
 

 

Response to Referee 1 1 

Thank you for your comments. Responses to your comments are provided below. 2 

1) In Introduction, the authors should focus the main part of study and let the researcher know why they should prefer 3 

your research and why we need this research e.g., comparative improvement of this study from the preceding is. 4 

Response: Introduction has been revised to describe the focus of the study and why it is needed. Data-driven methods 5 

are widely used for regional regression modeling. However, regional regression models were historically developed 6 

using an expert assessment of available independent variables. The two approaches have yet to be compared, and this 7 

study does so in order to create regional regression models for the contiguous US. 8 

2) The author adopted a model in which FDC percentiles are regionalized independently, this may not guarantee an 9 

important property of FDC i.e., congruence of the percentiles which must be non-increasing Lacking significant 10 

description of adequacy test for developed regression models. 11 

Response: This limitation is recognized in the methods section on “Regression model development”. An ordinal 12 

relation between predicted percentile flows is not guaranteed by the regression modeling approach, and errors of this 13 

type are not explicitly examined, although they do contribute to the overall error assessed in the performance evaluation. 14 

Further consideration of this matter is given in the discussion section on “Improving performance of percentile flow 15 

predictions”. Preserving an ordinal relation between predicted percentile flows is proposed as a means to improve 16 

predictions. 17 

3) There is a quite possibility that large numbers of variable (descriptors) may ensued in decreasing the efficacy of the 18 

regression model because of numbers of issue e.g., multicollinearity. Moreover, it is also expected that after 19 

prudently managing the aforementioned issue, the efficacy of the developed regression models could be enhanced. 20 

So, for more attractive and significant results, aforementioned concerns should be carefully addressed. 21 

Response: The issue of multicollinearity is now addressed in more depth. A portion of the results section on 22 

“Independent variables selected for the regression models using random forests” describes the multicollinearity of the 23 

regression models. The reason this issue was not managed is because multicollinearity is less of a concern for regression 24 

model performance when using a representative sample of the data for validation (Baguley, 2012), which was the case 25 



 

 

here. The discussion section on “Improving performance of percentile flow predictions” addresses the problem of 1 

multicollinearity for regression modeling. Methods for managing the multicollinearity of regression models may not 2 

improve performance (Kroll and Song, 2013), and the issue of multicollinearity may call for the use of machine learning 3 

methods that are more tolerant to multicollinearity (Dormann et al., 2013). 4 
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Response to Referee 2 1 

Thank you for your comments. All of your comments have been addressed in the text and direct responses follow. 2 

1) Unfortunately, the approach taken in the manuscript, does not appear to include any fundamentally new approaches 3 

to the problem, because it simply combines commonly used approaches such as clustering and random forests with 4 

multivariate regression combined with very a large national dataset. I do not see any way to convert the approach 5 

taken in this paper into the type of scientific contribution required for publication in HESS 6 

Response: The intent of the study was not to develop a new modeling method. Rather, the study compares different 7 

approaches to select the independent variables of a regional regression, which is often overlooked for the purpose of 8 

evaluating different types of models. Independent variables are essential for regional regression modeling, yet it remains 9 

unclear how to select independent variables (i.e. data –driven or expert assessment). The paper addresses this problem, 10 

and in doing so, contributes to the science of identifying a generalized solution to predict the FDC in ungauged basins. 11 

The scientific contribution of the study has been outlined in the Introduction.  12 

2) What guidance do Castellarin et al. (2013) give for addressing this problem? Having reviewed ALL the literature on 13 

this problem, they should give some good guidance.. 14 

Response: Castellarin et al. (2013) highlights the importance of physical understanding in selecting independent 15 

variables. This paper builds on that notion by evaluating a data-driven approach versus independent variables selected 16 

based on physical understanding from the literature as Castellarin et al. (2013) emphasizes. You can now find the 17 

guidance of Castellarin et al. (2013) to select physically meaningful variables in the Introduction and discussion of 18 

“Independent variables for regional regression modeling” in the Introduction. 19 

3) An existing national model for estimation of an FDC for ungaged sites in the continental United States exists, 20 

within the USGS STREAMSTATS program. This system is now operational for most regions of the US. How does 21 

your approach differ from the approach taken in STREAMSTATS? I believe STREAMSTATS takes a very similar 22 

approach to you, thus it is absolutely essential that you answer this question. I was very surprised that you never 23 

even mentioned the USGS STREAMSTATS system! 24 
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Response: The approach of the present study covers the contiguous US and groups basins according to characteristics 1 

related to flow, whereas StreamStats does not cover the contiguous US and has developed models for states. These 2 

differences are now provided in the Introduction of the text. 3 

4) How does your approach compare with the results of STREAMSTATS for your validation stations, or at least a 4 

subset of your validation stations. There are also some recent USGS reports who have done some intercomparison 5 

studies which are not cited in your study. 6 

Response: It was not possible to compare StreamStats to the validation of the present study since StreamStats uses the 7 

type of long-term basins with greater than thirty years of data that were used for validation in this study. The reason why 8 

this study was not compared to StreamStats is now explained at the end of the results section on “Regression model 9 

performance.” Comparing StreamStats to the tool developed for this study is suggested for future work at the end of the 10 

Results section. 11 

5) All of your statistical analyses are based on very classical regression methods and goodness of fit procedures. This 12 

is both good and bad. It is good because your results will be understood by a wider audience. It is bad because you 13 

do not consider the new generation of ’influence statistics’ which enable one to use ordinary regression procedures 14 

while simultaneously understanding the influence of outliers and more importantly the observations which have a 15 

large influence on the model coefficients. Please read the chapters in Helsel and Hirsch (2002) which explain how 16 

to use ’influence statistics’ such as DFITS and Cooks D, and ’Prediction Rsquared’ in addition to some of the 17 

statistics you used. I would never trust a national model that was not subject to this sort of analysis, because it is 18 

very likely that just a few anomalous stations are driving the entire model in each region. 19 

Response: The limitation of not reducing the influence of outliers is stated at the end of the methods section on 20 

“Regression model development.” A reason why this study along with others have not used the type of “influence 21 

statistics” you recommend is because it can be difficult to determine if an outlier is an erroneous value, and if it is, it can 22 

be difficult to determine how to adjust the value. For these reasons, the use of machine learning methods that may have 23 

the ability to account for outliers without over-influencing the entire model is suggested in the discussion section on 24 

“Improving performance of percentile flow predictions.” 25 
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6) At the very least, you should do the following intercomparison. To be able to determine if your model is an 1 

improvement over others, i suggest you do a very simple comparison. For each of your validation sites, simply use 2 

the drainage area discharge relationship to transfer the flows from the nearest gaged site to the validation site. Then 3 

construct the FDC for that site and compare it to your model. I wonder if your model is better than this very simple 4 

model! It is this type of comparison which makes your work credible and useful. 5 

Response: Performance of the drainage-area ratio method added to Table 4, and discussed towards the beginning of the 6 

results section on “Regression model performance”. The poor performance of the drainage-area ratio method did not 7 

warrant further discussion. 8 

 9 
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Response to Commenter 1 1 

Thank you for your comments. Responses to your comments are provided below. 2 

1) The current version of the paper does not show the statistical measures (e.g., F-stat) of the fitted regression 3 

equations. 4 

Response: Regression model statistics are included in the Supplementary Material (see Regression_Models.txt), and 5 

two new columns have been added for the F-statistic and its p-value. 6 

2) The authors do not provide a substantial evidence (e.g., reference) to convince the adopted equation shown on page 7 

number 9. The authors should mathematically prove. If not, few graphs are required to show the trends. 8 

Response: References provided for the form of regression model used to predict percentile flows. 9 

3) In this paper, the authors develop regional regression models of flow duration curves for the contiguous US. Having 10 

said this, as per the authors, the current literature is based on particular geographic regions of the US, such as 11 

southern New England, southern and central California, and the mid-Atlantic. Therefore, the authors can verify their 12 

results for those geographic regions that have already been researched. 13 

Response: The performance of regression models for individual basin groups are compared to previous studies of 14 

overlapping geographic regions in the results section on “Regression model performance”. 15 

4) The authors should provide some statistical measures (e.g., minimum/ maximum/average geographical area) of the 16 

basins that have been analyzed in this paper. 17 

Response: The range of important basin characteristics is provided in Table 6, and serves as the limit for applying the 18 

tool for predicting percentile flows (i.e. the CONUS Percentile Flow Predictor). 19 

5) This research (i.e., results and the discussion) relies on the tool developed by the authors. Therefore, the results may 20 

not be of useful unless the tool is developed accurately. Having said this, the readers may not be conversant with the 21 

programming language(s) to go through the supplementary material provided by the authors. Therefore, it may not 22 

be feasible for a reader to authenticate the results without going through the source code. Thus, a section to outline 23 

the development of the tool is required. 24 

Response: The results and discussion were not based on the tool (i.e. the CONUS Percentile Flow Predictor). Rather, 25 

the tool was developed based on the results of the study, and simply accesses the regression models developed for the 26 
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study to predict percentile flows and report regression model statistics. No programming knowledge is necessary to 1 

operate the tool. The user need only install R, double-click the RData file in the Supplementary Material, and enter three 2 

values in the graphical user interface that appears. None of these steps require any programming knowledge, and we 3 

invite you to use the tool. The output of the tool has been cross-checked using the input values of this study, and any 4 

other input values supplied by the user will generate predictions with a range of uncertainty. These predictions are 5 

intended as an initial approximation of percentile flows, and should not be used for any form of engineering design. The 6 

development of the tool is described in the section titled “Supplementary Material – CONUS Percentile Flow Predictor”, 7 

and instructions for using the tool are provided in a Readme.txt bundled with the Supplementary Material. 8 

6) The methodology adopted to determine the optimum number of clusters is not crystal clear. With the current 9 

methodology, the basins that fall within a particular group may not be the same in the chosen methods (i.e., expert, 10 

lump, and distributed).This is also visible by observing the figures 3(a), 3(b), and 3(c). Therefore, with the 11 

methodology adopted to determine the optimum number of clusters, it is meaningless to evaluate the performance 12 

difference between the chosen methods. 13 

Response: The method used to determine the number of clusters has been clarified. The basins do not need to be in the 14 

same cluster in order to evaluate the entire process of developing regional regression models (i.e. identifying basin 15 

groups and constructing regression models for each group). The study aims to evaluate the performance of this entire 16 

process using different sets of independent variables. 17 

7) The statistical measures on performance evaluation (e.g., coefficient of determination Nash and Sutcliffe efficiency) 18 

presented in this paper are for validation basins. The paper does not present the statistical measures on the fitted 19 

equations. 20 

Response: The adjusted R
2
 of the fitted equations is presented in Fig. 4, and adjusted R

2
 values for each regression 21 

model are given in the Supplementary Material (see Regression_Models.txt). Statistics on the fit of the regression 22 

models are not represented further in the paper because the focus is on performance of models in validation.23 
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Abstract. Percentile flows are statistics derived from the flow duration curve (FDC) that describe the flow equaled or 8 

exceeded for a given percent of time. These statistics provide important information for managing rivers, but are often 9 

unavailable since most basins are ungauged. A common approach for predicting percentile flows is to deploy regional 10 

regression models based on gauged percentile flows and related independent variables derived from physical and climatic 11 

data. The first step of this process identifies groups of basins through a cluster analysis of the independent variables, 12 

followed by the development of a regression model for each group. This entire process hinges on the independent variables 13 

selected to summarize the physical and climatic state of basins. Distributed physical and climatic datasets now exist for the 14 

contiguous United States (US). However, it remains unclear how to best represent these data for the development of regional 15 

regression models. The study presented here developed regional regression models for the contiguous US, and evaluated the 16 

effect of different approaches for selecting the initial set of independent variables on the predictive performance of the 17 

regional regression models. An expert assessment of the dominant controls on the FDC was used to identify a small set of 18 

independent variables likely related to percentile flows. A data-driven approach was also applied to evaluate two larger sets 19 

of variables that consist of either (1) the averages of data for each basin or (2) both the averages and statistical distribution of 20 

basin data distributed in space and time. The small set of variables from the expert assessment of the FDC and two larger 21 

sets of variables for the data-driven approach were each applied for a regional regression procedure. Differences in 22 

predictive performance were evaluated using 184 validation basins withheld from regression model development. The small 23 

set of independent variables selected through expert assessment produced similar, if not better, performance than the two 24 

larger sets of variables. A parsimonious set of variables only consisted of mean annual precipitation, potential 25 

evapotranspiration, and baseflow index. Additional variables in the two larger sets of variables added little to no predictive 26 

information. Regional regression models based on the parsimonious set of variables were developed using 734 calibration 27 

basins, and were converted into a tool for predicting 13 percentile flows in the contiguous US. Supplementary Material for 28 

this paper includes an R graphical user interface for predicting the percentile flows of basins within the range of conditions 29 

used to calibrate the regression models. The equations and performance statistics of the models are also supplied in tabular 30 

form. 31 
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1 Introduction 1 

The flow duration curve (FDC) is composed of percentile flows that identify the flow equaled or exceeded for a given 2 

percent of time. Percentile flows are used to make decisions for streamflow applications, such as hydropower, wastewater 3 

dilution, and water abstractions (Vogel and Fennessey, 1995). These applications are often conducted without observed 4 

percentile flows as most basins are ungauged. In this case, regionalization procedures are typically adopted to predict 5 

percentile flows based on information from gauged basins. 6 

A common type of regionalization procedure develops regression models that relate observed percentile flows to 7 

independent variables derived from physical and climatic basin data (see Hope and Bart, 2011; Mohamoud, 2008; Over et 8 

al., 2014). Hydrologic models based on predicted parameters and climatic forcing data are an alternative to derive percentile 9 

flows (Westerberg et al., 2014). However, the simplicity of using regression models presents an opportunity to provide a tool 10 

to predict percentile flows for ungauged basins. 11 

 Regression models are known to perform poorly for study areas with a large variance in percentile flows, such as the 12 

contiguous United States (US). To reduce the variance in percentile flows, separate regression models are developed for 13 

groups of basins in a process called regional regression modeling (Sauquet and Catalogne, 2011). A typical regional 14 

regression first splits the basins into groups using cluster analysis and then develops regression models for each group. 15 

Independent variables, such as mean elevation and precipitation, are used to identify the groups and parameters of the 16 

regression models. 17 

Despite the long standing tradition of regional regression modeling in hydrology, few studies have investigated the effect of 18 

using different sets of independent variables on the final performance of predictions. Independent variables can be selected 19 

using different approaches. The tendency of recent studies is to use many independent variables in a data-driven approach 20 

(see Di Prinzio et al., 2011; Over et al., 2014; Sauquet and Catalogne, 2011), whereas older studies justify the use of few 21 

variables through expert assessment (see Dingman, 1978; Mimikou and Kaemaki, 1985; Singh, 1971). This approach has 22 

more potential following the decade on predictions in ungauged basins (Sivapalan et al., 2003) in which a variety of studies 23 

identified key variables related to the overall shape of the FDC (Castellarin et al., 2013). A study comparing recently 24 

developed physical understanding of the FDC to a data-driven approach for selecting independent variables would contribute 25 

valuable information to the problem of identifying a generalized solution to predict the FDC in ungauged basins. 26 

Regional regression modeling has been used to predict percentile flows in the US (see Archfield et al., 2007; Hope and Bart, 27 

2011; Mohamoud, 2008). These studies have focused on particular geographic regions of the US, such as southern New 28 

England (Archfield et al., 2007), southern and central California (Hope and Bart, 2011), and the mid-Atlantic (Mohamoud, 29 

2008). The National Streamflow Statistics Program of the US Geological Survey has developed an application for predicting 30 

percentile flows called StreamStats (Ries, 2007). However, it does not cover the contiguous US, and regression models were 31 

developed for states rather than grouping basins based on characteristics related to flow. published regional regression 32 

equations for individual states (see Ries (2007) for a summary of the program). Although pPrevious work, such as 33 
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StreamStats,studies hasve been performed for parts of the US, although physical and climatic data now exist to develop 1 

regional regression models for the contiguous US. Independent variables could be derived to cluster basins in the contiguous 2 

US and develop regression models for subsequent groups of basins. The resulting models could be used as a tool to predict 3 

percentile flows for ungauged basins in the contiguous US. 4 

1.1 Independent variables for regional regression modeling 5 

Independent variables summarize physical and climatic basin data, and serve as the foundation for regional regression 6 

modeling. Both steps of regional regression modeling (basin grouping and model development) depend on the independent 7 

variables chosen to represent the basins. Despite the importance of independent variables, prior studies have primarily 8 

evaluated the use of different cluster analyses (see Di Prinzio et al., 2011; Laaha and Blöschl, 2006; Sauquet and Catalogne, 9 

2011) and modeling methods (see Archfield et al., 2007; Holmes et al., 2002; Over et al., 2014), rather than the input 10 

information of the overall regional regression approach. 11 

A limited number of studies have examined the input information for regional regression modeling of percentile flows. 12 

These studies have either investigated how to select independent variables from a large number of possible variables 13 

(Ssegane et al., 2012a,b) or experimented with the initial set of variables to assess the predictive potential of a certain type of 14 

variable (Hope and Bart, 2012; Ilorme, 2011). A two-part study compared the performance of different variable selection 15 

methods for clustering basins (Ssegane et al., 2012a) and modeling percentile flows (Ssegane et al., 2012b). These studies 16 

revealed the importance of different variables through the variable selection process (i.e. more important variables were 17 

selected more often). The importance of different variables can also be evaluated by changing the initial set of variables and 18 

assessing the difference in model performance. This approach has been used to evaluate the importance of variables 19 

describing vegetation cover (Hope and Bart, 2012) and the spatial distribution of land surface data (Ilorme, 2011). Both of 20 

these studies reported only minor differences to model performance after changing the initial set of variables. However, the 21 

study involving the spatial distribution of land surface data could be expanded to include information on climate and geology 22 

as these are dominant controls on the FDC (Yokoo and Sivapalan, 2011). Studies that evaluate different types of variables, 23 

such as Hope and Bart (2012) and Ilorme (2011), highlight the uncertainty of selecting the initial set of variables for a 24 

regional regression approach. 25 

The approach for selecting the initial set of variables has evolved over the long history of regional regression studies. Early 26 

studies used a small number of variables due to the scarcity of spatially distributed data (see Dingman, 1978; Mimikou and 27 

Kaemaki, 1985; Singh, 1971). These studies included all of the variables in the regression models, and attempted to target 28 

variables with a strong physical connection to the FDC. This early approach to selecting variables could be implemented 29 

using contemporary data sources that provide more physical and climatic information. Variables derived from such data 30 

could be selected through an expert assessment of the dominant controls on the FDC. 31 
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An expert assessment of the FDC would select a small number of variables according to a physical understanding of the 1 

curve, which can be summarized as follows: the highest and lowest flows are respectively generated by storms and 2 

subsurface drainage, and flows in between are a mixture of these sources moderated by evapotranspiration losses (summary 3 

based on the work of Yokoo and Sivapalan, 2011). With this understanding, the climatic controls of the FDC could be 4 

summarized by mean annual precipitation (MAP) and potential evapotranspiration (PET), while subsurface drainage could 5 

be represented by baseflow index (BFI) values that describe the percent of streamflow attributed to groundwater discharge. A 6 

recent review of the FDC regionalization problem suggests the use of this type of physical understanding to select 7 

independent variables (Castellarin et al., 2013). Although BFI values are derived at gauged points, they can be interpolated 8 

to produce spatially distributed data, such as a gridded product for the contiguous US (Wolock, 2003). This data can then be 9 

used to create independent variables for regional regression models. 10 

Despite the recent suggestion to select independent variables based on physical understanding (Castellarin et al., 2013), 11 

many studies of late have opted to use a large number of independent variables (e.g. Over et al. (2014) evaluated 21 12 

variables) in a data-driven approach that attempts to account for more complex and nuanced relations to percentile flows 13 

than may be anticipated through an expert assessment. The growth of spatially distributed data has prompted recent regional 14 

regression studies to use a large number of independent variables (e.g. Over et al. (2014) evaluated 21 variables) in a data-15 

driven approach that attempts to account for more complex and nuanced relations to percentile flows than is presumably 16 

provided by the limited number of variables identified through expert assessment. All of the variables are first used to cluster 17 

the basins, and then a subset of the variables is selected to model the percentile flows for each group of basins (see Di 18 

Prinzio et al. (2011), Laaha and Blöschl (2006), and Sauquet and Catalogne (2011) for examples). The variables used in 19 

these studies may describe the average of the basin data via a single, lumped value or the statistical distribution of the basin 20 

data via multiple, distributed values. The latter set of variables describes the spatial distribution of physical data, such as 21 

topography and geology, and the temporal distribution of climatic data. This information describes factors potentially 22 

associated with streamflow generation, such as the variability of subsurface drainage conditions (Tague and Grant, 2004) or 23 

dispersion of precipitation throughout the year (i.e. seasonality; Ye et al., 2012). Distributed variables produce the largest set 24 

of variables for regional regression modeling, and are thought to be advantageous for accommodating a large variety of 25 

relations to the percentile flows. 26 

2 Research objective and question 27 

The objective of this research was to create regional regression models for predicting percentile flows in the contiguous US. 28 

The steps to complete this objective included (1) grouping basins and (2) developing regression models for each group of 29 

basins. Both of these steps were based on independent variables that summarized the physical and climatic data of the basins. 30 

The approach used to select the independent variables may influence the performance of the regression models. A small 31 
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number of variables could be selected according to an expert assessment of the dominant controls on the FDC, or a data-1 

driven approach could be adopted to account for many possible relations to the percentile flows using a large number of 2 

variables. Both of these approaches were applied to create the regional regression models. The difference in performance 3 

was then evaluated to answer the following research question: 4 

How does the performance of regional regression models for predicting percentile flows differ when using an expert 5 

assessment to select a small number of variables versus a data-driven approach involving a large number of variables? 6 

The hypothesis investigated in this study was that the data-driven approach would produce better regression models because 7 

the large number of variables may account for nuanced relations to the percentile flows not anticipated by the expert 8 

assessment. A performance evaluation was conducted to test this hypothesis and identify a parsimonious approach for 9 

creating the regional regression models. These models were then used to develop a tool for predicting the percentile flows of 10 

ungauged basins in the contiguous US. 11 

3 Methods 12 

3.1 Overview 13 

Regional regression models were created using three different sets of independent variables: 14 

(1) A limited number of variables identified through expert assessment, 15 

(2) an expanded number of lumped variables, and 16 

(3) a larger number of  distributed variables. 17 

The first set of variables was selected based on the expert assessment outlined in the Introduction, and included MAP, PET, 18 

and BFI (herein referred to as expert variables). All of the expert variables were used in the regional regression models. 19 

Larger sets of variables were used in a data-driven approach to identify the regional regression models. A set of lumped 20 

variables was used to describe the averages of data for each basin, while distributed variables described both the average and 21 

distribution of the basin data in space and time. A subset of the lumped and distributed variables was selected for the 22 

regional regression models using a regression tree method called random forests (Breiman, 2001) to rank the predictive 23 

potential of the variables. 24 

The different sets of variables were used in a cluster analysis to split the basins into groups. As a precursor to cluster 25 

analysis, the variables were fed through a neural network called the self-organizing map (SOM). This is an increasingly 26 

popular step to reduce noise in hydrologic data (i.e. variance unrelated to the actual value) and account for non-linearities in 27 

the cluster analysis (see Boscarello et al., 2015; Di Prinzio et al., 2011; Toth, 2013). With each basin characterized by n 28 

variables, SOM neural network training transforms n-dimensional basin vectors into n-dimensional neuron vectors. Those 29 

neuron vectors then become the subject of multivariate clustering, which ultimately leads to the grouping of basins. The k-30 

means clustering method was applied to the neuron vectors as it identifies clusters similar to how the data is organized in the 31 
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SOM (Skupin, 2004). The basins were then assigned to the neuron clusters using the neuron with the vector that best-1 

matched the basin data (i.e. best-matching unit). 2 

Groups of basins identified based on the SOM were used to develop regression models for predicting percentile flows. This 3 

was accomplished using a set of calibration basins, and an independent set of validation basins was used to evaluate the 4 

performance of the regression models. The entire process of (1) identifying groups of basins, (2) developing regression 5 

models, and (3) evaluating their performance was repeated using the three different sets of independent variables (expert, 6 

lumped, and distributed). The performance evaluation was used to identify a parsimonious set of variables for creating the 7 

regional regression models, and a tool based on these models was developed to predict percentile flows for the contiguous 8 

US. The entire regional regression study is summarized as a flow chart in Fig. 1. 9 

3.2 Basins and percentile flows 10 

All basins used in this study were located in the contiguous US, and were selected based on being classified as “near-11 

natural” by the US Geological Survey’s GAGES-II database. The near-natural class consists of basins with little human 12 

influences to the flow of water (see Falcone (2011) for more details). Near-natural basins with at least 30 years of continuous 13 

daily streamflow data were used to calculate 13 percentile flows including the high flows exceeded 1 and 5 % of the time 14 

(Q01 and Q05), low flows exceeded 95 and 99 % of the time (Q95 and Q99), and decile values between those flows (Q10, 15 

Q20,…Q90). Streamflow data was downloaded from the National Water Information System (http://waterdata.usgs.gov/nwis). 16 

Daily data for 30 years was used to calculate percentile flows reasonably stable for different time periods (Kennard et al., 17 

2010). Percentile flows were calculated for 918 near-natural basins using the Weibull plotting position to identify the percent 18 

of time that a given flow was equaled or exceeded (𝑝) as follows: 19 

𝑝 =
𝑟

(𝑛+1)
× 100 (1) 20 

where 𝑟 is the rank of the daily flow according to its magnitude, 𝑛 is the total number of daily flow values, and the flows 21 

were normalized using the mean of nonzero values as in Hope and Bart (2011) to control for differences in magnitude 22 

between the basins. 23 

A subset of validation basins was used to evaluate the performance of the regression models. The validation included 184 24 

(20 %) of the basins, which meets the recommendation that the validation should have at least 100 samples for a continuous 25 

dependent variable, such as percentile flows (Harrell, 2001). The sample of validation basins was selected using a “proxy-26 

basin” approach to identify a sample of basins representative of the remaining calibration basins used to develop the 27 

regression models (Klemeš, 1986). The representative sample was identified using a stratified random sample based on 28 

independent variables to avoid corrupting the validation. The independent variables used to stratify the basins were thought 29 

to be indicative of major controls on the FDC, and consisted of the broadest Köppen climate classes (Peel et al., 2007), the 30 

three major rock types (Reed and Bush, 2007), and drainage area categories. The validation basins were then randomly 31 

selected within the strata, and the remaining calibration basins had a similar distribution of independent variables according 32 
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to descriptive statistics and statistical tests (Kolmogorov-Smirnov and Mann-Whitney). A map of the calibration and 1 

validation basins is provided in Fig. 2. 2 

3.3 Independent variables 3 

Independent variables describing topography, land cover, soil, geology, and climate were used to develop regional regression 4 

models for predicting the percentile flows. Topographic variables were derived from the National Elevation Dataset (NED) 1 5 

arc-second (~ 30-m) grid (http://ned.usgs.gov), and the stream channels for calculating additional topographic variables were 6 

acquired from GAGES-II or the National Hydrography Dataset Plus Version 2 (NHDPlusV2) 1:100,000-scale product 7 

(http://www.nhdplus.com). Land cover was assessed using the 30-m National Land Cover Dataset (NLCD) for the year 1992 8 

(Vogelmann et al., 2001), as this was the year of the NLCD that coincided with streamflow data from the most basins. The 9 

NLCD was used to calculate percent forest cover since synthesis of paired catchment experiments identifies a strong relation 10 

between forest cover and annual flow (Brown et al., 2005). Soil variables were calculated using a multilayer soil 11 

characteristics dataset for the contiguous US (CONUS-SOIL), which provides the State Soil Geographic Database 12 

(STATSGO) as 1-km grids (Miller and White, 1998). Geology was summarized using the BFI as the two are known to be 13 

strongly correlated (Price, 2011). Estimates of BFI were previously generated by Wolock (2003) for the contiguous US 14 

(BFI48GRD). The 1-km grid was spatially interpolated using BFI values at 8,249 gauges with at least ten years of daily 15 

streamflow data (see Wolock (2003) for more information on the methodology). Although the BFI grid was produced using 16 

gauged data, it is a pre-existing dataset that can be used to create independent variables for predicting the percentile flows of 17 

ungauged basins, as previously demonstrated (Dudley, 2015; Hope and Bart, 2011; Yuan, 2013). 18 

Climatic variables were calculated using 30 years of the Precipitation-elevation Regressions on Independent Slopes Model 19 

(PRISM) 4-km grids (http://prism.oregonstate.edu). The only exception was a GAGES-II variable for the average percent of 20 

precipitation delivered as snow from 1901-2000 (Percent_Snow). The other climatic variables used monthly PRISM data 21 

concurrent with the streamflow data for each basin or daily PRISM data from 1981-2010 as the daily data was unavailable 22 

for all of the streamflow data and the chosen time period overlapped with the most streamflow data. Precipitation depths 23 

(mm) were weighted according to the fraction of the grid cell located within the basin boundary. 24 

The independent variables were organized into three different sets of variables listed in Table 1 and named expert (E), 25 

lumped (L), and distributed (D). These different sets of variables may include some of the same variables, but the number of 26 

variables increased for each successive dataset. The expert variables included MAP, PET, and BFI based on expert 27 

assessment of the FDC, as discussed in the Introduction. The larger sets of 22 lumped and 37 distributed variables were used 28 

for a data-driven approach to identify the regional regression models. The lumped variables mainly described the average of 29 

the basin data, while the distributed variables expanded on this information using the following types of variables: (1) the 30 

standard deviation of gridded physical data, such as elevation, and annual climatic statistics, such as precipitation intensity 31 

(mm d
-1

), (2) the percent forest cover in riparian corridors since they are critical areas for groundwater discharge (Hope et al., 32 
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2009), and (3) the amplitude and peak timing of monthly precipitation and PET data described using the lag-1 1 

autocorrelation coefficient (Toth, 2013), circular statistics (Dingman, 2002), and first term of the Fourier transform (Dalton, 2 

2005). 3 

3.4 Cluster analysis 4 

Individual basins are assigned to groups through cluster analysis of independent variables converted into z-scores with a 5 

mean of zero and variance of one in order to give variables on different scales comparable weight. The z-scores were used as 6 

the weights of input vectors for training the SOM, which was composed of hexagonal neurons (i.e. each neuron has six 7 

neighbors) arranged in a two-dimensional grid. The number of neurons in the grid was chosen to be significantly larger than 8 

the anticipated number of clusters in order to avoid individual neurons acting as cluster centroids. Neurons are later linked to 9 

basins through computation of the similarity of basin input vectors and neuron output vectors. “Empty” neurons not linked to 10 

any of the basins through strong similarity were deemed unrepresentative of the input data, and limited for the cluster 11 

analysis. Preliminary experiments were performed on the total number of neurons in order to limit the occurrence of empty 12 

neurons, and this led to the choice of a 15x15-neuron SOM for all training. 13 

Prior to training, the neurons were given a random vector of values equal in length to the number of input variables. The 14 

neuron vectors were adjusted through an iterative training process that presented the basin data to the SOM and assigned it to 15 

the most similar neuron according to the Euclidean distance metric. The receiving neuron, or best-matching unit (BMU), and 16 

its neighbors were modified to more closely match the incoming data using a Gaussian neighborhood function and a learning 17 

rate that decreased the magnitude of the modifications as the training proceeded. Neural network training was performed 18 

with the SOM Toolbox (http://www.cis.hut.fi/projects/somtoolbox), using techniques described by Vesanto et al. (2000). 19 

The SOM was trained using a global and local stage as recommended by Kohonen (1990). The global stage used a large 20 

neighborhood size (8 neurons), relative to the size of the SOM (15x15 neurons). A large learning rate (0.04), which 21 

decreased over a short number of runs (50), was used during global training to reveal large structures in the data. Smaller 22 

clusters were then distinguished using a smaller neighborhood (5 neurons) and learning rate (0.03) for a longer number of 23 

runs (4,000) during local training. Both training stages were run until the neuron vectors converged on the basin data (i.e. the 24 

difference between the neurons and basins no longer decreased). 25 

The trained neuron vectors were then clustered using the k-means method. Cluster centroids were initially given a random 26 

vector of values, and the neuron vectors were assigned to the cluster centroids according to the Euclidean distance metric. 27 

The cluster centroids were then recalculated using the mean of the neuron vectors assigned to each cluster. This process 28 

continued until the cluster centroids no longer changed, and was repeated 1,000 times to prevent the randomly initiated 29 

cluster centroids from influencing the performance of the clustering. The final cluster solution had the minimum sum of 30 

squared Euclidean distances between the cluster centroids and neuron vectors. The basins were assigned to the neuron 31 

clusters according to their BMU (i.e. neuron with the shortest Euclidean distance to the basin). 32 
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The number of clusters was evaluated for the cluster solutions with 2-50 clusters. The criteria for evaluating the number of 1 

clusters were (1) the number of calibration basins per cluster available to develop subsequent regression models and (2) the 2 

validity of the clusters in terms of their compactness and separation. The final number of clusters was determined as follows: 3 

(1) The number of clusters for each set of variables was identified using five cluster validity indices (i.e. silhouette, 4 

Davies-Bouldin, Xie-Beni, Calinski-Harabasz, and Dunn) as defined in Desgraupes (2013). 5 

(2) Cluster solutions from the validity indices with less than 20 calibration basins per cluster were eliminated as 6 

recommended by Hosking and Wallis (1997). 7 

(3) The largest number of clusters remaining was used to accommodate the large variability of basins in the contiguous 8 

US. 9 

The minimum number of calibration basins per cluster was 20 as recommended by Hosking and Wallis (1997) for regional 10 

streamflow predictions. This served as a limit on the number of clusters. The validity of the different number of clusters was 11 

evaluated using the following indices defined as in Desgraupes (2013): silhouette, Davies-Bouldin, Xie-Beni, Calinski-12 

Harabasz, and Dunn. The number of clusters identified using the indices was limited to solutions that returned at least 20 13 

basins per cluster. From these solutions, the largest number of clusters was chosen to contend with the large variability of 14 

basins in the contiguous US. The different sets of variables (Table 1) resulted in different numbers of clusters, and the largest 15 

number was chosen so that each set of variables had the same number of clusters. The cluster analysis for each set of 16 

variables split the basins into 14 groups. 17 

3.5 Regression model development 18 

Regression models were developed for each group of basins. The number of calibration basins in the group dictated the 19 

number of independent variables used for the model. An independent variable was used for every ten calibration basins as 20 

this provides an adequate sample size for estimating regression model parameters (Austin and Steyerberg, 2015). The 21 

regression models were able to use all three of the variables from the expert assessment of the FDC (> 30 calibration basins 22 

per group), but a subset of the larger sets of variables (lumped and distributed) had to be selected for the regression models. 23 

The lumped and distributed variables were selected using random forests because this approach can be used to estimate the 24 

importance of each variable. Random forests were generated for each group using the calibration basins and their percentile 25 

flows. The calibration basins were randomly sampled to grow regression trees until the error of the percentile flow 26 

predictions stabilized for the out-of-bag sample (i.e. calibration basins excluded from the tree). The regression trees 27 

recursively split the calibration basins into smaller groups using a series of rules based on the independent variables. The 28 

percentile flows of the smallest groups were averaged to generate predictions for the out-of-bag sample. The mean squared 29 

error (MSE) of out-of-bag predictions was used as an estimate of variable importance. Each variable was randomly permuted 30 

(or essentially removed) to grow the regression trees, and the increase in MSE signified the importance of the variable. The 31 

variable rankings derived from this process may change due to the random samples used to grow the regression trees. As a 32 
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result, the entire process was repeated using 100 random forests, and the mean increase in MSE was used to rank the lumped 1 

and distributed variables for each group of basins. The lowest ranked variable included in the regression model was 2 

determined by the number of calibration basins in the group as previously described. 3 

The independent variables selected for each group of basins were used in a common form of a regression model of the 4 

formfor predicting FDC statistics (see Mohamoud, 2008; Over et al., 2014; Sauquet and Catalogne, 2011): 5 

𝑙𝑛(𝑄𝑖)  =  𝛽0 +  𝛽1𝐼1 … +  𝛽𝑗𝐼𝑗   (2) 6 

where the dependent variable (𝑄𝑖) is the percentile flow 𝑖 transformed using the natural log to reduce the skew of the flows 7 

and their potential to violate the assumption of homoscedasticity (i.e. evenly varying model residuals), 𝐼1 - 𝐼𝑗  are the 8 

untransformed or natural log-transformed independent variables whether they had a non-linear or linear relation to the 9 

percentile flow 𝑖, and 𝛽0-𝛽𝑗 are the parameters of the regression model estimated using the ordinary least squares method. 10 

Separate regression models were developed to predict each of the 13 percentile flows (Q01, Q05, Q10, Q20,…Q95, Q99). This 11 

modeling approach did not guarantee an ordinal relation between predicted percentile flows. Overestimates violating the 12 

ordinal relation between percentile flows were reflected in the performance evaluation, but not explicitly evaluated. Another 13 

possible limitation of the regression approach is that it did not account for the influence of outliers. Diagnostics, such as 14 

Cook’s D and DFFITS, are used to identify outliers, and if an error is detected, the value is either corrected or removed. 15 

Although the use of such diagnostics is recommended for hydrologic regression modeling (Helsel and Hirsch, 2002), many 16 

regional regression modeling studies choose not to account for outliers (see Castellarin et al., 2004; Mohamoud, 2008; Over 17 

et al., 2014), likely due to the difficulty of characterizing an outlier as an error. Any outliers were included in the regression 18 

modeling for the purpose of comparing different sets of independent variables without manually adjusting the data. 19 

3.6 Performance evaluation 20 

The performance of the regional regression models was evaluated using the percentile flows of the validation basins 21 

excluded from regression model development. The natural log of the percentile flows was applied to reduce the potential 22 

influence of large flows. The predictive performance for each percentile flow was quantified using the relative error (E), 23 

coefficient of determination (R
2
), and Nash and Sutcliffe (1970) efficiency (N) calculated as: 24 

𝐸 =  |
𝑃𝑏−𝑂𝑏

𝑂𝑏+ 1
| (3) 25 

𝑅2 = (
∑ (𝑂𝑏− �̅�)(𝑃𝑏− �̅�)𝑛

𝑏=1

√∑ (𝑂𝑏− �̅�)2𝑛
𝑏=1 √∑ (𝑃𝑏− �̅�)2𝑛

𝑏=1

)

2

 (4) 26 

𝑁 = 1 −  
∑ (𝑂𝑏− 𝑃𝑏)2𝑛

𝑏=1

∑ (𝑂𝑏− �̅�)𝑛
𝑏=1

2   (5) 27 

where 𝑂𝑏  and 𝑃𝑏  are respectively the observed and predicted percentile flow for basin 𝑏 , �̅�  and �̅�  are the mean of the 28 

observed and predicted percentile flows, respectively, and 𝑛 is the number of validation basins. A constant of one was added 29 
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to the denominator of E to accommodate zero flows, and the absolute value was used to calculate the sum of E for each 1 

percentile flow. 2 

4 Results 3 

The study basins were split into 14 groups using three different sets of variables (Fig. 3). The groups were largely 4 

geographically contiguous, although the independent variables did not describe the location of the basins. The geographic 5 

contiguity of the groups signifies that spatial proximity is a strong indicator of similarity between the independent variables. 6 

Notable exceptions were distant areas with similar physical and climatic conditions, such as southern Appalachia and 7 

northern California (group 6 of Figs. 3a and b), and mountainous areas with sharp changes in elevation, such as the Pacific 8 

Northwest (groups 5 and 10 of Fig. 3). The groups derived using the different sets of variables had some major differences, 9 

such as an additional group for the Rocky Mountains when information on snow (Percent_Snow) was included (group 13 of 10 

Figs. 3b and c) and the loss of a group in the Appalachian Mountains (group 9 of Figs. 3a and b) when using the distributed 11 

variables. The differences between the groups could be further characterized by an exploratory analysis like that of Ley et al. 12 

(2011), but the present study was concerned with the effect of using the different sets of variables on regional regression 13 

models for predicting percentile flows. The rest of the results therefore examine the independent variables used for the 14 

regression models, and compare the performance of the regression models developed using the different sets of variables to 15 

evaluate the hypothesis that a data-driven approach with a large number of variables is more effective than an expert 16 

assessment of the FDC that uses a small number of variables. 17 

4.1 Independent variables selected for the regression models using random forests 18 

The data-driven approach used random forests to select a subset of the most important lumped or distributed variables for the 19 

regression models, and the percent of the models that included each variable was used to rank the importance of the variables 20 

for predicting high (Q01-Q20), average (Q30-Q70), and low (Q80-Q99) percentile flows (Table 2). The most frequently selected 21 

variable was BFI. The expert assessment of the FDC identified BFI as an important variable for flows other than the highest 22 

flows generated by storms, but BFI was the most important variable for predicting the entire FDC including the highest 23 

flows. The other variables selected by the expert assessment of the FDC (MAP and PET) were among the top five most 24 

selected variables. These variables were also frequently used when combined as Aridity (PET/MAP). 25 

The remaining frequently selected variables in Table 2 described snow accumulation and melt (Percent_Snow and 26 

Spring_Temp), subsurface drainage (Poorly_Drained), and mean elevation (Elev). The snow-related variables were 27 

frequently used for snow-dominated groups. For instance, the Rocky Mountains (groups 12 and 13) included the snow-28 

related variables in 62 % of the models. The importance of subsurface drainage was previously highlighted by BFI, and is 29 

further demonstrated by the frequent use of a variable describing the percent of the basin covered in poorly drained (NRCS 30 
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(2007) groups C and D) soils (Poorly_Drained). Mean elevation was frequently used for the regression models, but other 1 

topographic variables, such as mean slope and drainage density, were not frequently used, which is noteworthy as these 2 

variables have been widely used to predict percentile flows. 3 

The distributed variables included additional variables for describing the within-basin statistical distribution of independent 4 

variables, but these variables were largely absent from the regression models (Table 2). Only two of these variables 5 

(Precip_Seasonality and Aridity_SD) were among the top five most selected variables. This indicates that using the 6 

distributed variables had little effect on the performance of the regression models (see the next section for those results). The 7 

more frequently used lumped variables (i.e. basin averages) were stronger predictors of the percentile flows, and the 8 

additional variables on the distribution of the basin data may have been statistically redundant (i.e. cross-correlated with the 9 

lumped variables). 10 

The statistical redundancy (i.e. multicollinearity) of the variables was evaluated using the condition number (CN) of the 11 

regression models (Belsley et al., 2004), with a CN > 30 signifying the presence of redundant variablesmulticollinearity. All 12 

of the regression models included redundant variablesmulticollinearity as indicated by the minimum CN > 30 (Table 3). A 13 

large CN may be a problem for transferring the regression model to new (validation) data (Kroll and Song, 2013)., but t This 14 

was not a concernconsidered here since the validation used a representative sample of the basins, and multicollinearity is less 15 

of a concern for regression model performance when this condition is met (Baguley, 2012). The CN was used here to 16 

evaluate the redundancy multicollinearity of the variables with the greatest predictive potential selected for the regression 17 

models. These variables were highly redundanthad large multicollinearity, and the degree of redundancy multicollinearity 18 

increased for the distributed variables according to the mean CN. This once again indicates that the distributed variables 19 

added little predictive information to the regression models (i.e. the extra variables were statistically redundant), and the 20 

contribution of the distributed variables to the performance of the regression models is evaluated in the following section. 21 

4.2 Regression model performance 22 

The performance of the regression models was evaluated to identify a parsimonious set of variables (expert, lumped, or 23 

distributed) and create a tool for predicting percentile flows in the contiguous US. Regression model performance in 24 

calibration (goodness-of-fit) was assessed using adjusted R
2
 to compare models with a different number of independent 25 

variables. The distribution of adjusted R
2
 values is shown in Fig. 4. The smallest adjusted R

2
 values of the regression models 26 

were produced using the smallest set of variables (expert), while the larger sets of variables (lumped and distributed) had 27 

similar adjusted R
2
 values. Although adjusted R

2
 considers the number of variables in a model, it can still favor larger models 28 

(Greene, 2003). Calibration performance as measured by adjusted R
2
 was influenced by the number of variables in the 29 

models. An adjusted R
2
 ≥ 0.75 (“good” according to Castellarin et al., 2004) was obtained by 3.3, 11.0, and 13.7 % of the 30 

models developed using the expert, lumped, and distributed variables, respectively. The same order of variables explained 31 
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over half of the variance in the percentile flows for 25.8, 62.1, and 61.0 % of the models. The median adjusted R
2
 of the 1 

models developed using the expert, lumped, and distributed variables was respectively 0.34, 0.57, and 0.58. 2 

The predictive performance of the regression models was evaluated using validation basins and summarized for each 3 

percentile flow using the sum of absolute relative error (E), R
2
, and Nash-Sutcliffe efficiency (N) (Table 4). Smaller E values 4 

signify better predictive performance, whereas R
2
 and N have a maximum of 1 indicating perfect performance. The 5 

regression models were compared to a simple drainage-area ratio (DAR) method in which the drainage area of the validation 6 

basin is divided by the drainage area of the nearest basin and then multiplied by the flow of the nearest basin (Over et al., 7 

2014). The DAR method represents a baseline for comparing the more complex regression models. Performance of the DAR 8 

method was far less than any of the regional regression modeling approaches. For this reason, the DAR method will not be 9 

discussed further. 10 

The sum of absolute E was largest for the highest percentile flow (Q01) and smallest for the lowest percentile flow (Q99), and 11 

likely influenced by the magnitude of the flow. The other performance metrics (R
2
 and N) summarized the predictive 12 

performance for the percentile flows independent of their magnitude. The N values were slightly less than the R
2
 values, and 13 

ranged from 0.39-0.76. Predictive performance peaked toward the middle of the FDC (average flows), and declined at the 14 

tails (high and low flows). 15 

The different approaches for selecting the independent variables (expert assessment or data-driven) influenced the 16 

performance of the regression models. The data-driven approach performed better using the lumped variables, as opposed to 17 

the distributed variables, for almost all of the percentile flows (Table 4). Therefore, the additional information of the 18 

distributed variables (i.e. the statistical distribution of the basin data) did not contribute to the performance of the regression 19 

models. This may be because the additional information was statistically redundant (Table 3) or produced variables that were 20 

not strong predictors of the percentile flows (Table 2). 21 

The hypothesis that the data-driven approach would outperform the expert assessment of the FDC was contradicted by the 22 

predictive performance for the percentile flows. Although the data-driven approach performed better in calibration (Fig. 4), 23 

expert assessment of the FDC achieved similar performance to the data-driven approach in validation (Table 4). The 24 

percentile flows at the tails of the FDC (high and low flows) were predicted better using the three variables of the expert 25 

assessment, whereas the larger set of lumped variables slightly improved the predictions for the percentile flows in the 26 

middle of the FDC. The three variables of the expert assessment (MAP, PET, and BFI) explained most of the variance in the 27 

percentile flows, and little to no additional variance was explained using the larger sets of variables for the data-driven 28 

approach. 29 

The expert assessment required less computational effort (i.e. calculating and selecting variables), and produced simple 30 

regression models that only need three values to predict the percentile flows for ungauged basins. These models had similar 31 

overall performance to the more complex data-driven models according to the sum of absolute E and mean R
2
 and N for all 32 

the percentile flows (Table 5). The performance of the expert assessment was lower than prior work for southern New 33 
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England (Archfield et al., 2007) and the mid-Atlantic (Mohamoud, 2008) with R
2
 and N values of approximately 0.9. 1 

However, these prior works were conducted with a smaller sample of validation basins. The expert assessment had a mean 2 

absolute E of 0.06 for Q80 in the basin group including southern and central California, which was smaller (better) than a 3 

previous study in that region (Hope and Bart, 2011). 4 

A number of statewide studies have been conducted to build the StreamStats application mentioned in the Introduction (Ries, 5 

2007). StreamStats and associated studies express uncertainty as the 90 % confidence interval of the estimate, but do not 6 

report the performance of regression models in validation. A comparison of StreamStats and the expert assessment at the 7 

validation basins of this study could not be performed because the validation basins have the type of long-term gauges (>30 8 

years of continuous daily data) used to develop StreamStats. An independent validation analysis of StreamStats and the 9 

expert assessment introduced here should be the subject of future work since the focus of this study was to compare different 10 

approaches for selecting independent variables. The outcome of this was that expert assessment was identified as a 11 

parsimonious approach for creating regional regression models due to its simplicity and overall performance. Regression 12 

models based on the expert assessment were used to develop a tool for predicting percentile flows of the contiguous US (see 13 

the Supplementary Material section), which could be compared to StreamStats in a subsequent study.Due to the simplicity 14 

and overall performance of the expert assessment, it was identified as a parsimonious approach for creating the regional 15 

regression models, and these models were used to develop a tool for predicting the percentile flows in the contiguous US 16 

(see the Supplementary Material section). 17 

5 Discussion 18 

5.1 Important variables for predicting the FDC 19 

The most important variable for predicting the entire FDC was BFI (Table 2). The expert assessment of the FDC linked BFI 20 

to average and low flows at least partially supplied by subsurface drainage (Yokoo and Sivapalan, 2011), but BFI may also 21 

be related to the excess precipitation of a basin (MAP-PET), explaining its ability to predict high flows. Larger BFI values 22 

and high flows may be expected for basins with more excess precipitation, and excess precipitation had a statistically 23 

significant (p-value < 0.01) correlation with BFI and the representative high flow of Q10 (Spearman’s rho of 0.39 and 0.49, 24 

respectively). The baseflow of a basin may therefore be indirectly related to its potential to produce high flows. This is in 25 

line with previous findings that the process of infiltration, a major control of baseflow, also plays a part in controlling floods 26 

(see Gioia et al. (2012) among others). 27 

The top five most selected variables of Table 2 included the other variables from the expert assessment of the FDC (MAP 28 

and PET). A substitute for these variables may be Aridity (PET/MAP) since it was also frequently selected. Aridity is a 29 

measure of the long-term water balance that generally represents the proportion of incoming precipitation lost to 30 

evapotranspiration. High to low flows of the FDC were related to Aridity because it influences antecedent moisture and 31 

subsurface drainage. Antecedent moisture moderates the higher flows generated by storms (Muneepeerakul et al., 2010), 32 

Comment [GF12]: Commenter 1 – Comparison 

of regression model performance to previous 

regional studies added. 

Comment [GF13]: Referee 2 – Paragraph added 

to address suggestion regarding comparing 

StreamStats to the present approach. Unfortunately, 

this was not possible using the validation basins of 

this study since they all have long-term gauges with 

greater than 30 years of continuous data used to 

develop the models of StreamStats. A future study 

should compare StreamStats to the tool provided in 

the Supplementary Material section of this paper. 



22 

 

 

whereas subsurface drainage provides the lower flows between storms (Botter et al., 2008). The long-term water balance 1 

expressed as Aridity has been linked to the variation of the FDC in the contiguous US (Cheng et al., 2012), and may be a 2 

more effective means of representing MAP and PET. 3 

Other important variables for predicting the FDC (Table 2) included variables representing snow accumulation and melt 4 

(Percent_Snow and Spring_Temp), subsurface drainage (Poorly_Drained), and mean elevation (Elev). Snow accumulation 5 

and melt were important for snow-dominated basins, and closely associated with high flows generated by spring snowmelt 6 

(Rosenberg et al., 2013). Subsurface drainage represented via poorly drained soils was most strongly related to the low 7 

flows. A larger percent of poorly drained soils with less subsurface drainage reduced the low flows as illustrated by the 8 

statistically significant (p-value < 0.01) negative correlation between Poorly_Drained and Q90 (Pearson’s r of -0.38). 9 

Elevation is an integrative variable that was likely important because it covaries with other important factors, such as 10 

precipitation (Daly et al., 2008), snow accumulation and melt (Grünewald et al., 2014), and subsurface drainage (Schaller 11 

and Fan, 2009). 12 

Largely absent from the important variables listed in Table 2 are the distributed variables that describe the statistical 13 

distribution of spatial and temporal basin data. This is either because basin averages provide better information for predicting 14 

percentile flows (Table 2) or distributed variables mainly add redundant information to the regression models (Table 3). 15 

5.2 Improving performance of percentile flow predictions 16 

The performance of the regression models was strongest for percentile flows in the middle of the FDC (average flows) and 17 

poorest for percentile flows toward the tails of the FDC (high and low flows). This is a commonly noted pattern in other 18 

FDC regionalization studies (see Hope and Bart, 2012; Mohamoud, 2008; Sauquet and Catalogne, 2011). Poorer 19 

performance toward the tails may be attributed to the large variability of basin responses to storms that generate high flows 20 

and the challenge of representing the contribution of subsurface drainage to low flows (Salinas et al., 2013). 21 

The predictive performance for the high and low flows may have been improved by using additional independent variables. 22 

High flows are the product of storms, which were represented by intensity (mm d
-1

) and maximum events (largest 1-day 23 

totals). However, these variables (Precip_Intensity and Precip_1D_Max) were not frequently used for the regression models 24 

(Table 2), and additional information on the frequency and magnitude of storms may have been useful. This information 25 

could be represented using a precipitation duration curve (PDC) derived like a FDC. The PDC has previously been effective 26 

at reconstructing the high end of the FDC (Yokoo and Sivapalan, 2011), and may be equally effective at yielding 27 

independent variables (i.e. precipitation percentiles) for predicting high flows. The frequency of rainy days (e.g. rainy days y
-

28 

1
) may also be informative as an indicator of average antecedent moisture conditions, which mediate the high flows 29 

generated by storms. Physical factors also play a role in mediating high flows through interception and infiltration. Land 30 

cover provides readily available information on these physical factors, but may have been underrepresented in this study. 31 

Percent forest cover (Forest) was the only land cover variable, and it was not frequently used to predict high flows (Table 2). 32 
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Additional land cover variables specifically targeting the processes of interception (e.g. tree canopy density) and infiltration 1 

(e.g. natural impervious area) may have improved high flow predictions. Such variables could be developed using remote 2 

sensing technology and evaluated for their potential to predict high flows. 3 

Additional independent variables may also have benefited the prediction of low flows controlled by subsurface drainage. 4 

Variables describing subsurface drainage (BFI and Poorly_Drained) were among the most strongly associated variables to 5 

low flows (Table 2). Subsurface drainage could be further characterized using a hydrologically relevant geologic 6 

(hydrogeologic) classification. A hydrogeologic classification of the Pacific Northwest was previously linked to summer low 7 

flows (Tague and Grant, 2004), and this prompts the hypothesis that groups of basins identified using a hydrogeologic 8 

classification may improve subsequent low flow predictions. Subsurface drainage may also be characterized by the storage 9 

properties of regional aquifers. These properties (e.g. aquifer thickness) have been mapped for regional aquifers using spatial 10 

interpolation methods (see Williams and Dixon (2015) among others), and may indicate the contribution of aquifers to low 11 

flows. The low flows of this study included zero flows, which are notably difficult to predict (Snelder et al., 2013) and may 12 

require modeling schemes designed to accommodate intermittent streams (Hope and Bart, 2011). 13 

The uncertainty of the percentile flow predictions may be attributed to the use of regression modeling approach. An ordinal 14 

relation between predicted percentile flows may not have been preserved by the regression modeling approach, and a method 15 

to prevent this type of error, such as discarding non-ordinal predictions and replacing them with a linear interpolation 16 

between ordinal values, may improve the performance of predicting individual percentile flows. Regression models are 17 

sensitive to outliers and measurement noise (i.e. errors) in the data (Harrell, 2001). Anomalous values, such as outliers or 18 

noise, may be given less weight using machine learning methods, such as neural networks, capable of smoothing the data 19 

(Dawson and Wilby, 2001). Neural networks are also known for their ability to capture the non-linear relations of hydrologic 20 

data (Abrahart and See, 2007), and should be evaluated for the modeling of percentile flows. The regression modeling 21 

approach did not address the large multicollinearity of the independent variables (Table 3). Multicollinearity could have 22 

reduced the performance of the regression models. Methods for managing multicollinearity in the context of regression, such 23 

as model screening, principal component regression, and partial least squares regression, have proven ineffective at 24 

improving model performance (Kroll and Song, 2013). Machine learning methods, like random forests, may be more tolerant 25 

to multicollinearity (Dormann et al., 2013), and as a result, produce models that can be transferred to new basins with more 26 

confidence. The influence of outliers may be another limitation of the regression modeling approach. Outliers can be 27 

identified using diagnostics, such as Cook’s D and DFFITS, but characterizing the outliers as errors and adjusting them is a 28 

difficult and uncertain task. Furthermore, if an outlier is truly part of the data, a more complex modeling approach to 29 

accommodate outliers may be necessary. Machine learning represents a large suite of methods to potentially deal with 30 

multicollinearity and outliers. Despite the potential advantages of machine learning methods, Rregression was applied in this 31 

study to produce simple models, which could then be converted into a tool for predicting percentile flows in the contiguous 32 

US (see the next section on Supplementary Material). 33 
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The expert assessment may have been improved by combining MAP and PET as Aridity since this variable was an effective 1 

substitute frequently used in the data-driven regression models (Table 2). The third variable of the expert assessment could 2 

then target the more challenging to predict high or low flows. For instance, the high flows may be explained using a variable 3 

describing the variability of large storms (e.g. slope of the PDC above the 20
th
 percentile), and the low flows may be 4 

associated with the percent of the basin underlain by a general hydrogeologic class, such as unconsolidated material. 5 

 6 

6 Supplementary Material – CONUS Percentile Flow Predictor 7 

The Supplementary Material for this paper provides the contiguous US (CONUS) Percentile Flow Predictor, an open source 8 

R graphical user interface for predicting 13 percentile flows (Q01, Q05, Q10, Q20,…Q95, Q99) of ungauged basins. The tool uses 9 

regression models developed based on 734 calibration basins in the contiguous US and a set of parsimonious independent 10 

variables identified through expert assessment of the FDC. Input data includes MAP and PET calculated using long-term 11 

PRISM data (http://prism.oregonstate.edu) and BFI based on a grid for the contiguous US 12 

(http://water.usgs.gov/lookup/getspatial?bfi48grd). For convenience, MAP and PET grids have been calculated using data 13 

from 1981-2010, and are provided with the aforementioned BFI grid in the Supplementary Material. Input data should be 14 

within the range of the data used to create the CONUS Percentile Flow Predictor (Table 6), and a warning is generated if the 15 

input data is outside of this range. 16 

The percentile flows of the ungauged basin are predicted by first assigning the basin to a group (Fig. 3a) and then solving the 17 

regression equations for the assigned group. The groups were identified using the SOM, and the ungauged basin is assigned 18 

to the SOM neuron with the shortest Euclidean distance between the neuron vector and input data. The group membership of 19 

the neuron is then used for the ungauged basin. The regression models of that group are used to predict the percentile flows. 20 

The percentile flows were normalized using the mean of nonzero daily flows (i.e. the index flow) and natural log-21 

transformed to develop the regression models. The predictions are converted into cubic meters per second using the index 22 

flow and the Duan (1983) smearing estimate to back transform the percentile flows. The index flow is predicted using 23 

regression models developed the same way as the percentile flows. Output of the tool can be generated for multiple 24 

ungauged basins, and the predictions are accompanied by statistics on the performance of the regression models (adjusted R
2
, 25 

CN, and standard error (SE) of the model). The predicted percentile flows can be used to reconstruct the complete FDC 26 

through an interpolation method such as the one in Mohamoud (2008). The CONUS Percentile Flow Predictor is provided 27 

with a metadata file (Readme.txt) including instructions on how to use the tool. Regression models used to create the 28 

CONUS Percentile Flow Predictor are provided with associated statistics in tabular form for use in a variety of software 29 

packages. 30 



25 

 

 

7 Conclusions 1 

Regional regression models were developed to predict percentile flows for the contiguous US. The two steps of a regional 2 

regression (i.e. identifying groups of basins and developing models) depend on the independent variables used to summarize 3 

the physical and climatic data of the basins. This study compared the following two approaches for selecting the independent 4 

variables: (1) an expert assessment of the factors that control the FDC to identify a small number of variables and (2) a data-5 

driven approach with many variables possibly linked to the FDC. The data-driven approach was performed using lumped 6 

variables (i.e. basin averages) and a larger set of distributed variables (i.e. basin averages and statistical distribution). The 7 

predictive performance of the regression models was evaluated to identify the most parsimonious approach for selecting 8 

independent variables. 9 

An underlying hypothesis of this study was that the data-driven approach would produce better regression models for 10 

predicting the percentile flows. This was contradicted by the results of the performance evaluation. The predictive 11 

performance of the expert assessment (mean N = 0.66) was similar to the data-driven approach using the lumped variables 12 

(mean N = 0.65) and slightly better than the data-driven models derived from the distributed variables (mean N = 0.61). The 13 

additional information of the distributed variables (i.e. the statistical distribution of the basin data) did not contribute to the 14 

regression models because it was redundant and less important than the lumped variables. The expert assessment included 15 

three variables (MAP, PET, and BFI), and performed similarly to the 22 lumped variables. This signifies that many of the 16 

lumped variables were either redundant or otherwise not useful. With the exception of mean elevation, topographic variables 17 

widely used in FDC regionalization studies were not useful predictors of percentile flows. An important predictor of 18 

percentile flows was Aridity (PET/MAP), which could have been used as a substitute for MAP and PET in the expert 19 

assessment. Another variable alongside Aridity and BFI could be evaluated to possibly improve performance of the expert 20 

assessment. 21 

The expert assessment produced simple models that did not decrease predictive performance, and was deemed the 22 

parsimonious approach for selecting the independent variables of the regional regression. The regression models can be 23 

easily used to predict percentile flows for ungauged basins based on MAP, PET, and BFI, and were used to create a tool for 24 

predicting percentile flows in the contiguous US (see the Supplementary Material for this paper). The CONUS Percentile 25 

Flow Predictor generates predictions for the 13 percentile flows of this study, along with estimates of the predictive 26 

uncertainty. 27 

The regional regression was used to predict high to low percentile flows (Q01- Q99). Predictive performance was the worst for 28 

the percentile flows at the tails of the FDC (high and low flows). The highest predictive performance for these flows was 29 

obtained using the three variables of the expert assessment, and the other variables used in this study did not improve the 30 

high and low flow predictions. Additional variables may have been needed to characterize the magnitude of storms that drive 31 

high flows (e.g. precipitation percentiles) and the potential contribution of subsurface drainage to low flows (e.g. aquifer 32 

thickness). The development of new variables may also be in order to characterize factors such as the spatial variability of 33 
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storms (Zoccatelli et al., 2011) and groundwater levels (Costelloe et al., 2015). The low flow predictions may also have been 1 

improved using a modeling scheme that takes the probability of zero flows into account (Hope and Bart, 2011). 2 

The percentile flow predictions may have been improved by modeling methods other than regression. The strongest 3 

predictor of the percentile flows was BFI, and this was derived from a gridded product for the contiguous US that was 4 

spatially interpolated between stream gauges. A similar spatial interpolation approach could be used to predict percentile 5 

flows, and has outperformed regression in a previous study (Archfield et al., 2013). The output of the spatial interpolation 6 

could be served as a data product for predicting the percentile flows of ungauged basins. Regression may also be 7 

outperformed by neural networks that are more resilient to the noise and non-linearity of hydrologic data (Hall et al., 2002). 8 

Neural networks, such as the SOM, could be used to cluster the basins and generate percentile flow predictions in one step. 9 

This would eliminate the need to identify groups of basins for percentile flow modeling, and should be evaluated in future 10 

studies. 11 
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Table 1. Independent variables used in this study, with the different sets of variables used to develop regional regression 1 

models identified as expert (E), lumped (L), and distributed (D) in the last column. 2 

Independent variable Units Description Data source Set 

MAP mm Mean annual precipitation PRISM E, L, D 

PET mm Mean annual potential evapotranspiration 

calculated using the Oudin et al. (2005) 

equation 

PRISM E, L, D 

BFI % Mean baseflow index derived from a 

spatially interpolated grid 

BFI48GRD E, L, D 

Precip_SD mm Standard deviation of annual precipitation PRISM L 

Forest % Percent forest cover NLCD 1992 L 

Precip_1D_Max mm Median of annual 1-day maximum 

precipitation 

PRISM L, D 

Precip_Intensity mm d
-1 

Precipitation per rainy day PRISM L, D 

Spring_Temp °C Average temperature from April-June PRISM L, D 

Aridity - Aridity index calculated as PET/MAP PRISM L, D 

Percent_Snow % Mean annual percent of precipitation as snow GAGES-II L, D 

Area km
2
 Drainage area GAGES-II L, D 

Density km
-1 

Drainage density calculated as stream length 

divided by drainage area 

NHDPlusV2, 

GAGES-II 

L, D 

Orientation °N Basin angle along main channel GAGES-II L, D 

Elev m Mean elevation NED L, D 

Relief_Ratio % Relief ratio calculated as elevation range 

divided by basin length along main channel 

NED, 

GAGES-II 

L, D 

Slope % Mean slope NED L, D 

Aspect °N Mean aspect NED L, D 

Accumulation km
2
 Mean flow accumulation expressed as 

upslope area 

NED L, D 

TWI - Mean topographic wetness index calculated 

as ln(Accumulation/tan(Slope)) 

NED L, D 

Soil_Porosity % Mean soil porosity expressed as percent pore 

volume 

CONUS-SOIL L, D 

Water_Capacity % Mean water capacity expressed as percent 

volume at field capacity 

CONUS-SOIL L, D 

Poorly_Drained % Percent poorly drained including hydrologic 

soil groups C and D (NRCS, 2007) 

CONUS-SOIL L, D 

Precip_Lag1 - Lag-1 autocorrelation coefficient of monthly 

precipitation data 

PRISM D 

Wet_Season - Binary variables indicating season with peak 

precipitation calculated using circular 

statistics as in Dingman (2002) 

PRISM D 
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Table continued on next page    

Independent variable Units Description Data source Set 

Precip_Seasonality - Distribution of monthly precipitation 

throughout the year calculated using circular 

statistics as in Dingman (2002) 

PRISM D 

Precip_1D_Max_SD mm Standard deviation of Precip_1D_Max PRISM D 

Precip_Intensity_SD mm d
-1

 Standard deviation of annual 

Precip_Intensity 

PRISM D 

PET_Amp mm Amplitude of the first term of the Fourier 

transform for monthly PET data as in Dalton 

(2005) 

PRISM D 

PET_Ph rad Phase of the first term of the Fourier 

transform for monthly PET data as in Dalton 

(2005) 

PRISM D 

Aridity_SD - Standard deviation of annual Aridity PRISM D 

Elev_SD m Standard deviation of elevation NED D 

Slope_SD % Standard deviation of slope NED D 

Aspect_SD °N Standard deviation of aspect NED D 

Accumulation_SD km
2
 Standard deviation of flow accumulation NED D 

TWI_SD - Standard deviation of topographic wetness 

index 

NED D 

Forest_Rip % Percent forest cover within 800 m of a 

stream channel 

GAGES-II D 

Soil_Porosity_SD % Standard deviation of soil porosity CONUS-SOIL D 

Water_Capacity_SD % Standard deviation of water capacity CONUS-SOIL D 

BFI_SD % Standard deviation of baseflow index BFI48GRD D 

 1 
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Table 2. Top five lumped and distributed variables for predicting high (Q01-Q20), average (Q30-Q70), and low (Q80-Q99) 1 

percentile flows based on the percent of the regression models that included each variable (in parentheses). 2 

Lumped Distributed 

High Average Low High Average Low 

BFI 

(62.5) 

BFI 

(81.4) 

BFI 

(76.8) 

BFI 

(60.7) 

BFI 

(75.7) 

BFI 

(80.4) 

Aridity 

(55.4) 

MAP 

(52.9) 

MAP 

(44.6) 

Aridity 

(41.1) 

Aridity_SD 

(40.0) 

Poorly_Drained 

(44.6) 

MAP 

(48.2) 

Aridity 

(45.7) 

Aridity 

(44.6) 

Percent_Snow 

(32.1) 

Elev 

(37.1) 

Percent_Snow 

(28.6) 

Percent_Snow 

(39.3) 

Elev 

(37.1) 

Poorly_Drained 

(42.9) 

Precip_Seasonality 

(30.4) 

Poorly_Drained 

(34.3) 

Elev 

(25.0) 

Spring_Temp 

(37.5) 

Percent_Snow 

(34.3) 

Spring_Temp 

(35.7) 

PET 

(30.4) 

Aridity 

(30.0) 

MAP 

(21.4) 

 3 
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Table 3. The mean and range of the CN for the regression models developed using the three different sets of variables. 1 

 
Expert Lumped Distributed 

Minimum 522 161 49 

Mean 4.8 x 10
4
 3.2 x 10

5
 7.1 x 10

7
 

Maximum 3.4 x 10
5
 4.9 x 10

7
 1.2 x 10

10
 

 2 
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Table 4. Predictive performance of the regression models developed using expert, lumped, and distributed, and drainage-1 

area ratio (DAR) methodsvariables and summarized as (a) the sum of absolute E, (b) R
2
, and (c) N. Bold numbers indicate 2 

the set of variables that produced the best regression models for each percentile flow. Negative symbols for DAR indicate 3 

negative values for N, which represent poorer performance than using the average flow for the calibration bains. 4 

(a) 5 

 
Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Expert 9.89 9.00 8.93 8.83 9.01 9.46 9.80 9.89 9.64 9.23 8.31 7.61 6.69 

Lumped 11.5 10.1 8.51 8.24 8.36 8.70 8.83 8.92 8.97 9.03 8.76 8.14 7.15 

Distributed 11.5 9.32 9.05 9.01 9.14 9.31 9.45 10.0 9.54 9.56 8.81 8.11 6.97 

DAR 418 339 293 238 201 171 144 120 99 81 63 53 39 

(b) 6 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Expert 0.60 0.67 0.71 0.71 0.72 0.72 0.69 0.66 0.64 0.63 0.64 0.64 0.63 

Lumped 0.47 0.58 0.71 0.77 0.77 0.75 0.74 0.71 0.68 0.64 0.58 0.56 0.52 

Distributed 0.42 0.60 0.67 0.71 0.72 0.71 0.69 0.64 0.63 0.60 0.58 0.55 0.52 

DAR 0.00 0.01 0.01 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 

(c) 7 

  Q01 Q05 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q95 Q99 

Expert 0.59 0.67 0.70 0.71 0.72 0.71 0.69 0.66 0.63 0.63 0.63 0.62 0.60 

Lumped 0.45 0.58 0.70 0.75 0.76 0.74 0.74 0.71 0.68 0.63 0.58 0.56 0.51 

Distributed 0.39 0.60 0.66 0.69 0.70 0.70 0.68 0.63 0.62 0.59 0.58 0.54 0.51 

DAR - - - - - - - - - - - - - 

Comment [GF17]: Referee 2 – Drainage-area 

ratio method added to performance comparison, 

demonstrating usefulness of regression models. 

Formatted Table

Formatted Table

Formatted Table
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Table 5. The overall performance of the regression models developed using the expert assessment (expert) and data-driven 1 

approach (lumped and distributed) quantified as the sum of absolute E and mean R
2
 and N for all the percentile flows. Bold 2 

numbers indicate the approach that produced the best overall regression models. 3 

 
Expert Lumped Distributed 

E 116 115 120 

R
2
 0.67 0.65 0.62 

N 0.66 0.65 0.61 
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Table 6. Range of the data used to create the CONUS Percentile Flow Predictor. Input data for the tool should be within this 1 

range. 2 

  MAP PET BFI 

Minimum 234 292 3 

Maximum 4117 1390 85 

 3 
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 1 

 2 

Fig. 1. Steps for developing regional regression models using expert, lumped, and distributed variables in order to identify a 3 

parsimonious set of variables and introduce a tool for predicting percentile flows in the contiguous US.4 
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 1 

Fig. 2. Map of the 734 calibration and 184 validation basins in the contiguous US represented by the location of their stream 2 

gauges.3 
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Fig. 3. Maps of the study basins split into 14 groups using the (a) expert, (b) lumped, and (c) distributed variables.1 
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 1 

Fig. 4. Percent of the regression models with an adjusted R
2
 ≥ the given value. 2 


