x(t) = f(y,t)= ———.
cay(t)

where w @ is the trend of the series, i.e. a curve representing the long term, slowly varying tendency of the series, and
ca , Iis the long term, slowly varying amplitude of a confidence interval which represents the amplitude of the distribution
of y(® . In particular, if ca (t) is equal to the long term varying standard deviation su (1) of the series y() , Eq. (1)

reduces to a simple time-varying renormalization of the signal:
y() - tr (1) 2
sd (1)

(1) = f(y,0) =

In the rest of the manuscript for simplicity we will limit our analysis to Eq. (2), knowing that all the considerations can be

easily extended to any time varying confidence intervalca | (t) .
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Transformation (2) guarantees that the average of x(t) and its standard deviation are uniform in time, which is a necessary
condition for x(t) to be stationary. In particular the transformed signal x(t) has null average and variance equal to 1. It is
worth noting that the transformed series x(t) is not necessarily stationary: a series with a constant trend and a uniform
standard deviation may still have a time-dependent auto-covariance which would invalidate the hypothesis of stationarity.
Before proceeding with the analysis, a stationarity test should be carried out to ensure that x(t) is stationary and that its
annual maxima can be fitted by a stationary extreme value distribution. A simple test can be performed for example ensuring
that higher order statistics such as skewness and kurtosis are roughly constant along the series.

Once the hypothesis of stationarity of x(t) is verified we can estimate the GEV G, (x) best fitting its extremes, for

example through a Maximum-Likelihood-Estimater{MLE). G _ (x) is then given by

(T (xew)
G, (x)=Pr( X <x)=ep {-|1+¢, | 5 (3)
L 7y

where the shape, scale and location parameters ¢ , o and » do not depend on time. To find the time dependent
distribution G, (y,t) fitting the non stationary time series y(t) we note that:

G, () =PIY(®) < yl=Pl f (X, 0)<yl=PLX < f(y.0] =G, [f(y.0], *)
where f (y,t) is the transformation from y to x given by Eq. (1), and f ~'(x,t) is its inverse,

£H00 = y(1) = std (1) x + 1 () (%)
It is always possible to compute G, (y,t) from G, (x) because f (y,t) is a monotonically increasing function of y for
every time t, being the standard deviation s (t) always positive.

Using Egs. (3) and (5) in Eq. (4) we find

[r —tr (t 1)
‘ | (y rY()—‘uxW\ ‘
I | s (1) I
G, (¥ =G, [y =ep i~ 1+z, o=
| | | 9y H |
! !
o o ©)
[ vy, u, s )]
:e><p{—‘l+ax ‘}-

l L o, -std (1) JJ

Therefore if x(t) is fitted by the stationary GEV G, (x) then y(t) is fitted by the time dependent GEV G, (y,t) with

shape, scale and location parameters given by



a'y(t): std y(t)-c:b'K ,

yy(t): std y(t)'/‘x +try(t)

(M
It can be shown that the time-dependent GEV parameters given by Eq. (7) are the same_as that would be obtained from a

non-stationary MLE on the series y (t) in order to fit the parametric expressions of = _

.» o and x4 given by
&, = const .,

L = Std(t)-a,

My =

std y(t)-b+try(t)

(®)
for varying parameters a and b. In fact if p _ (x) is the pdf associated to the distribution | (x) , then the MLE for | (x)
is estimated so that

> lodl pg (x)] = max

©

which involves, considering for example the scale parameter o

>

oo
x

(10)
logl pgy (X, )] =0.

In the non-stationary MLE what is maximized is the log-likelihood of the non stationary pdf p_ (y.t) varying the
parameters a and b. For example considering the parameter a we impose
o

26‘

logl pg, (y.a.t)] =0
a

(11
Let us assume that p_ (y,t) coincides with the pdf p_ (y,t) associated to the GEV G, (y,t) given by (6) and that
a = o . Considering that

A

Po (Y1) = —G, (y,) = py (X)—
ay

P (X)
fy,t)=———
oy std y(t)
10 we obtain

12)

oa

0 0
2 Tl b, (viat)] =

5

logl pg, (V.o )] =3
do |

Mpy (xo,)]
log | ————| =
80’X

sd (1) |

0
T {logl P, (x,0 )1 -logl std ()]} =3
o

(13)
logl pgy (x,0,)]1=0
o X
where the last step is possible because sta (ty does not depend on o
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The same principle can be applied differentiating>™ logl p, (x,4,.t)] = 0 on the location parameter . to maximize the

log-likelihood, finding the condition
(14)

> logl pg (X, ) =%

ou, ou,

ol po (x,u,)] =0

This means that if x is stationary, when the likelihood is maximum for p_ (x) it is also maximum alse-for p_ (y,t), and

that applying an MLE to best fit the stationary parameters (o , « ) coincides to applying a non-stationary MLE to best fit
the parameters (a, b) of the parametric expression (8). The equivalence between the two methodologies suggests that the TS
approach is dual to EA, meaning that any implementation of EA is equivalent to an implementation of the TS approach for
some transformation f (y,t): y(t) - x(t) (see appendix A for a more detailed discussion). One can also prove that Eq. (1)
allows a general TS formulation with constant shape parameter, i.e. all the TS models with a constant ¢, can be connected to
Eq. (1) (see appendix A). This last result is remarkable, because it shows that Eq. (1) is exhaustive for all the TS models with
constant shape parameter.
The findings drawn above are general and can be applied also to Peak Over Threshold (POT) methodologies, because the
GPD is formally derived from the GEV as the conditional probability that an observation beyond a given threshold u is
greater than x. In particular, the POT/GPD parameters are given by

uy(t) = std y(t)-ux +try(t) s

&, =&, = const .,

v

O (D=0 (D +e [u (O)-p O =std ()0, (15)

where u_(t) and u (t) are the thresholds of the x and y time series, = = - is the shape parameter, o, and o (1)
are the GPD scale parameters of xand y, o and . are the scale and location parameters of a GEV associated to the GPD,

and have been included in Eq. (15) to make it clear how the parameter (t) can be derived.

GPDy
It worth noting that the TS methodology is “neutral” for a stationary series, i.c., the application of this methodology to a
stationary series leads to the same results as a stationary EVA with the same underlying statistical model. That is because in

such case tr and st  are constant, and transformation (2) reduces to a constant translation and scaling.

211  Modelling the seasonality

In general we would like to model the fact that extreme events vary with season, with a typical size of local winter extremes
different from that of local summer. A simple way to add the seasonal cycle to formulation (7-15) is expressing the trend

tr_(t) and the standard deviation std  (t) as
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try(t) = truy(t) +sn (1),

std (1) = std (1) -sn, () (16)
where () and sn (t) are respectively the slowly varying and seasonal components of the trend, sw  (t) is the long

term varying standard deviation and sn , (t) is the seasonality factor of the standard deviation. Applying Eq. (16) to (2) we

obtain

y(t) —tr (1) = sn (1) 17

std oy (t)-sn, (1)

x(t) =

The time varying GEV parameters can be expressed as
s, =¢, =const .,
o, (W) =sd,, (1)-sn, (Do, (18)
i, (1) = std  (t)sn L, (6)u +tr, (1) + sn (1)
and the time varying POT/GPD parameters can be expressed as
uy(t) = std Oy(t)»sn!d (t)-u, + trw(t) +sn (b)),
(19)

&, =¢& = const .,
y x

O o y(t) = std gy(t)'sngu (t)'o-ePD x "

2.2 Implementation

The implementation of the TS methodology is illustrated in Figure 1Figure-1. The fundamental input is represented by the
series itself, and the core of the implementation consists of a set of algorithms for the elaboration of the time varying trend

tr,, (t) , standard deviation sw | (t) and seasonality terms sn (t) and sn , (1) .

In this study we propose algorithms based on running means and running statistics (see section 2.2.1). Hence an important

aspect is the definition of a time window T for the estimation of the long term statistics w_ (t) and st , (t), and of a time
window T, for the estimation of the seasonality. The computation of «_ (t) and s , (t) acts as a low-pass filter removing

the variability within T. Therefore T should be chosen short enough to incorporate in the analysis the variability above the
desired time scale but long enough to exclude noise, short term variability and sharp variations of the statistical properties of
the transformed series. For example in studies about long term climate changes a reasonable choice is imposing T=30 years,
because this is the generally accepted time horizon for observing significant variations in the climate (e.g. Arguez and Vose,
2011; Hirabayashi et al., 2013). It is worth stressing that the chosen value of T should be verified a-posteriori to ensure that
the transformed series is stationary. The time window T, is used to estimate the intra-annual variability of the standard
deviation (see section 2.2.1). In Figure 1Figure-1 the input corresponding to the seasonal time window Tg, is drawn in a
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dashed box because its value is relatively easier to choose than that of T. For the examined case studies a value of two
months for T, always resulted in a satisfactory estimation of the seasonal cycle.

In this implementation of the TS methodology the estimation of the long term statistics is separated from the estimation of
the seasonality. This separation allows both the study of the sole long term variability of the extreme values, which is the
usual approach studying the extremes on an annual basis, and of the combination of long term and seasonal variability,

which is the usual approach studying the extremes on a monthly basis.

After the estimation of «_ (t), std , (t), sn (1) and sn, (1) we can apply Eq. (2) and perform a stationary EVA on the

transformed series. It is important to stress that the stationary EVA is performed on the whole time horizon. The stationarity
of the transformed signal allows us to apply different techniques for the EVA. In this study we illustrate the GEV and GPD
approaches, but an interesting development would be the elaboration of non-stationary techniques for other approaches such
as (Goda, 1988) or (Boccotti, 2000) based on the TS methodology.

The final step of the implementation is the back-transformation of the fitted extreme value distribution into a non stationary
one as given by Eq. (8) and (18) for GEV and by Eq. (15) and (19) for GPD.

2.2.1  Estimation of trend, standard deviation and seasonality

There are several possible ways of estimating the slowly varying trend and standard deviation and their seasonality. We

propose here a simple methodology based on running mean and standard deviation. We formulate the trend t (t) as a

running mean of the signal y(t) on a multi-yearly time window T,

(20)
tr, (t) = z y(tt)/ N,

where N is the number of observations available during the time interval [t — T /2, t + T /2] . The seasonality of the trend

relative to a given month of the year can be estimated as_the average monthly anomaly of the de-trended series-the-menthly
rmean-of the-de-trended-series. For a given month of the year the seasonality is then

[y () —tr,, ()] e m (1)

sn, [month (t)] = Z N s (21)

where the subscript tt e month (t) indicates that the averaging operation is limited to time intervals within each considered
month of the year. For example the seasonality of January is computed as the average on all the Januaries of the detrended
signal. To estimate the slowly varying standard deviation we execute a running standard deviation with the same time

window used to estimate _ (t):

weteT /2 22
-3 \/[y(tt)—)T(tte[l—T/2.1+T/2])]2le. (22)

w=t-T /2

std | (t)

ROUGH
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Where the subscript “rough” stresses the fact that this expression is sensitive to outliers and that its direct employment leads

| to a relevant statistical error, as it will be explained in session 2.2.22:22. To overcome this problem we smooth
std ) (t)‘ with a moving average on a time window smaller than T, for example T/S with S=2:

wetaT 128 (23)
sd , ()= 3 s, (i) IN, .

t=t-T /28

It is worth stressing that in general a further smoothing of the results of running means and standard deviations is licit if it
reduces the error and improves the detection of the slowly varying statistical behavior of the time series. This is because the

estimation of () and swd | (t) consists in a low-pass filter which result should be smooth on time scales lower than T

and affected by low relative error.
To estimate the seasonality we perform another running standard deviation std _ (t) on a time window T_ much shorter

than one year, in the order of the month,

Ketety 12 (24)
sd, ()= Y \/[y(tt)—?(ne[t—Tm/2,t+TmI2])]2/NK.

t=t-Ty /2

The seasonality of the standard deviation can be then computed as the monthly average of the ratio between std _ (t) and

std Dy(t)i
[std , (t)/std ,, (tt)]
sn, [month (1)] = 3 . (25)

years tte mnth  (t)

The estimated seasonality terms sn and sn  are periodic with a period of one year. In order to smooth them and remove

any possible noise in the signal, we take into account only their first three Fourier components computed in a period of one

year, corresponding to components with a periodicity of one year, six months and three months.

2.2.2  Statistical error

Since there is an inherent error in the estimation of trend, standard deviation and seasonality given by Eqgs. (21-25) we need
to estimate it and propagate it to the statistical error of the parameters of the non-stationary GEV and GPD distributions. In

general, given a sample s of data with size N, average s, variance var( s) and standard deviation std (s) we have®:

1 We can evaluate the error on the average of the observations by propagating tee*p#essm{%ﬁéw—-the intrinsic error
of each observation, which is given by the standard deviation of s, to expression s = > s, /N . The error on the standard

deviation can be evaluated considering that in a Gaussian approximation the quantity s = 3 s’ /var( s) follows a chi

N

| squared distribution with standard deviation 2N.
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var( s) = var( s)/N = err (s) = std (s)/\/N7, (26)

var[var( s)] = 2 var( x)Z/N = err [std (s)] = std (s) -4 2/N . (27)

Using Egs. (26) and (27) we can estimate the erroron «_ (t) and std (t)‘mGH as

err (on) ~ std Oy/\/I, (28)
e isa, 1| s, 4f2/N (29)

As mentioned in session 2.2.1 Eq. (29) tends to return rather high values of the error relative to s | (t) . For example if we

are considering a time window of 20 years with an observation every 3 hours we have
err [std w]‘ (30)
N, = 59000 = ——————F—~76%.
std

Using expression (23) for the estimation of s  (t) overcomes this issue because we can estimate the uncertainty on
std ,, (t) as the error on the standard deviation averaged on the time window T/s , which is significantly lower than the

error given by Eq. (30). Using Eg. (26) we find

err [std ]
err [std , ]~ TR gy oy 4

/N‘/S Nf . (31)

We can estimate the error on the seasonality of the trend sn, by adding the error estimated for « (t) to the one due to the

monthly mean. As the statistical error of independent Gaussian variables sums vectorially we obtain:

(32)

2 2
err (sn )= \/err [mntmean (y)] + err (lroy) s

where the mntmean(y) operator represents the monthly average of y. If for example one considers the month of January, it is
the average computed on all the Januaries of the time series. Assuming the error on mntmean(y) as approximately constant

within the year, it follows that

err [mntmean  (y)] ~ std Dy/,/N =St af12/N (33)

where N is the number of observations corresponding to the considered month, N is the total number of elements of

h

the series y(t), N, ~ N, /12 . Therefore Eqg. (32) can be rewritten as

nth

err (sn, )~ std 12 /N +1/N, . (34)

The error on sn, can be estimated as the error of the average ratio sw _ /std ,, - Using Eq. (27) the error of the ratio

sd | /std - is given by

10
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2

[stdm] rerr(stdmﬂZ [ std
err ~

| |+ j err (std , )| =
std L td ] Lstd oy
2
— ~ s,
.

2 2s 2 (35)
Nm+ N ANm '

where N is the average number of observations within the time window 7 and assuming N >> N_ . We can then

S

td
std oy

estimate the error on sn , as the error of the monthly average of st | /st , :

std 12 2 288
err (sn ~ err = AN ~ sn 4 =sn_ s .
( st ) [ std . J/ month sd N w N . sd N ; N . (36)

Using Egs. (29), (34) and (36) we can estimate the error on the time varying GEV parameters as

err (gy): err (e,),

2

err (o) = \/[std gy SNy cErr («:rx)]2 +[std , -err (sn )»crx]z +ferr (std [ )-sny, o]
@)
err (yy): \/[std oy SN cerr (,ux)]2 + [std oy T O (sn )-/xx]2 + [err (std M)-sns‘ﬂ -yx]i + err 2(troy)+ err 2(sn”) s
and the error on the time varying GPD parameters as
err (uy): \/[std oy TSNy cerr (ux)]2 + [std oy T OIT (sn )-ux]Z + [err (std oy)vsn w ~ux]2 + err Z(trﬂy)+ err Z(sn") s
err (sy):err (e.),
(38)

2 2 2
err (‘chm )= \/[std gy TSN e (0 o )+ [sd oy T O (SN ) 0 g 1 +[err (std Dv)-sn w T ]

2.3  Data and validation

To assess the generality of the approach the TS methodology has been validated on time series of different variables, from
different sources and with different statistical properties.

The analysis of annual and monthly maxima has been carried out on time series of significant wave height at two locations,
the first located in the Atlantic Ocean, West of Ireland (coordinates -10.533°E, 55.366°N) the second close to Cape Horn
(coordinates 60.237°E, -57.397°N). The data have been obtained by means of wave simulations performed with the spectral
model Wavewatch 11I® (Tolman, 2014) forced by the wind data projections of the RCP8.5 scenario (van Vuuren et al.,
2011) of the CMIP5 model GFDL-ESM2M (Dunne et al., 2012) on a time horizon spanning from 1970 to 2100. This dataset
will be hereinafter referred to as GWWIII. Here the TS methodology is applied to examine its applicability to climate change
studies.

The annual and monthly analysis have been repeated on a series of water level residuals offshore of the Hebrides Islands

(Scotland, coordinates -7.9E, 57.3N) obtained from a 35 years hindcast of storm surges at European scale (M. 1. VVousdoukas
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et al., 2016) forced by the ERA-INTERIM reanalysis data (Dee et al., 2011). This dataset will be hereinafter referenced as
JRCSURGES.

For annual maxima we furthermore compare the TS methodology with the SS technique as, for example, implemented by
{Alfieri et al., (2015) and {Vousdoukas et al., (2016). To this purpose we extracted time series from projections of
streamflow in the Rhine and Po rivers covering a time horizon from 1970 to 2100 (Alfieri et al., 2015) hereinafter referred to
as JRCRIVER. Also the two series of significant wave height of West Ireland and Cape Horn extracted from the GWWIII
dataset have been employed in this comparison.

Finally we compare the TS methodology and the EA for monthly maxima using time series of significant wave height
extracted from a 35-years wave hindcast database (Mentaschi et al., 2015) in proximity of the locations of La Spezia and
Ortona. The analysis of this dataset, hereinafter referred to as WWIII_MED, focuses on a comparison between seasonal

cycles modeled by the two approaches.

3 Results
3.1  Waves: annual extremes

The validation of the TS methodology was performed first on the time series of significant wave height of West Ireland and
Cape Horn from the GWWIII dataset. We verified first the non seasonal transformation given by Eq. (2) and the time
dependent GEV/GPD given by Eqgs. (7) and (15). By neglecting the seasonality, this formulation is suitable to find extremes
and peaks on an annual basis. For technical reasons the two series do not have data in two time intervals, from 2005 to 2010
and from 2092 to 2095, but the impact of the missing data on the analysis is small specially if we choose a time window T
large enough for the estimation of the trend and of the standard deviation using Egs. (20) and (22). In particular for this
analysis we chose a time window of 20 years, which is long enough to ensure the accuracy of the results and short enough to
include the multidecadal variability of a 130 years long time series.

| The results of the analysis for the two time series are illustrated respectively in Figure 2Figure-2 and Figure 3Figure-3. Panel
(a) of each figure shows the original time series and its slowly varying trend and standard deviation. Panel (b) illustrates the

| normalized series obtained through the transformation_given by Eq(1), allowing an evaluation “at a glance” of the
stationarity of the normalized series. The mean and the standard deviation of the normalized series plotted in panel (b) are
respectively equal to 0 and 1 due to the normalizing procedure. Higher order statistics such as the skewness and the kurtosis
are included in the graphics to support the assumption of stationarity of the normalized series. From the normalized time
series we extracted the annual maxima and estimated the corresponding non-stationary GEV as given by Eq. (7) (see panel

| (c) of Figure 2Figure-2 and Figure 3Figure-3). Moreover we performed a Peak Over Threshold (POT) selection of the
extreme events on the normalized series by selecting the threshold in order to have on average 5 events per year, following
(Ruggiero et al., 2010), corresponding for both of the series to the 97™ percentile. From the resultant POT sample we

| estimated the corresponding non-stationary GPD as given by Eq. (15) (see panel (d) of Figure 2Figure-2 and Figure 3Figure
12
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3). In panels (c) and (d) the shape parameters ¢ estimated by the MLE for the GEV and the GPD are also reported. Inter-
decadal oscillations in the annual maxima are modeled for both of the series, though they are more pronounced for the West
Ireland time series. Moreover, for both the series there is a tendency of the annual maxima to increase, more pronounced for
the series of Cape Horn, where the increase in the annual maxima of significant wave height estimated by GWWIII is of
about 2 m.

It is worth noting that for both the considered series the statistical mode of GEV and GPD grows faster in time than the

slowly varying trend « (t). This is due to the fact that the growth of the location parameter , (t) of the non stationary
GEV (expression 7), and of the threshold u (t) of the non stationary GPD (Eq. 15) are related not only to the growth of
tr (1) but also to the growth of st (t) . The high tail of the distributions grows even faster because also the scale
parameter is proportional to std  (t) .

The impact of the statistical error of the slowly varying trend and standard deviation on the uncertainty of the distribution
parameters have been examined using expressions (37) and (38), which for the non seasonal analysis reduce to

err (e,)=err (g,),

err (ay):\/[std e (o 1" +[err (sd )0, 17

(39)
err (py):\/[std , e (ﬂx)]Q + [err (std y)‘,ux]Q + err Q(try),
for the GEV, and to
err (uy) = \/[std , -err (ux)]2 + [err (std y)»ux]2 + err 2(1ry) s
err (e,) =err (g,),
(40)

2

err (0 gy ) = \/[std Lo (0 g N e (std ) oy, ]

for the GPD. The result is that for the non seasonal analysis the error due to the estimation of trend and standard deviation is
negligible with respect to the error associated to the stationary MLE. In Table 1Fable—% the values of the different
components of the error compared in Eqgs. (39) and (40) are reported together with the total error estimated for each
parameter of the non stationary GEV and GPD. Since the threshold u, of the stationary GPD was selected to have on average
5 events per year, the error has been computed as the uncertainty related to this definition. The percentage contribution to the
squared error is also reported in Table 1Fable-1, in a single column because the percentages estimated for the two series are
roughly equal. The error for both GEV and GPD and for both of the series is clearly dominated by the error associated to the

estimation of the parameters of the stationary distributions ([std , -err (o) and [std  -err ()] for the GEV and

[std , -err (o, )] and [std  -err (u )] forthe GPD).
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3.2  Waves: monthly extremes

The seasonal formulation of the approach is suitable to estimate extreme value distributions on a monthly basis. Hence, we
applied Eq. (1717) to estimate the normalized series, fitted a stationary GEV of monthly maxima by means of a MLE and
back-transformed into a non stationary GEV through Eq. (1818). It is worth stressing that for the stationary MLE the entire
normalized series was used, covering a time horizon of 130 years. For the GPD we selected the threshold in order to have on
average 12 events per year, corresponding to the 93" percentile for both of the series. Results are displayed in Figure AFigure
4 for the location of West Ireland and in Figure SFigure-5 for Cape Horn. To make the seasonal cycle distinguishable in the
figures we plotted only a slice of 5 years from 2085 to 2090. The meaning of the four panels in Figure 4Figure-4 and Figure
SFigure-5 are the same as in Figure 2Figure-2 and 3. The non stationary extreme value distribution estimated for the location
of West Ireland presents a strong seasonal cycle with extremes higher and more broad-banded during winter. For Cape Horn
the seasonal cycle is weaker, with extremes of significant wave height slightly lower during the local summer. The estimated
pdf for seasonal GEV and GPD are significantly lower than those estimated for the non-seasonal analysis because in the
seasonal analysis we consider monthly extremes, while in the non-seasonal one we consider annual extremes.

It is worth stressing that in the study of the monthly maxima the long term trend is also estimated, even if it cannot be
appreciated in Figure 4Figure-4 and Figure SFigure-5 due to the short time horizon represented.

Table 2 reports the components of the statistical error due to the uncertainty in the estimation of the seasonality together with

the components due to the stationary MLE. The components of the error due to the uncertainty in the estimation of « and
std , were omitted as they are negligible as compared with the error associated to the fitting of the stationary extreme value

distribution (see section 3.1). In Table 2 we can see that, as for the non-seasonal analysis, the error for both GEV and GPD
and for both series is clearly dominated by the uncertainty associated to the estimation of the parameters of the stationary
distributions, though in this case the error related to the stationary MLE is significantly smaller than that found for the non-

seasonal analysis, due to the larger sample of data.

3.3 Residual water levels

To verify the performance of the TS methodology on a series from a different source, of a different quantity and with
different statistical characteristics, we tested it on a series of water level residuals extracted from the JRCSURGES dataset
for a location offshore of the Hebrides Islands, Scotland, with coordinates (-7.9E, 57.3N). This series is characterized by a

flat trend « (t) because the model results are approximately constant-averaged. Therefore almost all the variability is
modeled by the TS methodology in the standard deviation st | (t) . Since the time horizon of this series is shorter than that

of the GWWIII projections we chose a time window for the computation of the trend of 6 years to better identify its

interannual variability. The results of the TS analysis of the yearly maxima are shown in Figure 6Figure-6. The series

14

{ Formattato: Controllo ortografia e

[ Formattato: Controllo ortografia e

Formattato: Controllo ortografia e

Formattato: Controllo ortografia e

(
(
[ Formattato: Controllo ortografia e
(

Formattato: Controllo ortografia e

grammatica

[ Formattato: Controllo ortografia e

[ Formattato: Controllo ortografia e

[ Formattato: Controllo ortografia e




10

15

20

25

30

displays also a strong seasonal behavior with annual maxima usually occurring during the local winter (for brevity the
seasonal analysis is not illustrated).

An interesting aspect is that the estimated standard deviation sw | (t) presents a strong correlation (p=0.79) with the annual

means of the North Atlantic Oscillation (NAO) index. This is illustrated in Figure 7Figure—7, where the scatter plot of

std | (t) versus the annual means of the NAO index (panel a) and the two time series (panel b) are represented. As a

consequence the estimated annual maxima are also correlated with the NAO index.

4 Comparison with other approaches
4.1  Stationary methodology on time slices for long trend estimation

A comparison was carried out between the TS methodology and the SS technique, which consists in performing a stationary
analysis on quasi-stationary slices of data. This analysis was carried out on river discharge projections for the Po and the
Rhine river extracted from the JRCRIVER dataset and on the projections of significant wave height extracted from the
GWWIII dataset for the locations of West Ireland and Cape Horn. The TS methodology was applied with a time window of
30 years to estimate a non stationary GPD of annual maxima. The SS technique was carried out using a GPD approach on
time slices of 30 years from 1970 to 2000, from 2020 to 2050 and from 2070 to 2100. For both of the methodologies the
threshold was selected to have on average 5 peaks per year.

Results are illustrated in Figure 8Figure-8, where the return levels of the projected discharge of the Rhine river are illustrated
for three time slices. In the figure, the continuous black line and the green band represent the return levels and the 95%
confidence interval estimated by the TS methodology, the dashed black line represents the return levels estimated by the
stationary EVA on the considered slice (labeled in the legend as SS). As expected the return levels estimated for short return
periods by the two methodologies are close, while they tend to spread for high return periods. This fact is also evident from
Figure 9Figure-9, where the return levels estimated by the two methodologies are plotted one versus the other for the river
discharge of the Rhine and the Po and for the significant wave height of West Ireland and Cape Horn. We can see that the
two methodologies for the analyzed time series are in good agreement for return periods below 30 while they spread for
larger return levels. Some quantitative figures about this fact are reported in Table 3Fable-3, where is reported the
normalized bias NBI of the return levels of the two methodologies, defined as

). (41)

where RLs and RLcy, are the return levels returned respectively by the TS and the SS methodologies. Table 3Fable-3 also

NBI = mean (RL ; - RL . )/ mean (RL _

o

includes the maximum deviation between the return levels estimated by the TS and by the SS methodology, and the mean

95% confidence interval amplitude expressed as percentage of return level. The NBI and the maximum deviations were

obtained comparing results of the two techniques on the three 30-year time windows. From Table 3Table-3 we can see that

the maximum deviation for return periods up to 30 years is always below 6%, while for higher return period it increases up
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to 13% for the discharge of the Po river._Moreover the confidence intervals estimated for SS is always larger than that

estimated for TS, especially for large return periods. This is mainly due to the fact that for the stationary analysis on the

quasi-stationary time slices we consider a sample of only 30 years, which leads to large uncertainty ranges, especially in the
estimation of large return periods such as 100 and 300 years. This also explains the sharp variations of high return levels that
we find between the three time windows using the SS approach. These variations are likely more related to the uncertainty in
estimating the levels associated to long return periods rather than to climatic changes. The TS methodology allows a more
accurate estimation of high return levels because it uses the whole sample of 130 years, and this represents one of the

strengths of using the TS methodology instead of SS. It is finally worth noting that the relative confidence interval estimated

by both the methodologies for the series of river discharge is larger than that estimated for the series of significant wave

height. This is because for wave data the minimum distance between two peaks has been set to least 3 days, while for river

discharge it has been set to 7 days.

4.2 Established non-stationary approach for seasonal variability

Section 3 shows that the TS methodology is mathematically equivalent to a particular implementation of the EA
methodology as described for example by (Coles, 2001; Izaguirre et al., 2011; Menéndez et al., 2009; Sartini et al., 2015).
For the sake of completeness in this paragraph we show the results of a comparison between the performances of a different
formulation of the EA methodology. In its formulation the parameters of the non stationary GEV of the monthly maxima are

expressed as

Ny

u(t)y =g, + Z [B, ,cos(iwt)+ B, ,sin(iot)]

o(t)=a,+ Z [, ,cos( iot) + a,  sin(iot)]
e(t)y =y, + Z [r, ,cos(iwt) + y,  sin( iot)]

i-1

(42)

where ff, ao and y, are the stationary components, f, a;and y; are the harmonics amplitudes, w = 2z7™" is the angular
frequency, with T corresponding to one year, N,, N, and N, are the number of harmonics and t is expressed in years. The
parameters f;, «; and y; have been therefore optimized through a non-stationary MLE in order to fit the monthly maxima of

the non-stationary series. Different combinations of N,, N,, and N, have been tested and the best model was chosen as the one

s
presenting the lowest value of the Akaike criterion (Akaike, 1973) given by

AIC = 2k — 2log( L), (43)
where k is the number of degree of freedoms of the model, L is the likelihood. In particular the maximum value tested for N,,,
and N,, is 3 while the maximum considered value of N, is 2. In general this model can be extended to incorporate long term

trends, but the two series examined in this test display flat trends, hence Eq. (42) is adequate to model them.
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In the comparison, the EA and the seasonal TS methodology (GEV only) were applied to the same series of significant wave
heights relative to the WWIII_MED dataset described in section 2.3. For the transformed-stationary approach a 10-year time
window was used for the computation of the long-term trend. The results of the two methodologies are similar, with a
roughly flat trend and a strong seasonal pattern. The comparison of the seasonal cycles estimated by the two techniques is
represented in Figure 10Figure10 for the two series. In the figures the continuous red and green lines are the location and
scale parameters (p and o respectively) as estimated by the TS approach. The dashed red and green lines are the location and
scale parameters estimated through the EA. The blue dots represent the monthly maxima, while the color scale represents the
time varying probability density estimated by the transformed-stationary methodology. Since for both of the series the
Akaike criterion selected models with a constant shape parameter ¢, these are reported in the figure for both of the series
together with those estimated by the TS methodology.

The GEV parameters estimated by the two approaches are in good agreement, and the small differences have relatively small
impact on the return levels, as one can see in Figure 11Figure-11 where the return levels estimated by the two methodologies
for the month of January are plotted. For both of the series the return levels estimated by EA lie within the 95% confidence
interval estimated by the TS methodology. Table 4 reports the values of normalized bias NBI between the return levels

estimated by the TS and the EA methodologies, defined as in Eq. (41), and the mean 95% confidence interval amplitude

expressed as percentage of return level. In the table the values of NBI are reported for the four seasons for return periods of

5, 10, 30, 50 and 100 years, and for both La Spezia and Ortona. In the used definition of seasons, Winter starts on December
1%, Spring on March 1%, Summer on June 1% and Autumn on September 1%. We did not report return levels of periods greater
than 100 years because the extension of the data covers only 35 years, and the estimates for such periods are inaccurate for
both the methodologies. The average deviation between RLys and RLcy, for the considered time series are rather small, below

7% for all of the seasons. The confidence intervals estimated for TS are smaller than those estimated for EA, because the

stationary MLE of TS has fewer degrees of freedom than the non-stationary one of EA, and is therefore affected by smaller

uncertainty.

5  Discussion

Extreme Value Analysis is a subject of broad interest not only for Earth Science, but also for other disciplines such as
Economy and Finance (e.g. Gengay and Selguk, 2004; Russo et al., 2015), Sociology (e.g. Feuerverger and Hall, 1999),
Geology (e.g. Caers et al. 1996), and Biology (e.g. Williams, 1995), among others. As a consequence non-stationarity of
signals is a common problem (e.g. Gilleland and Ribatet, 2014). In this respect it is important to stress that the TS
methodology is general, and its applicability does not require a time series for any specific property but the stationarity of the
transformed signal. Therefore even if in this study the technique was applied only to series related to Earth Science, it can be

employed in all the disciplines dealing with extremes.
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Given that the extreme value statistical model is an important component of applications like the ones presently discussed
(e.g. Coles, 2001; Hamdi et al., 2013), it is important to stress that the theory was formulated in a way that is not restricted to
GEV and GPD, but can be extended to any other statistical model for extreme values. In particular, since the GEV
distribution is a generalization of the Gumbel, Frechet and Weibull statistics, TS can be reformulated separately for these
three distributions; as well as for the r-largest approach statistics which have been also commonly used (e.g. Coles, 2001;
Hamdi et al., 2013). Finally an extension of TS to statistical models not based on the GEV theory (e.g. Boccotti, 2000; Goda,
1988) may open the way to their non-stationary generalization and could be an interesting direction for future research.

The presently discussed approach was presented using the trend, standard deviation and seasonality to perform a simple,
time-varying normalization of the signal, allowing different types of analysis. The first product of the methodology is related
to the estimation the extreme values of the signal. In addition, the TS approach allows the analysis of the long term
variability; and as an example it was shown to be useful in relating the long term trend of the signal with the NAO climatic
index (see section 3.3). Finding correlations of natural parameters with climatic indices is a theme of common interest in
Earth Science, especially in view of climate change (e.g. Barnard et al., 2015; Dodet et al., 2010; Plomaritis et al., 2015). If
a time series is long-term correlated to a climatic index, an advantage of the TS methodology is that it is able to model
extremes correlated to the index without considering explicitly it in the computation. Finally, the TS methodology was also
extended to describe the seasonal variability of the extremes which is also critical for climate studies (e.g. Sartini et al. 2015;
Menendez et al. 2009; Méndez et al. 2006).

As shown in section 4 the TS methodology comes with advantages over both the SS methodology (e.g. Vousdoukas et al.
2016) and the EA (e.g. Cheng et al., 2014; Gilleland and Katz, 2015; Izaguirre et al., 2011; Méndez et al., 2006; Menéndez
et al., 2009; Mudersbach and Jensen, 2010; Russo et al., 2014; Sartini et al., 2015) in terms of accuracy of the results and of
conceptual and implementation simplicity. In particular in the comparison with the SS methodology for long term variability
the return levels estimated by the two techniques are similar for return periods for which the SS is accurate. The use of the
whole time horizon of the series represents a major advantage of the TS over the SS methodology, because it allows more
accurate estimations of the return levels associated to long return periods. A conceptual advantage of the TS methodology
over the EA is that it decouples the detection of the non-stationary behavior of the series from the best fit of the extreme
value distribution: the goal of estimating the time-varying statistical features of the series is delegated to the transformation.
This fact provides a simple diagnostic tool to evaluate the validity of the model applied to a particular series: the model is
valid if the transformed series is stationary. This simple diagnostic is useful to validate the output of the approach. Moreover
this decoupling simplifies both the detection of non stationary patterns and the fitting of the extreme values distribution. In
particular the detection of non stationary patterns can be accomplished by means of simple statistical techniques such as low-
pass filters based on running mean and standard deviation, and the fit of the extreme value distribution can be obtained
through a stationary MLE with a small number of degrees of freedom, easy to implement and control. Moreover, unlike
many implementation of the EA (e.g. Cheng et al., 2014; Gilleland and Katz, 2015; Izaguirre et al., 2011; Méndez et al.,
2006; Menéndez et al., 2009; Sartini et al., 2015; Serafin and Ruggiero, 2014) the detection of non stationary patterns
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illustrated in this manuscript does not require an input parametric function M for the variability, making the TS methodology
well suited for massive applications with the simultaneous evaluation of lots of time series, for which a common definition
of M would be difficult (e.g. M. Vousdoukas et al., 2016).

It is worth remarking that the EA implemented for example using Eq. (4242) is able to model a shape parameter varying in
time, while the TS methodology using transformation (1%) is not. While in principle this is a weak point of the TS
methodology described in this manuscript, assuming a constant shape parameter is most of cases a reasonable assumption,
because in general simple models should be preferred to complex ones (e.g. Coles, 2001). In particular using the EA the
Akaike criterion (Akaike, 1973), which favors simple models with fewer degrees of freedoms, often selects models with
fixed shape parameter (e.g. Sartini et al. 2015; Menendez et al. 2009). Moreover, the finding that a non stationary GEV
always corresponds to a transformation of the non stationary time series into a stationary one, shown in appendix A, suggests

that a generalization of the TS methodology is possible in order to include models with time varying shape parameters.

6  Conclusions

In this manuscript the TS methodology for non-stationary extreme value analysis is described. The main assumption
underlying this approach is that if a non stationary time series can be transformed into a stationary one to which the
stationary EVA theory can be applied, then the result can be back-transformed into a non-stationary extreme value
distribution through the inverse transformation. The proposed methodology is general, and even if in this study we applied it
only to series related to Earth Science, it can be employed in all the sciences dealing with EVA. Moreover, though we
discussed it only for GEV and GPD, it can be extended to any other statistical model for extremes.

As a transformation we proposed a simple time-varying normalization of the signal, estimated by means of time-varying
mean and standard deviation. This simple transformation was also adapted to describe the seasonal variability of the
extremes. In addition it was proved to provide a comprehensive model for non stationary GEV and GPD with constant shape
parameter, meaning that it can be applied to wide range of non-stationary processes. The formal duality between the TS
approach and the established one has also been proved, suggesting that a complete generalization of the TS approach is
possible to include models with time-varying shape parameter.

The methodology was tested on time series of different sources, sizes and statistical properties. An evaluation of the
statistical error associated to the transformation led to the conclusion that for the examined series it is negligible (the squared
error is 2 orders of magnitude smaller) with respect to the error associated to the stationary MLE and, for GPD, to the
estimation of the threshold.

The TS methodology was compared with the technique of performing a stationary EVA on quasi-stationary slices of non
stationary series (SS methodology) for the estimation of the long term variability of the extremes, and with the established
approach (EA) to non stationary EVA, showing that the return levels estimated by TS are comparable to the ones obtained

by these two methodologies. However, the TS approach comes with advantages on both SS and EA. With respect to SS the
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TS methodology uses the whole time series for the fit of the extreme value distribution, guaranteeing a more accurate
estimation of large return levels. With respect to EA it decouples the detection of the non stationarity of the series from the
fit of the extreme value distribution, involving a simplification of both the steps of the analysis. In particular the fit of the
distribution can be accomplished by means of a simple MLE with a few degrees of freedom, simple to implement and to
control. The detection of the non stationarity can be performed by means of easy-to-implement and fast-to-run low-pass
filters which do not require as an input any parametric function for the variability, making this methodology well suited for
massive applications where the simultaneous evaluation several time series is required.

An implementation of the TS methodology has been developed in an open-source matlab toolbox (tsEva), which is available
at https://bitbucket-org/menta?8/tsevahttps://qgithub.com/menta78/tsEva/.

Appendix A

Duality between the established approach and the TS methodology

In this appendix we show that if the extremes of a time series y(t) are fitted by a non-stationary GEV G, (y,t), then there is
a family of transformations f (y,t):y(t) » x(t) suchthat ¢ (y.t) =6, [f "(x,t)], where G (x) is a stationary GEV
fitting the extremes of a supposed stationary series x(t).

To prove this we expand relationship G, (y,t) = 6, [ f " (x,t)] finding:

1/:,V(:)
Fy-u, 7]

1"
JL = r* ”y(t)\LWJJ} , (44)

(

f(y.t)-pu, |l
1+¢

\
o ]

x

-
ol
L
where [« (t), o, (t), «, ()] are the time varying GEV parameters of G, (y,t) and [¢ ,o ] are the constant GEV

parameters of G _ (x) . Solving for f (y,t) we find

x

[ . 1
1] T y - u, )15 \
f(y,t):f{ax\1+5y(t)7 | o tE u, b
£ o, (1)
L ] ] (45)

Equation (45) defines a family of functions because the values of the stationary GEV parameters [¢ ,o , 1 can be
assigned arbitrarily. Furthermore if we chose « = o then f (y,t) is monotone iny for every time t and can therefore be
inverted, while for = = 0 a Gumbel-specialized formulation can be derived from (44).

In the particular case of & = const .= ¢, function f(y,t) reducesto

y-u, W+ u fo, o ) (46)

f(y.t) =
ay(t)/ax
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which is equivalent to formula (1) provided that «r = . - ,ux/o'x o, adca =0, /a'x . Hence we can say that Eq. (1)
allows a general TS formulation for models with constant shape parameter, because we can arbitrarily impose = = - in

(45) if we assume a constant &,. This finding is remarkable because it proves that any non stationary GEV model with
constant ¢, can be connected to Eq. (1).
Equation (45) alone is not enough to formulate a fully generalized TS approach, because in (45) the non-stationary GEV

parameters [« (t), o (1), u,(t)] are regarded as known variables, which is a wrong assumption in practical applications.

But it is enough to say that any implementation of the non-stationary established approach is equivalent to a transformation
into a supposed stationary series x(t). Therefore Eq. (45) could be used as a diagnostic tool for implementations of the

established approach: a condition for the validity of the non stationary model is that the transformed x(t) series is stationary.
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Yearly maxima: trend only analysis

Error West Ireland  Cape Horn %
component error (m) error (m) (err?)
(average)

non stationary GEV

std | -err (o)) 0.0371 0.0372 100%
err (std )0, 5876 .10 ' s5e8 .0 <0.1%
err (o) 0.0371 0.0372 100%
std | -err (u,) 0.0538 0.0536 97.7%
err (std ) - u, 3.6.10 ° 3.4.10° 04%

err (tr ) 7.4.10 7.0-10 1.85%

err (u,) 0.0538 0.054 100%

non stationary GPD

0,
std | -err (o g ) 0.0418 0.0310 100%

_ . 0,
err (std ) o gy 1.12 .10 ° 8.9.10 " <0.1%

err (o g, ) 0.0418 0.0310 100%
std | err (u),) 0.1489 0.1376 100%
err (std ) -u, 1.9.10 ° 1.7.10 ° <0.1%
err (u,) 0.1491 0.1278 100%

v
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Table 1: average error components for the non seasonal analysis of the GWWIII series for the locations of West Ireland and
Cape Horn. The error is dominated by the component due to the stationary MLE.

Monthly maxima: seasonal analysis

Error component West Ireland  Cape Horn %

(average) error (m) error (m) (err®)

non stationary GEV

25



std . -sn_, -err (c,)  0.0135 0.0138 99.7%

oy sd

std ,, -err (sn )0, 72.10 " 76.10 ¢  03%

err (o) 0.0135 0.0138 100%
std ,, ~sn,, -err (u,)  0.019 0.020 96.6%
std , -err (s )-u,  0.0014 0.0017 0.7%

err (sn ) 48 -10° 520"  <01%
err (u,) 0.0204 0.0214 100%

non stationary GPD

std ,, -sn, -err (o, )  0.025 0.029 100%
std  -err (sn ) o g 9.4.10 * 9.9.10 <0.1%
err (o gy ) 0.0253 0.0293 100%
std ,, -sn, -err (u)) 0.1061 0.1205 100%
std , -err (sn,)-u, 0.0011 0.0014 <0.1%
err (u,) 0.1063 0.1207 100%

Table 2: average error components for the seasonal analysis of the GWWIII series for the locations of West Ireland and Cape
Horn. The error is dominated by the component due to the stationary MLE.

Return period 5y 10y 30y 100y 300y « { Formattato: Allineato a destra
Rhine NBI -1.07%;  -1.51%; -2.35%; -3.43%; -4.53% « { Formattato: Allineato a destra
(river diS.) Max diff -3.58%; -4.40%; -5.92%; -7.81%; -9.69% < { Formattato: Allineato a destra
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Mean Conf. Int. (TS) 4.90% 5.54% 6.68% 8.01% 9.27% «
Mean Conf. Int. (SS)  17.99%  21.34%  26.87%  33.16%  39.04% -
Po NBI 1.47%; 2.06%; 2.92%; 3.69%; 4.25% -
(river dis.)  Max diff 5.87%; 4.88%: 5.60%; 9.57%;  13.06% -
Mean Conf. Int. (TS) 5.08% 5.77% 7.00% 8.46% 9.84% «
Mean Conf. Int. (SS)  16.77%  20.07%  25.45%  31.47%  36.99% -
W. Ireland NBI -0.28%;  -0.14%; 0.07%- 0.27%- 0.43% -
(waves Hs)  Max diff -0.91%;  -1.14%; -1.48%; 2.06%; 2.51% -
Mean Conf. Int. (TS) 1.97% 2.22% 2.63% 3.05% 3.41% <
Mean Conf. Int. (SS) 7.73% 9.01%  10.95%  1291%  14.54% -
Cape Horn NBI -1.07%;  -1.13%; -1.17%; -1.18%; -1.18% -
(waves Hs)  Max diff -1.87%;  -2.36%; -3.12%; -3.92%; -4.59% -
Mean Conf. Int. (TS) 1.74% 2.03% 2.52% 3.07% 3.57% «
Mean Conf. Int. (SS) 6.40% 7.70% 9.80%  12.09%  14.15% -

Table 3: long term variations of extremes of projected river discharge for Rhine and Po, and projected significant wave height for
West Ireland and Cape Horn: normalized bias and maximum deviation between the return levels estimated with the TS
methodology and the SS approach, and mean 95% confidence interval amplitude expressed as percentage of the return level, fer
imati tations—for return periods of 5, 10, 30, 100 and 300 years—for-the-projected-river-discharge-of-the
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Table 4: normalized bias between the return levels estimated by the TS methodology and the EA methodology for the estimation of
| the seasonal variations, and mean 95% confidence interval amplitude expressed as percentage of the return level, for return

| Return period 7 5y 8 10y 9 30y 10 50y 11 100y
La NBI
| . ) 12 1.19% 13 151% 14 195% 15 2.14% 16 2.39%
Spezia  Winter
(waves NBI
| . 17 0.59% 18 0.55% 19 0.59% 20 0.64% 21 0.71%
Hs) Spring
NBI
| 22 4.75% 23 528% 24 5.99% 25 6.27% 26 6.62%
Summer
| NBI 27 - 28 - 29 - 30 - 31 -
Autumn 1.17% 1.03% 0.78% 0.66% 0.50%
Mean Conf. Int.
2.68% 3.05% 3.63% 3.90% 4.25%
(TS)
Mean Conf. Int.
5.90% 6.72% 8.01% 8.59% 9.35%
(EA)
Ortona NBI
_ 3.74% 4.23% 4.91% 5.20% 5.57%
(waves  Winter
Hs) NBI
| ) 4.26% 4.39% 4.62% 4.74% 4.91%
Spring
NBI
| -3.66% -3.44% -3.07% -2.90% -2.66%
Summer
NBI
1.41% 1.45% 1.59% 1.68% 1.81%
Autumn
Mean Conf. Int.
3.18% 3.75% 4.70% 5.15% 5.78%
[Ts)
Mean Conf. Int.
5.21% 5.92% 7.10% 7.67% 8.45%
(EA)

periods of 5, 10, 30, 50 and 100 years, for the four seasons, for the significant wave height in La Spezia and Ortona.
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Figure 1: TS methodology: block diagram.
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Figure 2: non-seasonal analysis of the GWWII1 projections of significant wave height for the location in West Ireland; (a): series,
its trend and standard deviation; (b): the normalized series with higher order statistical indicators; (c): non-stationary GEV of
annual maxima; (d): non-stationary GPD of annual peaks.
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Figure 3: as in Figure 2Figure-2 for the location near Cape Horn.
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Figure 5: seasonal analysis of the GWWIII projections of significant wave height for Cape Horn. Panel meaning as in Figure
2Figure 2.
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Figure 6: non-seasonal analysis of the residual water levels modeled for the Hebrides islands. Panel meaning as in Figure 2Figure

2.
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Figure 7: time varying standard deviation std,(t) estimated by means of the TS methodology versus the yearly average of the NAO

index, scatter plot (a) and time series (b).
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Figure 8: return level plots for the discharge of the Rhine river at its mouth, TS methodology (black continuous line), 95%
confidence interval for the TS methodology (green band) and SS (black dashed line), for the time slices 1970-2000, 2020-2050 and

2070-2100.
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Figure 9: return levels modeled by the TS methodology (x axis) vs those modeled by the SS methodology (y axis) for the discharge
of the Rhine and Po rivers and the significant wave height in West Ireland and Cape Horn. The three series of dots represent the
three time slices. The color of the dots represents the return period. The blue lines represent the maximum 30 years return level.
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Figure 10: seasonal cycle estimated by TS and by EA for the series of significant wave height of La Spezia and Ortona.
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Figure 11: return levels for La Spezia and Ortona for the month of January, estimated by the TS methodology (black continuous
line) and by the established approach (black dashed line labeled as EA). The green area represents the 95% confidence interval

estimated by the TS approach.
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