
Dear Dr. Merz, 
 
We have provided a detailed, comment-by-comment response to both reviewers below.  
Page and line numbers refer to the updated manuscript. 
 
Major changes to our document include revision of several figures and additional text and 
references within the introduction and discussion sections.  We also include further 
discussion of our approach and how this type of study may inform future investigations of 
complex models with especially heavy computational burdens like the one used in our 
study.  To this end, we also include a copy of our manuscript with revisions to the text 
shown in red at the end of the document. 
 
We look forward to your response. 
 
Many thanks, 
Christa Kelleher and Colleagues 
 
Reviewer 1: Markus Hrachowitz 
 
Dear Dr. Hrachowitz, 
We thank you for your suggested revisions.  In line with your comments, we have revised 
and checked all figure captions, references, and numbering of figures, tables, and 
appendices.  Our introduction and discussion sections now include references to examples 
of regularization in watershed modeling, an oversight on our part.  We have also addressed 
many of your additional minor comments, which were helpful for clarifying the direction of 
the manuscript.  We have responded to each of your comments below (in red text), and 
noted changes we have made in response. 
 
The manuscript “Characterizing and reducing equifinality by constraining a distributed 
catchment model with regional signatures, local observations, and process understanding” by 
Kelleher et al. addresses a topic that is of critical importance for hydrological modelling 
applications: the respective value of multiple, different data sources and model evaluation 
metrics to identify meaningful parameters sets within limited uncertainty. The experiment is 
well-designed and described.  I would be glad to see this contribution eventually be published 
and there are only two, relatively minor concerns I would like to encourage the authors to 
address to strengthen the manuscript: 
 
(1) The manuscript would strongly benefit from being proof-read with a bit more care. The 
present version comes across as a bit sloppy with e.g. wrong figure numberings, wrong or 
missing references to figures, wrong references to or missing appendices and relatively imprecise 
figure captions.  
 
In line with these suggestions, we have revised captions and checked mentions of references, 
figures, and appendices. 
 



(2) Being a highly important and ubiquitous topic in environmental systems models, I was quite 
surprised that the link to related techniques dealing with ill-posed inverse problems commonly 
applied in other fields is completely missing. This includes for example regularization which is 
quite a standard technique to reduce parameter equifinality in e.g. ground water models. It is just 
that it has not yet found, for whatever reason, its way into mainstream surface hydrology. Linked 
to that is the complete lack of this manuscript to refer to distributed model frameworks that make 
use of regularization (although they often refer to it as regionalization, which is the same thing, 
really), e.g. the work of Luis Samaniego’s group on the mhM model (e.g. Samaniego et al., 
2010; Kumar et al., 2013) 
 
We appreciate the recommendation to include this subset of literature in our revised manuscript.  
We have made changes to the introduction and discussion to address this oversight. 
 
We have added the following to the introduction (page 3, lines 14-19): “One noted exception is 
the work that has been done to parameterize models via regularization (Hundecha and Bardossy, 
2004; Hundecha et al., 2008; Samaniego et al., 2010; Rakovec et al., 2016).  Regularization 
creates global functional relationships describing transfer functions that link model parameters 
and catchment characteristics (e.g., Samaniego et al., 2010; Kumar et al., 2013). Regularization 
has the ability to limit parameter equifinality in part because the number of parameters used to 
describe global functional relationships is far fewer than the number of possible total model 
parameters using cell-by-cell parameterization.” 
 
Detailed comments:  
(3) P.1,l.11-12: distributed models do not necessarily require more parameters, if only the input 
is distributed (e.g. Ajami et al., 2004; Das et al., 2008; Kling and Gupta, 2009; Fenicia et al., 
2008; Euser et al., 2015). I would suggest to make this distinction clear somewhere in the 
introduction section.  
 
To address this point, we have amended the introduction to include a paragraph describing 
different types of distributed models.  In particular, we include the statement (page 2, lines 8 – 
14): 
“Alongside variations in the structural equations, models may take a number of different forms, 
including those that use only distributed inputs (e.g., Ajami et al., 2004; Das et al., 2008; Kling 
and Gupta, 2009; Fenicia et al., 2008; Euser et al., 2015), those that may lump together portions 
of a watershed with similar characteristics in a semi-distributed fashion (e.g., Leavesley et al., 
1983; Flugel, 1995; Ajami et al., 2004; Das et al., 2008; Zehe et al., 2014), those that may 
upscale sub-grid variability to parameterize models (e.g., Samaniego et al., 2010; Kumar et al., 
2013), and those that use physically-based parameter values (e.g., Wigmosta et al, 1994; Qu and 
Duffy, 2007) versus conceptual values or transfer functions (e.g., Samaniego et al., 2010; Kumar 
et al., 2013).   
 
(4) P.1,l.18: I find the term “certainty” quite problematic. Given all the different sources of 
uncertainty, how can we ever think of a parameter as being “certain”. What would that mean in 
that context? “Certain” with respect to what? Reality? Uncertain observations?  
 



We have removed the term certainty from the abstract, and all other mentions of this terminology 
from the manuscript. 
 
(5) P.1,l.27ff: it is not quite clear what the authors define as distributed model in this study. Note 
that both, physical models but also conceptual models (for example done with mhM) can be 
applied in distributed ways. Please provide a more precise definition. 
 
We see this as a very important point.  We have clarified this point by adding a paragraph to the 
introduction (page 2, lines 8 - 19): “Alongside variations in the structural equations, models may 
take a number of different forms, including those that use only distributed inputs (e.g., Ajami et 
al., 2004; Das et al., 2008; Kling and Gupta, 2009; Fenicia et al., 2008; Euser et al., 2015), those 
that may lump together portions of a watershed with similar characteristics in a semi-distributed 
fashion (e.g., Leavesley et al., 1983; Flugel, 1995; Zehe et al., 2014), those that may upscale sub-
grid variability to parameterize models (e.g., Samaniego et al., 2010; Kumar et al., 2013), and 
those that use physically-based parameter values (e.g., Wigmosta et al, 1994; Qu and Duffy, 
2007) versus conceptual values or transfer functions (e.g., Samaniego et al., 2010; Kumar et al., 
2013).  These differences can be separated into two primary categories (1) the nature of 
parameter values (physically-based or conceptual) and (2) whether and how parameter values are 
distributed (cell-by-cell, grouped or lumped in some meaningful way, or undistributed).  It is also 
worth noting that an important feedback on these decisions is the scale of the application 
alongside the scale at which inputs and parameters are distributed.  In this study, we focus 
specifically on physically-based, fully distributed (cell-by-cell basis) models applied at the small-
scale watershed scale (<25 km2).” 
 
(6) P.2,l.2: maybe rephrase to “Distributed models should represent the. . ..”  
 
We have made this change. 
 
(7) P.2,l.10: why would distributed models *require* a single parameter set? This statement goes 
against much we know about the uncertainties involved in environmental systems models  
 
While we agree with you (in fact, addressing approaches that use a single parameter set is the 
point of this paper), the reality is this is still how many researchers use fully distributed, 
physically-based models.  We have revised this statement to (page 2, lines 22 - 26):  
 
“Model simulations and predictions require specification of parameter set(s) or ranges; selecting 
these set(s) and appropriate ranges is especially challenging given that distributed models require 
a larger number of model parameters (~50-100 or more) and longer model run times than 
conceptual or lumped models.” 
 
(8) P.2,l.14-15: not only valid for distributed models but for *any* hydrological model  
 
We agree, and have altered the text to reflect this. 
 



(9) P.2,l.19-21: not untrue, but the contribution of the developers of the mhM framework, who 
went to great lengths to exploit the value of regionalization/regularization, should not go 
unnoticed here (see above)  
 
We have included the following text on page 3 (lines 14-19): “One noted exception is the work 
that has been done to parameterize models via regularization (Hundecha and Bardossy, 2004; 
Hundecha et al., 2008; Pohkrel et al., 2008; Samaniego et al., 2010; Rakovec et al., 2016).  
Regularization creates global functional relationships describing transfer functions that link 
model parameters and catchment characteristics (e.g., Samaniego et al., 2010; Kumar et al., 
2013). As the number of parameters used to describe global functional relationships is far fewer 
than the number of possible total model parameters using cell-by-cell parameterization, 
regularization is able to limit parameter equifinality.” 
 
(10) P.2,l.27: I would suggest to formulate this in a more general way by emphasizing the degree 
of information that is used on the prior distributions  
 
We have changed this to (page 3, lines 6-7): 
“Decisions regarding how to constrain ranges and distributions for priors on model parameters 
often depend on…” 
 
(11) P.3,l.3: should read as “. . .to justify the selection. . .”  
 
Noted and changed. 
 
(12) P.4,l.18,figure1: where do all the tall trees hide?  
 
There are a small number of tall trees, and a very large matrix of values (our simulated grid is 
560 by 760 cells).  We have increased the contrast of this figure to highlight tall trees, but note 
that the dominating pattern here are the differences between understory and canopy vegetation. 
 
(13) P.5,l.2: what does “tandem” mean?  
 
By ‘In tandem’ we meant ‘at the same time’ – we have changed this to ‘concurrently’. 
 
(14) P.5,l.7,table 1: add units in table 1; what is referred to as “ranges”? is it the uninformed prior 
parameter distributions? Please clarify.  
 
We have added units to Table 1, and clarified our description of parameter ranges as “the 
minimum and maximum bounds on uninformed (uniform) prior parameter distributions”. 
 
(15) P.5,l.24: please be more specific here – what does shading include? Does it combine 
shading due to aspect and shading due to topographic features (e.g. mountain ridge) obstructing 
sunlight to reach certain locations?  
 



We have clarified this point on page 6 with the following text (lines 14-15): “These shading 
maps incorporate both the effects of topographic shading, diel variability, and monthly 
variability in sun position and angle.” 
 
(16) P.5,l.26: please be more specific here – what are “allowable” ranges?  
 
This became a problem with spatial boundary conditions, where humidity and vapor pressure 
deficit on the coldest days (< -40 deg F) at the far edges of the model reached unrealistic 
conditions.  We have amended the word ‘allowable’ to ‘unrealistic’.   
 
(17) P.5,l.30ff: not entirely clear – which period was the model calibrated for? The entire 
01/10/2006-01/10/2008 period? If so, I was wondering if it was not more instructive to retain 
some months for post-calibration evaluation (i.e. “validation”) to see the effect of signatures etc. 
under these conditions as well. 
 
As stated in the text (Page 6 lines 27 – 29), we use the 2008 water year for calibration, and retain 
the 2007 water year for validation.  We use April 1, 2006 through September 30, 2006 to 
initialize the model. We have added dates for clarity, and have moved this text to earlier in the 
paragraph.  We exclude a period of initialization (Apr 1, 2006 – Sept 30, 2006) from any model 
analysis. 
 
(18) P.8,l.27,table 2: which runoff ratio was used? Over the entire period? Annual runoff ratios? 
Or seasonal runoff ratios? They carry different information content, and from earlier work we 
found that in particular the seasonal runoff ratios carry considerable information. This may be 
worth looking into.  
 
We use an annual runoff ratio for the 2008 water year.  To target seasonality, we use the slope of 
the flow duration curve for 10th through 30th percentile flows (mainly to fit to the rising and 
falling limbs of the hydrograph), though a seasonal runoff ratio is an interesting suggestion for 
future analysis to ensure model simulations match seasonal behavior.  
 
(19) P.8,l.28ff,table 2: PET is constrained with regional data, but how were these regional PETs 
estimated? Are they more reliable than the penmen-monteith derived estimates here? if so, why? 
If not, what is the point of using them. I think this point warrants some discussion.  
 
The estimate of aridity used to constrain the model is an average value based on daily 
precipitation and daily maximum and minimum air temperature data for the period of 1950 to 
2000, with potential evapotranspiration (PET) modeled via the Hargreaves method (Hargreaves 
et al., 1985).  Thus, this constraint is meant as a check on long-term average conditions, to ensure 
that the model stays within regionally realistic estimates.  We have modified the text to reflect 
this point (page 9, lines 27-28): 
 
“Constraints on AI from this dataset represent long-term average conditions for the region, and 
are used to broadly eliminate simulations outside of the realm of regionally realistic average 
estimates.” 
 



To corroborate the validity of this ‘space-for-time’ approach, we calculated PET following a 
combination method described by Oudin et al. (2005) and calculated AI from estimated PET and 
annual precipitation from the Stringer Creek SNOTEL location.  Values for AI ranged from 0.39 
to 0.64, well within the constraints extracted from the regional estimates. 
 
Table 1. Estimates for aridity index (AI) based on annual precipitation (Stringer Creek SNOTEL) 
and potential evapotranspiration calculated following Oudin et al. (2005). 

Year PET (m) P (m) AI (-) 
2006 0.47 0.80 0.59 
2007 0.48 0.75 0.64 
2008 0.41 0.73 0.56 
2009 0.43 0.74 0.57 
2010 0.40 1.04 0.39 
2011 0.41 0.86 0.47 

 
 
DHSVM uses a cascading approach (from overstory to the understory) to estimate potential 
evapotranspiration, with differences largely based on vegetation height parametrizing 
aerodynamic resistance.  As indicated by Figure B2, AI does appear to have information content, 
but it is largely with respect to very poor model runs likely produced as the combination of the 
extreme vegetation height parameter combinations. 
 
To test the effect of constraining AI on the final set of parameters, we recalculated the number of 
parameter sets that would meet all constraints excluding the constraint on AI.  We found that this 
number would increase from 9 to 13 parameter sets, demonstrating that this constraint may only 
serve to remove a small number of sets that do not meet other constraints.  We have added a 
figure demonstrating how the number of final parameter sets changes if only one constraint is 
removed to Appendix B, Figure B3, as this addresses points raised by both reviewers. 
 
(20) P.9,l.15,table 2: does this refer to the maximum flow of each year? In many cases in 
particular the extreme events are subject to unproportionally high observation errors. Thus, do 
you not run into the risk of forcing the model to reproduce a value that is relatively likely to be 
considerably off from reality (cf. epistemic errors!!)? I also think that this point needs some more 
reflection. 
 
This metric does refer to the maximum flow of each year.  We found that without this constraint, 
the model consistently underestimated peak flows.  We do agree with your point regarding 
potential for fitting to epistemic errors.  This is in part why we left windows on acceptable 
“errors” wide (e.g., +/- 35%), so as to ensure that we do not overly constrain these single 
observation points in time.  While we agree that overly constraining this value could lead to 
problems, in previous iterations of this manuscript, criticisms of our modeling approach 
primarily focused on whether or not our simulations emulated this peak value.  Thus, we aimed 
to add a target error for this value, but one that was wide. 
 
To reflect this, we have added the following text to page 10 (lines 18-20): 



“Additionally, as peak flow is likely to be most influenced by epistemic errors (e.g., Westerberg 
and McMillan, 2015), we left bounds on peak flow to be reasonably wide, so as to avoid 
incorrectly constraining a potentially uncertain measurement.” 
 
(21) P.9,l.16,table 2: the equation for the error in peak timing (again: does this apply for the 
timing in each individual year?) seems to involve some magic – I could not figure out how a 
ratio of days over days would result in days. In addition, I am not sure if this ratio makes sense, 
as we talk about the day of the year, at least as I understand it. Would be probably more 
meaningful to just minimize or constrain the absolute errors, i.e. abs(Tq,s-Tq,o)  
 
This was an error in Table 2, and has been corrected.  The constraints were correctly identified. 
 
(22) P.10,l.8ff,figure 4: this is not entirely clear. Do the grey and coloured bars show the 
parameter sets that are retained or those that are discarded? The text and figure captions seem to 
somehow contradict each other. Please check.  
 
We note the confusion, and have corrected the captions to ‘retained’. 
 
(23) P.10,l.10-11: what about the effect of observational uncertainty in precipitation (in 
particular snow accumulation!!) and peak runoff - see comment (20)??  
 
Again, we note that we are not fitting exactly to this value, but including any model simulations 
that are within +/- 35% of this value.  We agree that there are likely to be uncertainties in these 
measurements, hence our choice to leave bounds on these values to be wide.  As many sets 
match SWE behavior, we do not think we are overly constraining peak flow behavior on the 
basis of observational uncertainty in snow accumulation. 
 
(24) P.11,l.11,figure 6: I am struggling with this figure. Caption seems to describe an entirely 
different figure. Where is the black dotted line (the one I see merely seems to separate the two 
hydrological years)? Where are subplots (a) and (b)?? what is the light blue line (observation?)? 
please clarify.  
 
This figure caption has been corrected. 
 
(25) P.12, l.3, figure 8(?): figure number seems to be wrong. Is this not figure 7? if not, where is 
figure 7? Please indicate years on x-axes. What are the grey shaded areas? Are these model 
ensembles or uncertainty ranges? If the latter, how were they constructed and, in particular, 
where do the gaps come from??  
 
We have corrected the text to state this is Figure 7.  We have added years to the x-axis on Figure 
7.  The grey lines each correspond to a simulation from a different parameter set. We have 
clarified the figure caption to reflect this point. 
 
(26) P.12,l.4: what is meant by “relative timescales”?  
 
We have amended this to “match periods” for clarity. 



 
(27) P.12,l.17: I cannot find Appendix D (and C not either, for that matter).  
 
This has been changed to ‘Table B1’. 
 
(28) P.12,l.23: please reconsider the use of the term “parameter certainty” (see above)  
 
We have changed this to ‘Parameter Uncertainty’. 
 
(29) P.12,l.30: what is meant by “original” distribution? Is it the uninformed prior distribution 
(i.e. table 1)? If so, please call it also like that.  
 
This has been changed. 
 
In addition, although I see and understand the intention here, I am wondering how much this also 
depends on the choice of the parameter range in the prior distribution. If a narrow prior range 
was chosen, the normalized values shown here may be less constrained than if a wider prior 
range was chosen.  
 
We agree that this depends on the width and magnitude of the uninformed priors.  While this 
likely has an effect, we do note that parameters where ranges appear to be more constrained do 
have a variety of magnitudes and ranges.  For instance, lateral conductivity (parameter 5), varies 
across three orders of magnitude, exponential decrease in conductivity with depth (parameter 6), 
varies across two orders of magnitude, and understory maximum stomatal resistance (parameter 
26) varies across one order of magnitude.  The meaning of “narrow” and “wide” ranges also has 
some implications for our assessment – we intentionally left all ranges relatively wide in terms of 
values and ranges reported in the literature.  Our point with this figure is mainly to highlight that 
there are a few parameters where ranges are narrowed by this type of analysis, which is 
interesting given the number of interactions between parameters in models of this type. 
 
In addition, are the individual parameter sets likelihood weighted to give more weight to better 
solutions? if not, why not? Any thoughts on this?  
 
We did not assign likelihood weights to parameter sets, in part because the parameter sets shown 
in this figure meet all criteria for what we have identified to be ‘behavioral’ solutions.  We are 
mixing both signatures and error metrics, as well as a number of different signatures and error 
metrics.  Thus, while some may have better values for one objective function, they may have 
poorer values for another.  We opted to leave these values unweighted across the eleven different 
criteria as we felt that multi-objective weighting for a small number of sets may obscure some of 
the results. 
 
(30) P.13,l.6: where are these predictions included? Figure b3? Please specify.  
 
This has been changed. 
 



(31) P.13, l.13, figure 9: the figure and captions are a bit confusing. What is meant by set 1/5/9? 
And how is set 1 drier than set 9? Please clarify.  
 
This labeling originally referred to Figure B3.  We have replaced the labeling with sets 1, 2, and 
3, to indicate that these predictions come from three different parameter sets, and now reference 
Figure B3 in the caption.  We have also replaced the words wetter and drier with “lower” and 
“higher” water table. 
 
(32) P.18,l.6: I think the wrong reference is provided in the reference list. The paper you are 
referring to is Euser et al. (2015, HP), but in the reference list Euser et al. (2013, HESS) is 
provided.  
 
We have corrected this. 
 
(33) P.18, l.9: some references to mhM would fit in nicely here.  
 
We have included the following text on page 19 (lines 22 - 30):  
“In this vein, the choice of model structure may also offer another opportunity to reduce 
equifinality. In particular, the extensive body of literature on parameter regularization may offer 
a pathway for maintaining spatial complexity and consistency while reducing the number of free 
model parameters (Hundecha and Bardossy, 2004; Hundecha et al., 2008; Samaniego et al., 
2010; Rakovec et al., 2016). Alternatively, there is also a body of work that treats the model 
framework itself as a form of uncertainty, testing different model structures as hypotheses for 
how a catchment may function (Clark et al., 2011; Fenicia et al., 2011; Hrachowitz et al., 2014).  
This approach may also provide an alternative to predicting hydrology via a model with fewer 
parameters than the distributed application shown here, with a model structure that incorporates 
the level of detail mandated by the complexities of the catchment (e.g., Zehe et al., 2014; Euser 
et al., 2015).” 
 
Best regards, Markus Hrachowitz 
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Reviewer 2: Uwe Ehret 
 
Dear Dr. Ehret, 
Thank you for your thoughtful critique of our manuscript.  We have addressed each of 
your comments below (in red text).  In particular, your comments have helped to clarify 
the intent of our manuscript, as well as ensuring that this intent is clearly stated in 
justification of our approach.  We have also added text to better generalize our findings 
both in terms of other models applied to the same watershed as well as how to best 
investigate uncertainty in other computationally burdensome or complex models like the 
one we used in this study.  These clarifications were focused on the introductory and 
discussion portions of the text. 
 
Christa Kelleher and Colleagues 
 
Dear Editor, dear Authors,  
 



I have reviewed the aforementioned work (version 2 of the manuscript). My conclusions and 
comments are as follows:  
 
1. Scope  
 
The article is within the scope of HESS.  
 
2. Summary  
 
The authors present and apply a framework for calibration of distributed hydrological models by 
applying a hierarchical set of parameter constraints and error metrics to accept or reject randomly 
generated parameter sets. The constraints and error metrics are distinguished by i) range of 
applicability (from regional to local), ii) 'softness' (from local observations to heuristically 
formulated local expert knowledge) and iii) the evaluated characteristic (evaluation of non-
dynamical to dynamical aspects).  
 
The framework is presented at the example of the physically based, distributed DHSVM model 
applied to the 5.5 km² Stringer Creek catchment, whose hydrological behavior is dominated by 
seasonal snow accumulation and snow melt.  
 
Using 10.000 randomly drawn model parameter sets, 10 signatures and error metrics are applied 
individually, in groups and in hierarchical combination to identify behavioral parameter sets 
from the initial set. The resulting subsets are then discussed with respect to the equifinality 
reduced (i.e. by how much the initial parameter ranges were narrowed).  
 
The authors show that by jointly applying all criteria considerably narrows the behavioral 
parameter sets (here: to nine). However, these still show large differences, specifically with 
respect to catchment groundwater table (values and spatial patterns). From the analysis, the 
authors conclude that i) a multi-criteria approach to identification of behavioral parameter sets is 
superior to single-criteria approaches, ii) dynamic constraints to be more effective than non-
dynamical ones, and iii) that despite substantial narrowing of the parameter space still large 
differences among the surviving parameter sets remain, especially with respect to spatial patterns 
of hydrologic states. 
 
3. Overall ranking  
 
The work is ranked 'Major revision'. 
 
4. Evaluation  
Major points  
I like the work presented in this paper, especially the strong argument towards using multiple, 
hard and soft sources of information to identify behavioral model parameter sets, and the 
thorough literature review. However, despite the fact that the authors' focus in this paper is to 
present the concept, with the choice of the catchment and time series used, they have clearly 
missed some very good opportunities to make their results more general and interpretable. More 
specific: 



 
Judging from the presented time series of discharge and snow water equivalent, the catchments' 
hydrological function is very simple (one major discharge event during snowmelt, rainfall-runoff 
events are hardly playing a role). Arguably, a very simple conceptual hydrological model could 
reproduce this behavior at least as well as the applied model with respect to all discharge-related 
signatures and metrics, but with much less parameters.  

• So why choose this very simple-behaving catchment if the goal is demonstrate the 
usefulness of a targeted constraining approach for a distributed, physically based model? 
This way, the model stays well below its potential, and this also means a lot of 
opportunities for more targeted model parameter evaluation are missed. 

 
We selected this catchment for a number of reasons, but especially because it is a place where 
modelers and experimentalists have collaborated before, where other types of models have been 
applied.  Most importantly, we selected it because it is a place where we have lots of 
understanding.  We sought to incorporate distributed measurements that are more likely to be 
available in other catchments (e.g., SWE) to frame our application in a general way that could be 
applied to other sites.  Furthermore, as this is a relatively simple system, it provides a first-order 
test as to whether this type of approach could have merit before we introduce this approach to a 
more complex set of catchments. 
 
An additional benefit to this system is it has been modeled previously with conceptual models, as 
highlighted in the discussion section (page 16, section 5.2).  We also compare our findings to 
other simple conceptual models and distributed models of this system (across similar periods), 
and show that we achieve similar levels of fit.  To your point above, and to better generalize our 
results in comparison to these other simple models, we have added a discussion of the choice of 
model complexity, framed by applications within this specific catchment (page 17, lines 5 - 17): 

“The three models to which we compare our results demonstrate a range of model 
frameworks that can be used to evaluate model behaviour: conceptual (Smith et al., 2013), 
lumped (Ahl et al., 2008), and distributed without physically-based parameters (Nippgen et al., 
2015).  As is shown in this study, all of these models are able to accurately simulate the 
hydrograph for this catchment.  The primary trade-offs across these models include requirements 
for inputs and parameters alongside computational requirements, which are inversely related to 
the complexity of simulated behaviour that can be produced from each of these models.  While 
any of these approaches may be used to simulate streamflow, each will enable researchers to 
answer different questions related to hypotheses about catchment functioning, the use of field 
information to inform model parameter constraints, and predictions of spatio-temporal 
hydrologic processes.  Finally, these contrasting models also illustrate the differences between a 
model like DHSVM that may be applied to many different catchments versus the models 
introduced by Smith et al. (2013) and Nippgen et al. (2015), in which the model framework and 
structural equations were developed only for this catchment.  In this study, we specifically 
evaluate the application of physically-based, distributed models to simulate experimental 
catchments, though we encourage researchers to select the right tool, and therefore the 
appropriate model, for a given study objective.” 
 

• Furthermore, the many degrees of freedom in your model inevitably lead to problems of 
equifinality, which would not exist in a simpler model appropriate for the simple 



catchment. So why not choose a more complex catchment, which requires a distributed 
model? 

 
Selecting a more complex catchment (e.g., in terms of more variable vegetation or soil) would 
inevitably lead to greater issues with equifinality.  Thus, we sought to first constrain this 
approach using a straightforward framework (e.g., distributed vegetation but undistributed soil 
types).  If the framework were not able to reproduce the hydrograph, we would investigate 
further distribution of inputs.  Future work will include evaluation of this type of approach in 
catchments of differing complexity – e.g., complex inputs, more variable soils, or more variable 
vegetation. We would suggest any catchment may be modeled using a distributed model if the 
end goal is to predict distributed hydrologic processes – the simplicity of the catchment does not 
negate our interest in testing whether observations of streamflow and SWE may constrain the 
simulation of distributed hydrologic processes.  
 
The use of a distributed model may depend on either the spatial complexity of catchment 
characteristics, or the desire to simulate spatially-distributed hydrologic behavior.  As these types 
of models are regularly being used to simulate spatially-distributed behavior, regardless of the 
availability of data to constrain model inputs, parameters, or simulations, we specifically chose a 
more simplistic catchment where we could maintain a parsimonious number of model 
parameters. 
 
Along the same lines: Why was a catchment selected with such little available observations as 
'hard truth'? Why not choose one with a network of observed groundwater tables, ET, nested 
discharge observations, spatially distributed information on soil type and soil depth etc.?  
 
We have chosen a site with nested discharge observations, and have presented these nested 
results in this manuscript.  We do not incorporate comparisons to observed well behavior and ET 
in part because we are interested in the patterns of this information, not just matching these 
values to a single point.  As we discuss on page 8 (lines 21 – 35), internal simulations of 
catchment behavior may still be incorporated into evaluations of distributed model behavior if 
distributed timeseries of observations are not available.  As internal catchment measurements are 
often difficult to come by, we have sought to specifically incorporate an evaluation of model 
predictions in the absence of ‘hard truth’, to show that this type of evaluation is possible. 
 
In fact, the model elements are all set to the same soil depth and soil type, which makes it much 
less distributed as it could be.  
 
While we do not distribute soil type or depth, this is in part framed by experimental observations 
at this site (as outlined on page 5), as well as the strong tradeoff in equifinality that exists as 
more and more ‘types’ are added to a given distributed characteristics, contrasted with whether 
there are enough available observations to truly distribute soil types in space as well as with 
depth.  Thus, we opted to create a parsimonious distributed representation of the system.  
Vegetation types are distributed based on vegetation height, as we expect this to be an important 
determinant of system behavior.   
 



Placing the study in a better equipped catchment would offer the opportunity to fill the very nice 
framework with many more signatures and metrics, especially those evaluating spatial patterns. 
Furthermore, this would have opened the opportunity to compare the value of constraints 
formulated as aggregated/heuristic expert knowledge to 'hard' constraints based on observations. 
This is a clear miss. 
 
From this comment, we have clarified one of our objectives for this study – in the absence of 
spatially distributed measurements, can point observations, especially streamflow, inform 
catchment patterns of hydrologic behavior?  We have altered the text on page 4 (lines 8-10) to 
reflect this point: 
 
“Secondarily, we also explore whether this type of approach, using observations of a subset of 
hydrologic processes, may inform simulations of other unmeasured spatially-distributed 
hydrologic processes.  Thus, we seek to test whether temporal observations may contain 
information regarding simulation of hydrologic patterns.” 
 
This point is further clarified in the results (4.8) and discussion (5.5) sections. 
 
Along the same lines: All evaluations are done for a single year, and for the calibration period. 
This way it is impossible to judge  
− to which degree the remaining behavioral parameter sets are dependent on the chosen 
calibration period, and  
− whether the behavioral parameter sets found in calibration are still behavioral during a 
different, validation time. This is a clear miss. 
 
Model predictions are performed for two years – a one year calibration period and a one year 
validation period (section 2.2.3).  We have clarified this point in the text, as it was a source of 
confusion. 
 
We additionally include all streamflow performance metrics in Table B1 of the Appendix, to 
enable comparison of results to another period.  As can be seen from Table B1, most sets 
maintain high performance for WY 2007 with respect to streamflow at LSC, with the exception 
of slightly higher RRE values for sets 3 and 5 and SFDCE for set 4. 
 
While the period considered for model performance is relatively short, it still represents a large 
computational burden in terms of the size of the catchment being resolved (22.5 km2, 10 m by 10 
m resolution) as well as the sampling procedure employed.  We expand on this point, as well as 
possible ways to address this challenge of computational burden in the future, on page 20 (lines 
17-31), with the following text: 

“Ultimately, our ability to resolve issues with equifinality and identify appropriate 
parameter sets in space and time is challenged, as it was in this study, by the computational 
demand of complex models.  Executing model predictions for the relatively short period of time 
investigated in this study across 10,000 parameter samples required thousands of computing 
hours (and even longer periods if the modeller retains or “saves” spatial predictions across the 
catchment).  While distributed, physically-based models like DHSVM may have the ability to 
resolve predictions of hydrologic processes through space and time, we do not yet have effective, 



computationally inexpensive approaches for evaluating and representing uncertainties in these 
types of applications.  In order to put these types of models to the test, we need better parameter 
sampling strategies (e.g., Rakovec et al., 2014; Jefferson et al., 2015) and alternative approaches 
to those we use for conceptual models, where executing a model many times is not a challenge or 
limit on analysis.  This may come in the form of new methods, or alternatively, approaches that 
evaluate model adequacy via frameworks for computationally frugal analysis (Hill et al., 2015).  
While quantifying or limiting equifinality may always be a challenge for physically-based, 
distributed catchment models, we likely will need to reframe our approaches for evaluating the 
uncertainties associated with complex model applications.  This challenge may be best addressed 
by encouraging interaction across the conceptual modelling community and the fully, distributed, 
physically-based modelling community, to address broad issues related to uncertainty and 
equifinality that, it can be argued, plague all models of any complexity (Hrachowitz and Clark, 
2017).” 

	
The authors advocate a multi-criteria approach to identify behavioral parameter sets. However, 
looking at the criteria in Table 2, two questions arise 
 
Parameterization of ET plays an important role in the model (parameters 22 to 53 in Table 1). 
However, ET is only used as a very weak constraint (300-650 mm/a). Why not also evaluate the 
model with respect to ET error, ET timing, ET peaks etc.? From the text, my understanding is 
that ET estimates from local observations exist. This would be another important and 
independent criterion. 
 
We compare our results primarily to streamflow and SWE because we sought to demonstrate 
results for observations that are likely to be present in other experimental catchments (now 
clarified on page 10).  Additionally, as this is an arid, snowmelt driven system, we chose to 
compare model simulations to SWE, as we concluded this may be a more important criterion.  In 
a screening sensitivity analysis of model sub-catchments, Kelleher et al. (2015) showed for this 
system that vegetation parameters (22 to 53 in Table 1) were key to the prediction of metrics 
assessing SWE.  A smaller subset of model parameters directly influenced metrics related to ET.  
Thus, we conclude that these model parameters are more important determinants of SWE, 
though are still important to ET, and therefore chose to evaluate model simulations with respect 
to SWE. 
 
While it may appear that ET is only weakly constrained, we found that, in fact, it is particularly 
discerning.  To assess the impact of ET and other model constraints on the final set of 
parameters, we calculated the effect of removing a single constraint on the remaining number of 
parameter sets that meet all other criteria.  Out of all possible metric constraints, removing 
constraint on ET has the biggest impact on the number of final parameter sets.  This illustrates 
that even our weak constraint can have an impact on matching catchment-wide behavior. 
 



 

Figure B3: The impact of removing a single constraint on the number of final behavioural 
parameter sets.   

I do not understand the usage of AI: From my understanding of the text, both PE and P are from 
observations, so AI is independent of the model. So how can this criterion be used as a signature 
for model evaluation? 
 
PE is calculated using a Penman-Monteith approach, and therefore is also impacted by 
vegetation parameters (page 9, lines 23-24). 
 
Minor points  
From my experience, the main control on parameter equifinality is model structural choice. The 
authors discuss this important issue briefly in the conclusions. I encourage them to discuss this 
aspect in more detail, although I am well aware that model structural choice is not the topic of 
the paper. However, it can offer an avenue of progress to reduce the still-high equifinality of the 
final behavioral set of parameter sets.  
 
We have centralized this discussion in section 5.6 with the following text (page 19, lines 22 – 32) 
 
“In this vein, the choice of model structure may also offer another opportunity to reduce 
equifinality (Clark et al., 2008; Pokhrel et al., 2008; Samaniego et al., 2010; Rakovec et al., 
2016). In particular, the extensive body of literature on parameter regularization may offer a 
pathway for maintaining spatial complexity and consistency while reducing the number of free 
model parameters (Hundecha and Bardossy, 2004; Hundecha et al., 2008; Samaniego et al., 
2010; Rakovec et al., 2016). Alternatively, there is also a body of work that treats the model 
framework itself as a form of uncertainty, testing different model structures as hypotheses for 
how a catchment may function (Clark et al., 2008; Clark et al., 2011; Fenicia et al., 2011; 
Hrachowitz et al., 2014).  This approach may also provide an alternative to predicting hydrology 
via a model with fewer parameters than the distributed application shown here, with a model 
structure that incorporates the level of detail mandated by the complexities of the catchment 
(e.g., Euser et al., 2015; Zehe et al., 2014).  As encouraged by Beven (2002), to best represent 
catchment behaviour, we may need to not only focus on model parameters, but also the model 
structure in terms of how this reflects the physical landscape.” 
 



P8/l29: RR instead of PET? 
PET varies with model parameters in DHSVM as it is calculated following a Penman-Monteith 
formulation (page 9, lines 23-24). 
 
P12/L17: Where is Appendix D?  
We have corrected this to ‘Table B1’. 
 
P13/L3: Why not also compare simulations to well observations? (see also my major comments)  
Please see our response above. 
 
P13/L7: Appendix B3 instead of B only?  
We have changed this. 
 
P14/L22-23: … suggest that evaluating certain types of internal behavior by point 
observations…?  
We have corrected this sentence to (pg 15, lines 22 - 23): 
“Together, these results broadly suggest that not all observations will reduce equifinality.” 
 
P21/L14: Figure B3 instead of Fig 9?  
We leave the reference to Figure 9, but include ‘Figure B3’ in the previous sentence. 
 
Fig 1: − A) The location of the label 'Tenderfoot creek' is misleading − A) is the scale really 
[km]? − C) add a legend (which gauge is which)  
We have corrected these points in Figure 1. 
 
Fig 4, caption: remaining instead of removed?  
We have changed this to ‘retained’. 
 
Fig 6, caption: Where are the black dotted lines? Where is (a) and (b)?  
We have corrected this figure caption. 
 
Fig 7: Please add year indicators (2007, 2008), a legend (which gauge is which) and for clarity 
add in the caption that these are plots for the final subset of 9 parameter sets  
We have made these changes. 
 
Fig 8, caption: For clarity please add in the caption that these are plots for the final subset of 9 
parameter sets 
We have altered the caption.  
 
Yours sincerely, Uwe Ehret 
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Abstract. Distributed catchment models are widely used tools for predicting hydrologic behaviour. While distributed models 

require many parameters to describe a system, they are expected to simulate behaviour that is more consistent with observed 

processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often 

results in several ‘behavioural’ sets that fit observations (typically streamflow). In this study, we investigate the extent to 

which equifinality impacts a typical distributed modelling application. We outline a hierarchical approach to reduce the 15 

number of behavioural sets based on regional, observation-driven, and expert knowledge-based constraints. For our 

application, we explore how each of these constraint classes reduced the number of ‘behavioural’ parameter sets altered 

distributions of spatio-temporal simulations, simulating a well-studied headwater catchment, Stringer Creek, MT using the 

distributed hydrology-soil-vegetation model (DHSVM).  As a demonstrative exercise, we investigated model performance 

across 10,000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow 20 

water equivalent time series further reduced the number of behavioural parameter sets, but still left a small number with 

similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater 

table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, 

observations, and expert knowledge to identify behavioural parameter sets can reduce equifinality and bolster more careful 

application and simulation of spatio-temporal processes via distributed modelling at the catchment scale. 25 

1 Introduction 

The field of hydrology has been built upon the combination of field measurements and computational modelling to 

observe, understand, and predict hydrologic behaviour (Crawford and Linsley, 1966; Beven and Kirkby, 1976, 1979; Ponce 

and Shetty, 1995a, b).  Towards this end, distributed, physically based models were first developed as tools to represent 

spatially discretized processes with physically meaningful parametric relationships (Freeze and Harlan, 1969; Beven and 30 
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Kirkby, 1979; Band et al., 1991, 1993; Wigmosta et al, 1994; Refsgaard and Storm, 1995; Bixio et al., 2002; Qu, 2004; Qu 

and Duffy, 2007; Camporese et al., 2010; Fatichi et al., 2016).  Distributed models should represent the characteristics of the 

catchment environment in space, given that this variability impacts how water is stored, partitioned, and released across the 

landscape (O’Loughlin, 1981; Beven, 1989; Kampf and Burges, 2007; Wagener et al., 2007; Nippgen et al., 2015). Many 

physically-based, distributed models use similar equations to predict water movement, have comparably large data input 5 

requirements, and feature numerous model parameters (see Singh and Woolhiser (2002), Kampf and Burges (2007), or 

Paniconi et al. (2015) for a review of distributed models).   

Alongside variations in the structural equations, models may take a number of different forms, including those that 

use only distributed inputs (e.g., Ajami et al., 2004; Das et al., 2008; Kling and Gupta, 2009; Fenicia et al., 2008; Euser et 

al., 2015), those that may lump together portions of a watershed with similar characteristics in a semi-distributed fashion 10 

(e.g., Leavesley et al., 1983; Flugel, 1995; Ajami et al., 2004; Das et al., 2008; Zehe et al., 2014), those that may upscale 

sub-grid variability to parameterize models (e.g., Samaniego et al., 2010; Kumar et al., 2013), and those that use physically-

based parameter values (e.g., Wigmosta et al, 1994; Qu and Duffy, 2007) versus conceptual values or transfer functions (e.g., 

Samaniego et al., 2010; Kumar et al., 2013).  These differences can be separated into two primary categories (1) the nature of 

parameter values (physically-based or conceptual) and (2) whether and how parameter values are distributed (cell-by-cell, 15 

grouped or lumped in some meaningful way, or undistributed).  It is also worth noting that an important feedback on these 

decisions is the scale of the application alongside the scale at which inputs and parameters are distributed.  In this study, we 

focus specifically on physically-based, fully distributed (cell-by-cell basis) models applied at the small-scale watershed scale 

(<25 km2). 

Despite the widespread application and advancement of physically-based, fully distributed (cell-by-cell basis) 20 

models, one of the foremost challenges in distributed model application continues to be parameter estimation (Beven and 

Binley, 1992; Gupta et al., 1998; Wagener and Gupta, 2005; Beven 2006; Gharari et al., 2014; Chen et al., 2017).  Model 

simulations and predictions require specification of parameter set(s) or ranges; selecting these set(s) and appropriate ranges 

is especially challenging given that fully distributed models, where inputs such as soil or vegetation are distributed across the 

watershed, require a larger number of model parameters (~50-100 or more) and longer model run times than conceptual or 25 

lumped models. In particular, a large number of model parameters, corresponding to a large number of degrees of freedom, 

may lead to equifinality (Hornberger and Spear, 1980, 1981; Spear and Hornberger, 1980; Beven and Binley, 2014), a well-

documented problem with respect to all models (Beven 1989, 1993, 2001). Many studies have documented the presence of 

parameter equifinality in terms of parameter sensitivity, concluding that the potential for equifinality in distributed model 

applications is high in both time (Franks et al., 1997; van Werkhoven et al., 2008; Zhang et al., 2013, Kelleher et al., 2015; 30 

Ghasemizade et al., 2016; Guse et al., 2016) and space (Wagener et al., 2009; Herman et al., 2013; Moreau et al., 2013).   

A great deal of research has been devoted to developing approaches that either seek to reduce or to explore 

equifinality across multiple parameter sets, but these approaches are typically demonstrated for lumped or conceptual models 

(e.g., Keesman, 1990; van Straten and Keesman, 1991; Beven and Binley, 1992; Gupta et al, 1998).  Currently, researchers 
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approach distributed modelling and parameter set selection in a number of different ways, all of which have implications for 

reducing equifinality.  Many studies avoid the topics of uncertainty or equifinality by assigning parameter values from 

measurements (e.g., Du et al., 2012), though the sheer number of parameters, heterogeneity of the catchment environment, 

uncertainty in model structure and inputs, and problems translating measurements from the point to the grid scale can make 

this difficult (Grayson et al. 1992; Surfleet et al., 2011; Paniconi et al., 2015).  Other approaches involve fixing some 5 

parameters, while letting others vary, often through manual calibration.  Decisions regarding how to constrain ranges and 

distributions for priors on model parameters often depend on the availability of field measurements, awareness of the 

catchment or model, and may involve sensitivity analysis to identify which parameters are most influential to simulations 

(Tang et al., 2007; Saltelli et al., 2008; Cuo et al., 2011).  A subset of distributed modelling studies have directly 

incorporated parameter uncertainty into final simulations, sampling across ranges of values obtained either from literature or 10 

measurements (e.g., Surfleet et al., 2010; Shields and Tague, 2012; Gharari et al., 2014; Silvestro et al., 2015).  Very few 

studies have shown the implications of this equifinality during model calibration, an important consideration given that 

selection of a parameter set or sets will influence conclusions made for validation and scenario analysis. One noted exception 

is the work that has been done to parameterize models via regularization (Hundecha and Bardossy, 2004; Hundecha et al., 

2008; Pohkrel et al., 2008; Samaniego et al., 2010; Rakovec et al., 2016).  Regularization creates global functional 15 

relationships describing transfer functions that link model parameters and catchment characteristics (e.g., Samaniego et al., 

2010; Kumar et al., 2013). As the number of parameters used to describe global functional relationships is far fewer than the 

number of possible total model parameters using cell-by-cell parameterization, regularization is able to limit parameter 

equifinality. 

Researchers must also determine which observations to incorporate and compare to model simulations (as well as 20 

which criteria to measure ‘goodness of fit’ by, and how to judge whether or not this ‘goodness of fit’ is good enough) in 

order to justify the selection of a parameter set or sets (Bennett et al., 2013). While there are examples where different 

observations, including snow accumulation and melt (Thyer et al., 2004; Whitaker et al., 2003), soil moisture (Koren et al., 

2008; Graeff et al., 2012), and catchment chemistry (Birkel et al., 2014), have been incorporated into the calibration and 

parameter set selection process, many catchments lack measurements beyond streamflow, suggesting that other sources of 25 

information are needed (Yapo et al., 1998; Grayson et al., 2002; Paniconi et al., 2015). Finally, while examples exist where 

model simulations are compared to internal measurements of different hydrologic processes at a few points, there are fewer 

examples where researchers holistically evaluate the patterns of these simulated processes (Franks et al., 1998; Lamb et al., 

1998; Grayson et al., 2002; Wealands et al., 2005; Koch et al., 2016). 

Given many of the outlined challenges discussed above, we need to improve our understanding of equifinality in 30 

distributed model applications and to better constrain this equifinality towards predictive use of distributed models. In this 

study, we demonstrate an approach to characterizing and reducing equifinality for distributed models. We apply this 

approach as a case study in the Stringer Creek headwater catchment, located in Tenderfoot Creek Experimental Forest in 

central Montana, modelled with the widely applied Distributed Hydrology-Soil-Vegetation Model (DHSVM). We 
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investigate how the paradigm for identifying ‘behavioural’ model simulations, defined as those that meet a certain criterion 

or multiple criteria for error with respect to observations, may impact the presence of equifinality in terms of parameter 

estimation and constraining simulations and predictions of different hydrologic processes. Within our proposed framework, 

we test many of the subjective choices a modeller must make during calibration with respect to impacts on parameter set 

selection, parameter values, model performance, and model simulations. We explore model performance for a shorter period 5 

of time but for a large number of model runs.  Our goal is to support distributed models utilization to their full potential and 

ensure that parameter set(s) used for prediction or scenario analysis match hydrologic observations and perceptions in both 

space and time. Secondarily, we also explore whether this type of approach, using observations of a subset of hydrologic 

processes, may inform simulations of other unmeasured spatially-distributed hydrologic processes.  Thus, we seek to test 

whether temporal observations may contain information regarding simulation of spatially distributed hydrologic patterns. 10 

While our approach is demonstrated for a single catchment for a relatively short time period, it has broader implications for 

the use of alternative data sources in the parameter estimation process as well as the application of distributed models to 

simulate internal catchment behaviour. 

2.0 Case Study:  Stringer Creek, Tenderfoot Creek Experimental Forest 

2.1 Study Site 15 

We present a case study applying this methodology to a headwater catchment (5.5 km2) located in the Tenderfoot 

Creek Experimental Forest in central Montana.  The case study focuses on Stringer Creek, though we simulate the entire 

Tenderfoot Creek catchment (22.5 km2). The Stringer Creek headwater catchment is located in Tenderfoot Creek 

Experimental forest in central Montana.  Tenderfoot Creek experiences a continental climate with the majority of its 880mm 

of precipitation falling as snow from November through May (Farnes et al., 1995).  Snowmelt, occurring in May or June, is 20 

the primary driver of the hydrologic cycle.  Bedrock under Stringer Creek includes biototite hornblende quartz monzonite 

overlaying a layer of shale in the upper parts of the catchment and flathead sandstone underlain by granite gneiss in the 

lower portions of the catchment (Reynolds, 1995).  Lodgepole pine dominates the forest vegetation types, with shrubs and 

grasses occurring in riparian areas (Farnes et al., 1995; Mincemoyer and Birdsall, 2006).  Stringer Creek, the most well 

studied catchment in Tenderfoot Creek Experimental Forest, is a second-order catchment that drains an area of 5.5 km2. 25 

2.2 The Distributed Hydrology Soil Vegetation Model 

The entire Tenderfoot Creek catchment was modelled using the Distributed Hydrology-Soil-Vegetation Model 

(Wigmosta et al., 1994; Wigmosta et al., 2002).  DHSVM is a physically-based, spatially distributed catchment model 

typically used to simulate mountainous catchments at small to intermediate scales in the Pacific Northwest and the Mountain 

West.  The model includes a two-layer snow accumulation and melt model with a full energy balance and a Penman-30 

Monteith approach for simulating evapotranspiration.  Unsaturated soil water movement is simulated via Darcy’s Law with 
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hydraulic conductivity calculated via the Brooks-Corey equation.  Saturated subsurface flow is routed cell-by-cell using 

either a kinematic or diffusion approximation.  Streamflow is routed through a user-defined stream network via linear 

channel reservoirs.  The model framework and forcing data used to simulate Tenderfoot Creek was previously employed and 

described in Kelleher et al. (2015).  Key details for spatial and meteorological forcing data are described below. 

2.2.1 Spatial Forcing Data 5 

Tenderfoot Creek was simulated within DHSVM at a resolution of 10m and a time step of 3 hours using spatially 

distributed information for topography, soil depth, soil type, and vegetation (Figure 1).  Spatially distributed information for 

topography and vegetation height were obtained via airborne laser swath mapping (ALSM) at 1m resolution and resampled 

to 10m resolution (Figure 1a, b).  Soil depth was held at a constant one meter, as spatially distributed soil data is limited.  

However, >160 well and piezometer installations indicate that 1m is a reasonable average with limited variance (Jencso et 10 

al., 2009). 

DHSVM distributes parameter values based on vegetation and soil ‘types’, with one vegetation and soil type 

assigned to each cell within the catchment. To minimize potential for equifinality, we employed a model framework to 

distribute soil and vegetation parameters using as few different classes as possible while still representing functional 

differences that we expected to impact hydrology across the catchment. Vegetation was grouped into three classes based on 15 

vegetation height, as vegetation species are relatively homogenous across the catchment (Farnes et al., 1995; Mincemoyer 

and Birdsall, 2007) and height is important determinant of aerodynamic resistance, used within both the snow and 

evapotranspiration modules to estimate catchment response on a cell-by-cell basis (Wigmosta et al., 2002).  Vegetation 

classes included tall trees (>10m), trees (2m-10m), and undergrowth (<2m; Figure 1b).  Vegetation parameters were 

distributed by vegetation type, with individual parameters partitioned between an understory (13 parameters) and an 20 

overstory (17 parameters). Cells with only undergrowth include only understory parameters; cells with a canopy (trees or tall 

trees) have both an understory and an overstory. Parameter values associated with understory vegetation were varied 

concurrently across the catchment.  Overstory parameters were varied in tandem for cells with both canopy and tall canopy 

vegetation, with the exception of vegetation height and overstory fractional coverage (aerial percentage of each cell covered 

by canopy vegetation) which we expected to differ between these two vegetation classes. Parameter values for vegetation 25 

were constrained, when possible, based on the plant species at different heights (lodgepole pine when species information 

was available, more generally ‘evergreen conifer’ for 2 – 10m and ‘grasses and shrubs’ for <2m).  All vegetation parameters 

are listed in Table 1, with the minimum and maximum bounds on uninformed (uniform) prior parameter distributions 

specified in Appendix A and sources for these ranges provided in Kelleher et al. (2015). 

A single soil type was used to distribute soil parameters across the catchment, as there is limited small-scale 30 

information about soil properties across Stringer Creek.  Parameter values for soil information were obtained, when possible, 

from the CONUS soils database as well as from texture estimates from CONUS combined with the soil water characteristics 
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hydraulic properties calculator following Saxton and Rawls (2006). Within DHSVM, a total of 15 parameters are used to 

describe soil characteristics for each soil type. 

2.2.2 Meteorological Forcing Data 

The model was executed at a time step of three hours to effectively simulate snowmelt while balancing 

computational cost. Model forcing data includes air temperature, precipitation (which is partitioned between rain and snow 5 

using two temperature thresholds set by parameter values within the model framework), relative humidity, wind speed, and 

solar and longwave radiation (Figure 1c).  All but solar and longwave radiation were measured continuously at two 

SNOTEL sites within Tenderfoot Creek Experimental Forest, with one site located at low elevation and another site located 

at high elevation.  Air temperature was distributed across the basin using a lapse rate calculated at each model time step 

between the two SNOTEL sites; all other meteorological information from SNOTEL sites was distributed using an inverse 10 

distance weighting approach contained within the model. Solar radiation data at the SNOTEL sites was sparse and 

discontinuous; instead, solar radiation measured at a FLUX tower was scaled to SNOTEL site locations using topographic 

position (Kelleher et al., 2015). Within the model, solar radiation is distributed across the catchment using monthly averaged 

shading maps for each model time step across a 24-hour period.  These shading maps incorporate both the effects of 

topographic shading, diel variability, and monthly variability in sun position and angle.  Uniform shading maps were 15 

averaged for the months of November, December and January, as spatially distributed shading maps produced simulations of 

climate and hydrology that exceeded realistic ranges for the model (Kelleher et al., 2015).  As these months are primarily 

periods of accumulation and very little to no melt, we do not expect this to affect model results.  Longwave radiation was 

calculated using the Stefan-Boltzmann equation (Dingman, 2002). 

2.2.3 Model Initialization and Setup 20 

For each parameter sample, the model was run for a six-month warm-up period from April 1, 2006 through 

September 30, 2006 and an analysis period of October 1, 2006 through October 1, 2008. We calibrate to the 2008 water year 

(Oct 1, 2007 – Oct 1, 2008), but demonstrate results for the 2007 water year (Oct 1, 2006 – Oct 1, 2007) to show the value of 

our approach across a longer period.  While these periods are short, they encompass both a wetter (2008) and drier (2007) 

year across the known climatic record at this site.  The model was initialized using observations from the two SNOTEL 25 

stations.  To test that the warm-up period was sufficiently long for the impact of initial conditions on simulations to dissipate, 

we initialized nine parameter sets from varying initial conditions (results shown in Appendix A).  Similar to other distributed 

model studies (e.g., Melsen et al., 2016), we found that model simulations diverged quickly, suggesting that six months 

should be sufficiently long for the influences of parameter values on model simulations and predictions to emerge. This six 

month period of initialization was not used in any of the calibration or validation of the model. 30 
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3.0 A Framework for Constraining Environmental Simulations and Predictions 

3.1 Assessing Model Performance 

There is a wealth of information and approaches researchers use to assess model performance and presence of 

equifinality, often by quantifying how well simulations match observations, aggregated catchment or regional data, and/or 

perceptions of system functioning (Bennett et al., 2013). Across the modelling and prediction in ungauged catchment 5 

literature, we have found that constraints on model-derived hydrologic behaviour generally fall into three general categories: 

1. Regional signatures of similarity (e.g., Yadav et al., 2007; Bloeschl et al., 2013; Hrachowitz et al., 2014), typically 

applied to regionalize hydrologic models for streamflow prediction in ungauged catchments.  

2. Objective functions or error metrics (e.g., van Werkhoven et al., 2008, Wagener et al., 2001; Gupta et al., 2008; 

Pfannerstill et al., 2014; Shafii and Tolson, 2015), which measure how well simulations match observations. 10 

3. Measures of internal catchment behaviour, which describe how well simulations match either observations or 

perceptions of the spatio-temporal variability of hydrologic behaviour (e.g. Franks et al., 1998; Lamb et al., 1998; 

Grayson et al., 2002; Wealands et al., 2005; Kuras et al., 2011; Koch et al., 2016).  

Whether within an uncertainty framework or applied to calibrating a single parameter set, most studies typically use one of 

the three types of constraints outlined above to obtain a ‘best’ parameter set; few have made use of more than one constraint 15 

type, though many studies have shown the value of multi-objective approaches (Yapo et al., 1998; Gupta et al., 1998; van 

Werkhoven et al., 2009).  Recently, a number of studies have advanced approaches for assessing alternative information 

sources (i.e., model realism via expert knowledge) and constraining both parameter values and model simulations in pursuit 

of reducing equifinality (Seibert and McDonnell, 2002; Hrachowitz et al., 2014; Gharari et al., 2014; Silvestro et al., 2015). 

In spite of these many examples, a general framework for how to systematically constrain environmental simulations and 20 

parameter inference is still needed. 

Building on the uncertainty literature across distributed model applications, we recommend constraining 

environmental simulations following a hierarchy of metrics/signatures and corresponding constraints (McGlynn et al., 2013). 

This framework builds from sources of information that should be widely available and have low cost to obtain, to 

information that may not be available everywhere and that may be more expensive to obtain.  We present this framework in 25 

Figure 2, outlining information sources that range from regional signatures, to error metrics, to spatial patterns informed by 

observations and expert judgment.  In this study, we use this framework as a path to evaluate distributed model equifinality 

during model calibration.  

These signatures/error metrics are summarized as follows: 

• Regional Signatures: Regional signatures, increasingly used in hydrological model applications (e.g. Yadav et al., 30 

2007; Bloeschl et al., 2013; Hrachowitz et al., 2014), constrain key annual dynamics. Ranges for a region may be 

informed by global or regional data sources and publications (e.g., Krug et al., 1990; Milly et al., 1994; Church et 

al., 1995; Zomer et al., 2007, 2008).  
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• Local signatures: In the absence of measurements, field researchers often have a broad sense of feasible and 

infeasible ranges for different types (e.g., evapotranspiration, water table height/soil saturation, snow water 

equivalent) of annual or seasonal hydrologic behaviour. These constraints are best applied to average catchment 

conditions, with a goal to remove simulations that are too wet or too dry at an annual or seasonal timescale.  This 

information could be considered “soft information” as described by Seibert and McDonnell (2002), because it may 5 

not directly based on measurements within the catchment. 

• Error Metrics: In general, error metrics are calculated by comparing time series of observational records (most 

commonly, streamflow, but can include snow water equivalent or snow depth (e.g., Whitaker et al., 2003), road 

ditch flow (e.g., Surfleet et al., 2010), soil moisture (e.g., Cuo et al., 2006) to model simulations. We recommend 

comparing observed and simulated time series data in two ways (e.g., van Werkhoven et al., 2009; Hrachowitz et 10 

al., 2014), as statistical metrics, which measure model performance with respect to the entire time series, e.g. Root 

Mean Squared Error (RMSE), Nash Sutcliffe Efficiency Coefficient (NSE; Nash and Sutcliffe (1970)), and dynamic 

metrics, which measure model performance with respect to different periods or types of hydrologic behaviour, e.g. 

the baseflow index, the slope of the flow duration curve (Wagener et al., 2001; Gupta et al., 2008; Pfannerstill et al., 

2014; Shafii and Tolson, 2015).  Performance across statistical metrics is typically judged with respect to a 15 

threshold value, e.g., NSE greater than 0.8, or some threshold percentage, e.g., top 10% of RMSE values (e.g. 

Moriasi et al., 2007; Harmel et al., 2014).  Dynamic metrics may expand assessment of hydrologic behaviour, as 

existing work has shown that there is information contained not only in different types of data but also in different 

periods for an observational time series (Wagener et al., 2001; Gupta et al., 2008; Pfannerstill et al., 2014; Shafii 

and Tolson, 2015).  20 

• Internal catchment behaviour: Aggregated spatial predictions (if values are known) and simulations (if values are 

unknown) may be used to assess the realism of predicted internal catchment behaviour (Grayson et al., 2002; 

Wealands et al., 2005; Kuraś et al., 2011; Koch et al., 2016; Fang et al., 2016). There are many examples of 

distributed models that have evaluated internal catchment behaviour using what Grayson et al. (2002) refer to as the 

‘many points’ approach – comparing model simulations to (often, time series) observations at several locations 25 

throughout the catchment for a given process of interest (e.g., Thyer et al., 2004; Kuraś et al., 2011). However, in 

the absence of internal observations, we suggest that internal simulations may still be incorporated into evaluations 

of distributed model behaviour and parameter estimation.  First, we suggest researchers apply a simple ‘reality 

check’ – are the predictions possible? This step may help to identify runs that predict behaviour outside of the realm 

of possibility.  Secondarily, we suggest that researchers should consider the parameter influences that generate 30 

differences in the spatial representations, to evaluate and either accept or reject parameter sets as more realistic or 

less realistic representations of the system.  This type of evaluation will benefit from involving experimentalists that 

have experience in a particular catchment. While this evaluation is often qualitative, it will rely on expert 

knowledge, previous experimental catchment studies, as well as a perceptual catchment model. 
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3.2 Approach 

In this study, we apply the framework demonstrated in Figure 2 within a Monte-Carlo based uncertainty analysis, 

interrogating relationships between model parameter values, model simulations and predictions, and model metrics that 

summarize model performance and behaviour as catchment-wide signatures and error.  We applied Monte-Carlo sampling to 

a priori constrained parameter ranges for 53 independent parameters associated with basin-wide properties, soil properties, 5 

and vegetation properties to produce 10,000 parameter samples (Table 1; Appendix A).  The model was executed for each 

parameter sample, and model simulations were used to calculate eleven different metrics for each model run. We 

acknowledge that 10,000 parameter sets will not fully explore the entire parameter space for a 53-parameter model. 

However, our approach here serves as a demonstrative exercise, to provide an example of how a modeller could approach 

this type of reduction via multiple constraints.  As such, having a greater number of parameter sets should not influence our 10 

general conclusions. 

Following the framework in Figure 2, Table 2 lists all metrics used to assess catchment behaviour, the equations 

used to calculate each metric, the associated constraints we applied in this study, and the source of information for defining 

each constraint. Due to the relatively short time period for which all meteorological measurements were present within the 

catchment and at both SNOTEL sites, we assessed model calibration across a single year of data corresponding to the 2008 15 

water year (WY) for one discharge location (Stringer Creek, LSC).  All metrics are calculated with respect to this period, and 

are annual metrics unless otherwise stated.  Metrics related to discharge are calculated using observed Stringer Creek 

streamflow, and metrics using data beyond streamflow represent average conditions for the Tenderfoot Creek watershed.  To 

further demonstrate the value of this approach, we also include model performance for two other discharge locations, a 

smaller catchment (Middle Stringer Creek, MSC) and a larger catchment (Tenderfoot Creek, LTC) for the 2008 water year.  20 

We additionally display simulations for the 2007 water year. 

The framework begins with an evaluation of whether model simulations match signatures of regional behaviour, 

evaluated via the runoff ratio and aridity index.  While the latter is calculated from potential evapotranspiration (PET), which 

may be supplied as input for some models, PET varies with parameters in DHSVM.  Signatures were constrained using 

existing datasets and regional reports/publications (e.g., Sankarasubranmanian and Vogel, 2003), including the CGIAR-CSI 25 

Global Aridity and Global-PET database (Zomer et al., 2007; 2008), which was used to limit AI to values obtained within a 

50 km radius of Tenderfoot Creek. Constraints on AI from this dataset represent long-term average conditions for the region, 

and are used to broadly eliminate simulations outside of the realm of regionally realistic estimates. 

We additionally incorporated local signatures of cumulative annual evapotranspiration and average annual water 

table depth, applied to catchment-wide averages. Experimentalists can often recommend basic ranges for these values from 30 

fieldwork or from numerous visits or observations of other hydrologic processes across the catchment. ET was constrained 

based on calculations from Mitchell et al. (2015), from observations at a meteorological tower located within the catchment.  

We limited annual water table depths based on previous findings that the water table is only active for a small portion of the 

Deleted: does 

Deleted: demonstrate 35 

Deleted: both the 2007 and

Deleted: s
Deleted:  We focus specifically on a calibration period of the 2008 
water year though results are demonstrated for two years of data.



10 
 

year during snowmelt, with most of the catchment experiencing very little response (Jensco et al., 2009; Jensco and 

McGlynn, 2011).  

Error metrics were calculated for observed streamflow measurements as well as snow water equivalent (SWE) 

measurements at two SNOTEL stations within the larger Tenderfoot Creek catchment.  While there is more observational 

data present within the catchment than is used to constrain the model, our goal in this application was to make use of 5 

observations that are likely to be available in many experimental catchments.  Thus, we focus on metrics that assess 

streamflow and SWE.  Continuous observations of snow water equivalent are available at both SNOTEL sites. Statistical fits 

for simulated and observed streamflow and SWE were assessed with the NSE. We additionally selected five metrics to 

describe dynamic streamflow and SWE behaviour: 

• Runoff ratio error (RREQ), to capture the annual water balance, 10 

• Error in the slope of the flow duration curve (SFDCEQ), assessed between the 10th (pl) and 30th (ph) percentile 

exceedance flows, to capture the variability in transition flows,  

• Error in the magnitude of the streamflow peak (PQ), 

• Timing of the peak magnitude (TQ), both selected to capture the interaction between snowmelt and streamflow, and 

• Total storage error (VOLS), similar to the RRE but representative of total annual SWE storage behaviour, to match 15 

overall SWE volume. 

As individual daily flow events are the most difficult to match and tend to be influenced by a range of different model 

parameters, we left constraints on these behaviours to be widest (Table 2). Additionally, as peak flow is likely to be most 

influenced by epistemic errors, we left bounds on peak flow to be reasonably wide, so as to avoid incorrectly constraining a 

potentially uncertain measurement. Recognizing that many of these metrics may be conflicting, our goal is to end with 20 

parameter sets that perform reasonably well for many different types of streamflow and SWE behaviour, as opposed to 

performing well for only one or two metrics, yielding an unrealistic hydrograph or SWE time series.   

Error metrics for the SNOTEL sites were computed at each site, but presented in the manuscript as a single measure 

across both sites using an 80% (Onion Park) – 20% (Stringer Creek) weighting.  We chose this weighting because Onion 

Park elevation is more representative of Stringer Creek catchment topography, with more than 90% of the catchment at an 25 

elevation closer to the Onion Park (2259m) than to Stringer Creek (1983m) site elevations.  When weighting both sites into a 

single metric, the absolute values of the storage volumes were averaged, as the model tended to underpredict at Stringer 

Creek and overpredict at Onion Park.  Last, we extracted spatial predictions of water table depth for Stringer Creek at noon 

each day from Oct 1, 2007 through Oct 1, 2008 across the entire catchment.  These maps were averaged across different 

periods to create maps of average annual predictions, average predictions during snowmelt (May 1 – July 30), and average 30 

predictions during the dry period during the late summer (August 1 through September 30).   
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4 Results 

4.1 How Do Single Constraints Influence Model Performance? 

As can be seen in Figure 3, constraining with a single metric yields good performance for matching observations of 

SWE (with respect to NSE and error in SWE volume).  However, the ranges and first and third quantiles for all other metrics 

are well outside of constraints.  For example, error in peak timing may exceed upwards of a month (30 days) and error in 5 

peak magnitude plus or minus 100% when the model is constrained with just one metric. 

4.2 How do constraints on model simulations influence the number of acceptable parameter sets? 

The number of parameter sets that met constraints applied individually, hierarchically, and as a group are shown in 

Figure 4. When applied hierarchically, a total of 9 parameter sets met all metric constraints (Figure 4a). Individually, a large 

number of parameter sets met behavioural constraints on SWE NSE, removing only 489 of the 10,000 sets.  The opposite 10 

was true for behavioural sets constrained based on peak streamflow, which identified only 626 behavioural parameter sets.   

 Figure 4(b) summarizes the number of acceptable parameter sets that meet groups of constraints, as introduced in 

Figure 2. Across the different types of signatures and metrics, dynamic constraints overwhelmingly had the single greatest 

impact on reducing acceptable parameter sets, with just 26 sets meeting all criteria for dynamic metrics. Interestingly, 

statistical and regional constraints identified a similar number of behavioural sets.  While combining regional and local 15 

metrics reduced the number of behavioural sets, combining statistical and dynamic constraints did not reduce the number of 

behavioural sets. 

4.3 Are All Metrics Needed? 

 To evaluate whether all eleven metrics and corresponding constraints are needed to ensure behavioural consistency 

within this framework, we examined model behaviour and performance across subsets of metrics (n = 2 to 10) as well as the 20 

level of redundancy across metrics (Appendix B). Employing only two or three metrics removes 69.7% and 74% 

respectively of the sets removed when all 11 metrics are used, suggesting that 25 to 30% of parameter sets inconsistent with 

model behaviour across our framework would remain. By comparison, including eight metrics generally removes an average 

of 92.6% of all nonbehavioural parameter sets. Of the 165 combinations of eight different metrics evaluated in this analysis, 

83% included at least one metric in each of the different framework groups (regional, local, statistical, dynamic). The 25 

redundancy of each metric was also evaluated by comparing the nonbehavioural sets identified via constraining one metric 

that would not be found by another (Appendix B).  While we found that redundancy did occur in this type of framework, 

more than half of the simulations found to be nonbehavioural by constraining one metric were considered behavioural by 

another metric across a majority of metric combinations. 
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4.4 How Do Single and Multiple Constraints Impact the Distributions of Metrics of Catchment Behaviour? 

Initial distributions (I) of metric values across all 10,000 parameter sets include a wide range of behaviour (Figure 

5).  While these distributions can be narrowed by the addition of one constraint, many distributions of behavioural 

performance were also narrowed by the addition of all constraints. The addition of all constraints favoured higher values 

(~0.5 to 0.7) for the runoff ratio and lower values (~0.35 to 0.5) for the aridity index and average water table height (~-0.75 5 

to -0.95).  Performance improved slightly for both statistical metrics (NSEQ and NSES), and narrowed ranges for both error 

in the runoff ratio (RREQ) and slope of the flow duration curve (SFDCEQ). While behavioural sets both over- and 

underestimated RREQ and SFDCEQ, the final behavioural sets only included simulations that underestimated peak 

streamflow alongside earlier than observed peak timing, while overpredicting SWE.   

4.5 How Do Constraints Impact Predictions and Simulations of Catchment Behaviour? 10 

Figure 6 displays the impact of different constraints on the range of model simulations for streamflow (LSC), snow 

water equivalent (Stringer Creek SNOTEL), and average water table depth for the 2007 and 2008 water years. Streamflow 

simulations for the calibration period (WY 2008) were best narrowed by the addition of statistical and dynamic constraints 

and poorly narrowed by the addition of regional and local constraints.  Constraining behaviour via regional and local metrics 

resulted in behavioural simulations that underestimated peaks and poorly matched timing of streamflow initiation and 15 

maximum response. While statistical and dynamic metrics both predict an earlier streamflow response on the rising limb of 

the hydrograph, simulations well-matched behaviour on the falling limb of the hydrograph.  Dynamic metrics also better 

constrained streamflow simulations during baseflow, which tended to be overestimated by behavioural sets selected by 

statistical metrics.   

Predictive ranges for SWE were similar across different constraints. All metrics well constrained SWE behaviour 20 

(shown for the Stringer Creek SNOTEL station), with consistent differences between simulations and observations 

regardless of metrics used to constrain behaviour.  SWE magnitude was overestimated for all behavioural sets, though the 

initiation of melt timing was similar, producing simulations that overestimated the time that the last of the snowpack melts 

during late May and early June.   

In contrast to simulations of SWE, behavioural simulations of average water table depth varied widely depending 25 

on which metrics were used to constrain behaviour.  Behavioural sets identified via statistical metrics included a wide range 

of average water table behaviour, suggesting that statistical metrics may poorly inform water table dynamics. Behaviour 

constrained by local and regional metrics produced a pattern of average water table depth consistent with general 

understanding of water table behaviour (Jensco et al., 2009; Jencso and McGlynn, 2011).  As a metric for average water 

table depth was directly incorporated into the assessment of regional and local behaviour, this result is expected. Dynamic 30 

metrics had the largest impact on narrowing WTD simulations, identifying behavioural simulations that were most consistent 

with our understanding of water table response across Tenderfoot Creek. 
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4.6 How Well Do Model Simulations Match Observations? 

Calibration to the 2008 water year utilizing all metrics and corresponding constraints identified behavioural sets 

corresponding to hydrographs and SWE time series that reasonably matched observations (Figure 8). Simulations of 

streamflow at the calibration site (LSC) for the 2008 water year simulated the double streamflow peaks and match periods of 

wetting up and drying down that occurred in the observational record, with some differences between simulations and 5 

observations. However, the timing of streamflow on the rising limb of the hydrograph and the first streamflow peak were 

poorly matched.  SWE at both SNOTEL sites was overestimated in terms of magnitude and timing, though simulations 

generally matched observations.  Melt timing generally approximated observed behaviour at Onion Park but was slightly 

early at Stringer Creek, though again dynamics in both cases are largely matched, especially the timing of accumulation and 

melt from April through June. 10 

To demonstrate the value of this approach with respect to other streamflow observation locations and for years 

beyond the calibration period, we also display fits to the 2008 water year for Middle Stringer Creek and Lower Tenderfoot 

Creek.  Streamflow NSE at these two locations varied between 0.63 and 0.83 for LTC and between 0.47 and 0.74 for MSC. 

Like fits to Stringer Creek, timing and peak magnitude for streamflow at MSC and LTC were underpredicted with respect to 

observations, though simulations approximate behaviour of observations on the rising and falling limbs and accurately 15 

predict the presence of observed double streamflow peaks for the 2008 water year. Performance for other metrics for these 

two discharge locations is reported in Table B1.   

Outside of the calibration period, fits for the 2007 water year for all locations were high (Figure 8).  NSE for the 

calibration site (LSC) varied between 0.65 and 0.82, while NSE for the other two streamflow locations varied between 0.64 

and 0.91 at LTC and between 0.51 and 0.78 at MSC.  While the water balance (RREQ) was well approximated for LSC, 20 

estimates were higher than observations for both MSC and LTC, though timing and magnitude of peak streamflow were well 

approximated.  The values for all metrics are reported in Appendix B. 

4.7 How Do Constraints Impact Parameter Uncertainty? 

 To test whether multiple model constraints on hydrologic behaviour were able to reduce parameter equifinality, we 

investigated the extent to which constraining model-predicted and simulated behaviour narrowed ranges for parameter 25 

values, with results displayed in Figure 8. While ranges remained wide for many parameters, ranges were greatly narrowed 

for several of the 53 model parameters.  Narrowed ranges were observed especially for lateral conductivity (7) and its 

exponential decrease with depth (8), maximum (26) and minimum (27) understory stomatal resistance, and a scalar on 

overstory LAI (50).  We applied a two-sample Komolgov-Smirnov test to assess whether there was a statistically significant 

difference (p < 0.1) between the uninformed prior distribution of parameter values (Table 1) and the distribution of 30 

parameter values for sets that met framework criteria.  We found that all but five parameters exhibited statistically significant 

differences between their original and final value distributions.  However, ranges were still wide for many parameter values.   
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4.8 Do Assessments of Catchment Averages and Observations Produce Consistent Internal Predictions of Catchment 
Behaviour? 

 In this study, we do not directly compare simulations of water table depth to well observations.  Instead, we sought 

to assess the variability across these simulations for three different time periods, to determine whether behavioural parameter 

sets yielded similar simulations, and to ask whether spatial diagnostics beyond time series observations should be 5 

incorporated into assessments of distributed model behaviour.  All predictions of water table depth are included in Figure 

B3, with three predictions of water table depth displayed in Figure 9.  These three encompass the range of predictions from 

low to high water table depth for annual, snowmelt (May 1 – July 31), and late summer dry-down (Aug 1 – Sept 30) periods.  

Seasonally, water tables were simulated closer to the surface during snowmelt and closer to bedrock during late summer, 

with average behaviour somewhere between these two extremes. 10 

4.8.1 Are Simulations of Water Table Depth Consistent in Space and Time? 

Across simulated water table depths for nine behavioural parameter sets, differences in simulations were large in 

both space and time (Figure 9; Figure B3).  At annual timescales, many parts of the catchment were predicted to have similar 

annual average behaviour, with differences below 0.1m for 38% of all cells.  Simulations across 13.3% of the catchment 

differed by more than 0.2m, 20% of the modelled soil depth.  These numbers were comparable for simulations during late 15 

summer, when the majority of the catchment was simulated to have similar behaviour.  Differences were greatest during the 

snowmelt period, exceeding simulated ranges of 0.2m over more than 64% of the catchment.  The locations of the largest 

differences also varied across seasonal and annual periods. Our results show that equifinality can produce vastly different 

simulations of internal catchment behaviour. 

4.8.2 Can Simulations Be Used to Further Reduce Equifinality? 20 

 Evaluating whether simulations of internal behaviour of water table depth match perceptions and observations of 

catchment functioning may be done using simple metrics of spatial behaviour.  One such example is the presence of the 

water table at the land surface. Tenderfoot Creek field researchers suggest that there are few locations and few times where 

the water table should be at the land surface across the catchment (Jensco et al., 2009; Jensco and McGlynn, 2011). Based on 

these recommendations, we expect high water tables to be present across minimal areas (<5%) of the catchment. To test the 25 

ability of a spatially distributed high water table metric to discern differences between behavioural sets, we calculated the 

percentage of cells across Stringer Creek where the water table was simulated to be within 0.05m of the surface for the entire 

snowmelt period (May – July).  Four different behavioural sets simulated high water tables over more than 5% of catchment; 

at the extreme end, one set simulated high water tables over 24% of the catchment.  Five sets simulated high water tables 

over less than 5% of the catchment, with simulations below this threshold across the entire catchment for four of these sets.  30 

We would conclude from this evaluation that these four sets produce spatial behaviour that is consistent with experimental 

insight across Stringer Creek. 
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5 Discussion 

Within this study, we develop a conceptual uncertainty analysis and framework for parameter uncertainty reduction 

with application to distributed modelling of headwater systems.  We demonstrate how this framework can be applied with 

respect to a case study in Stringer Creek, a headwater catchment located in Montana.  While there are a few examples of 

frameworks for model calibration (e.g. Refsgaard, 1997) as well as several studies that have evaluated the trade-offs between 5 

model complexity and predictive uncertainty, there remain few guidelines for specific use in distributed hydrologic models, 

which have their own challenges. In this study, we sought to create and test a framework that considered many of the above 

discussed limitations and capitalized on the strengths of such complex models. 

5.1 The Value of Suites of Metrics in Distributed Model Applications 

 Many distributed model applications use only one constraint to select behavioural parameter sets or to justify model 10 

performance.  As we show in Figure 3, model simulations that meet just one set of criteria may poorly match other 

catchment-wide basin behaviour.  Of particular interest is the impact of other constraints on catchment-wide signatures, 

including the runoff ratio, aridity index, annual evapotranspiration, and annual average water table depth. For our 

application, applying a single statistical or dynamic metric did not narrow any signature to ranges deemed to be 

representative of regional or catchment behaviour. 15 

 Interestingly, despite the snow-driven nature of Tenderfoot Creek, many parameter sets were equifinal with respect 

to the NSE for SWE (Figure 5).  This suggests, for this particular application, that a priori parameter ranges did not generate 

wide variability in SWE time series at the two observation sites, leading us to believe that within DHSVM the 

meteorological forcing data is a greater driver of modelled SWE. Since this forcing data is also uncertain, there is potential 

for this uncertainty to propagate into model simulations, and may be driving the overestimation of SWE observed at both 20 

SNOTEL sites. Previous model analysis in this catchment found that many snow accumulation and melt parameters were 

insensitive and highly interactive (Kelleher et al., 2015).  Together, these results broadly suggest that not all observations 

will reduce equifinality. Other studies have questioned the empirical equations used to calculate SWE accumulation and 

melt, and have found improvements in the prediction of SWE accumulation and melt by altering hard-coded parameters 

within the model framework (Thyer et al., 2004; Jost et al., 2009).   25 

The largest number of nonbehavioural sets was identified by error in peak streamflow magnitude.  While there were 

several sets that had very small errors in peak streamflow magnitude (Figure 5), many overestimated the annual water 

balance, and were therefore identified as nonbehavioural. While peak timing was underestimated by the addition of all 

eleven criteria, error in the runoff ratio and the slope of the flow duration curve were narrowed to ranges of lower error and 

average water table depth was constrained to more representative ranges when all eleven criteria were added (Figure 6).   30 

 In the absence of time series observations, our results show that regional and local metrics could be used to narrow 

predictions, but may poorly match hydrologic behaviour for some years (Figure 6).  While statistical or dynamic metrics may 
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inform predictive uncertainty for streamflow in similar ways, we found that they impacted simulations of other key 

catchment behaviour differently.  Statistical constraints poorly constrained simulations of water table depth (Figure 6).  In 

contrast, dynamic constraints, applied only to errors in streamflow and SWE time series, yielded behavioural simulations 

that closely matched expectations of average water table behaviour across the catchment (Jencso et al., 2009; Jensco and 

McGlynn, 2011).  Our results demonstrate that suites of metrics related to hydrologic behaviour may inform simulations of 5 

other hydrologic processes (i.e., average water table depth).  In contrast, we found statistical metrics to carry little 

information regarding other types of simulated or predicted behaviour (Figure 3, Figure 6). To our knowledge, most 

uncertainty analysis studies with semi-distributed or distributed models typically favor statistical constraints over dynamic 

constraints (e.g., Shields and Tague, 2012; Safeeq and Fares, 2012).  It is unclear whether this result is generalizable to other 

catchment applications, though we expect the impact of dynamic metrics with regards to discerning catchment behaviour to 10 

only increase for a greater number of hydrologic events. 

5.2 Benchmarking Simulations Against Other Model Applications to Stringer Creek 

 Altogether, application of a framework for distributed modelling yields model simulations that match streamflow at 

the calibration site and that generally match patterns of SWE accumulation and melt (Figure 7).  In general, while results for 

the 2008 water year bracket observations, results for the 2008 water year are underpredicted with expect to peak behaviour 15 

and timing. Given that snowmelt drives both rising limb and peak hydrograph response, uncertainty related to solar radiation 

or air temperature forcings may be driving the difference in rising limb behaviour we found in our simulations.  

Simulations compare favorably to other conceptual and lumped model applications to Stringer Creek.  Nippgen et 

al. (2015) developed a parsimonious distributed model, with application to Stringer Creek yielding NSE values of 0.8 for 

WY 2007 and 0.94 for WY 2008.  Smith et al. (2013) developed the catchment connectivity model (CCM), a conceptual 20 

hydrologic model that predicts streamflow based on relationships between terrain, connectivity between the hillslope and 

stream found in Jensco et al. (2009), and the duration of flow.  Simulation of Stringer Creek with CCM achieved similar 

levels of fit to our study (NSE of 0.81 for box-cox transformed streamflow; Smith et al., 2013), as did model simulations of 

LTC (NSE of 0.903) and MSC (NSE of 0.856; Smith et al., 2016). Simulations of streamflow by Nippgen et al. (2015) and 

Smith et al. (2016) also underestimated peak streamflow for the 2008 water year, suggesting that uncertainty in the 25 

meteorological forcing data may be responsible for poor performance during calibration period snowmelt.  Ahl et al. (2008) 

modelled Tenderfoot Creek streamflow using the soil and water assessment tool (SWAT) for the period 1995 – 2002, and 

achieved an average NSE of 0.86 during calibration and 0.76 during validation.  Our best fit by NSE to Stringer Creek was 

0.79 for the 2008 water year and 0.82 for the 2007 water year, while best fits for Tenderfoot Creek were 0.83 for the 2008 

water year and 0.91 for the 2007 water year.  Thus, the level of fit we achieved through this investigation was similar to 30 

other model applications to this catchment. Moreover, we ensure that the selected model runs also match key catchment-

wide behaviour as well as dynamical streamflow behaviour through the use of additional metrics. We acknowledge, 

however, that sources of uncertainty beyond those considered by our study may still be driving differences between 
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simulations and observations. Possible sources of error in simulations of both SWE and peak magnitude and timing errors 

may be related to uncertainty in the model framework, model forcing data, and observations used to judge performance.  

Future work modelling these catchments will seek to address these other sources of uncertainty alongside uncertainty in 

parameter values. 

The three models to which we compare our results demonstrate a range of model frameworks that can be used to 5 

evaluate model behaviour: conceptual (Smith et al., 2013), lumped (Ahl et al., 2008), and distributed without physically-

based parameters (Nippgen et al., 2015).  As is shown in this study, all of these models are able to accurately simulate the 

hydrograph for this catchment.  The primary trade-offs across these models include requirements for inputs and parameters 

alongside computational requirements, which are inversely related to the complexity of simulated behaviour that can be 

produced from each of these models.  While any of these approaches may be used to simulate streamflow, each will enable 10 

researchers to answer different questions related to hypotheses about catchment functioning, the use of field information to 

inform model parameter constraints, and predictions of spatio-temporal hydrologic processes.  Finally, these contrasting 

models also illustrate the differences between a model like DHSVM that may be applied to many different catchments versus 

the models introduced by Smith et al. (2013) and Nippgen et al. (2015), in which the model framework and structural 

equations were developed only for this catchment.  In this study, we specifically evaluate the application of physically-based, 15 

distributed models to simulate experimental catchments, though we encourage researchers to select the right tool, and 

therefore the appropriate model, for a given study objective. 

5.3 Parameter Uniqueness and Equifinality 

 We are often interested in how constraints influence predictive uncertainty of hydrologic behaviour.  Thus, the 

logical follow-up question is whether these constraints help to narrow values for model parameters. Across the 53 model 20 

parameters included in our analysis, constraints had a minimal impact on narrowing parameter ranges for most parameters. 

However, we did detect a subset of soil and vegetation parameters that were reasonably narrowed from their original ranges. 

This suggests that equifinality is still present, but that uncertainty analysis may also narrow parameter uncertainty.  In a 

similar application of DHSVM to the Oak Creek catchment near Corvallis, OR, Surfleet et al. (2010) also found significant 

equifinality when using a similar approach to characterize uncertainty with respect to streamflow and road-ditch flow 25 

prediction. While we cannot formulate any strong conclusions regarding predictive uncertainty in parameter values given our 

limited sampling of the parameter space, we assert that equifinality may overwhelm the ability to extract much information 

regarding parameter values in complex distributed model applications. However, equifinality with respect to catchment 

average conditions may manifest in variable predictions of internal catchment behaviour (e.g., Figure 9).  Thus, evaluating 

spatial predictions may be one of the few practical approaches to reducing this equifinality.  30 
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5.4 Interpretation of Internal Behaviour 

 Both field investigations and modelling at Tenderfoot Creek have focused on observation and prediction of water 

table response with the goal of improving our interpretation of streamflow generation and the connection between rainfall 

and runoff (Jencso et al., 2009; Jensco and McGlynn, 2011; Nippgen et al., 2015). Thus, we chose to evaluate simulations of 

water table depth for our case study.  We found that parameter sets that were equifinal with respect to streamflow and SWE 5 

(Figure 7, 8) produced vastly different annual and seasonal simulations of water table depth (Figure 9). Moreover, the 

locations where simulated differences were largest and smallest across the catchment also varied with time. By assessing the 

fraction of the catchment simulated to be at or near the surface across the snowmelt period, we found that four of the nine 

sets produced near-surface water tables over a larger area than previous work suggests is likely. In this sense, internal 

behaviour can be used to identify simulations that do not match perceptions or direct observations of catchment behaviour 10 

beyond comparison with time series. This approach enables one to move beyond just matching to a few points with 

observations, encouraging modellers to holistically evaluate performance and simulation of multiple hydrologic processes. 

5.5 The Case for Adding Spatial Predictions 

Although constraints on the hydrograph and other hydrologic behaviour may ultimately match observations, we are 

still faced with the likelihood that parameter equifinality may not be eliminated by matching predictions to a few time series 15 

observations.  Aggregating model predictions of spatial patterns is time intensive but can be highly informative.  Therefore, 

we recommend mapping these patterns once regional values and/or observations have already been used to narrow the 

parameter space.   

Distributed model predictions of internal behaviour are often performed by matching model predictions of different 

catchment variables (e.g., snowmelt, Thyer et al., 2004; groundwater table dynamics, Kuras et al., 2011) to multiple 20 

observations at discrete points across a given catchment, though several studies have also shown how patterns of hydrologic 

processes may be directly incorporated into evaluating and applying complex environmental models (Grayson et al., 2002; 

Wealands et al., 2005; Fang et al., 2016; Koch et al., 2016).  In the absence of time series observations of other hydrologic 

processes, simulated patterns may be evaluated using expert knowledge, understanding of process controls across 

landscapes, and other information knowledge and experience about model output realism (e.g., Franks et al., 1998).  In our 25 

example, nine parameter sets that matched the hydrograph and associated SNOTEL station SWE observations equally well 

(Figures 5, 6, and 7) predicted very different patterns of internal catchment behaviour (Figure 9). However, these same sets 

also exhibited divergent parameter values for several different soil and vegetation properties (Figure 8). This result 

exemplifies the additional information available to constrain behavioural sets as well as the potential for catchment-scale 

predictive uncertainty driven by parameter equifinality.  Sets that met framework criteria simulated very different patterns of 30 

water table depth across both annual and seasonal periods (Figure 9).  Differences typically were between 0 and 0.2 across 

all simulations and all catchment cells, but were especially large (> 0.5m) over small fractions of the catchment. If spatial 
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predictions were not used to limit the parameter sets, any one of the nine sets has potential to propagate predictions for future 

land use or climate change scenarios that would lead to vastly different expectations of water table presence across the 

landscape. We conclude that equifinal sets may generate very different simulations of internal catchment behaviour, and 

therefore recommend that spatial simulations should be incorporated into assessments of distributed catchment behaviour 

(Figure 2). While we chose to highlight only one spatial diagnostic in this paper, we advocate the inclusion of multiple 5 

diagnostics related to key catchment storages (e.g., water table depth) and fluxes (e.g., evapotranspiration). 

5.6 Future Uncertainty Analysis of Distributed Catchment Models 

Applying this framework to other catchments will require researchers to select a set of metrics for assessing model 

performance, emphasizing both temporal and spatial metrics that may help to ensure appropriate representation of key 

catchment processes (e.g., Yilmaz et al., 2008). Evaluating any of these aggregated signatures, metrics, and spatial 10 

diagnostics should be based on a strong conceptual understanding of the catchment and how processes that govern the water 

balance change temporally and spatially at multiple scales.  Such evaluations may especially benefit from joint evaluation by 

modellers and experimentalists (Seibert and McDonnell, 2002). 

The approach we recommend in this manuscript builds on and compliments several recent studies that have sought 

to improve process consistency across models of varying complexity and within distributed hydrologic models.  Many recent 15 

studies have shown that, despite their weaknesses, distributed models typically outperform conceptual models with respect to 

reproducing signatures (e.g., Hrachowitz et al., 2014) and matching hydrograph dynamics (e.g., Euser et al., 2015).  Thus, 

the new objective we face is how to improve our approaches to distributed modelling, ensuring model realism while 

minimizing uncertainty.  Work by several researchers has evaluated methods for the spatial distribution of parameter values, 

to ensure process consistency across catchment scales (Euser et al., 2015; Fenicia et al., 2016; Nijzink et al. 2016). Others 20 

have sought to incorporate expert knowledge to limit the feasible parameter space (Gharari et al., 2014; Nijzink et al. 2016).  

In this vein, the choice of model structure may also offer another opportunity to reduce equifinality (Clark et al., 2008; 

Pokhrel et al., 2008; Samaniego et al., 2010; Rakovec et al., 2016). In particular, the extensive body of literature on 

parameter regularization may offer a pathway for maintaining spatial complexity and consistency while reducing the number 

of free model parameters (Hundecha and Bardossy, 2004; Hundecha et al., 2008; Pohkrel et al., 2008; Samaniego et al., 25 

2010; Rakovec et al., 2016). Alternatively, there is also a body of work that treats the model framework itself as a form of 

uncertainty, testing different model structures as hypotheses for how a catchment may function (Clark et al., 2008; Clark et 

al., 2011; Fenicia et al., 2011; Hrachowitz et al., 2014).  This approach may also provide an alternative to predicting 

hydrology via a model with fewer parameters than the distributed application shown here, with a model structure that 

incorporates the level of detail mandated by the complexities of the catchment (e.g., Euser et al., 2015; Zehe et al., 2014).  30 

As encouraged by Beven (2002), to best represent catchment behaviour, we may need to not only focus on model 

parameters, but also the model structure in terms of how this reflects the physical landscape. However, as shown by Surfleet 

et al. (2010) in an application of DHSVM to a series of small catchment areas in Oregon, equifinality may still overwhelm 



20 
 

our ability to draw meaningful conclusions from distributed data, especially at small headwater scales. Taken together, these 

studies suggest that equifinality is likely to still limit application of distributed models, but that prudently evaluating how this 

equifinality may impact uncertainty in predictions and simulations alongside parameter values may enable more careful use 

of distributed models.  Similarly, these studies also suggest that incorporating constraints within distributed model 

frameworks based on expert knowledge and alternative data sources, whether applied to model output, model setup, or 5 

model parameter values, may ensure more holistic process representation across a given catchment. 

There are few studies that have sought to characterize equifinality and uncertainty for physically-based, distributed 

model applications, but the number of distributed model applications that either incorporate uncertainty is growing.  Of those 

that exist, most have focused on characterizing predictive uncertainty in terms of uncertainty in parameter values (e.g., Cuo 

et al., 2011; Shields and Tague, 2012; Tague et al., 2013), or in terms of model framework uncertainty, by modifying the 10 

model formulation to match multiple experimental observations throughout the critical zone (e.g., Thyer et al., 2004). These 

studies exemplify the common need to consider uncertainty when predicting environmental behaviour with complex, many 

parameter models.  Our work suggests this will only provide the modeller with a better understanding of the catchment but 

also of the model in question.  Altogether, research with distributed models and our own analysis do critique some of the 

challenges associated with distribute model application, but also highlight the value of distributed models for hydrological 15 

predictions (Hrachowitz et al., 2014; Fitachi et al., 2016). 

Ultimately, our ability to resolve issues with equifinality and identify appropriate parameter sets in space and time 

is challenged, as it was in this study, by the computational demand of complex models.  Executing model predictions for the 

relatively short period of time investigated in this study across 10,000 parameter samples required thousands of computing 

hours (and even longer periods if the modeller retains or “saves” spatial predictions across the catchment).  While 20 

distributed, physically-based models like DHSVM may have the ability to resolve predictions of hydrologic processes 

through space and time, we do not yet have effective, computationally inexpensive approaches for evaluating and 

representing uncertainties in these types of applications.  In order to put these types of models to the test, we need better 

parameter sampling strategies (e.g., Rakovec et al., 2014; Jefferson et al., 2015) and alternative approaches to those we use 

for conceptual models, where executing a model many times is not a challenge or limit on analysis.  This may come in the 25 

form of new methods, or alternatively, approaches that evaluate model adequacy via frameworks for computationally frugal 

analysis (Hill et al., 2015).  While quantifying or limiting equifinality may always be a challenge for physically-based, 

distributed catchment models, we likely will need to reframe our approaches for evaluating the uncertainties associated with 

complex model applications.  This challenge may be best addressed by encouraging interaction across the conceptual 

modelling community and the fully, distributed, physically-based modelling community, to address broad issues related to 30 

uncertainty and equifinality that, it can be argued, plague all models of any complexity (Hrachowitz and Clark, 2017). 
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6 Conclusions 

 Distributed, complex models are powerful tools that enable exploration of spatial and temporal simulations and 

future scenarios of alteration.  While beneficial, their complex nature and subsequent potential for equifinality calls into 

question the typical process researchers use to achieve a representative set of parameters for a given application. We 

performed a modelling study for a headwater catchment, Stringer Creek, located in Tenderfoot Creek Experimental Forest in 5 

central Montana, and evaluated simulations using observational records, expert insight from Tenderfoot Creek researchers 

and existing publications, and regional datasets.  In this application, we demonstrate a method to evaluate how constraining 

model predictions via hydrologic signatures, model error, and process insight impacts predictive and parameter uncertainty, 

the size of the parameter set space, and potential for equifinality. Constraints include those that have potential to be available 

everywhere, based on both regional datasets and local knowledge, and those that are based on observational records of 10 

hydrologic behaviour.  We also include evaluation of spatial patterns of model predictions, to evaluate how parameter sets 

that match point observations predict storages and fluxes across the landscape. 

 Across all types of metrics and constraints, applied either hierarchically or in smaller subsets, we found dynamic 

constraints on annual, seasonal, and event behaviour to be most important for reducing predictive uncertainty and selecting 

behavioural parameter sets.   This suggests that researchers should use care when utilizing only statistical metrics to judge 15 

model performance or to select behavioural parameter sets, as for our application we found many model runs that had high 

statistical metric performance poorly matched dynamical hydrologic behaviour.  Despite the large reduction resulting from 

applying all constraints hierarchically, nine parameter sets met all criteria.  Thus, we expect that there is likely a point at 

which observational records and regional datasets may no longer be able to reduce parameter sets and subsequent 

equifinality. 20 

 It is worth noting that parameter set selection for distributed catchment models is often done without considering 

whether the predicted internal behaviour of the catchment is even within the realm of reality for a site.  Here, we recommend 

the evaluation of internal catchment behaviour as a final diagnostic to arrive at a subset of parameter sets that represent time 

series observations at a few locations as well as internal catchment behaviour.  While evaluating average catchment 

behaviour and time series observations can be helpful, these types of behaviour can often mask spatial variability of 25 

simulations across the year.  Our evaluation of spatially-distributed annual and seasonal water table depth revealed 

somewhat consistent average behaviour but considerably variable spatial behaviour.  

 Overall, this approach relies on a fundamental understanding of the hydrology that governs a given area, and is only 

improved by adding qualitative experimental insight. Transferring our approach to other locations creates the opportunity for 

a close interaction between experimentalists and modellers (e.g. Seibert and McDonnell, 2002), given that the value of a 30 

specific observations or insights to condition hydrologic models will vary widely. More than any single approach, we are 

advocating increased evaluation of distributed catchment models as a step towards improved representation and informed 

use, to ensure that spatio-temporal questions are resolved with spatio-temporally-vetted answers. 



22 
 

 

Code Availability 

DHSVM model code is freely available at <http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/>. 

Data Availability 

Data sets were provided by the United States Forest Service and Tenderfoot Creek Experimental Forest researchers and by 5 

NSF support to Brian McGlynn.  Stringer Creek streamflow data may be obtained from the US Forest Service at a 15-minute 

resolution from (http://www.fs.usda.gov/rds/archive/Product/RDS-2010-0003.2/).  Aridity data was obtained from the 

CGIAR-CSI Global-aridity and Global-PET database, available at (http://www.cgiar-csi.org/). SNOTEL datasets for stations 

Stringer Creek (Site # 1009) and Onion Park (Site # 1008) are available at 

(http://www.wcc.nrcs.usda.gov/snow/snow_map.html).  ALSM data, including topography and vegetation height, for 10 

Tenderfoot Creek are maintained by OpenTopography (http://www.opentopography.org/). 

Appendices. 

Appendix A. Model Initialization and Parameterization 

Figure A1 and Table A1 display information used to inform the model framework and setup.  Figure A1 displays the impact 

of three different hypothetical initial conditions on model predictions and simulations across nine different parameter sets. 15 

The nine parameter sets shown in Figure A1 are the same sets that meet all criteria across the imposed framework.  This 

analysis was performed to determine when the impact of initial conditions dissipated, to justify that a six month warm-up 

period may be sufficiently long enough for the manuscript application. 

Appendix B. Additional Reporting of Model Results and Spatial Pattern Predictions 

To demonstrate additional analyses that were undertaken within the uncertainty analysis framework, we have included an 20 

assessment of redundancy, additional reporting of errors for all gauge locations, and predictions of water table depth for all 

equifinal parameter sets.  Our analysis included eleven different metrics.  To assess whether these metrics provide unique 

information to the uncertainty analysis, we tested the information contained in different combinations of metrics (Figure B1). 

Figure B1 displays number of parameter sets that would be removed by all different combinations of metrics, comparing 

these combinations for different subsets of metrics (2 metrics, 3 metrics, etc.).  The number of nonbehavioural model runs 25 

identified by these different combinations are shown as distributions for each subset of metrics (2 metrics, 3 metrics, etc.), 
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and visualized as a percentage of nonbehavioural runs as compared to the number of nonbehavioural model runs identified 

by the full eleven criteria.   

We also benchmarked the redundancy of metrics and their corresponding constraints within the framework and application 

to Stringer Creek (Figure B2).  Figure B2 shows the percentage of sets removed by one metric (shown in the x-axis) that 

would not be removed by another metric (shown on the y-axis).  We found that one metric, error in peak flow magnitude, 5 

tended to remove nonbehavioural sets identified by other metrics.  Similarly, we found that our statistical metric (NSE) may 

be more informative than our dynamic metric (VOL, error in SWE volume) for matching SWE time series and identifying 

nonbehavioural simulations.  In spite of these redundancies, many metrics do provide unique information, demonstrating the 

value of a multi-objective approach to uncertainty reduction. 

Our analysis was applied to streamflow observed at the outlet of Stringer Creek (LSC) during the 2008 water year, but 10 

metrics were extracted for two additional gauge locations (Lower Tenderfoot Creek, LTC; Middle Stringer Creek; MSC) and 

for two years of complete simulation.  Table B1 reports error metrics for the three gaging sites for both the 2007 and 2008 

water years for nine behavioural parameter sets.  Finally, we also include all water table depth predictions for nine equifinal 

parameter sets included in our analysis in Figure B3.  Figure 9 displays a subset of predictions. 
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Figure 1: Tenderfoot Creek Experimental Forest (a) DEM and instrumentation used in the study and (b) vegetation type used by 
DHSVM to distribute model parameters.  (a) Instrumentation includes a streamflow calibration station at the outlet of Stringer 
Creek (LSC) as well as streamflow gaging stations at the outlet of Tenderfoot Creek (LTC) and Middle Stringer Creek (MSC). 
Most forcing data are measured at SNOTEL sites Stringer Creek and Onion Park. Water balance time series are extracted at both 
SNOTEL locations, as well as streamflow behaviour at the Stringer Creek outlet.  (b) Vegetation type is distributed based on 5 
vegetation height, with cells with undergrowth vegetation shown in white, cells with canopy vegetation shown in light green, and 
cells with tall tree vegetation shown in dark green. (c) The model is forced with air temperature and precipitation data collected at 
the two SNOTEL locations.  Catchment observations include snow water equivalent at two SNOTEL sites and streamflow at three 
gauges.  

 10 
Figure 2: Conceptual framework for constraining environmental predictions for application to a distributed hydrologic model.  
The framework begins with criteria based on information that has potential to be widely available and relatively inexpensive to 
acquire, to criteria based on observations, ending with criteria based expert knowledge that may not be available or achievable 
everywhere. 
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Figure 3: Ranges, interquartile ranges, and mean values for distributions of regional and local signatures, statistical metrics, and 
dynamic metrics used in the proposed framework.  Distributions are shown when a given metric is constrained to behavioural 
ranges and when a metric is constrained by other metrics, compared to behavioural ranges set in this study.  Arrows indicate that 
ranges exceed the visualized axis limits. 5 
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Figure 4: Number of parameter sets retained by each stage of the conceptual framework, shown for (a) individual metrics and (b) 
groups of metrics specified in Figure 1. For individual metrics (a), bars in color indicate the number of parameter sets retained by 
sequential application of each of the steps, moving from top to bottom. Bars in grey indicate the number of parameter sets 
removed if each constraint is applied independent of the others.  For groups of constrains (b), bars indicate the number of 5 
parameter sets that meet all constraints in a given ‘group’. 
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Figure 5: The distribution of model-predicted behaviour across initial distributions of all behaviour (I), distribution of values that 
meet a given behavioural constraint (O), and distribution of values that meet all eleven constraints (A). Constraints are indicated 
by grey dashed lines. Colors correspond to different metrics outlined in Figure 3. 
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Figure 6: Ranges and distributions for predictions of streamflow, snow water equivalent (Stringer Creek SNOTEL site), and 
average water table depth for grouped constraints, which are outlined in Figure 4.  Predictions that meet a given set of constraints 
are shown as ranges in blue as a function of time. Results are shown for the calibration period (2008 WY) as well as a period of 
validation (2007 WY). 5 

Deleted: Black dotted lines delineate the minimum and 
maximum predicted values across all simulations meeting 
corresponding constraints.  Results for the full analysis are 
shown in (a); results generated when only sensitive parameters 
are sampled are shown in (b).10 
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Figure 7: Plots of model-predicted streamflow at the outlets for Middle Stringer Creek, Stringer Creek (calibration site), and 
Tenderfoot Creek alongside predictions and observations of snow water equivalent at the Onion Park and Stringer Creek 
SNOTEL that satisfy all hierarchically applied constraints.  Each grey line corresponds to the simulation from one of nine 
behavioural parameter sets. 5 
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Figure 7: Distributions of behavioural parameter values meeting framework criteria for the 53 parameters varied within the 
analysis.  The ranges for each parameter are listed above (maximum) and below (minimum) each distribution.  Distributions are 
normalized to values between zero and one (y-axis) to enable easier comparison (linearly scaled for all parameters except KLAT, 
which was log10 scaled).  Parameters are grouped by type, with numbers referring to parameter names listed in Table 2.  A two 5 
tailed Komolgov-Smirnov test was used to assess whether there was a statistically significant difference (p < 0.1) between the 
original parameter sample and the parameter sets that met all framework criteria (nine sets). 
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Figure 8: Predictions of annual, May through July, and August through September water table depths (a) in space, across the 
watershed (for a subset of three parameter sets, 1, 2, and 3), (b) shown as differences in space across nine equifinal parameter sets, 
and (c) with differences on a cell-by-cell basis summarized as histograms per time period.  Color on maps indicates (a) the average 
depth across a given period between bedrock (-1 m) and the surface (0 m) and (b) the largest difference between all nine 5 
predictions at each cell.  Predictions are shown for three parameter sets that span the range of behaviour from lower (Set 1) to 
higher (Set 9) water table conditions across all nine parameter sets.  Predictions of water table depth across all behavioural sets 
are included in Figure B3. 
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Figure A1: Predictions of annual, May through July, and August through September water table depths (a) in space, across the 
watershed, (b) shown as differences in space across nine equifinal parameter sets, and (c) with differences on a cell-by-cell basis 
summarized as histograms per time period.  Color on maps indicates (a) the average depth across a given period between bedrock 
(-1 m) and the surface (0 m) and (b) the largest difference between all nine predictions at each cell.  Predictions are shown for 5 
three parameter sets that span the range of behaviour from drier (set 1) to average (set 5) to wetter (set 9) conditions across all 
nine parameter sets. 
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Figure A2: Predictions of annual, May through July, and August through September water table depths (a) in space, across the 
watershed, (b) shown as differences in space across nine equifinal parameter sets, and (c) with differences on a cell-by-cell basis 
summarized as histograms per time period.  Color on maps indicates (a) the average depth across a given period between bedrock 
(-1 m) and the surface (0 m) and (b) the largest difference between all nine predictions at each cell.  Predictions are shown for 5 
three parameter sets that span the range of behaviour from drier (set 1) to average (set 5) to wetter (set 9) conditions across all 
nine parameter sets. 
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Figure B1: This figure compares the number of nonbehavioural sets removed by subsets of different metrics benchmarked by the 
number of nonbehavioural sets removed by all eleven criteria.  Distributions for a given subset of metrics (n = 2 to n = 10) are 
shown for all possible combinations of metrics. 

 5 

 

Fr
eq

ue
nc

y 
of

 se
ts

 fo
r n

 c
rit

er
ia

% of sets removed with n criteria compared to sets removed with 11 criteria

n = 2

n = 3
n = 4 n = 5 n = 6

n = 7

n = 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
n = 10

n = 9

60% 70% 80% 90% 100%



45 
 

 

Figure B2: Redundancy across different metrics.  The percentage of nonbehavioural sets removed by criteria applied to one metric 
(x-axis) that is not removed by another (y-axis). 
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Figure B3: The impact of removing a single constraint on the number of final behavioural parameter sets, organized by the 
constraint that was removed from the analysis.   
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Figure B4: Predictions of annual, May through July, and August through September water table depths.  Color indicates average 
depth across a given period between bedrock (-1 m) and the surface (0 m).  Columns display predictions across nine parameter 
sets identified by the framework applied to Stringer Creek hydrology, with a subset of these (Set 1, 5, and 9) shown in Figure 9. 
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Table 1: Parameter types, names, numbers (with reference to Figure 8) and ranges for all 53 parameters included in the analysis. 
Sources for ranges are detailed in Kelleher et al. (2015). 

# Name 
Minimu

m 

Maximu

m 
# Name 

Minimu

m 

Maximu

m 

Snow/climate Understory Vegetation 

1 Snow water capacity [-] 0.01 0.08 27 Minimum resistance [s m-1] 100 175 

2 Rain LAI multiplier [-] 0.0002 0.001 28 Moisture threshold [-] 0.115 0.165 

3 Snow LAI multiplier [-] 0.0002 0.0025 29 Vapor pressure deficit [Pa] 200 4000 

4 Minimum intercepted snow [-] 0.001 0.01 30 Rpc [-] 0.1 1 

5 Snow threshold [°C] 0 2 31 Root fraction, layer 1 [-] 0.25 0.45 

6 Rain threshold [°C] −2 0 32 Root fraction, layer 2 [-] 0.45 0.65 

Soils 33 Monthly LAI [-] 0.65 1.35 

7 Lateral conductivity (KLAT) [m s-1] 1×10−5 1×10−2 34 Monthly albedo [-] 0.1 0.23 

8 
Exponential decrease in KLAT with depth 

[-] 
0.5 5 

Overstory - Trees 

35 Fractional coverage [-] 0.287 0.575 

9 Maximum infiltration [m s-1] 3.6×10−5 
5.38 × 

10−4 
36 Trunk space [-] 0.37 0.79 

10 Capillary drive [-] 0.03 0.6 37 Aerodynamic attenuation [-] 0.3 4.25 

11 Surface albedo [-] 0.2 0.3 38 Radiation attenuation [-] 0.1 0.2 

12 Porosity [-] 0.38 0.47 39 Maximum snow interception capacity [-] 0.05 0.2 

13 Pore size distribution index [-] 0.07 0.559 40 Mass release drip ratio [-] 0 1 

14 Bubbling pressure [m] 0 1.24 41 Snow interception efficiency [-] 0 1 

15 Field capacity [-] 0.15 0.25 42 Height [m] 2 7.5 

16 Wilting point [-] 0.07 0.15 43 Maximum resistance [s m-1] 500 3000 

17 Bulk density [kg m-3] 1390 1650 44 Minimum resistance [s m-1] 150 300 

18 Vertical conductivity [m s-1] 
1.42×10−

10 

2.02×10−

4 
45 Moisture threshold [-] 0.115 0.165 

19 Thermal conductivity [W m-1 °C-1] 0.3 0.8 46 Vapor pressure deficit [Pa] 200 4000 

20 Thermal capacity [J m-3 °C-1] 1 × 106 3 × 106 47 Rpc [-] 0.1 1 

21 Mannings n [-] 0.11 0.35 48 Root fraction, layer 1 [-] 0.65 0.15 

Understory Vegetation 49 Root fraction, layer 2 [-] 0.75 0.25 

22 Maximum snow interception capacity [-] 0.05 0.2 50 Monthly LAI [-] 0.5 1.5 

23 Mass release drip ratio [-] 0 1 51 Monthly albedo [-] 0.06 0.23 

24 Snow interception efficiency [-] 0 1 Overstory - Tall trees  

25 Height [m] 0 1.2 52 Fractional coverage [-] 0.322 0.594 

26 Maximum resistance [s m-1] 500 1000 53 Height [m] 10 14.7 
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Table 2: Signatures and error metrics used in the analysis.  The table contains abbreviations for each signature/error metric, units, 
the general equation used for calculation, and the constraints chosen to separate behavioural and nonbehavioural runs.  
Abbreviations in equations refer to time step t, total number of time steps m, observed values O, and simulated value S. 

  

Signature/ Metric Abbrev. Data Units Equation Constraints 

Si
gn

at
ur

es
 

R
eg

io
na

l 

Runoff Ratio RR Q, P [-] !"
#

"$%
/ '"

#

"$%
 0.2 < RR < 0.7 

Aridity Index AI PE, P [-] '("
#

"$%
/ '"

#

"$%
 0.33 < AI < 1.206 

Lo
ca

l 

Annual Evapotranspiration ET ET [mm] ()"
#

"$%
 300mm < ET < 650 mm 

Average Annual Water Table Depth WT WT [m] 
1
+ ,)"

#

"$%
 WT < 0.5m 

Er
ro

r M
et

ric
s 

St
at

is
tic

al
 

Nash Sutcliffe Efficiency Coefficient 

NSEQ Q [-] 

1 − ." − /" 0
#

"$%
/ ." −

1
+ ."

#

"$%

0#

"$%
	

	

NSEQ > 0.6 

NSES SWE [-] NSES > 0.8 

D
yn

am
ic

 

Runoff Ratio Error RRE Q [%] 
100 ∙ !",4#

"$%
'",4#

"$%
− !",5#

"$%
'",5#

"$%
∙ '",5#

"$%
!",5#

"$%
 

|RRE|< 20% 

Error in the Slope of the Flow Duration Curve SFDCE Q [%] 
100 ∙ !%6%,8−!96%,830 − 10 − !%6%,;−!96%,;30 − 10 ∙ 30 − 10

!%6%,;−!96%,;
 

|SFDCE|< 30% 

Error in Peak Q Magnitude PQ Q [%] 100 ∙ '<,8 − '<,; '<,;  |PQ| < 35% 

Error in Peak Q Timing TQ Q [days] 
)<,8 − )<,;  

|PT| < 12 days 

Error in SWE Volume VOLS SWE [%] 100 ∙ / = >=
#

"$%
− . = >=

#

"$%
. = >=

#

"$%
 

|VOLS| < 20 
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Table B1: Error metrics for the nine behavioural sets.  Metric abbreviations correspond to metrics shown in Figures 3 and 4.  

  

LTC MSC LSC 

  

NSEQ RREQ SFDCEQ PQ TQ NSEQ RREQ SFDCEQ PQ TQ NSEQ RREQ SFDCEQ PQ TQ 

  

[-] [%] [%] [%] [days] [-] [%] [%] [%] [days] [-] [%] [%] [%] [days] 

W
at

er
 Y

ea
r 2

00
8 

Run 1 0.80 14.36 32.20 -14.8 -12.25 0.54 31.32 2.57 -16.35 7.50 0.68 -3.02 8.19 -29.02 7.50 

Run 2 0.83 1.87 26.19 -19.3 -13.00 0.60 13.53 -5.19 5.73 7.50 0.70 -16.12 -2.43 -22.46 7.50 

Run 3 0.80 34.63 17.85 -10.7 -11.50 0.56 44.15 0.95 -3.52 6.63 0.72 12.42 -6.20 -22.45 6.63 

Run 4 0.63 -7.38 -0.19 -159.7 8.75 0.47 25.17 -7.88 0.54 8.75 0.63 -7.38 -1.60 -21.84 8.75 

Run 5 0.76 3.76 -0.20 -25.6 -11.63 0.72 29.12 -13.96 -9.62 -11.63 0.76 3.76 -25.56 -26.61 -11.63 

Run 6 0.72 0.87 -7.65 -22.1 7.75 0.56 36.60 -11.54 6.94 4.63 0.72 0.87 -7.65 -23.49 7.75 

Run 7 0.79 -4.48 -18.41 -21.2 7.75 0.74 29.55 -18.67 -8.34 -12.00 0.79 -4.48 -18.41 -29.69 7.75 

Run 8 0.74 -6.86 -3.72 -20.3 9.13 0.63 26.97 -7.80 -3.71 8.63 0.74 -6.86 -3.72 -28.19 9.13 

Run 9 0.78 -14.41 3.47 -19.7 4.63 0.67 16.90 3.61 18.25 4.63 0.78 -14.41 3.47 -17.41 4.63 

Minimum 0.63 -14.41 -18.41 -159.7 -13.00 0.47 13.53 -18.67 -16.35 -12.00 0.63 -16.12 -25.56 -29.69 -11.63 

Average 0.76 2.48 5.50 -34.8 -1.15 0.61 28.15 -6.43 -1.12 2.74 0.72 -3.91 -5.99 -24.58 5.33 

Maximum 0.83 34.63 32.20 -10.7 9.13 0.74 44.15 3.61 18.25 8.75 0.79 12.42 8.19 -17.41 9.13 

W
at

er
 Y

ea
r 2

00
7 

Run 1 0.80 23.95 -0.55 -1.18 -0.50 0.60 42.90 -33.27 17.89 1.88 0.77 9.28 -22.17 -2.34 1.88 

Run 2 0.91 10.79 13.06 -21.14 -1.50 0.69 25.21 -30.73 -3.69 4.63 0.76 -3.92 -17.57 -19.90 8.38 

Run 3 0.64 48.94 -6.01 -5.04 -4.13 0.58 59.92 -35.76 14.30 6.38 0.78 34.54 -31.08 -8.78 -1.75 

Run 4 0.85 18.21 -27.78 -26.55 -1.00 0.61 34.31 -64.39 -19.75 9.00 0.65 3.32 -62.07 -36.58 9.00 

Run 5 0.78 48.37 -9.65 -18.38 -18.00 0.78 54.61 -35.83 -6.32 2.00 0.82 35.42 -30.08 -26.02 0.38 

Run 6 0.75 30.18 14.63 8.49 -2.38 0.51 49.05 -28.69 28.23 2.38 0.75 14.29 -15.48 -1.14 0.25 

Run 7 0.80 24.85 11.06 -5.44 -3.50 0.71 39.99 -14.98 7.89 -3.00 0.82 7.45 0.06 -13.26 1.38 

Run 8 0.75 21.94 39.75 5.14 0.50 0.54 38.43 -4.29 32.23 3.75 0.75 5.48 14.82 5.35 3.75 

Run 9 0.83 11.05 41.99 6.45 0.88 0.61 25.69 -10.32 22.52 2.63 0.75 -4.33 9.20 2.95 2.63 

Minimum 0.64 10.79 -27.78 -26.55 -18.00 0.51 25.21 -64.39 -19.75 -3.00 0.65 -4.33 -62.07 -36.58 -1.75 

Average 0.79 26.48 8.50 -6.40 -3.29 0.63 41.12 -28.69 10.37 3.29 0.76 11.28 -17.15 -11.08 2.88 

Maximum 0.91 48.94 41.99 8.49 0.88 0.78 59.92 -4.29 32.23 9.00 0.82 35.42 14.82 5.35 9.00 
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