
Dear Dr. Ehret, 
Thank you for your thoughtful critique of our manuscript.  We have addressed each of 
your comments below (in red text).  In particular, your comments have helped to clarify 
the intent of our manuscript, as well as ensuring that this intent is clearly stated in 
justification of our approach.  These clarifications were focused on the introductory and 
discussion portions of the text. 
 
Christa Kelleher and Colleagues 
 
Dear Editor, dear Authors,  
 
I have reviewed the aforementioned work (version 2 of the manuscript). My conclusions and 
comments are as follows:  
 
1. Scope  
 
The article is within the scope of HESS.  
 
2. Summary  
 
The authors present and apply a framework for calibration of distributed hydrological models by 
applying a hierarchical set of parameter constraints and error metrics to accept or reject randomly 
generated parameter sets. The constraints and error metrics are distinguished by i) range of 
applicability (from regional to local), ii) 'softness' (from local observations to heuristically 
formulated local expert knowledge) and iii) the evaluated characteristic (evaluation of non-
dynamical to dynamical aspects).  
 
The framework is presented at the example of the physically based, distributed DHSVM model 
applied to the 5.5 km² Stringer Creek catchment, whose hydrological behavior is dominated by 
seasonal snow accumulation and snow melt.  
 
Using 10.000 randomly drawn model parameter sets, 10 signatures and error metrics are applied 
individually, in groups and in hierarchical combination to identify behavioral parameter sets 
from the initial set. The resulting subsets are then discussed with respect to the equifinality 
reduced (i.e. by how much the initial parameter ranges were narrowed).  
 
The authors show that by jointly applying all criteria considerably narrows the behavioral 
parameter sets (here: to nine). However, these still show large differences, specifically with 
respect to catchment groundwater table (values and spatial patterns). From the analysis, the 
authors conclude that i) a multi-criteria approach to identification of behavioral parameter sets is 
superior to single-criteria approaches, ii) dynamic constraints to be more effective than non-
dynamical ones, and iii) that despite substantial narrowing of the parameter space still large 
differences among the surviving parameter sets remain, especially with respect to spatial patterns 
of hydrologic states. 
 
3. Overall ranking  



 
The work is ranked 'Major revision'. 
 
4. Evaluation  
Major points  
I like the work presented in this paper, especially the strong argument towards using multiple, 
hard and soft sources of information to identify behavioral model parameter sets, and the 
thorough literature review. However, despite the fact that the authors' focus in this paper is to 
present the concept, with the choice of the catchment and time series used, they have clearly 
missed some very good opportunities to make their results more general and interpretable. More 
specific: 
 
Judging from the presented time series of discharge and snow water equivalent, the catchments' 
hydrological function is very simple (one major discharge event during snowmelt, rainfall-runoff 
events are hardly playing a role). Arguably, a very simple conceptual hydrological model could 
reproduce this behavior at least as well as the applied model with respect to all discharge-related 
signatures and metrics, but with much less parameters.  

• So why choose this very simple-behaving catchment if the goal is demonstrate the 
usefulness of a targeted constraining approach for a distributed, physically based model? 
This way, the model stays well below its potential, and this also means a lot of 
opportunities for more targeted model parameter evaluation are missed. 

 
We selected this catchment for a number of reasons, but especially because it is a place where 
modelers and experimentalists have collaborated before, where other types of models have been 
applied.  Most importantly, we selected it because it is a place where we have lots of 
understanding.  We sought to incorporate distributed measurements that are more likely to be 
available in other catchments (e.g., SWE) to frame our application in a general way that could be 
applied to other sites.  Furthermore, as this is a relatively simple system, it provides a first-order 
test as to whether this type of approach could have merit before we introduce this approach to a 
more complex set of catchments. 
 
An additional benefit to this system is it has been modeled previously with conceptual models, as 
highlighted in the discussion section (page 16, section 5.2).  We compare our findings to other 
simple conceptual models and distributed models of this system (across similar periods), and 
show that we achieve similar levels of fit.  To your point above, we have added a discussion of 
the choice of model complexity, framed by applications within this specific catchment (page 17): 

“The three models to which we compare our results demonstrate a range of model 
frameworks that can be used to evaluate model behaviour: conceptual (Smith et al., 2013), 
lumped (Ahl et al., 2008), and distributed without physically-based parameters (Nippgen et al., 
2015).  As is shown in this study, all of these models are able to accurately simulate the 
hydrograph for this catchment.  The primary trade-offs across these models include requirements 
for inputs and parameters alongside computational requirements, which are inversely related to 
the complexity of simulated behaviour that can be produced from each of these models.  While 
any of these approaches may be used to simulate streamflow, each will enable researchers to 
answer different questions related to hypotheses about catchment functioning, the use of field 
information to inform model parameter constraints, and predictions of spatio-temporal 



hydrologic processes.  Finally, these contrasting models also illustrate the differences between a 
model like DHSVM that may be applied to many different catchments versus the models 
introduced by Smith et al. (2013) and Nippgen et al. (2015), in which the model framework and 
structural equations were developed only for this catchment.  In this study, we specifically 
evaluate the application of physically-based, distributed models to simulate experimental 
catchments, though we encourage researchers to select the right tool, and therefore the 
appropriate model, for a given study objective.” 
 

• Furthermore, the many degrees of freedom in your model inevitably lead to problems of 
equifinality, which would not exist in a simpler model appropriate for the simple 
catchment. So why not choose a more complex catchment, which requires a distributed 
model? 

 
Selecting a more complex catchment (e.g., in terms of more variable vegetation or soil) would 
inevitably lead to greater issues with equifinality.  Thus, we sought to first constrain this 
approach using a straightforward framework (e.g., distributed vegetation but undistributed soil 
types).  If the framework were not able to reproduce the hydrograph, this would merit further 
distribution of inputs.  Future work will include evaluation of this type of approach in catchments 
of differing complexity – e.g., complex inputs, more variable soils, or more variable vegetation. 
We would suggest any catchment may be modeled using a distributed model if the end goal is to 
predict distributed hydrologic processes – the simplicity of the catchment does not negate our 
interest in testing whether observations of streamflow and SWE may constrain the simulation of 
distributed hydrologic processes.  
 
The use of a distributed model may depend on either the spatial complexity of catchment 
characteristics, or the desire to simulate spatially-distributed hydrologic behavior.  As these types 
of models are regularly being used to simulate spatially-distributed behavior, regardless of the 
availability of data to constrain model inputs, parameters, or simulations, we specifically chose a 
more simplistic catchment where we could maintain a parsimonious number of model 
parameters. 
 
Along the same lines: Why was a catchment selected with such little available observations as 
'hard truth'? Why not choose one with a network of observed groundwater tables, ET, nested 
discharge observations, spatially distributed information on soil type and soil depth etc.?  
 
We have chosen a site with nested discharge observations, and have presented these nested 
results in this manuscript.  We do not incorporate comparisons to observed well behavior and ET 
in part because we are interested in the patterns of this information, not just matching these 
values to a single point.  As we discuss on page 8, internal simulations of catchment behavior 
may still be incorporated into evaluations of distributed model behavior.  As internal catchment 
measurements are often difficult to come by, we have sought to specifically incorporate an 
evaluation of model predictions in the absence of ‘hard truth’, to show that this type of 
evaluation is possible. 
 
In fact, the model elements are all set to the same soil depth and soil type, which makes it much 
less distributed as it could be.  



 
While we do not distribute soil type or depth, this is in part framed by experimental observations 
at this site (as outlined on page 5), as well as the strong tradeoff in equifinality that exists as 
more and more ‘types’ are added to a given distributed characteristics, contrasted with whether 
there are enough available observations to truly distribute soil types in space as well as with 
depth.  Thus, we opted to create a parsimonious distributed representation of the system.  
Vegetation types are distributed based on vegetation height, as we expect this to be an important 
determinant of system behavior.   
 
Placing the study in a better equipped catchment would offer the opportunity to fill the very nice 
framework with many more signatures and metrics, especially those evaluating spatial patterns. 
Furthermore, this would have opened the opportunity to compare the value of constraints 
formulated as aggregated/heuristic expert knowledge to 'hard' constraints based on observations. 
This is a clear miss. 
 
From this comment, we have clarified one of our objectives for this study – in the absence of 
spatially distributed measurements, can point observations, especially streamflow, inform 
catchment patterns of hydrologic behavior?  We have altered the text on page 4 to reflect this 
point: 
 
“Secondarily, we also explore whether this type of approach, using observations of a subset of 
hydrologic processes, may inform simulations of other unmeasured spatially-distributed 
hydrologic processes.  Thus, we seek to test whether temporal observations may contain 
information regarding simulation of hydrologic patterns.” 
 
This point is further clarified in the results (4.8) and discussion (5.5) sections. 
 
Along the same lines: All evaluations are done for a single year, and for the calibration period. 
This way it is impossible to judge  
− to which degree the remaining behavioral parameter sets are dependent on the chosen 
calibration period, and  
− whether the behavioral parameter sets found in calibration are still behavioral during a 
different, validation time. This is a clear miss. 
 
Model predictions are performed for two years – a one year calibration period and a one year 
validation period (section 2.2.3).  We have clarified this point in the text, as it was a source of 
confusion. 
 
We additionally include all streamflow performance metrics in Table B1 of the Appendix, to 
enable comparison of results to another period.  As can be seen from Table B1, most sets 
maintain high performance for WY 2007 with respect to streamflow at LSC, with the exception 
of slightly higher RRE values for sets 3 and 5 and SFDCE for set 4. 
 
While the period considered for model performance is relatively short, it still represents a large 
computational burden in terms of the size of the catchment being resolved (22.5 km2, 10 m by 10 
m resolution) as well as the sampling procedure employed.  We expand on this point, as well as 



possible ways to address this challenge of computational burden in the future, on page 17, with 
the following text: 

“Ultimately, our ability to resolve issues with equifinality and identify appropriate 
parameter sets in space and time is challenged, as it was in this study, by the computational 
demand of complex models.  Executing model predictions for the relatively short period of time 
investigated in this study across 10,000 parameter samples required thousands of computing 
hours (and even longer periods if the modeller retains or “saves” spatial predictions across the 
catchment).  While distributed, physically-based models like DHSVM may have the ability to 
resolve predictions of hydrologic processes through space and time, we do not yet have effective, 
computationally inexpensive approaches for evaluating and representing uncertainties in these 
types of applications.  In order to put these types of models to the test, we need better parameter 
sampling strategies (e.g., Rakovec et al., 2014; Jefferson et al., 2015) and alternative approaches 
to those we use for conceptual models, where executing a model many times is not a challenge or 
limit on analysis.  This may come in the form of new methods, or alternatively, approaches that 
evaluate model adequacy via frameworks for computationally frugal analysis (Hill et al., 2015).  
While quantifying or limiting equifinality may always be a challenge for physically-based, 
distributed catchment models, we likely will need to reframe our approaches for evaluating the 
uncertainties associated with complex model applications.  This challenge may be best addressed 
by encouraging interaction across the conceptual modelling community and the fully, distributed, 
physically-based modelling community, to address broad issues related to uncertainty and 
equifinality that, it can be argued, plague all models of any complexity (Hrachowitz and Clark, 
2017).” 

	
The authors advocate a multi-criteria approach to identify behavioral parameter sets. However, 
looking at the criteria in Table 2, two questions arise 
 
Parameterization of ET plays an important role in the model (parameters 22 to 53 in Table 1). 
However, ET is only used as a very weak constraint (300-650 mm/a). Why not also evaluate the 
model with respect to ET error, ET timing, ET peaks etc.? From the text, my understanding is 
that ET estimates from local observations exist. This would be another important and 
independent criterion. 
 
[Even if the constraints are not very narrow,  
 
We compare our results primarily to streamflow and SWE because we sought to demonstrate 
results for observations that are likely to be present in other experimental catchments (now 
clarified on page 10).  Additionally, as this is an arid, snowmelt driven system, we chose to 
compare model simulations to SWE, as we concluded this may be a more important criterion.  In 
a screening sensitivity analysis of model sub-catchments, Kelleher et al. (2015) showed for this 
system that vegetation parameters (22 to 53 in Table 1) were key to the prediction of metrics 
assessing SWE.  A smaller subset of model parameters directly influenced metrics related to ET.  
Thus, we conclude that these model parameters are more important determinants of SWE, 
though are still important to ET, and therefore chose to evaluate model simulations with respect 
to SWE. 
 



While it may appear that ET is only weakly constrained, we found that, in fact, it is particularly 
discerning.  To assess the impact of ET and other model constraints on the final set of 
parameters, we calculated the effect of removing a single constraint on the remaining number of 
parameter sets that meet all other criteria.  Out of all possible metric constraints, removing 
constraint on ET has the biggest impact on the number of final parameter sets.  This illustrates 
that even our weak constraint can have an impact on matching catchment-wide behavior. 
 

 

Figure B3: The impact of removing a single constraint on the number of final behavioural 
parameter sets.   

I do not understand the usage of AI: From my understanding of the text, both PE and P are from 
observations, so AI is independent of the model. So how can this criterion be used as a signature 
for model evaluation? 
 
PE is calculated using a Penman-Monteith approach, and therefore is also impacted by 
vegetation parameters.  This is stated on Page 9 lines 23-24. 
 
Minor points  
From my experience, the main control on parameter equifinality is model structural choice. The 
authors discuss this important issue briefly in the conclusions. I encourage them to discuss this 
aspect in more detail, although I am well aware that model structural choice is not the topic of 
the paper. However, it can offer an avenue of progress to reduce the still-high equifinality of the 
final behavioral set of parameter sets.  
 
We have centralized this discussion in section 5.6 with the following text: 
 
“In this vein, the choice of model structure may also offer another opportunity to reduce 
equifinality (Clark et al., 2008; Pokhrel et al., 2008; Samaniego et al., 2010; Rakovec et al., 
2016). In particular, the extensive body of literature on parameter regularization may offer a 
pathway for maintaining spatial complexity and consistency while reducing the number of free 
model parameters (Hundecha and Bardossy, 2004; Hundecha et al., 2008; Samaniego et al., 
2010; Rakovec et al., 2016). Alternatively, there is also a body of work that treats the model 
framework itself as a form of uncertainty, testing different model structures as hypotheses for 
how a catchment may function (Clark et al., 2008; Clark et al., 2011; Fenicia et al., 2011; 



Hrachowitz et al., 2014).  This approach may also provide an alternative to predicting hydrology 
via a model with fewer parameters than the distributed application shown here, with a model 
structure that incorporates the level of detail mandated by the complexities of the catchment 
(e.g., Euser et al., 2015; Zehe et al., 2014).  As encouraged by Beven (2002), to best represent 
catchment behaviour, we may need to not only focus on model parameters, but also the model 
structure in terms of how this reflects the physical landscape.” 
 
P8/l29: RR instead of PET? 
PET varies with model parameters in DHSVM as it is calculated following a Penman-Monteith 
formulation. 
 
P12/L17: Where is Appendix D?  
We have corrected this to ‘Table B1’. 
 
P13/L3: Why not also compare simulations to well observations? (see also my major comments)  
Please see our response above. 
 
P13/L7: Appendix B3 instead of B only?  
We have changed this. 
 
P14/L22-23: … suggest that evaluating certain types of internal behavior by point 
observations…?  
We have corrected this sentence to: 
“Together, these results broadly suggest that not all observations will reduce equifinality.” 
 
P21/L14: Figure B3 instead of Fig 9?  
We leave the reference to Figure 9, but include ‘Figure B3’ in the previous sentence. 
 
Fig 1: − A) The location of the label 'Tenderfoot creek' is misleading − A) is the scale really 
[km]? − C) add a legend (which gauge is which)  
We have corrected these points in Figure 1. 
 
Fig 4, caption: remaining instead of removed?  
We have changed this to ‘retained’. 
 
Fig 6, caption: Where are the black dotted lines? Where is (a) and (b)?  
We have corrected this figure caption. 
 
Fig 7: Please add year indicators (2007, 2008), a legend (which gauge is which) and for clarity 
add in the caption that these are plots for the final subset of 9 parameter sets  
We have made these changes. 
 
Fig 8, caption: For clarity please add in the caption that these are plots for the final subset of 9 
parameter sets 
We have altered the caption.  
 



Yours sincerely, Uwe Ehret 
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