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Dear Editor and Reviewers, 

 

Thank you very much for the constructive comments that helped to considerably improve and 

clarify the manuscript. The reviewers, put enormous effort into proof-reading our paper line by 

line and trying to clarify all the less-than-satisfactory statements and mistakes. We believe that 

the input will improve the manuscript significantly. All comments have been addressed point-by-

point. Following the reviewers’ feedback we will make the corresponding changes in the 

manuscript.  

 

Anonymous Referee #1 

 

 

RC1. General comments 

 

This paper is about the uncertainty of extreme flows with climate change. For that purpose, the 

authors use seven combinations of global climate models (GCMs) and regional climate models 

(RCMs) with one greenhouse gas concentration scenario to represent uncertainty in climate 

change. Furthermore, they use the GLUE method to represent hydrological parameter 

uncertainty and uncertainty in extreme value distribution parameters to represent the 

uncertainty in the statistical extreme value distribution. These three sources of uncertainty are 

investigated using the HBV hydrological model applied to a medium-sized Polish catchment. 

Although the topic is interesting and relevant for this journal, the paper is moderately written, 

lacks clarity in parts of the methodology and only briefly discusses results and insufficiently puts 

outcomes into perspective. For instance, the seemingly arbitrary choice to consider the three 

uncertainty sources is not justified. Are these three sources the most important ones or the 

easiest ones to quantify? Furthermore, the uncertainty due to the use of a particular extreme 

value distribution is not clearly and completely incorporated. A final example is the presentation 

and analysis of results, such as the analysis of annual maximum precipitation and temperature in 

relation with annual maximum flows and in particular annual minimum flows. In this case and 

several other cases it is not always clear which results are shown, why they are shown and what 

can be concluded from the results. Many other specific (and important) comments can be found 

below. Furthermore, the English writing style and grammar is moderate (including several 

typos); some examples can be found in the section ‘technical corrections’. 

 

AC1. General answer 

  

Following the reviewer’s general and specific comments, the clarity of the methodology will be 

improved and the outcomes will be described in a wider perspective.  

       

The choice of three particular sources of uncertainty, namely, a set of climate model ensembles, 

hydrological model parameter uncertainty and uncertainty in fitting extreme value distribution,  

was dictated by one of the aims of the research – i.e. an assessment of influence of hydrological 

model uncertainty on projections of low- and high-flow extremes and the relative contribution of 

that “predictive” uncertainty  in the spread of extreme indices related to the climatic model 

spread and the distribution fitting error.  
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This choice followed from a discussion on all the sources of uncertainties and a review of 

research done so far on the assessment of uncertainty of projections of hydrological extremes. 

The “predictive” model uncertainty is the only one which can be decreased when conditioned on 

the observations. The other sources of uncertainty have an “epistemic” nature and cannot be 

decreased. Bearing in mind the aims of the study, we restricted the sources of epistemic 

uncertainty to those which have the largest impact – i.e. climate model spread, omitting the 

uncertainty related to bias correction or geography. The error related to the distribution fit was 

included as an essential part of the extreme index evaluation, which requires extrapolation of 

annual maximum or minimum flow distributions to higher order quantiles (e.g. 1-in-100 year, or 

1-in-200 year). In this paper, the error related to the evaluation of maximum and minimum 

annual flow statistic was treated as epistemic, that means, not conditioned on real observations.  

 

In addition, Osuch et al. (2016) presented the influence of emission scenario, climate model, bias 

correction method and geography on flow indices in a case study that included the same 

catchment, Biala Tarnowska. Therefore we wanted to avoid the repetition. In this regard, our 

paper is an extension of the former paper, focusing on the influence of hydrologic model 

uncertainty on annual maximum and minimum flow projections. In our opinion, including the 

other sources of uncertainty would obscure our aim. 

 

The choice of extreme value distribution followed the validation of suitability of this distribution 

to describe the projected annual maximum and minimum flows using the probability plots. The 

MATLAB- based GEV distribution fitting algorithm was applied to all the climate models and 

the a posteriori hydrological model parameter set. This algorithm provides the estimates of 0.95 

confidence bands for the distribution parameters. These parameters were subsequently used to 

obtain upper and lower confidence bands of the distribution through the inverse GEV model. In 

order to simplify the procedure, instead of sampling from the GEV parameters within the 

parameter space common to all hydrologic and climate model simulations, we sampled from 

each set of parameters assuming a normal distribution with the variance specified by the 

parameter upper and lower 0.95 confidence value, and in addition, assuming the independence of 

the GEV model parameters. The obtained 0.95 GEV distribution confidence values were used to 

estimate the spread of results related to the distribution fit.  

 

Bearing in mind the large number of simulations, it was not possible to choose the best 

distribution for each projected time series. Furthermore, the aim of this study is to assess the 

ranges of uncertainty of extreme indices rather than their exact values.  

 

RC2. A final example is the presentation and analysis of results, such as the analysis of annual 

maximum precipitation and temperature in relation with annual maximum flows and in 

particular annual minimum flows. In this case and several other cases it is not always clear 

which results are shown, why they are shown and what can be concluded from the results. 

 

AC2. We agree with the reviewer that the presentation should be much improved and clarified. 

The following explanation will be added.  
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In the following section, we present an analysis of the variability of maximum precipitation and 

temperature series on an annual basis to see the correlation between the projected hydrological 

extremes and the input climate extremes. In Fig. 2, raw annual maximum daily precipitation and 

temperature time series for the Biala Tarnowska catchment obtained from the seven GCM/RCM 

models under the RCP4.5 scenario are shown. The periods cover the whole length of historical 

and projected years (1971-2100).  

 

The upper panel of Fig. 2 presents annual minimum precipitation based on corrected 

precipitation projections (the upper panel), annual maximum precipitation based on raw 

projections (middle panel) and temperature mean projections for corrected data are presented in 

the lower panel of Fig. 2. 

 

The results show a visible increase of the annual maximum temperature and an increase of 

temporal variability with time, in particular for the maximum precipitation values from 2016 

onward. 

 

The English and grammar was, and will be, checked by a native English speaker. 

 

Specific comments 

 

RC1. P1, L7-9: It is not clear what is meant with a ‘multi-model approach’ and which steps are 

followed. 

 

AC1.  The ‘multi-model approach’ is an approach which considers multiple climate models and 

multiple hydrological parameter sets. To avoid possible confusion this wording will be changed: 

“The approach followed is based on ….” 

 

RC2. P2, L9-11: The first question probably is related to the magnitude of the uncertainty, since 

this is still largely unknown and not systematically investigated. 

 

AC2. The sentence will be changed to: 

The question arises as to how large the uncertainty is and if it is acceptable to the end-user in 

adaptations to climate change and flood and drought risk assessments. 

 

RC 3. P2, L15-16: “….can never be accurately evaluated ….” is a very strong statement, please 

rephrase. 

 

AC3. The sentence will be rephrased to: “However, complex hydrological and climate models 

are difficult to be accurately evaluated, because of uncertainty in observations, parameters and 

model structure simplifications.” 

 

RC 4. P2, L24-P3, L2: The authors mainly consider hydrological model and parameter 

uncertainty in their review. It might be worthwhile to firstly give an overview of all uncertainties 

involved in this type of studies including a classification. One such classification could be input, 

(hydrological) model system and output, and the literature can be reviewed accordingly. Now, 

uncertainties in the input (scenarios, GCMs, RCMs, downscaling, initial conditions etc.) are 
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hardly reviewed. A complete overview of the uncertainties will also enable a better justification 

of the uncertainty sources considered in this study (see also page 3, lines 4-5). 

 

AC 4. As already discussed, the influence of other sources of uncertainty, including the choice of 

emission scenario, climate models (GCM/RCMs), downscaling and catchment type was 

performed by Osuch et al (2016) using a case study that included the catchment used in this 

paper. This paper was focused on predictive hydrological uncertainty to show that different 

objective functions should be applied when high and low flow extremes are considered. Apart 

from hydrological model parameters, seven climate models were also used and the spread 

relating to extreme index distribution was taken into account. However, the reviewer made the 

important point that our aims were not clearly enough presented and that the review of different 

sources of uncertainty would help to improve the presentation of that aim considerably. This part 

of the paper will be changed to justify better the choice of those three sources of uncertainty. 

 

RC 5. P3, L14-15: The question is whether you can determine the uncertainty due to the choice 

of the extreme value distribution (‘distribution fit’) using time series of different lengths. When 

assessing effects of time series with different lengths on the results you might get an estimate of 

the influence of data quantity on the uncertainty in the results, but not of the influence of the 

goodness-of-fit of the distribution on the uncertainty. Furthermore, it seems only part of the 

statistical uncertainty is assessed in this way, since for instance the influence of different extreme 

value distributions and extrapolation uncertainty is not taken into account. 

 

AC 5. Thanks to the reviewer, it is good point. However, we did not use different lengths of time 

series in order to determine the uncertainty due to the choice of the extreme value distribution. 

The sentence was misunderstood. In order to make our presentation more clear the sentence 

should read as follows: 

The uncertainty related to the distribution fit is analysed in two stages, using, separately, two 

different lengths of flow record to derive the quantiles of maximum and minimum annual flows, 

the 30-year long and 130-year long time series of future flow projections. The popular method of 

a comparison of changes in flow quantiles between the reference period and future periods is 

based on relatively short (e.g. 30-year) periods. It is well known that an extrapolation of a 

distribution function based on 30-year long time series towards 1-in-100 year quantiles involves 

very large errors (Strupczewski et al. 2011). Even the estimates of 1-in-30 year quantiles based 

on the 30-year long data are biased with large errors. We compare these errors with those 

involved on 1-in-100 year estimates obtained using the 130 year long time series. The question 

we pose is whether the estimates of future trends of extreme indices and their relative changes 

can be useful at all in view of the uncertainties involved. 

 

RC 6. P3, L29-30: How many precipitation stations have been used to assess the catchment 

average precipitation (assuming lumped hydrological modelling has been carried out)? Has any 

elevation (or other) correction been incorporated? 

 

AC 7. We used five gauging stations to derive aerial precipitation in the catchment using 

Thiessen polygons. We did not use any elevation correction in this paper. However it was 
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applied to the same catchment by Benninga et al (2016) and showed that the increase in 

precipitation due to the elevation is about 3%. 

 

RC 7. P4, L11: An important uncertainty source in climate impact studies is the uncertainty due 

to greenhouse gas emission scenarios. Hence, a limitation of this study is the use of only one 

emission scenario (RCP4.5) while one would expect the use of at least two scenarios (which are 

available in EURO-CORDEX). At least the authors should explain the implications of this 

limitation for their results. 

 

AC 7. The RCP 4.5 was applied because it is a stabilization scenario and thus assumes the 

imposition of emissions mitigation policies. The RCP 4.5 is derived from its own “reference”, or 

“no-climate-policy”, scenario. This reference scenario is unique to RCP 4.5 and differs from 

RCP 8.5, RCP 6.0 and RCP 2.6 (Smith and Wigley 2006; Clarke et al. 2007; Wise et al. 2009). 

The influence of the emission scenario on flood indices was studied by Osuch et al. (2016) whilst 

the low flows were analysed by Osuch et al (2017). Both those studies indicated that emission 

scenario choice has a relatively small influence on the results.  The implication of the choice of 

only one emission scenario will be explained in the revision. 

 

RC 8. P5, L9: Why is QM applied in this study? The reasoning behind this choice is not 

completely clear from the preceding sentences. 

 

AC 8. Many popular existing bias correction methods have been reviewed and compared and 

quantile mapping (QM) was found to outperform other methods (Gudmundsson et al., 2012; 

Teutschbein and Seibert, 2013; Chen et al., 2013; Osuch et al., 2016).  More recently, the 

standard non-parametric QM method has been adapted to more explicitly preserve the raw 

modelled climate change signals (Willems and Vrac, 2011; Sunyer et al., 2014; Cannon et al., 

2015). This means, in the QM method, that a raw modelled value is always corrected by the 

same value of bias or error that is determined by its respective quantile in the reference period.  

 

RC 9. P5, L18-19: Did Osuch et al. (2015) model the same catchment as in this study and 

therefore, can it be assumed that the same five parameters are sensitive? And are the same five 

parameters sensitive for low flows and for high flows? That would be remarkable. 

 

AC9. The HBV model was applied in different hydro-climatic condition in Poland by different 

researchers and they found the five most sensitive parameters for both high flow and low flow 

characteristics. The set of five parameters chosen in this study was dictated by the most common 

catchment conditions. Therefore it is not surprising that the same parameters are sensitive in both 

high and low flow conditions. However, in this study we used two objective functions to 

encapsulate the high and low flow characteristics instead of selected best parameters only 

belonging to low flow and high flow. 

 

RC10. P6, L15-16: How many Monte Carlo simulations have been executed and is this number 

sufficient (compare with literature)? 

 

AC 10. 20000 MC simulations were executed. Many research papers recommend above 10, 000 

MC (e.g. Xiaoli Jin et al., 2010; Romanowicz et al., 2013; Houska T. et al., 2014). 
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RC 11. P6, L22: Is it common practice to determine the thresholds in an iterative way? The 

determination of the threshold based on the requirement that 95% of the observations should be 

in the 95% confidence interval seems to be reasonable. However, please refer to other studies 

employing the same approach. 

 

AC 11. To our knowledge, it is a common practice. The thresholds determine the variance of the 

predictions. Too high a threshold results in too narrow confidence bands. By iteration we meant 

the “trial and error approach” which does not involve any algorithm. We would be surprised if 

the iterative determination of threshold values has not yet been introduced, but we are not aware 

of any studies that have followed this approach. We will change the wording to avoid confusion. 

 

RC 12. P7, L4-5: In general it is doubtful whether distributions with a ‘large’ number of 

parameters will model data in a more accurate way than distributions with a small number. This 

partly depends on the data quantity and quality and similarly as in hydrological modelling there 

will be a balance between the complexity of the distribution (i.e. number of parameters) and the 

amount of data (and quality). 

 

AC 12. We agree with the reviewer that there must be a balance achieved between the 

complexity of the distribution (i.e. the number of parameters) and the quality of data. We admit 

that this sentence can be deleted as it is a too large generalization. 

  

RC 13. P7, L7-8: What does an ‘overall good performance’ mean? Compared to which other 

distributions? 

 

AC 13. A number of distributions was tested including a three-parameter lognormal and an 

inverse Gaussian. GEV was the only distribution that performed well both for the high and low 

flow extremes. Although it was not necessary to use the same distribution for both extremes, it 

made our discussion more transparent.  

 

RC 14. P7, L25-27: It is not completely clear why the analyses are performed for a period of 130 

years. Since the manuscript is about impacts of climate change on hydrological extremes, you 

would expect a comparison between historic and future climate conditions. Furthermore, climate 

change automatically implies the existence of nonstationarity and as such, by considering a 

period of 130 years assuming stationarity by using the same extreme value distribution will 

result in serious flaws. 

 

AC 14. We do not think that the impact of climate change on hydrological extremes should be 

based on a comparison between historic and future climate conditions. What we propose here is 

to study the trend of projected indices instead of the “change”.  The Biala Tarnowska catchment 

does not show any non-stationarity in the extreme flow events (Meresa et al. 2017, submitted for 

publication). Therefore it is a suitable catchment to compare both approaches. We are aware that 

non-stationary flood frequency analysis has to be applied for non-stationary extreme events. We 

want to show here that taking 30-year long time-series to compare between reference and future 

periods involves large uncertainty even for 30-year return flows. The uncertainty ranges of 30-
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year return period flows obtained using 130-year long time series can be nearly four times 

smaller. 

 

RC 15. P8, L7-12: The idea behind this section is not clear. Why is the trend in daily annual 

maximum precipitation and temperature analysed while the interest is in uncertainty in 

hydrological indices with climate change? Moreover, why is the daily annual maximum 

precipitation of interest and not for instance the two-day or three day precipitation (which might 

be stronger correlated to annual maximum discharge values)? Which temporal resolutions of 

precipitation are relevant for annual minimum flows? And what is the supposed role of daily 

annual maximum  

 

AC 15. The idea behind presenting the precipitation and temperature patterns was to show the 

variability of driving forces behind the changes in flow extreme index. However, the idea was 

not properly explained and followed. For a catchment of that size, daily maximum and mean 

sums of precipitation are well correlated with the flow patterns. The temperature patterns, on the 

other hand, present the changes in the evaporation losses and possibly, indicate the changes in 

flood regime.  

 

RC 16. P8, L14-20: How have the different criteria for high and low flows been applied in 

continuous hydrological modelling for periods of 30 years (or more)? When is the ‘high flow’ 

parameter set being used and when the ‘low flow’ one? What is the threshold for low flows and 

high flows; a specific discharge value or exceedance frequency?  

 

AC 16. As explained in section 3.3, we applied a stochastic formulation to the estimation of the 

HBV model parameters. That means that 20000 simulations of the HBV model were run for the 

30-year long calibration period with parameters sampled randomly within the assumed parameter 

ranges. The calibration is performed using the observed precipitation, temperature and flow 

records. We applied logNSE criterion for low flow and NSE criterion for high flow index to all 

the simulated flow series. Then we evaluated thresholds for the criteria, called likelihood 

thresholds, based on the requirement of 95% of the observations should be in the 95% 

confidence interval separately for high and low flows (Table 3). In other words, we do not have 

one “high” or “low” parameter set but we have two multiple sets (each including thousands of 

parameter sets) representing “high” and “low” flow models. 

 

RC 17. P9, L5: Which best parameter sets are meant here? When is the best low flow parameter 

set used and when the best high flow parameter set? 

 

AC 17. Results shown in Fig. 4 were obtained from the HBV model simulations fed by the 

precipitation and temperature projections obtained from the seven GCM/RCM models under the 

RCP4.5 scenario for the best parameter sets from the MC parameter samples, giving the highest 

weights derived from the NSE for the high flows and logNSE for the low flows, respectively. 

The raw hydro-meteorological projections were applied to study the high flow index whilst bias 

corrected precipitation and temperature data were used for the low-flow index studies. 

 

RC 18. P9, L7-8: ‘twice as large’; where do we see that? 
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AC 18. Sentence will be corrected to: Obtained flow projections shown in Fig. 4, follow the 

rainfall projections shown in Fig. 2, with annual maximum flow values even four times larger 

than historical events occurring after 2016 for some GCM/RCM model projections.  

 

RC 19. P9, L12-22: This evaluation is not clear to me. Why do the authors evaluate results at a 

monthly scale? How can you assess annual maximum flows for each month? What do the 

authors mean with ‘range’ of annual maximum flows? 

 

AC 19. Thank you, it is corrected in the main manuscript, "annual" was replaced by "monthly". 

Analysis of variability of monthly flows was presented to illustrate seasonal changes of extreme 

flows in the near future period and the uncertainty related exclusively to hydrological model 

uncertainty for each climate model projection. Some changes of seasonality are visible for high 

flows, but low flows do not show any distinctive differences between reference period and near 

future. 

We agree with the reviewer that this section is not adding much to the paper scope and we will 

delete it, together with Fig. 5.  

 

RC 20. P10, L9-10: The decrease in the spread of Q30 in the far future compared to the near 

future is strange. The authors should reflect on this. Is it related to the fact that only one RCP 

scenario is taken into account? 

 

AC 20. This smaller spread of the far-future projected changes was also observed in the other 

climate impact studies on the same catchment (Osuch et al., 2017) for both the RCP4.5 and 

RCP8.5 emission scenarios using the HBV model for hydrological simulations. Research is on-

going to explain that phenomenon.  

 

RC 21. P10, L20-22: Also this observation needs discussion. Why the spread is more evenly 

distributed for minimum flows compared to maximum flows? 

 

AC 21. This is related to the influence of the climate model spread on the simulations (Osuch et 

al., 2017). It is much bigger for high flows and not very big for the low flows. We also have to 

remember that low flow simulations used bias-corrected meteorological drivers whilst the high-

flow simulations were driven by the raw data. Bias correction decreases the variability of climate 

models.  

 

RC 22. P11, L13-14: Are the relative differences for annual minimum flows also smaller? 

 

AC 22. Yes. The sentence should read: The relative differences obtained for the annual minimum 

flow Q30 estimates are smaller, suggesting that low flow quantiles are less susceptible to the 

errors related to the length of the evaluation period. 

 

RC 23. P12, L7-9: This is an interesting topic, but has not been investigated in this study since 

only one catchment has been considered. 

 

AC 24. We agree with the reviewer, this sentence is out of context and should be deleted. 
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RC 24. P12, L11-14: This is an interesting result assuming that all methodological steps are 

logical and correctly carried out. What is the reason for the importance of uncertainty due to 

climate models for high flow and the important of hydrological model parameter uncertainty for 

low flows? This is very important and interesting to discuss. 

 

AC 24. The important role of hydrological model uncertainty in low flow predictions was 

already noticed in forecasting (Beninga et al., 2017). That effect can be explained by the ratio of 

the prediction noise (in this case described by the hydrological model uncertainty) to the input 

signal which is much higher for low flows.  

 

RC 25. P12, L23-24: What do the authors mean with ‘this allows the problem of nonstationarity 

of model parameters to be avoided’? 

 

AC 25. The sentence should read: (iii) Conditioning of the hydrological model was performed 

using different criteria for low and high flows in order to ensure the best model fit for the 

extremes; this does not solve the problem of non-stationarity of model parameters but allows for 

focusing on parameter sets adequate for low or high flow regimes.  

 

RC 26. P12, L29-31: This statement seems to be obvious; the larger the ratio of return period vs. 

data length the higher the uncertainty. However, this extrapolation uncertainty is not explicitly 

assessed in this manuscript. 

 

AC 26.  Thank you for the comment.  This statement should read “analysis of the influence of 

length of time series records on the uncertainty bands of the high flow quantile estimates and 

their changes suggests that the ranges of quantiles of return periods Q30 are up to four times 

smaller when the long-term flow projections are used (Table 4). The low flow Q30 quantiles are 

less influenced by the length of the record. 

 

RC 27. P23, Table 2: The ranges defined by the lower and upper bounds frequently do not match 

with the optimal values (e.g. for ALFA, PERC, CLFUX). Can you explain this? Furthermore, 

some lower and upper bounds are exactly the same. Does this indicate that these parameters are 

deterministic? What about CFMAX (not mentioned as sensitive in section 3.3)? Finally, an upper 

bound of 2 for LP is impossible and an optimum value of 1 is remarkable at least (it would mean 

only potential evapotranspiration under fully saturated conditions). 

 

AC 27. We thank the reviewer for this comment. There was a mistake in Table 2. The HBV 

model was calibrated using GLUE and optimal parameter sets were derived in the form of 

multiple parameter sets, different for the high and low flows. When applying this method there is 

no unique parameter set chosen, but instead, a multiple set of parameters, each with a weight 

corresponding to the model performance criterion, represents the solution of a calibration 

problem. Therefore, there is no ‘optimal” single solution to the calibration problem, even though 

a solution with the best goodness of fit criterion can be specified. Therefore this table should not 

include the “optimal” parameter values. The corrected Table 2 is at the end of the responses. 

 

 

Technical corrections 
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RC 1. P1, L11: What is the distribution fit? 

 

AC 1. ‘distribution fit’ will be changed into “theoretical distribution fit error” 

 

RC 2. P1, L13: What kind of weighting do the authors mean? 

 

AC 2. “with a separate criterion for high and low flow extremes” 

 

RC 3. P1, L16: What is the difference between climate model variability and climate projection 

ensemble spread? Please use a consistent terminology. 

 

AC 3. The meaning of “variability” is not the same as “spread”. Here we meant “variability”. 

 

RC 4. P2, L3: What is inverse modelling in this respect? Is this term commonly used for 

calibration and validation purposes based on observed (historic) data? 

 

AC 4. “Conditioning” can be used here instead of “inverse modelling”, if it is clearer. Inverse 

modelling refers to model parameter calibration based on historical data. 

 

RC 5. P2, L6: “weighting” instead of “weighing”. 

 

AC5. Corrected: “weighting” instead of “weighing”. 

 

RC 6. P3, L8: What is the ‘relevant variability’ of extreme index estimates? 

 

AC 6. Changed into “a direct assessment of variability of extreme index estimates”       

  

RC 7. P3, L19: The case study has already been mentioned. 

 

AC 7. Thank you, the sentence will be deleted. 

 

RC 8. P3, L30: The maximum daily precipitation? During which period? 

 

AC 8. Thank you, corrected.  ‘Maximum precipitation was 68.3 mm d-1 and annual mean 

streamflow is 0.4 m
3
s

-1
 over the observation period.’ Changed to ‘The annual maximum 

precipitation, annual minimum streamflow and annual mean streamflow of the catchment were 

68.3 mm, 0.4 m
3
s

-1
 and 5.43 m

3
s

-1
 respectively over the observation period (1971-2000)’. 

 

RC 9. P3, L30-31: Which period for the streamflow) Isn’t 0.4 m3/s a very low value for 

catchment area of about 1000 km2? 

 

AC 9. Thank you. It is the same as with the previous comment. It is a minimum streamflow.  
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RC 10. P4, L12-14: Why do the authors use these complex abbreviations for the GCM/RCM 

combinations? It is not clear what the meaning of all the numbers is. Try to be consistent with 

the descriptions in Table 1. 

 

AC 10. Corrected as in the Table 1 included at the end of these responses. 

 

RC 11. P5, L12: Do you have a reference for the Matlab version of HBV? 

 

AC 11. The MATLAB version of HBV used in this study was based on Lindstrom et al (1997). 

The original MATLAB code from Twente University NL, was further developed and adjusted 

for the purpose of climate impact studies in the Institute of Geophysics PAS.  

 

RC 12. P5, L15-17: Only 12 out of 14 HBV parameters are mentioned. In which routines can we 

find CFLUX and PERC (see line 19)?  

 

AC 12. Thank you. It is changed to ‘These routines are governed mainly by fourteen HBV 

parameters, of which, six (TT, TTI, CFMAX, DTTM, CFR, WHC), three (FC, LP, BETA, 

CFLUX), two (KF, ALPHA) and one (KS, PERC) parameters are representing each routine 

respectively.’ 

 

RC 13. P5, L17: ‘routines’ instead of ‘routing stage’? 

 

AC 13. Thank you; corrected: ‘routines’ instead of ‘routing stage’? 

 

RC 14. P6, L24-P7, L3: This general description of the GEV distribution is not necessary here 

and can be found in many text books. 

 

AC 14. It will be deleted 

 

RC 15. P7, L16-17: What do the authors mean with “: : : aggregated speared of flow quantile 

change : : :”? 

 

AC 15. “…aggregated speared of flow quantile change …” meant “integrated spread …   

 

RC 16. P7, L19: ‘squared’ instead of ‘squere’. 

 

AC 16. Thank you, it is corrected in the main manuscript.   

 

RC 17. P7, L22: The title suggests that the results of this study will be described. Please 

rephrase the title. 

 

AC 17. “Description of the results” would be better? 

 

RC 18. P7, L23: Different temporal resolutions? Shouldn’t it be different lengths of data 

periods? 
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AC 18. Agree: ‘different temporal resolutions’ will be changed to ‘different lengths of data 

periods’ 

 

RC 19. P7, L18: The meaning of all variables should be explained in the text. 

 

AC 19. All the variables will be explained: where: Where: 𝑇𝑆𝑆𝑖𝑗𝑘 is total sum square error for the 

specific hydrological extreme indicator (e.g. relative change in Q30) for the i
th

 parameter sets 

range, j
th

 climate model and kth distribution parameter range and μ is the overall mean and 

𝜀𝑖𝑗𝑘denotes the white Gaussian error. 

 

RC 20. P8, L6: “Results and discussion”? 

 

AC 20 Thank you, it is corrected in the main manuscript. As “Discussion of the results” 

 

RC 21. P9, L2: ‘the 10-year moving average from the ensemble mean’? 

 

AC 21. Thank you, it is corrected in the main manuscript. Corrected as ‘the 10-year moving 

average from the ensemble mean’ changed to ‘mean from the ensemble of seven climate models’ 

 

RC 22. P9, L15-16: Fig. 5a is mentioned twice. 

 

AC 22. Fig. 5 will be deleted 

 

RC 23. P9, L29-30: Decreases in minimum flows and increases in maximum flows? Shouldn’t it 

be the other way around (according to the caption of Fig. 6)? 

 

AC 23. Thank you, it is corrected in the main manuscript: ‘Figure 6. Empirical flow quantiles of 

annual maximum flow (upper panels) and annual minimum flow (lower panels) under baseline 

and future climates (near and far future periods); the climate model spread is presented as a 

shaded area; green line denotes the mean value from all the GCM/RCM model realizations, red 

line denotes the averaged results obtained for the reference period.’ 

 

RC 24. P10, L6-7: Here, the annual minimum flows increase (see previous comment). 

 

AC 24. Thank you. It is corrected as previous comment  

 

RC 25. P10, L9: What is Q30? Commonly, that is a discharge with a non-exceedance frequency 

of 30%. However, here it seems to be an annual maximum flow with a return period of 30 years? 

 

AC 25. Yes, it is annual maximum flow with a return period of 30 years. For annual maximum 

flow those two definitions have the same meaning. However, now to avoid confusions, we used 

as Qt30 in the main manuscript.  

 

RC 26. P11, L7: ‘Table 4’ instead of ‘Table 3’. 
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AC 26. Thank you, it is corrected in the main manuscript. ‘Table 4’ instead of ‘Table 3’. 

 

RC 27. P11, L26-P12, L2: The first part of the conclusions can be omitted (can be part of 

introduction section).  

 

AC 27. Thank you, it is corrected in the main manuscript. Deleted 

 

RC 28. P12, L9: ‘hydrological parameter uncertainties’ instead of ‘hydrological model 

uncertainties’? 

 

AC 28. Thank you, it is corrected in the main manuscript. Corrected to ‘hydrological parameter 

uncertainties’ instead of ‘hydrological model uncertainties’ 

 

RC 29. P12, L24-27: This is a repetition of lines 11-14. 

 

AC 29. Thank you, it is corrected in the main manuscript. Deleted  

 

RC 30. P13, L3: A paper in preparation should not be included in the reference list. 

 

AC 30.  This paper has already been submitted (see references included). 

RC 31. P13-17: The reference list and referencing contain many errors, typos and 

inconsistencies. This should be carefully and thoroughly double-checked. 

 

AC 31. The reference list will be corrected. 

 

RC 32. P18, Fig. 1: What is the unit of the DEM map? 

 

AC 32. The unit is meter. Thank you, it is corrected in the main manuscript. 

 

RC 33. P18, Fig. 2: The interquantile range of what? Of the seven GCM-RCM combinations? 

In that case it would be better to show the individual model results, i.e. one annual maximum for 

each combination so 7 points per year. 

 

AC 33. We appreciate the reviewer’s point but we decided to use the box-plots instead of seven 

points for each year, as it gives better overview of the spread of the projected values, including 

median and outliers in the form of red crosses.  

 

RC 34. P19, Fig. 3: In particular the scale of the upper panel looks strange. Flows in cubic mm? 

How accurate is your model? Please use the same (realistic) x-axis ranges. 

 

AC 34. We guess that the reviewer means Fig. 4. The y-axis units should be in cubic meters per 

second. The figure y-axis will be corrected. 

 

RC 35. P19, Fig. 4: This figure (and also Fig. 2) is too small. What do we see here? 
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AC 35. Fig. 4 presents projected annual maximum and minimum flow. The figures 2 and 4 will 

be enlarged.  

 

RC 36. P20: The differences between historic and future periods cannot be clearly seen in these 

figures. 

 

AC 36. Following the reviewer's comments we decided to delete Fig.5 together with the 

subsection 4.4. 

 

RC 37. P21, Fig. 6: What are the different lines in these figures? And is baseline and reference 

period the same? 

 

AC 37. Thank you, it is corrected in the main manuscript. Changed to ‘Figure 6. Empirical flow 

quantiles of annual maximum flow (upper panels) and annual minimum flow (lower panels)  for 

the reference period and future climates (near and far future); the climate model spread is 

presented as a shaded area; green line denotes the mean value from all the GCM/RCM model 

realizations in each period (near and far future period), red line denotes the averaged results 

obtained for the reference period. Each black line represents individual climate models’ 

 

RC 38. P21, Fig. 7: In the caption ‘right hand panel’ is mentioned twice. 

 

AC 38. The figure caption will be changed to: Total uncertainty ranges of theoretical GEV-based 

annual maximum (left hand panels) and minimum (right hand panels) flow quantiles over 30 

year periods for the Biala Tarnowska at Koszyce; upper panels - the reference period 1971-2000; 

middle panels - near future 2021-2050; lower panels - far future 2071-2100. 

RC 39. P22, Fig. 8: Idem, annual minimum flow is mentioned twice. 

 

AC 39. Changed to ‘annual maximum flow as a function of return level (left panel panel)’ 

 

RC 40. P23, Table 1: Which meteorological institute is connected to RACMO? 

 

AC 40. The Table 1 was changed and all the abbreviations are now explained. 

 

RC 41. P23, Table 2: The caption is not clear. 

 

AC 41. Changed by ‘Table 2. HBV parameter ranges: upper band (UB), lower band (LB), unit; 

fixed parameters have lower and upper bands equal.’  

RC 42. P24, Table 4: What do the authors mean with ‘change in width of …’? What compared to 

what? 

 

AC 42. Table 4 caption is changed into: Table 4. Change in width of 0.95 confidence intervals 

for QT30 for annual maximum and minimum flow estimated using  time periods of a different 

length (30-years and 130 years long). 
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Anonymous Referee #2 

 

Overview 

 

RC. The authors assess the effect of different uncertainty sources on climate change projections. 

The presentation of the results is easy to follow and interpret. Especially Figure 9 is very 

informative. However, there is room for improvement using specific comments and checklist 

below. I recommend major revision as the model calibration part is not clear. 

 

AC. We thank the reviewer for concise and valuable comments. 

 

Specific Comments:  

 

RC1. Table 2: Optimal values of some parameters are out of lowerand upper limits e.g. CFMAX 

which cannot be reached by an algorithm e.g. SCEUA, CMAES etc. How was this achieved by a 

calibration algorithm? Did you follow a manual calibration scheme?  

 

AC1.The table 2 is now corrected.  We do not use deterministic calibration, instead the GLUE -

based stochastic calibration is applied. When applying this method there is no unique parameter 

set chosen, but instead, a multiple set of parameters, each with a weight corresponding to the 

model performance criterion, represents the solution of a calibration problem. Therefore, there is 

no ‘optimal” single solution to the calibration problem, even though a solution with the best 

goodness of fit criterion can be specified. 

 

RC2. Demirel et al (2013a) is in the reference list but not in the text. 

 

AC2. Thank you, it has been corrected. 

 

RC3. Please explain the abbreviations used at legend in figure caption. The legend of Fig8 is 

confusing: “distn”? 

 

AC3. Thank you, it has been corrected. “distn” replaced by “distribution” 

 

RC4. Did you compare uncertainty in HBV model parameters with other studies (Addor et al., 

2014; Demirel et al., 2013b; Osuch et al., 2015) using HBV model for forecasting hydrological 

extremes? How would the results overlap for 10 day forecast (Demirel et al., 2013b) and long 

term climate predictions in EUROCORDEX (dataset used in this study)?  

 

AC4. The uncertainty in the HBV model parameters was compared with the other studies, 

including Osuch (2015) and Demirel et al (2013b). Demirel et al. (2013b) explored the influence 

of uncertainty in input, hydrological model parameters and initial conditions on a 10-day 

ensemble flow forecasts. The results showed that parameter uncertainty had the largest effect on 

the medium range low flow forecasts, which is consistent with the present paper findings. Addor 

et al. (2014) concentrated on the influence of different hydrological model structure, involving 
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three hydrological models, emission scenarios, climate models, post-processing and catchments. 

Their results indicate that influence of model structure varies with the catchment. However the 

authors did not take into account hydrological model parameter uncertainty, which is the main 

focus of the present paper. Osuch (2015) compared three sensitivity analysis techniques to 

describe the HBV model parameter interactions. We used the output of that paper to eliminated 

less sensitive HBV model parameters in order to minimize computational cost. 

 

RC5. Fig5: Parameter uncertainty should be presented differently to assess the contribution of 

each parameter uncertainty to total uncertainty. From this figure the reader can’t see the most 

uncertain parameter. A figure similar to Figure 4 in Demirel et al (2013b) or Fig9 in the current 

manuscript can be very useful for modelers. This can be easily done as the GLUE results would 

allow such ranking. 

 

AC5. Thank you for the comment. We decided to delete this figure and subsection 4.4 following 

the first reviewer comments. 

 

RC6. Conclusion 2 (ii): Please explain the drizzle effect? Not clear.  

 

AC6.   Simulated climate variables (precipitation and temperature) by individual GCMs/RCMs 

often do not reach agreement with observed climate time series. This is due to the effect of 

systematic and random model errors of GCMs/RCM simulations. Such systematic errors lead to 

simulate many drizzle days (i.e., too many days with very low precipitation intensity and too few 

dry days). The drizzle effect is related to the performance of climate models. It presents itself in 

the form of frequent rainfall of a very small intensity. The physics behind precipitation 

generation is very complex and involves processes operating on a wide range of scales. The 

frequent ’drizzle’ is produced mainly by convective parameterization. It appears in many climate 

models and invokes errors in the intensity and frequency of precipitation (Terai et al. 2016). The 

correction can be performed using the number of wet days in a month (Osuch et al. 2016). 

Because of this bias in precipitation, using direct climate model output as inputs to hydrological 

modelling for low flow analysis often leads to unrealistic results and therefore bias correction is 

required in the case of low flow projections. 

 

RC7. Section 3.6 and Conclusion 5 (v): Is ANOVA method a global or local sensitivity analysis 

method? Can interactions (parameter etc.) be assessed using this method? Why ANOVA is used 

instead of other elementary and global methods e.g. Morris, SOBOL, PEST, FAST etc. These 

aspects of the ANOVA method should be described in section 3.6 and conclusions should follow 

these details. 

 

AC7. Nowadays, many global sensitivity methods have been proposed and used, such as Fourier 

amplitude sensitivity test (FAST), Regional Sensitivity Analysis (RSA), Analysis of Variance 
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(ANOVA), Parameter Estimation Software (PEST), Morris, and Sobol method. Among these 

global sensitivity analysis methods, ANOVA is proved to be one of the most robust and effective 

tools to analyze both continuous and discrete factors (Montgomery, 1997), and it is widely 

applied in hydrology (Bosshard et al., 2013; Zhan, et al., 2013; Lagerwalla, et al., 2014; Addor et 

al.,2014; Giuntoli et al., 2015; Osuch, 2015). We used ANOVA approach due to its numerical 

facility (MATLAB) and ability to evaluate the main and interactive effects between factors 

considered. 

 

RC8. Conclusion bullets are confusing. Two times “iv” exists and sentences are not clear. There 

are typos too. For example Conclusion vi should start with capital. Please rephrase them with 

short and clear conclusions. And relate them to the results section. Bullet conclusions in Demirel 

et al (2013b) can be an example. For each result section one paragraph is given in conclusion.  

 

AC8. Thank you, it is corrected in the main manuscript. 
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The critical role of uncertainty in projections of hydrological 

Extremesextremes 
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Abstract. This paper aims to quantify the uncertainty in the projections of future hydrological extremes in the Biala 

Tarnowska River basinat Koszyce gauging station, south Poland. We follow a multi-modelThe approach followed is 

based on several climate projections obtained from the EURO-CORDEX initiative, raw and downscaled bias-corrected 

realizations of catchment precipitation, and temperature, and flow simulations derived using themultiple hydrological 

HBV model parameter sets. The projections cover the 21
st
 century. Three sources of uncertainty were are considered: 10 

one related to climate projection ensemble spread,the uncertainty in hydrological model parameters uncertainty, the 

second related to the uncertainty in hydrological model parameters climate projection ensemble spread and the third 

related to the error in the theoretical distribution fitting parameter setsfit error. The uncertainty of projected extreme 

indices related to hydrological model parameters was conditioned on flow observations from the reference period using 

the Generalised Likelihood Uncertainty Estimation (GLUE) approach, with separate weightingcriteriona for high and 15 

low flow extremes. Flood Extreme (low and high) flow  quantiles were estimated using the Generalized Extreme Value 

(GEV) distribution at different return periods and were based on two different lengths of the flow time series. The A 

sensitivity analysis based on the Analysis of Variance (ANOVA) shows that the uncertainty introduced by the HBV 

hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the 

low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from 20 

hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources 

may cause great risk to future hydrological extreme adaptations and water resource planning and management.  

1 Introduction  

Hydrological models are useful in water resources planning and management, flood and drought prediction, assessments 

of catchment-scale impacts of climate change, and the understanding of system dynamics. In particular, coupling of 25 

hydrological models and climate models is important in understanding the influence of climate changes on low and high 

flows (Lawrence and Hisdal, 2011; Meresa et al., 2016; Lawrence and Hisdal, 2011). Research on the impact of climate 

changes on future hydrological extremes is usually performed by an application of hydrological models to the projected 

mailto:romanowicz@igf.edu.pl
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meteorological inputs under assumed future climate scenarios (Wilby and Harris, 2006; Honti et al., 2014; Ye et al., 

2016). The standard procedure consists of a chain of consecutive actions, starting from the choice of a Gglobaleneral 

Climatecirculation Mmodel (GCM) driven by an assumed CO2 scenario, through downscaling of climatic forcing to a 

catchment scale, e.g., using the regional climate model (RCM), hydrological modelling and estimation of hydrological 

extreme indices using statistical tools. Each of the serially linked processes involves uncertainties that propagate through 5 

the computational pathway. Among many possible sources of uncertainty, the main sources are the uncertainties related 

to future climate scenarios, climate models, downscaling techniques and hydrological modelling. We cannot directly 

assess the impact of the first three sources of uncertainties on predictions of hydrological extremes in future due to a lack 

of observations of future climate realizations. This is one of the reasons why the term projections is used instead of 

predictions (Honti et al., 2014). Therefore these first three sources of uncertainty have an “epistemic” nature and cannot 10 

be decreased (Beven, 2016). On the other hand, the introduction of conditioning based on available past observations of 

climatic and hydrological variables allows a decrease of the “predictive” hydrological model uncertainty to be achieved. 

The calibrated hydrological models are forced with climate projections derived from climate models. However, 

hydrological models that produce acceptable results for an observed baseline period may respond differently when 

forced with the climate change scenario (Gosling and Arnell, 2011; Thompson et al., 2013; Lespinas et al., 2014; 15 

Gosling and Arnell, 2011). For several decades interest in hydrological structural and parameter uncertainty has been 

increasing and has become an important part of modelling (Ouyang et al., 2014; Sellami et al., 2014; Osuch et al., 2015; 

Sellami et al., 2014). It has been widely verified and acknowledged that different model structures and parameterizations 

can lead to similar responses and, thus, there are no unique structure and parameter sets for acceptable or behavioural 

hydrological model responses for reproducing the observation data (Beven, 2006; Puaoulin et al., 2011). In addition to 20 

the parameter and structural uncertainty (Puaoulin et al., 2011), the hydrological model is also exposed to uncertainty 

which arises from various sources not directly mentioned above, including interdependency among the climate models 

(Wilby and Harris, 2006; Tian et al., 2016; Ghosh et al.and Katkar, 200912; Tian et al., 2016; Wilby and Harris, 2009). 

The issues of uncertainty in hydrological modelling and hydrological projections due to climate change are not 

new; there is much research published on this subject in global and regional studies (Todd et al., 2011; Addor et al., 25 

2014, Abbaspour et al., 2015). However, few of the case studies at a catchment level were trying to assess the influence 

of uncertain future and hydrological parameter uncertainty (Puaoulin et al., 2011; Bennett et. al., 2012; Vormoor et.al., 

2015; Stenschneider et al., 2012, 2015; Vormoor et.al., 2015). Research on the impact of climate changes on future 

hydrological extremes is usually performed by an application of hydrological models for the projected meteorological 

inputs under assumed future climate scenarios (Wilby and Harris, 2006; Honti et al., 2014; Ye et al., 2016). The standard 30 

procedure consists of a chain of consecutive actions, starting from the choice of a GCM driven by an assumed CO2 

scenario, through downscaling of climatic forcing to a catchment scale, hydrological modelling and estimation of 

hydrological extreme indices using statistical tools. Each of the serially linked processes involves uncertainties that 
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propagate through the computational pathway. Among many possible sources of uncertainty, the main sources are the 

uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological modelling. 

Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on predictions of 

hydrological extremes in future due to a lack of observations of future climate realizations. This is one of the reasons 

why the term projections is used instead of predictions (Honti et al., 2014). The introduction of inverse 5 

modellingconditioning, based on available past observations of climatic and hydrological variables, allows a decrease of 

some types of uncertainty to be achieved. The “predictive” model uncertainty is the only one which can be decreased 

when conditioned on the observations. The other sources of uncertainty have an “epistemic” nature and cannot be 

decreased (REF, XXX).  

Bias correction methods are usually applied to decrease the errors related to global simulation models and 10 

downscaling techniques (Sunyer et al., 2015; Vormoor et al., 2015). The hydrological model structural and parametric 

errors are dealt with using a multi-model approach and weighting introducing weights for hydrological model parameters 

parameter sets following assumed goodness of fit criteria, (e.g. in the form of a likelihood function (Wilby and Harris, 

2006, Steinschneider et al., 2012). Addor et al. (2014) concentrated on the influence of different hydrological model 

structure, involving three hydrological models, emission scenarios, climate models, post-processing and catchments. 15 

Their results indicate that influence of model structure varies with the catchment. However the authors did not take into 

account hydrological model parameter uncertainty, which is the main focus of the present paper. An assessment of the 

spread of future realizations of extreme indices, their consistency, and the relative tendency of changes are used to 

evaluate the projectionsFollowing the results presented by  (Demirel et al., (2013a) the choice of the GCM/RCM has 

larger influence than the choice of the emission scenario on the projections of low flow indices.  Similar findings for the 20 

high-flow indices were presented by, Alfieri et al., 2015).  Osuch et al. (2016). There is a general agreement that we 

cannot avoid uncertainty in climate models (Knutti and Sedlacek, 2012). The question arises as to how large anthe 

uncertainty is and if it is acceptable to the end-user in adaptations to climate change and flood and drought risk 

assessments. 

 25 

               Hydrological models are useful in water resources planning and management, flood and drought prediction, 

catchment scale climate change impact assessment, and understanding of system dynamics. In particular, coupling of 

hydrological models and climate models is important in understanding the influence of climate changes on low and high 

flows (Meresa et al., 2016; Lawrence and Hisdal, 2011). However, complex hydrological and climate models can 

neverare diificult to be accurately evaluated, because of uncertainty in observations, parameters and model structure 30 

simplifications (Lespinas et al., 2014; Abbaspour et al., 2015). Therefore developing a proper strategy to assess and 

quantify the uncertainty sources in projected hydrological extremes, which result from climate projections and 

hydrological modelling will enable decision makers, engineers and managers to move forward more effectively with 
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climate change adaptation planning and assure future water resource sustainability for the next generation (Honti et. al., 

2014). The issues of uncertainty in hydrological modelling and hydrological projection due to climate change are not 

new, there is much research published on this subject in global and regional studies (Todd et al., 2011; Addor et al., 

2014), however, few of the case studies at a catchment level were trying to assess the influence of uncertain future and 

hydrological parameter uncertainty (Pualin et al., 2011; Bennett et. al., 2012; Vormoor et.al., 2015; Stenschneider et al., 5 

2012, 2015). For several decades’ interest in hydrological structural and parameter uncertainty has been increasing and 

has become an important part of modelling (Ouyang et al., 2014; Osuch et al., 2015; Sellami et al., 2014). It has been 

widely verified and acknowledged that different model structures and parameterizations can lead to similar responses 

and, thus, there are no unique structure and parameter sets for acceptable or behavioural hydrological model responses 

for reproducing the observation data (Beven, 2006; Pualin et al., 2011). The calibrated hydrological models are forced 10 

with climate projections derived from climate models. However, hydrological models that produce acceptable results for 

an observed baseline period may respond differently when forced with the climate change scenario (Thompson et al., 

2013; Lespinas et al., 2014; Gosling and Arnell, 2011). In addition to the parameter and structural uncertainty (Pualin et 

al., 2011), the hydrological model is also exposed to uncertainty which arises from various sources, including greenhouse 

gas emission scenarios and inter-dependency among the climate models (Tian et al., 2016; Ghosh et al., 2009; Wilby and 15 

Harris, 2009). 

 The uncertainty in the HBV model parameters was compared with the other studies, including Osuch (2015) and 

Demirel et al (2013b). Demirel et al. (2013b) explored the influence of uncertainty in input, hydrological model 

parameters and initial conditions on a 10-day ensemble flow forecasts. The results showed that parameter uncertainty 

had the largest effect on the medium range low flow forecasts, which is consistent with the present paper findings. Addor 20 

et al. (2014) concentrated on the influence of different hydrological model structure, involving three hydrological 

models, emission scenarios, climate models, post-processing and catchments. Their results indicate that influence of 

model structure varies with the catchment. However the authors did not take into account hydrological model parameter 

uncertainty, which is the main focus of the present paper. Osuch (2015) compared three sensitivity analysis techniques to 

describe the HBV model parameter interactions. We used the output of that paper to eliminated less sensitive HBV 25 

model parameters in order to minimize computational cost.           

In this study, we assess the critical role of the uncertainty in the projection of future hydrological extremes in 

the BialaTarnowska Biala Tarnowska mountainous catchment in Poland in the 21
st
 century. We consider three sources of 

uncertainty. These are climate projection uncertainty, hydrological model parameter uncertainty, meteorologicalclimate 

projection uncertainty and distribution fit parameter uncertainty. Bearing in mind the aims of the study, we restricted the 30 

sources of epistemic uncertainty to those which have the largest impact – i.e. climate model spread, omitting the 

uncertainty related to bias correction or geography. The choice of these three particular sources of uncertainty was 

dictated by one aim of the research – i.e. an assessment of the influence of hydrological model uncertainty on projections 
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of low- and high-flow extremes and the relative contribution of that “predictive” uncertainty  in the spread of extreme 

indices related to the spread of seven climate models and the distribution fitting error. We restricted the sources of 

epistemic uncertainty to those which have the largest impact – i.e. climate model spread, omitting the uncertainty related 

to bias correction or geographymorphology of the catchment. The error related to the distribution fit was included as an 

essential part of the extreme index evaluation, which requires extrapolation of annual maximum or minimum flow 5 

distributions to higher order quantiles (e.g. 1-in-100 year, or 1-in-200 year). Osuch et al. (2016) presented the influence 

of emission scenario, climate model, bias correction method and geographycatchment on flow indices in a case study 

that included the same catchment, Biala Tarnowska. In this respect, our paper is an extension of that paper, focusing on 

the influence of hydrological model uncertainty on annual maximum and minimum flow projections.  

We apply the a non-formal approach to estimate the uncertainty related to hydrological model parameters, 10 

namely, the Generalized Likelihood Uncertainty Estimation (GLUE) method of Beven and Binley (1992, 2016). The 

other sources of uncertainty are dealt with by means of ana direct assessment of the variability in relative change of 

extreme index estimates. Seven MeteorologicalCclimate projections applied are derived from the high-resolution 

regional climate change ensemble within the World Climate Research Program Coordinated Regional Downscaling 

Experiment (EURO-CORDEX) initiative (Jacob et al., 2014).  15 

                Two separate goodness-of-fit criteria are chosen to constrain the hydrological parameter uncertainty 

of high and low flow estimates. In this way, different parameter sets are chosen for the description of high and low flow 

catchment regimes. This approach does not eliminate the problem of parameter non-stationarity but helps to choose the 

model behaviour adequate to the flow regime. The uncertainty related to the distribution fit is analysed in two stages, 

using, separately, the 30-year long and 130-year long time series of future flow projections to derive the quantiles of 20 

maximum and minimum annual flows. The popular method of a comparison of changes in flow quantiles between the 

reference period and future periods is based on relatively short (e.g. 30-year) periods. It is well known that an 

extrapolation of a distribution function based on a 30-year long time series towards 1-in-100 year quantiles involves very 

large errors (Strupczewski et al., 2011). Even the estimates of 1-in-30 year quantiles based on the 30-year long data are 

biased with large errors. We compare these errors with those involved on 1-in-10030 year quantile estimates obtained 25 

using the 130 year long time series. The question we pose is whether the estimates of future trends of extreme indices 

and their relative changes can be useful at all in view of the uncertainties involved.The uncertainty related to the 

distribution fit is analysed using different lengths of flow record to derive the quantiles of maximum and minimum 

annual flows. The popular method of a comparison of changes in flow quantiles between the reference period and future 

periods is based on relatively short (e.g. 30-year) periods. The question we pose is whether the estimates of future trends 30 

of extreme indices and their relative changes can be useful at all in view of the uncertainties involved. 
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              The paper is organized into five sections. The second and third sections describe, respectively, the case study 

and the methodology applied. The fourth section presents the results and discussions of the uncertainty analysis and 

derived changes in future low and high flow extremes; the fifth section presents the conclusions. 

2 Study areas and Hydro-climate data  

2.1 Study areas and observed data characteristics  5 

The BialaTarnowskaBiala Tarnowska catchment, located in the mountainous part of Poland, was chosen as a case study. 

This catchment is one of the representative Polish catchments chosen following an extensive analysis of available hydro-

meteorological and geomorphological data (Romanowicz et al., 2016). The catchment area is about 9676.9 km
2
, with 

forests covering much of the upper elevations and the river characterized by nearly-natural conditions. The location of 

the catchment is given in Fig. 1. Precipitation varies in intensity and duration over the catchment area. Observations from 10 

five gauging stations were used to derive aerial precipitation in the catchment by means of Thiessen polygons. No 

elevation correction was applied in this study. However it was applied to the same catchment by Benninga et al (2016) 

and showed that the increase in precipitation due to the elevation is about 3%.The Thiessen polygon method was applied 

to have the most representative precipitation data. The annual maximum precipitation, annual minimum streamflow and 

annual mean streamflow of the catchment was were 68.3 mm, 0.4 m
3
s

-1
 and 5.43 m

3
s

-1
 respectively over the observation 15 

period (1971-2000). 

           Biala Tarnowska has a mixed (rainfall and snow-melt originated) flood regime. In this study, daily hydro-

meteorological observations and estimated potential evapotranspiration were used as an input to the hydrological model 

HBV (BergstrmBergström, 1995). Observed historical hydrological and climate daily time series of precipitation, 

temperature and flow for 39 years from November 1970 to October 2010 were obtained from the National Water 20 

Resource and Meteorology Office (IMGW) in Poland. Daily potential evapotranspiration was calculated using the 

temperature based Hamon approach (Hamon, 1961). The daily flow data from the Koszyce Wielkie hydrological station 

for a period of 39 years (1971-2010) were used in the calibration (1971-2000) and validation (2001-2010) stages. 

2.2 Future climate data 

Daily temperature and precipitation projections were obtained from the EURO-CORDEX initiative project 25 

(http://www.eurocordex.net/) that which provides regional climate projections at a spatial resolution of 12.5 km (EUR-

11) for median (RCP45) emission scenario and covering the time period 1971-2100 (Kotlarski et al., 20142014). This 

ensemble contains four different RCMs driven by three different GCMs. The names and model affiliations are given in 

Table 1. (see Table 1 for the name and model details): CNRM-CM5-CCLM4-8-17, EC-EARTHCCLM4-8-17, EC-

EARTH-HIRHAM5, EC-EARTHRACMO22E, EC-EARTH-RCA4, MPI-ESM-LR-CCLM4-8-17, and MPI-ESMLR-30 
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RCA4. The RCP 4.5 was applied because it is a stabilization scenario and thus assumes the imposition of emissions 

mitigation policies. The RCP 4.5 is derived from its own “reference”, or “no-climate-policy”, scenario. This reference 

scenario is unique to RCP 4.5 and differs from RCP 8.5, RCP 6.0 and RCP 2.6 (Smith and Wigley 2006; Clarke et al. 

2007; Wise et al. 2009). The influence of the emission scenario on flood indices was studied by Osuch et al. (2016) 

whilst the low flows were analysed by Demirel et al. (2013a) and Osuch et al. (2017). Both tThose studies indicated that 5 

the choice of emission scenario choice has a relatively small influence on the results.  

3 Methodology   

3.1 Research approach  

The approach applied here to the derivation of future projections of flow extremes follows the forward modelling chain 

(Wilby and Harris, 20092006) and consists of the following steps: (i) choice of climate projections simulated using the 10 

ensemble of GCM/RCMs under the assumed carbon emission scenario (here RCP4.5) and dynamically downscaled to 

the catchment scale; (ii) bias correction of projected meteorological time series of temperature and precipitation; (iii) 

hydrological simulations of flow extremes using raw and bias-corrected meteorological projections for a set of 

hydrological model parameters; (iv) derivation of extreme flow indices using empirical and distribution-based frequency 

analysis tools and different temporal resolutiontwo different lengths of time series (30 and 130 years) of the analysed 15 

flow extremes. The assessment of projection uncertainty is performed by running multiple simulations and evaluating the 

impact of each of the chain modules on the total uncertainty of the results (Wilby and Harris, 2006; Steinschneider et al., 

2012Tian et al., 2016). 

3.2 Climate projections: bias correction  

The downscaling of the GCM output using either statistical or dynamic (RCM) approaches does not take into account 20 

any feedback mechanisms existing within land-surface processes and therefore the meteorological projections can be 

biased (Falloon et al., 2014). Several studies have identified the need to check and correct bias, in the GCM/RCMs 

output, before its use in impact studies (Gudmundsson et al., 2012; Gutjahr and Heinemann, 2013; Teutschbein and 

Seibert, 2013; Teng et al., 20142015). Most of those studies were focused on mean output values. Osuch et al., (2016) 

compared five different distribution-based  Quantile Mapping (QM) mapping techniques applied in the derivation of 25 

extreme flow indices (flow quantiles and mean annual maximum flow). Their results showed the single gamma 

distribution mapping to be the one which produced the observed characteristics most accurately of all the techniques 

studied. However, a the distribution-based Quantile Mapping (QM) technique applied to an observed and simulated 

precipitation series in the reference period (1971-2000) may result in an alteration of the modelled maximum runoff 

(Ehret et al., 2012; Teng et al., 20142015; Ehret et al., 2012). On the other hand, the low extreme values require bias-30 
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corrected precipitation input due to the persistent and unrealistic drizzle present in raw precipitation data (Dimirel et al., 

2013). The drizzle effect (i.e., too many days with very low precipitation intensity and too few dry days) is related to the 

performance of climate models. It presents itself in the form of frequent rainfall of a very small intensity. The physics 

behind precipitation generation is very complex and involves processes operating on a wide range of scales. The frequent 

’drizzle’ is produced mainly by convective parameterization. It appears in many climate models and invokes errors in the 5 

intensity and frequency of precipitation (Terai et al., 2016). A correction can be performed using the number of wet days 

in a month (Osuch et al., 2016). Because of this bias in precipitation, using direct climate model output as inputs to 

hydrological modelling for low flow analysis often leads to unrealistic results and therefore bias correction is required in 

the case of low flow projections. Therefore, in this study, we apply both the QM corrected precipitation projections for 

the estimation of low-flow extremes and raw precipitation projections RCM/GCMs projections for future runoff 10 

simulationshigh-flow extremes. Bias-corrected temperature projections using the empirical QM approach were applied 

for both high and low flows. 

3.3 Hydrological modelling   

The HBV hydrological model version applied is based on Lindstrom et al., (1997) and it is written in Matlab®. HBV It is 

a lumped conceptual multi-reservoir-type model for daily runoff simulation from daily inputs (Lindstrom et al., 1997). 15 

The original MATLAB code from the Twente University, NL, was further developed and adjusted for the purpose of 

climate impact studies in the Institute of Geophysics PAS. The model uses rainfallprecipitation, air temperature and 

potential evaporation data as inputs. The HBV model has four main routines: (i) snow; (ii) soil moisture; (iii) fast 

response; and (iv) slow response routing. These routines are governed mainly by fourteen HBV parameters, of which, six 

(TT, TTI, CFMAX, DTTM, CFR, WHC), three (FC, LP, BETA), two three (KF, ALPHA, CFLUX) and one two (KS, 20 

PERC) parameters are representing each  routine respectively. Not all HBV model parameters have significant impact on 

the simulated flows. The HBV model was applied in different hydro-climatic conditions by many researchers (e.g., 

Seibert and McDonnel, 2010), Demirel et al., 2013b). Romanowicz et al., (2013) discussed the most sensitive parameters 

of the HBV model for both high flow and low flow characteristics. Other studies of the HBV model parameter sensitivity 

were presented by Osuch (2015) and Osuch et al. (2015). The set of fivesix most sensitive parameters for the extreme 25 

high and low flow conditions was chosen following those studies. These are FC, BETA, LP, KS, CFMAX and PERC. 

Therefore, following the study of Osuch et al., (2015) five sensitive parameters for the model output have been selected. 

These are FC, BETA, LP, KS and PERC. Further information and aA full description of the HBV hydrological model 

which we used can be found in Osuch et al. (2015). Osuch et al. (2015) also compared three sensitivity analysis 

techniques to describe the HBV model parameter interactions. We used the output of that paper to eliminated less 30 

sensitive HBV model parameters in order to minimize computational cost.          Romanowicz et al., (2016). 
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                  Hydrological models are usually calibrated using the available observations under the assumption of 

stationarity of their parameters. Depending on the purpose of the modelling, different criteria may be used (Romanowicz 

et al., 2013). Usually, the research is aimed at finding the compromise of a model performance between high and low 

flow simulations. The Nash-Sutcliffe criterion (NSE) (Nash and Sutcliffe, 1970) belongs to those most widely used. 

When based on the whole calibration observation series, it provides parameter sets that favour medium-to-high flows 5 

(Gupta et al., 2009). Deckers et al., (2010) applied different time periods of observations related to high and low flows. 

The authors used multi-objective criteria that combined different aspects of model performance. However, we do not 

always need to look for a compromise in model performance when choosing the parameter sets of a model. In the case 

wWhere hydrological extremes are concerned, the average model performance is not of interest. Rather, we want to 

obtain robust model performance for very low or very high flow values. Therefore, in this study we use two objective 10 

functions to encapsulate the high and low flow characteristics. The NSE criterion is used here to calibrate the high-flow-

oriented HBV model. The low-flow HBV model is calibrated using the NSE for the logarithm of flow (logNSE). The 

criteria are defined as follows: 

𝑁𝑆𝐸𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑡,𝑠𝑖𝑚−𝑄𝑡,𝑜𝑏𝑠)

2𝑇
𝑡=1

∑ (𝑄𝑡,𝑜𝑏𝑠−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑇
𝑡=1

 ,          (1) 

𝑁𝑆𝐸(log)𝑙𝑜𝑔𝑁𝑆𝐸 = 1 −
∑ (log(𝑄𝑡,𝑠𝑖𝑚)−log(𝑄𝑡,𝑜𝑏𝑠))

2𝑇
𝑡=1

∑ (log(𝑄𝑡,𝑜𝑏𝑠)−log(𝑄𝑜𝑏𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑇
𝑡=1

,                                                                                                                       15 

(2)             

     Where 𝑄𝑡,𝑠𝑖𝑚  denotes simulated flow in time t (here days)t, t=1,…,T;,  𝑄𝑡,𝑜𝑏𝑠 denotes observed flow in time t, ; 

𝑄𝑡,𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅ denotes mean observed flow and log(𝑄𝑡,𝑜𝑏𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes mean of logarithm of flows. 

           Depending on the formulation of the problem, either deterministic or stochastic methods can be used to derive a 

set of the best model parameters (Romanowicz and Macdonald, 2005). In this study we use the a stochastic formulation 20 

and we apply the Generalized Likelihood Uncertainty Estimation GLUE approach of Beven and Binley (1992) to 

calibrate the HBV model and provide an estimation of the model parameter uncertainty.  

3.4 Hydrological model parameter uncertainty    

The GLUE approach is one of the non-formal statistical methods that involve direct Monte Carlo MC simulations. 

Following that approach, tThe entire parameter space is explored by running the model simulations for a large number of 25 

parameter combinations and evaluating the model response using some chosen goodness of fit criterion (Beven, 2007). 

In this method tThe idea of an optimal system representation is rejected and the equifinality concept is accepted for the 

behavioural parameter sets. 

                Following that approach, the parameter space is sampled over the whole feasible range and the errors between 

simulated model results and observations are used to derive the parameter set weighting. The number of samples depends 30 
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on the number of model parameters but also on the model computing times and it may vary from hundreds to hundreds 

of thousands (Beven and Binley, 2014). Many research papers recommend over 10000 MC simulations (Xiaoli Jin et al., 

2010, Romanowicz et al., 2013, Houska et al., 2014). The HBV model is not very computer-time demanding and 20 000 

simulations were applied. That number was dictated by the practical requirement of dealing with not too large data files. 

In this study we apply the version of GLUE that uses the behavioural parameter sets, defined by a threshold value of the 5 

selected criterion (Beven, 20092006). The behavioural thresholds for both criteria are selected following the model 

performance in the validation calibration period. The choice of high threshold values results in narrow confidence limits 

of the predictions and (usually) a small behavioural parameter set. However, when the chosen threshold is too high, the 

0.95 confidence limits do not include 95% of the observations. On the other hand, too low a threshold value will result in 

too wide confidence limits. Therefore it is important to choose the right threshold value. In this work the threshold values 10 

are chosen in an iterative way.by the “trial and error approach”. The choice of two different criteria, one for high and one 

for low flow extremes, yields two different behavioural parameter sets describing model performance in two different 

(low- and high- flow) hydro-meteorological conditions. 

 

3.5 Uncertainty related to fitting the Generalized Extreme Value Distribution GEV distribution (Generalized 15 

Extreme Value Distribution)  to extreme flow projections   

The GEV distribution is a family of continuous probability distributions that combines theWeibull, Gumbel (EV1) and 

Frechet distributions (Cunnane, 1989). GEV makes use of three parameters: scale, location and shape. The scale 

parameter describes how spread out the distribution is, and defines where the mass of the distribution lies. The 

distribution will become more spread out as the scale parameter increases. The location parameter describes the swing of 20 

a distribution in a given direction on the horizontal axis. The third parameter in the GEV family is the shape parameter, 

which strictly affects the shape of the distribution, and governs the tail of a distribution. The GEV density function has 

the form: 

𝐺(𝑥) = exp{− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−1

𝜉
}                                                                                                                                                                                       

(3) 25 

      Where: σ, μ and ξ are called the scale, location and shape parameters, respectively. The shape parameter is derived 

from skewness, as it represents where the majority of the data lies, which creates the tail of a distribution. 

              A distribution with a large number of flexible parameters, such as GEV, will be able to model the input data 

more accurately than a distribution with a small number of parameters. 

               In this study we use GEV distribution to perform frequency analyses for both annual maximum flow and 30 

annual minimum flow projections. The choice of this distribution was dictated by its overall good performance during 

the frequency analysis of the observed annual maximum and minimum flows for the BialaTarnowska. In addition, GEV 
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parameters can be estimated together with the 0.95 confidence interval which allows the uncertainty that comes from the 

distribution fitting to be assessed. 

The choice of the Generalized Extreme Value Distribution GEV (Coles, 2001) followed the validation of suitability of 

this distribution to describe the projected annual maximum and minimum flows using probability plots for the 

BialaTarnowskaBiala Tarnowska. The MATLAB - based GEV distribution fitting algorithmmodel was applied to all the 5 

climate models and the a posteriori hydrological model parameter sets. Thise MATLAB-based GEV-fitting algorithm 

provides estimates of the median and the 0.95 confidence bands for the parameters of  GEV distribution. These 

parameters were subsequently used to obtain lower and upper confidence bands of quantiles of extreme index 

distribution through the inverse GEV model (Coles, 2001, eq. 3.4). In order to simplify the procedure, instead of 

sampling from the GEV parameters within the parameter space common to all hydrologic and climate model 10 

simulations, we sampled from each set of parameters assuming a normal distribution with the variance specified by the 

GEV parameter lower and upper 0.95 confidence values, and in addition, assuming the independence of the GEV model 

parameters. The obtained 0.95 GEV distribution confidence values were used to estimate the spread of results related to 

the distribution fit. Bearing in mind that the aim of this study was to assess the ranges of uncertainty of extreme indices 

rather than their exact values, and the large number of simulations, it was not possible to choose among different 15 

distribution functions the best distribution for each projected time series.  

3.6  Sensitivity analysis using ANOVA: variance decomposition     

A sensitivity analysis can be performed using regression- or variance- based techniques. Regression based techniques use 

a regression model of the output on the input vector and variance based techniques decompose the variance of the output 

as an aggregation of contributions of each input variable/components. The most popular variance based techniques are 20 

called ANOVA (ANalysis Of VAriance).Nowadays, mMany global sensitivity methods have been proposed and used, 

such as Fourier aAmplitude sSensitivity tTest (FAST), Regional Sensitivity Analysis (RSA), Analysis of Variance 

(ANOVA), Parameter Estimation Software (PEST), Morris, and Sobol method (Saltelli et al., 2006). Among these global 

sensitivity analysis methods, ANOVA ihas proved to be one of the most robust and effective tools to analyze both 

continuous and discrete factors (Montgomery, 1997), and it is widely applied in hydrology (Bosshard et al., 2013; Zhan, 25 

et al., 2013; Lagerwalla, et al., 2014; Addor et al., 2014; Giuntoli et al., 2015; Osuch, 2015). We used the ANOVA 

(ANalysis Of VAriance) approach due to its numerical facility (MATLAB) and ability to evaluate the main and 

interactive effects between the factors considered. To identify the relative contribution of each source of uncertainty, 

(corresponding to the parameter sets (PARPAR), climate models (CMCM) and parameter distribution sets (DISDIS),) from 

the aggregated spreared of flow quantile change in the near and far future, we use the following ANOVA model: 30 

𝑇𝑆𝑆𝑆𝑆𝑖𝑗𝑘 = 𝜇 + 𝑃𝐴𝑅𝐴𝑅𝑖 + 𝐶𝑀𝑀𝑗 + 𝐷𝐼𝑆𝐼𝑆𝑘 + (𝑃𝐴𝑅𝑃𝐴𝑅 + 𝐶𝑀𝐶𝑀)𝑖𝑗 + (𝑃𝐴𝑅𝑃𝐴𝑅 + 𝐷𝐼𝑆𝐷𝐼𝑆)𝑖𝑘 + (𝐶𝑀𝐶𝑀 + 𝐷𝐼𝑆𝐷𝐼𝑆)𝑗𝑘 +

𝜀𝑖𝑗𝑘                                                    (43) 
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Where: 𝑇𝑆𝑆𝑆𝑆𝑖𝑗𝑘  is a total sum squaredsquared error for the specific hydrological extreme indicator (e.g. relative change 

in Q30QT30) for the i
th 

parameter sets range, j
th

 climate model and k
th

 distribution parameter range and μ is the overall 

mean and 𝜀𝑖𝑗𝑘 denotes the white Gaussian error. 

3.7  Design of Results   and discussionnumerical experiments  

We present here an assessment of the uncertainty in projected hydrological extremes for two different lengths of data 5 

periods. Firstly, the annual maximum and minimum flow quantiles are derived for 30-year periods, the so-called near 

future (2021-2050), and far-future (2071-2100) and are compared with the reference period (1971-2000). Secondly, a 

frequency analysis of annual maximum and minimum flows is performed based on the whole 130 years of seven 

GCM/RCM projections for the period 1971-2100. Since the Biala Tarnowska flow projections do not show any non-

stationarity in extreme flow events (Meresa et al., 2017), it is possible to compare the uncertainty of estimates of extreme 10 

indices obtained from the 30-year long and 130-year long time series. It can be expected that the uncertainty of extreme 

flow quantiles will be larger for short time series, but we do not know how much larger it can be and therefore that 

comparison is not obvious. The comparison can help in answering our research question on how reliable is the approach 

commonly used in climate impact studies consisting of a comparison of 30-year based estimates of extreme flow indices 

between reference and future periods. 15 

 

       20000 uniform samples of HBV model parameters were obtained with parameter ranges presented in Table 2. That 

number was dictated by the practical requirement of dealing with not too large data files. The parameter ranges were 

chosen following the results of deterministic optimisation performed earlier and reported by Romanowicz et al. (2016) 

and they include the derived optimal values. The range of parameter variability was chosen following the HBV model 20 

sensitivity studies reported by Osuch (2015). As discussed earlier, we focus on three sources of uncertainty, the first 

related to the HBV model input, in the form of ensemble projections of temperature and precipitation, the second, related 

to hydrological model parameter uncertainty and the third related to the extreme index distribution fitting uncertainty. 

The latter was evaluated using 10000  MC normal samples of the GEV model parameter space. In As a result we 

obtained 20000 daily flow simulations 130 years long for raw and bi-as corrected climate model projections for an 25 

ensemble of seven GCM/RCMs listed in Table 1. This gives all together 280000 flow time-series used to derive extreme 

flow quantiles.. 
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4 Results and Discussion   discussion    

4.1 Variability of projected precipitation and temperature series      

In the following section, we present an analysis an analysis of the variability of maximum precipitation and temperature 

series on annual basis. to see the correlation between the projected hydrological extremes and the input climate extremes. 

The idea behind presenting the precipitation and temperature patterns was to show the variability of driving forces 5 

behind the changes in the flow extreme indices. For a catchment of that size, dailyannual maximum and mean sums of 

precipitation are well correlated with the flow patterns when the rainfall-driven flood regime prevails. The temperature 

patterns, on the other hand, present the changes in the evaporation losses and possibly, indicate changes in the flood 

regime. In Fig. 2, raw annual maximum daily precipitation and temperature time series for the Biala Tarnowska 

catchment obtained from the seven GCM/RCM models under the RCP4.5 scenario are shown. The periods cover the 10 

whole length of historical and projected years (1971-2100). The upper panel of Fig. 2 presents annual sum precipitation 

based on corrected precipitation projections (the upper panel), the annual maximum precipitation based on raw 

projections (is shown in the middle panel,) and temperature mean projections for bias-corrected data are presented in the 

lower panel. The annual sum precipitation illustrates the low-flow patterns whilst the annual maximum precipitation 

corresponds to possible flow maxima. The results show a visible increase of the annual maximum mean temperature 15 

trend and an increase of temporal variability with time, in particular for the maximum precipitation values from 2016 

onward. 

4.2 Calibration and validation of hydrological model: GLUE analysis      

As explained in the section 3.3, a stochastic formulation is applied to the estimation of the HBV model parameters. That 

means, 20000 simulations of the HBV model were run for the 30-year long calibration period (1971-2000) with 20 

parameters sampled randomly within the assumed parameter ranges (Table 2). The calibration was performed using the 

observed precipitation, and temperature from the Biala Tarnowska catchment and flow records from the Koszyce 

gauging station for the period 1971-2000 for the calibration and 2001-2010 for the validation stage. We applied the NSE 

criterion (eq. 1) for the high flow and the logNSElogNSE criterion (eq. 2) for the low flow to all the simulated flow 

series. The thresholds for the criteria, called likelihood thresholds were evaluated (Beven and Binley, 2014) by the “trial 25 

and error approach”. As a result, two multiple sets (each including thousands of parameter sets) representing “high” and 

“low” flow modes of the HBV model performance have been derived. Following the discussion presented in section 3.3, 

we applied different criteria for high and low flow indices. The threshold value of a goodness of fit criterion determining 

the GLUE-based behavioural model parameter set for high flow indices was selected at 0.55 of the NSE (Table 3). The 

threshold value was selected to assure that 95% of observations lay within the 0.95 confidence bands. The sample size of 30 

this behavioural set is 8616. The maximum Nash-Sutcliffe efficiency (NSE) values over the calibration and validation 
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periods are 0.79 and 0.75, respectively. The low-flow model parameter set was selected using the NSE of log-

transformed flow values (logNSE) with the threshold set at 0.3 and the obtained sample size obtained is 1625 (Table 3). 

This part of the analysis is was performed using the observations of precipitation and temperature from the 

BialaTarnowskaBiala Tarnowska catchment and observed flows from the Koszyce gauging station for the period 1971-

2000 for the calibration and 2001-2010 for the validation stage.  5 

    Fig. 3 shows the cumulative density functions (cdf) of observed daily hydrographs for the calibration and validation 

periods, as well as the cdf of flow estimates generated from the posterior distribution of the HBV model parameters. The 

upper panel presents the cdf of model predictions conditioned on the NSE, while the lower panel presents the cdf of 

predictions conditioned on the logNSElogNSE criterion. Also shown are the 0.95 confidence bands in the form of dashed 

lines. These confidence bands are much narrower for the NSElogNSElogNSE weights than for the NSE conditioning. 10 

This indicates the strong influence of low flow predictions on the HBV model performance. Moreover, the shape of the 

cdfs suggests that the logarithmic transformation of flows gives a superior match of simulations to the observations in 

comparison with the NSE criterion.  

4.3 Temporal variability of projected hydrological extremes 

In Fig. 4, bias corrected the ‘best’ annual extreme time series of projected flow (mean from the ensemble of seven 15 

climate models), corresponding to the deterministic ‘optimal’ parameter sets of projected flow (mean from the ensemble 

of seven climate models) for the River BialaTarnowskaBiala Tarnowska at Koszyce are shown. The upper panel of Fig. 

4 presents annual maximum flows, and the annual minimum flows are presented in the lower panel. These results were 

obtained from the HBV model simulations fed by the precipitation and temperature projections obtained from the seven 

GCM/RCM models under the RCP4.5 scenario for the parameter sets from the MC parameter samples giving the highest 20 

weights derived from the NSE for the high flows, and logNSElogNSE for the low flows, respectively. The raw 

precipitation projections were applied to study the high flow index whilst bias corrected precipitation data were used for 

the low-flow index studies. Results shown in Fig. 4 were obtained from the HBV model simulations fed by the 

precipitation and temperature projections obtained from the seven GCM/RCM models under the RCP4.5 scenario for the 

best parameter sets from the MC samples. Bias corrected temperature and precipitation series were used for low flow 25 

projections while the maximum flow projections were obtained from raw input data. Obtained flow projections shown in 

Fig. 4, follow the rainfallprecipitation projections shown in Fig. 2, with annual maximum flow values even four times 

larger than historical events occurring after 2016 for some GCM/RCM model projections.Obtained flow projections 

follow the rainfall patterns shown in Fig. 2, with extremeannual maximum flow values twice as large aseven four times 

than historical extremes,events occurring after 2016 for some of the GCM/RCM model projections. The upper panel of 30 

Fig. 4 presents annual maximum flows, while and the annual minimum flows are presented in the lower panel. These 
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time series cover the whole length of the reference and projected years simulated (1971-2100) in an attempt to identify 

general temporal variabilities in the high and low flowsflow indices. 

4.4 Evaluation of uncertainty in seasonal flow 

We analysed monthly maximum and minimum daily flows for the raw and bias corrected climate projections in the far-

future (2071-2100) and estimated their uncertainty related to hydrological model parameters. The results of the estimated 5 

median together with 0.95 confidence limits for each month and each GCM/RCMs realization are shown in Fig. 5a for 

monthly maximum flows and in Fig. 5b for monthly minimum flows. The comparison with the spread of minimum and 

maximum monthly flows in the reference period presented in Fig. 5 shows differences between the GCM/RCMs models 

in their depiction of future changes. 

              The monthly maximum flows have a wider range for the first three climate models in April, May, June months 10 

whilst for the remaining four climate models the range looks similar for all months. Particularly, in all climate models 

small range were observed in December, January and February months, similarly as in the reference period. However in 

five out of seven GCM/RCM model realizations May seems to have the highest flows in the year. 

4.3 4.54.4 Changes in extreme flow quantiles (30-year periods) due to the climate model spread 

The empirical quantiles of the future annual maximum and minimum flow projections for the 30-year periods, including 15 

the reference period 1971-2000, the near-future period 2021-2050 and the far-future period 2071-2100 are shown in Fig. 

65. These results present the empirical frequency curves obtained for the best performing hydrological model parameter 

set for seven climate models listed in Table 1, neglecting the hydrological model parameter uncertainty. The A 

comparison of the mean median return periods obtained for the near- and far-future with the mean median in the 

reference period illustrates the predicted changes in quantiles. Substantial decreases in annual minimum flow and 20 

increases in extremely highannual maximum flows for both near- and far-future periods (2021-2050 and 2071-2100) can 

be observed. In the case of maximum annual flow (Fig. 5, upper panelsleft column), the reference quantile curves 

(dashed red lines) are always lower than those from the climate model ensemble medians (dashed green lines), implying 

increases in both frequency and magnitude of annual maximum flows. Following a similar reasoning it can be deducted 

that , the magnitudes and frequency of annual minimum flows decrease in the future (Fig. 5, lower panelsright column). 25 

However, the differences are not as visible as in the case of high flow extremes due to small flow values.If we treat the 

median as a deterministic value, the maximum river flow occurring once every 15 years is projected to increase from 

462.87 to 615.06 m
3
s

-1 
(in the near future) and 462.87 to 582.7 m

3
s

-1
 (in the far-future). In a similar mannerFollowing a 

similar reasoning it can be deducted that , the magnitude and frequency of annual minimum flows decrease in the future 

(Fig. 5, lower panels). For example,In that case, the occurrence of minimum flow ones in every year (1-in-1 year return 30 
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period) s is changing from 1.19 m
3
s

-1
 to 1.29 m

3
s

-1
 in the near- and far- future period. while the occurrence of low flow 

1-in-15 years changes little, from 2.7 m
3
/s to 2.6 m

3
/s in the near-future and from 2.7 m

3
/s to 2.5 m

3
/s in the far-future. 

     The results for high flow extremes are consistent with those published by Osuch et al., (2016), which is not surprising 

when we note that the same GCM/RCM projections were used for the study catchment. The decrease of annual 

minimum flows increase decrease in the future, which is also consistent with the results published by Meresa et al., 5 

(2016).  

From Fig. 5, left column, upper left panel, We we note that the uncertainty of the projected medianempirical high-flow 

quantile at 30-year return period (QT30) values related to the climate model spread exceeds 100% (600 m
3
s

-1
) of the 

projected values for the QT30 in the near near-future. In the contrary, tThe spread of return period projections of QT30 

of annual maximum flows in the far-future decreases in the far-future to 500 m
3
s

-1
 (Fig. 5, upperleft column, rightlower 10 

panel).. Thise smaller spread of the far-future projected changes was also observed in the other climate impact studies on 

the same catchment (Osuch et al., 20176) for both the RCP4.5 and RCP8.5 emission scenarios using the HBV model. 

Research is on-going to explain that phenomenon. Similarly, also the low flow QT30 shows smaller spread for the far 

future period (Fig. 5, lower panelsright column). The fact that the spread is more evenly distributed for minimum flows 

compared to maximum flows is related to the influence of the climate model spread on the simulations. It shows Tthat 15 

climate change extremes have larger influence is much bigger for high flows and not very big for the low flowson flood 

frequency than on low flow frequency. The smaller spread of the far-future projected changes was also observed in the 

other climate impact studies on the same catchment (Osuch et al., 2016) for both the RCP4.5 and RCP8.5 emission 

scenarios using the HBV model. Research is on-going to explain that phenomenon. In addition, low flow simulations 

used bias-corrected meteorological drivers whilst the high-flow simulations were driven by the raw data and bias 20 

correction decreases the variability of climate models. 

 

4.654 Evaluation of combined uncertainty in extreme flow quantiles for 30 and 130 year periods 

The empirical frequency curves do not allow the extrapolation of a return period beyond the available number of 

simulation years to be performed and instead theoretical distributions fitted to the data are applied. In addition, quantiles 25 

are nonlinearly dependent on flow extremes and the averaging the best hydrological projections is not equivalent to 

averaging over the whole set of realizations resulting from the behavioural parameter sets. The results of fitting the GEV 

distribution to annual maximum and minimum flow (Fig.7 6 right panel) for 30 year periods, including the reference 

period (1971-2000), the near-future period (2021-2050) and the far-future period (2071-2100) are presented in Fig. 76. 

The light green and light red pink areas in Fig 7 6 present the uncertainty arising from the combined effect of the 30 

hydrological model parameter uncertainty, ensemble spread and uncertainty related to the GEV fitting, respectively for 

the maximum annual flow (Fig.7 6 left panelcolumn) and the minimum annual flow (Fig. .7 6 right panelcolumn). The 
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quantiles of annual maximum flow show significant spread among the fitted GEV distributions, which is more 

pronounced for higher recurrence intervals whilst the quantiles of minimum annual flow are spread evenly. Comparison 

of empirical and theoretical distribution-based flood frequency curves indicates that “outliers” (single very high flow 

events) have smaller influence on the distribution-based than on empirical flood frequency analyses (Figs. 5 and 6, left 

columns). 5 

       The uncertainties originating in the climate models and the hydrological model parameters were calculated using 

based on a range of the differences between the 0.95 upper confidence bands and 0.05 lower confidence bands as a 

measure of the uncertainty in the ensemble projections that were made using multiple GCM/RCMs, hydrological model 

behavioral parameter sets distribution parameter sets (FFA) and hydrological model behavioral parameter 

setsdistribution parameter sets (FFA). When comparing the total uncertainties, it becomes clear that uncertainties from 10 

climate projections, hydrological model parameter and distribution parameter sets cannot be independently assessed to 

generate reliable predictive bounds for the estimates of hydrologic extremes and their characteristics.   

         Figure 8 7 presents frequency analysis results of annual maximum flow (left panel) and annual minimum flows 

(right panel), based on the 130 years (1971-2100) of simulations of the HBV model. Each colour of shading represents 

the contribution of a different uncertainty source. The green colour denotes the hydrological model uncertainty, the blue 15 

corresponds to climate model spread and the pink colour describes the GEV distribution fit error. This kind of analysis 

does not illustrate the interactions between different sources of uncertainty. Generally, the uncertainty from climate 

models is larger than the other two for the annual maximum flowhigh flow quantiles. On the other hand, for the annual 

minimumlow flow quantiles, hydrological model parameter uncertainty contributes more than the other two sources to 

the uncertainty of the minimum flow frequency and occurrences (Fig. 87). 20 

         The uncertainties of the quantiles of annual maximum flow due to total uncertainty accounted for (climate models, 

parameter sets, distribution fitting parameter sets) for the 30 year (Fig. 76) and 130 year (Fig.87) periods show 

significant differences. Table 4 3 gives a summary of confidence interval ranges obtained for the QT30 based on 

different time periods. In general, the QT30 estimated using the 30 year period is characterized by a much larger 

confidence intervals compared to the QT30 estimated using the 130 year long period. The differences in the width of 25 

confidence intervals vary from about 200 m
3
s

-1
 for the reference period to 1500 m

3
s

-1
 for the near future period (2021-

2050) compared to the 130 year period QT30 estimates. Due to the extrapolation errors, that difference will increase 

substantially for the QT100 index, thus questioning the usefulness of those estimates.  

     The differences obtained for the annual minimum flow QT30 estimates are smaller, suggesting that low flow 

quantiles are less susceptible to the errors related to the length of the evaluation period. The relative differences obtained 30 

for the annual minimum flow QT30 estimates are smaller, suggesting that low flow quantiles are less susceptible to the 

errors related to the length of the evaluation period.  
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The results of the study show that the uncertainties in extreme maximum and extreme minimum indices behave 

differently. In extreme high flow, larger uncertainty is observed from the climate model (ensemble) spread than from the 

other sources. In contrast, for low flows the uncertainty related to hydrological model parameters has a larger impact 

than the other uncertainty sources studied. The important role of hydrological model uncertainty in low flow predictions 

has already been noticed in forecasting (Beninga et al., 2017). That effect can be explained by the ratio of the prediction 5 

noise (in this case described by the hydrological model uncertainty) to the input signal which is much higher for low 

flows. Demirel et al. (2013b) explored the influence of uncertainty in input, hydrological model parameters and initial 

conditions on a 10-day ensemble flow forecasts. The results showed that parameter uncertainty had the largest effect on 

the medium range low flow forecasts, which is consistent with the present paper findings. This implies that ignoring one 

of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource 10 

planning and management. Steinschneider et al. (2012) used the formal statistical approach to quantify uncertainty 

quantiles of monthly flow projections including climate, hydrological model parameter and distribution fit uncertainties. 

In this study we applied the non-formal statistical approach for projections of daily annual extreme low and high flow 

indices. The last point of conclusions (v) draws an attention to the problem of stationarity of future climate projections 

and the resulting projections of annual flow extremes. This issue will be addressed in a further paper on trend analysis of 15 

projections of extreme flow indices (Meresa et al., 2017). 

4.765 Variance decomposition of quantile QT30 values 

Fig. 9 8 shows the results of an application of the ANOVA variance decomposition technique to the percentage change 

of QT30 quantiles derived for the near-future period 2012-2050 relative to the reference period 1971-2000 for high flows 

(left panel) and low flows (right panel). The analysis was performed on the flow simulation sets including all three 20 

sources of uncertainty and conditioned by the NSE weights for high flow quantiles and logNSElogNSE weights for low 

flow quantiles. The symbols correspond to those used in Eq. 43. The correlation between parameters is marked wit a star. 

           The sensitivity analysis presented in Fig. 9 8 confirms our earlier results on the major influence of the climate 

model spread on the total QT30 variability for high flows and supreme influence of hydrological model parameters on 

the variability of low flow QT30. There is also seen a difference in the influence of distribution fit uncertainty, which is 25 

much larger for low flow QT30 variability than for high flow. The sensitivity analysis also confirms the inter-

dependence of different sources of uncertainty, visible mainly for high-flow extremes. 

 

The results of the study show that the uncertainties in extreme maximum and extreme minimum indices behave 

differently. In extreme high flow, larger uncertainty is observed from the climate model (ensemble) spread than 30 

from the other sources. In contrast, for low flows the uncertainty related to hydrological model parameters has a 

larger impact than the other uncertainty sources studied. The important role of hydrological model uncertainty in 
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low flow predictions has already been noticed in forecasting (Beninga et al., 2017). That effect can be explained by 

the ratio of the prediction noise (in this case described by the hydrological model uncertainty) to the input signal 

which is much higher for low flows. Demirel et al. (2013b) explored the influence of uncertainty in input, 

hydrological model parameters and initial conditions on a 10-day ensemble flow forecasts. The results showed 

that parameter uncertainty had the largest effect on the medium range low flow forecasts, which is consistent 5 

with the present paper findings. This implies that ignoring one of the three uncertainty sources may cause great 

risk to future hydrological extreme adaptations and water resource planning and management. Steinschneider et 

al. (2012) used the formal statistical approach to quantify uncertainty quantiles of monthly flow projections 

including climate, hydrological model parameter and distribution fit uncertainties. In this study we applied the 

non-formal statistical approach for projections of daily annual extreme low and high flow indices. The last point 10 

of conclusions (v) draws an attention to the problem of stationarity of future climate projections and the resulting 

projections of annual flow extremes. This issue will be addressed in a further paper on trend analysis of 

projections of extreme flow indices (Meresa et al., 2017). 

 

5. Conclusions  15 

 

The results of the research on the assessment of the uncertainty of extreme hydrological indices can be summarized 

in the following points:  

 

The impact of climate change on hydrological extremes has been widely studied, particularly after the publication of the 20 

IPCC AR4 report in 2007. The methodology applied to derive hydrological extremes under climate change adopted by 

most scientists consists of running a cascade of models, starting from assumed emission scenarios applied to a global 

circulation model (GCM) and ending at hydrological model simulations. Therefore, the projected hydro-meteorological 

extremes are highly uncertain due to uncertainties inherent in all the links of the modelling chain. In addition, due to the 

complexity of hydrological models that use a large number of parameters to characterize hydrologic processes, many 25 

challenges arise with respect to quantification of uncertainty. 

             An assessment of the uncertainty of extreme hydrological indices was the main aim of this study. We evaluated 

three different sources of uncertainty in the projections of both high and low flow extremes for the 21st century. These 

included climate model, hydrological parameter sets and distribution-fit uncertainty. The River BialaTarnowskaBiala 

Tarnowska at Koszyce gauging station was used as a case study. This case study supports our ultimate goal of estimating 30 

uncertainty in projections of hydrological extremes originating from the three sources mentioned above. Different 
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catchment characteristics can result in different relative proportions of different sources of uncertainty in total variance 

of the output (Osuch et al., 2016). The hydrological modelparameter uncertainties were estimated using the GLUE 

technique. The other sources of uncertainty were quantified by their spread, as conditioning on observations was not 

possible for the future flow projections. The uncertainties in extreme maximum and extreme minimum indices behave 

differently. In extreme high flow, larger uncertainty is observed from the climate model (ensemble) spread than from the 5 

other sources. On the other handIn contrast, for low flows, the uncertainty related to hydrological model parameters has a 

larger impact than the other uncertainty sources studied. The important role of hydrological model uncertainty in low 

flow predictions has already been noticed in forecasting (Beninga et al., 2017). That effect can be explained by the ratio 

of the prediction noise (in this case described by the hydrological model uncertainty) to the input signal which is much 

higher for low flows. Demirel et al. (2013b) explored the influence of uncertainty in input, hydrological model 10 

parameters and initial conditions on a 10-day ensemble flow forecasts. The results showed that parameter uncertainty 

had the largest effect on the medium range low flow forecasts, which is consistent with the present paper findings. This 

implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations 

and water resource planning and management. Steinschneider et al. (2012) used the formal statistical approach to 

quantify uncertainty quantiles of monthly flow projections including climate, hydrological model parameter and 15 

distribution fit uncertainties. We show that anIn this study we application applied of much simpler,the non-formal 

statistical approach leads to consistent with the latter work conclusions also for projections of daily annual extreme low 

and high flow indices.  

             

The results of the research can be summarized in the following points:  20 

 (i) tThe bias correction using distribution-based approach has a large influence on projected peak flows 

(Osuch et al., 2016); therefore In order to eliminate influence of bias correction on flow maxima, the 

analysis of changes in the high quantiles of maximum annual flow projections was based on the raw data 

projections of precipitation.  However,  

(i) Tt(ii) on the other hand, the analysis of low flow projections was based on the bias-corrected data to avoid 25 

the drizzle effect which affects the low flow characteristics..  

(ii) (iii) cConditioning of the hydrological model was performed using different criteria for low and high flows 

in order to ensure the best model fit for the extremes; . in addition tThis allows does not solve the problem 

of nonstationaritythe non-stationarity of model parameters to be avoidedbut allows forpermits a focusing on 

parameter sets adequate for low and high flow regimes.  30 

 (iv) the uncertainty related to hydrological model parameters is larger than the spread of projections related 

to the different GCM/RCM models and to the uncertainty of distribution fit for low flows; for high flows 

the climate model spread is larger than hydrological parameter uncertainties, whilst the uncertainty due to 
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the distribution fit is the smallest. (v) Sensitivity analysis using ANOVA performed on the relative 

uncertainty for high and low QT30 quantiles confirms the conclusions obtained from point (iviii) on the 

larger influence of hydrological model uncertainty on extremes for low flow than for high flow.  

(iii) A(vi) analysis of the influence of the length of time series records on the uncertainty bands of the low and 

high flow quantile estimates and their changes suggests that the range of quantiles of return periods longer 5 

thanQT30 are up to four times smaller when the long-term flow projections are used. The low flow QT30 

quantiles are less influenced by the length of records used for their derivation are very uncertainthe record. 

(iv)  Taking into account the three uncertainty sources considered, the uncertainty of the estimate of 1-in-100 

year return maximum flow exceeds 200% of its median value with the largest influence of the climate 

model uncertainty; whilst the uncertainty of the 1-in-100 year return minimum flow is of the same order 10 

(i.e. exceeds 200%), but it is mainly influenced by the hydrological model parameter uncertainty. 

  

(v) A Ssensitivity analysis using ANOVA performed on the relative total uncertainty for high and low QT30 

quantiles shows the largest larger influence of climate model and interactions between climate model and 

distribution fit uncertainty for high flows, whilst uncertainty of hydrological model parameters uncertainty 15 

and distribution fit have the largest influence on the uncertainty of  extremes for low flow than for high 

flowquantiles.  

(vi) The analyses were performed for a catchment with stationary future extreme flow projections; in the case 

of nonstationary extreme flows, nonstationary frequency analysis would have to be applied with even larger 

uncertainty of extreme estimates than those presented here.   20 

(vii) The study has pointed to the need to explore different approaches to projections of climate change. 

 

       The results of the study show that the uncertainties in extreme maximum and extreme minimum indices behave 

differently. In extreme high flow, larger uncertainty is observed from the climate model (ensemble) spread than from the 

other sources. In contrast, for low flows the uncertainty related to hydrological model parameters has a larger impact 25 

than the other uncertainty sources studied. The important role of hydrological model uncertainty in low flow predictions 

has already been noticed in forecasting (Beninga et al., 2017). That effect can be explained by the ratio of the prediction 

noise (in this case described by the hydrological model uncertainty) to the input signal which is much higher for low 

flows. Demirel et al. (2013b) explored the influence of uncertainty in input, hydrological model parameters and initial 

conditions on a 10-day ensemble flow forecasts. The results showed that parameter uncertainty had the largest effect on 30 

the medium range low flow forecasts, which is consistent with the present paper findings. This implies that ignoring one 

of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource 

planning and management. Steinschneider et al. (2012) used the formal statistical approach to quantify uncertainty 
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quantiles of monthly flow projections including climate, hydrological model parameter and distribution fit uncertainties. 

In this study we applied the non-formal statistical approach for projections of daily annual extreme low and high flow 

indices.  The last point of conclusions (v) draws an attention to the problem of stationarity of future climate projections 

and the resulting projections of annual flow extremes. This issue will be addressed in a further paper on trend analysis of 

projections of extreme flow indices (Meresa et al., 2017). 5 
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Figure 1. The location of the study catchment. 5 
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Figure 2. Climate model projections for the Biala Tarnowska catchment in the 1971-2100 period based on seven climate models from 

the GCMs/RCMs ensemble; Upper upper panel: projected bias-corrected raw annual maximum sum daily precipitation; middle panel: 

projected corrected raw annual maximum daily precipitation; lower panel: projected raw bias-corrected annual maximum daily 5 

temperature for the Biala Tarnowska catchment in the 1971-2100 period based on seven climate models (CMs) from the GCMs/RCMs 

ensemble; boxes show interquartile range; whiskers show 5th and 95th percentiles. 
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Figure 3. The cdf of flow for the calibration period for the HBV model; the upper panel presents model predictions conditioned on the 

NSE, while the lower panel presents the predictions conditioned on the logNSElogNSE criterion. ; The the cdf of observations (red 

line) is are shown against the cdf of the HBV predictions (blue line) and the associated 95% confidence bounds (dashed line). 5 
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Figure 4. The HBV model extreme projections for the best HBV model parameter sets for the Biala Tarnowska at Koszyce in 1971-

2100 based on seven climate models from the GCMs/RCMs ensemble; Upper upper panel: projected, annual maximum daily flow for 

the HBV parameter set corresponding to the best NSE value; lower panel: projected annual minimum daily flow for the HBV 5 

parameter set corresponding to the best logNSE value: ; projected annual minimum daily flow for the HBV parameter set 

corresponding to the best logNSE value for the BialaTarnowska catchment at Koszyce in 1971-2100 based on seven climate models 

(CMs) from the GCMs/RCMs ensemble; red dashed line shows an ensemble mean for the 1971-2100 period. 
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Figure 5. Empirical flow quantiles of annual maximum flow (upper panelsleft column) and annual minimum flow (lower panelsright 

column) under baseline and future climates (near and far future periods) for the best sets of the HBV model parameters and seven 5 

GCM/RCM model realizations; the climate model spread is presented as a shaded area; green dashed line denotes the mean value from 

all the GCM/RCM model realizations in each period (near and far future period), red dashed line denotes the averaged results obtained 

for the reference period. ; Each each black lines represents individual climate models.’ 
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Figure 6. Total uncertainty ranges of theoretical GEV-based annual extreme flow quantiles based on the GEV distribution for 

projections over 30 30-year periods of for the BialaTarnowskaBiala Tarnowska at Koszyce; the left column presents the annual 

maximum flow, the right column shows annual minimum flow; upper panels - for the reference period (1971-2000); middle panels - 5 

near future (2021-2050); lower panels - far future (2071-2100) periods; the right red hand column shows minimum annual flow, the 

left column presents the annual minimum flow frequency analysis results. 
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Figure 7. Total uncertainty ranges of flow quantiles for the River BialaTarnowskaBiala Tarnowska at Koszyce based on the 15 

theoretical GEV distribution fit over for projections over 130 130-years period (1971-2100), ); the annual minimum flow as a function 

of return level period (right panel) left panel presentsand annual maximum flow as a function of a return level period (left panel 
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paneland the  right panel presents annual minimum flow; the blue shaded area denotes the climate model uncertainty, the green shaded 

area denotes the hydrological model uncertainty and the pink shaded area denotes the distribution fit uncertainty; red dotted lines 

denote the median of climate ensembles,) .black dotted lines denote the median of hydrological model parameter sets and blue dotted 

lines denote the median of the distribution fit. of simulated for the River BialaTarnowska at Koszyce, based on a GEV distribution fit 

to the projected annual flow (1971-2100). 5 

                                                                                              

 
                                                                                                 

 

 10 
Figure 8. Total variance in estimates for the percentage change in QT30 in 2021-2050 relative to the 1971-2000 reference period. 

Each color represents the relative contribution of uncertainty in percent; CM denotes climate model; DIS – distribution fit; PAR – 

hydrological model parameters; ERROR denotes the Gaussian error (Eq. 43); a “star” denotes the correlation between the factors (CM, 

DIS and PAR).. 
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Table 1. List of RCM/GCMs models used in this study 

 

                                                                           

Table 1. List of RCM/GCMs models used in this study 

 15 

GCM RCM Institute 

EC-EARTH RCA4 Swedish Meteorological and Hydrological Institute 

EC-EARTH HIRHAM5 Danish Meteorological Institute 

EC-EARTH CCLM-4-8-17 NCAR UCAR  

EC-EARTH RACMO22E Meteorological institute, Netherlands 

MPI-ESM-LR CCLM4-8-17 Max Planck Institute for Meteorology  

MPI-ESM-LR RCA4 Max Planck Institute for Meteorology 

CNRM-CM5 CCLM4-8-17 CERFACS, France 

 

 

 

 

 20 

Table 2. HBV parameter ranges: upper band (UB), lower band (LB), unit value ; fixed parameters have lower and upper 

bands equal. 

 

Parameter description  LB UB Unit  

FC maximum soil storage 0.1 250 mm 

BETA Shape coefficient  0.01 7 - 

LP SM threshold for reduction of evaporation 0.1 1 - 

ALFA measure for non-linearity of flow in quick runoff   0.2255 0.2255 - 

KF recession coefficient for runoff from quick runoff  0.2826 0.2826 d-1   

KS recession coefficient for runoff from base flow  0.0005 0.3 d-1   

GCM RCM expansion name Institute 

EC-EARTH RCA4 Rossby Center regional 

Swedish Meteorological and Hydrological 

Institute 

EC-EARTH HIRHAM5 Atmospheric model Danish Meteorological Institute 

EC-EARTH CCLM-4-8-17 Community land model NCAR UCAR 

EC-EARTH RACMO22E Regional atmospheric climate model Meteorological institute 

MPI-ESM-LR CCLM4-8-17 Community land model Max Planck Institute for Meteorology 

MPI-ESM-LR RCA4 Regional-scale model  Max Planck Institute for Meteorology 

CNRM-CM5 CCLM4-8-17 Community land model CERFACS, France 
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PERC percolation rate occurring when water is available  0.01 100 mm d-1   

CFLUX Rate of capillary rise                                                               1.0003 1.003 mm d-1   

TT Threshold temperature for snowfall                                  1.0145 1.0145 0C 

TTI Threshold temperature interval length                                 7 7 0C 

CFMAX Degree day factor, rate of snowmelt                                     0 20 mm 0C-1 d-1 

FOCFMAX Degree day factor, rate of snowmelt                                     0.1484 0.1484 mm 0C-1 d-1 

CFR Refreezing factor                                                                      0.2779 0.2779 - 

WHC Water holding capacity of snow                                             0.001 0.001 mm mm-1  

 

Parameter description  LB UB Unit  

FC maximum soil storage 0.1 250 mm 

BETA Shape coefficient  0.01 7 - 

LP SM threshold for reduction of evaporation 0.1 1 - 

KS recession coefficient for runoff from base flow  0.0005 0.3 d
-1

   

PERC percolation rate occurring when water is available  0.01 100 mm d
-1

   

CFMAX Degree day factor, rate of snowmelt                                     0 20 mm 
0o

C
-1

 d
-1

 

FOCFMAX Degree day factor, rate of snowmelt                                     0.1484 0.1484 mm 
0o

C
-1

 d
-1

 

CFR Refreezing factor                                                                      0.2779 0.2779 - 

WHC Water holding capacity of snow                                             0.001 0.001 mm mm
-1

  

ALFA measure for non-linearity of flow in quick runoff   0.2255 0.2255 - 

KF recession coefficient for runoff from quick runoff  0.2826 0.2826 d
-1

   

CFLUX Rate of capillary rise                                                               1.0003 1.0003 mm d
-1

   

TT Threshold temperature for snowfall                                  1.0145 1.0145 
0o

C 
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Table 3. Choice of the likelihood threshold for the NSE and the logNSElogNSE criterion 

 

 

Number of experiment 1 2 3 4 5 6 7 8 9 

Threshold NSE 0.5 0.53 0.55 0.57 0.6 0.63 0.65 0.67 0.7 

out of bound NSE [%] 10 9.9 9.6 9.8 9.9 10 10 10.5 11 

Threshold logNSElogNSE 0.4 0.37 0.34 0.31 0.3 0.29 0.26 0.23 0.2 

out of bound logNSElogNSE 15 12.3 12 13.5 11.4 17.4 17.8 18 20 
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[%] 

 

Table 43. Change in width of 0.95 confidence intervals for QT30 for annual maximum and minimum flow estimated 

using  time periods of a different length (30-years year and 130 130-years year- long). 

 

Evaluation period 1971-2000 2021-2050 2071-2100 1971-2100 

Max flow(ΔQT30) [m
3
/s] 640.5        1942.6      898.9 459.4 

Min flow(ΔQT30) [m
3
/s] 4.7        5.0      5.2 4.4 
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