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Abstract. In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic

properties. These properties are root radial conductivity and intrinsic axial conductance, which control, respectively, the radial

water flow between the root surface and the axial flow in the xylem. From the solution for the xylem water potential, functions

that describe the radial and axial flow along the root axis were derived. In this paper, novel solutions of the water flow equation

were developed for roots whose hydraulic properties vary along their axis, which is generally the case for most plants. Six5

arrangements of radial conductivity and intrinsic axial conductance varying linearly or exponentially with distance from the root

tip were analysed. These solutions were subsequently combined to construct root branches with complex hydraulic property

profiles. They produced flow distributions different from those in uniform roots. We used the obtained functions for evaluating

the impact of root maturation versus root growth on water uptake which revealed very contrasted strategies for water uptake.

In this study we also looked for optimal root traits that maximize water uptake under a carbon cost constraint. Optimal traits10

were shown to be highly dependent on the root hydraulic properties. These solutions lead to plant-scale parameters for root

water uptake used in ecohydrological models and open consequently new avenues to look for optimal genotype x environment

x management interactions.

1 Introduction

Global crop production is negatively affected by drought that is the most significant stress in agriculture (Cattivelli et al., 2008).15

Drought stress can be defined as the plant’s inability to take up and transport the required amount of water to the shoot leading to

stomatal closure and reduced yield (Campos et al., 2004). Transferring water from the soil to the shoot, thus preventing leaves

from dehydration, is a major role of the root system (McElrone et al., 2013). Root water uptake (RWU) is driven by water

potential gradients between soil and atmosphere and is mainly controlled by stomatal regulation, root hydraulic resistance and

soil water availability (Volpe et al., 2013). Both root system architecture and hydraulics are key for the location and intensity20

of water uptake (Leitner et al., 2014). These properties are encapsulated in the concept of root system hydraulic architecture

(Lobet et al., 2014). Under high transpiration demand, from the root-soil interface to the evaporative sites, water crosses first

radially the root tissues towards the root xylem vessels and flows then up to the leaves (Passioura, 1980).

1

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-633, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 20 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



A continuous solution (i.e., for infinitesimal segments) of water flow equation was developed by Landsberg and Fowkes

(1978) for uniform roots. This solution provides continuous water flow functions inside the root branch and highlights the

sensitivity of root water uptake on plant hydraulic parameters. To the authors’ knowledge, only the uniform root was considered

so far for infinitesimal segments.

However measurements of root hydraulic properties demonstrated that radial conductivity and intrinsic axial conductance5

both change with root tissue maturation (Frensch and Steudle, 1989a; Doussan et al., 1998b; Zwieniecki et al., 2002). The

anatomical properties of cell layers on water pathways impacts root radial conductivity (Steudle, 2000). The development of

endodermal and exodermal apoplastic barriers, first with a Casparian band, then with suberin lamellae and lignified tertiary

walls constitutes major hydraulic impedances (Enstone et al., 2002). Aquaporins also play a central role in root radial con-

ductivity by facilitating water flow across cell membranes (Chaumont and Tyerman, 2014) and their location and expression10

change with the maturation of apoplastic barriers (Hachez et al., 2006). Besides, root intrinsic axial conductance increases

with abundance, shape and size of xylem vessels, increasing from apical regions with protoxylem to basal regions with late

metaxylem vessels (Martre et al., 2000). These maturation steps make younger (distal) root regions more functional for water

uptake, while mature (proximal) regions are more adapted to water axial transfer, as confirmed by water flow measurements of

Newman (1976) in maize or Zarebanadkouki et al. (2016) in lupine. Uniform root hydraulic properties would on the contrary15

concentrate water uptake on the proximal region (Meunier et al., Submitted). Figure 1 (top) summarizes estimates and mea-

surements of root radial conductivity and intrinsic axial conductance of primary maize roots as a function of distance to root

tip (Frensch and Steudle, 1989b; Frensch et al., 1996; Zwieniecki et al., 2002; Doussan et al., 1998b; Bramley et al., 2007).

With an inverse modelling approach coupled to tracer data from Varney and Canny (1993), Doussan et al. (1998b) produced an

extensive estimation of root hydraulic property profiles with piecewise functions for both maize primary and lateral roots. The20

hydraulic conductivity profiles of Zwieniecki comes as well from an inverse modelling exercise (Meunier et al., Submitted).

Figure 1 (bottom panels) also illustrates the changes of primary root anatomy with distances to tip as observed by Steudle and

Peterson (1998) with cross sections.

Solving the water flow equation in the root system can be achieved using finite difference (Alm et al., 1992) for any root

hydraulic property distribution. Typically the water flow equation in the root system is then solved by segmenting root system25

hydraulic architecture into small root parts called root segments. Water potentials within the structure are discrete so that each

segment has (i) an unique xylem water potential connected to contiguous segment xylem potentials by axial conductances,

and (ii) a soil-root interface water potential connected to the segment xylem potential by a radial conductance. Analogically to

Ohm’s law, radial and axial rates of water flow in each segment are proportional to the associated water potential differences.

The water flow equations are solved for the generated root system hydraulic architecture by inverting a conductance matrix of30

the root system network (Doussan et al., 1998a; Javaux et al., 2008). If root segments were divided into smaller sub-segments

though, water potentials and flows would slightly vary in each segment. The result is consequently an approximation of the

exact solution that would be obtained for root segments of infinitesimal length, but of course in such case numerically inverting

a conductance matrix of infinite size would be impossible because of computational requirements.
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Figure 1. Top: Maize radial conductivity (left axis) and intrinsic axial conductance (right axis) of primary roots as measured in several

studies. Bottom: maize primary root cross-sections obtained at different development stages. The root cross-sections are the work of Steudle

and Peterson (1998). The scale bars are 100 microns long. Ex = exodermis, En = endodermis, CB = casparian band, P = protoxylem, EM

= early metaxylem, LM = late metaxylem. (a) Immature Ex, En with CB, mature P, mature EM and immature LM, (b) mature Ex, En with

asymmetrically thickened walls, mature P and EM, immature LM (c) similar to (b) with mature LM. Reproduced by courtesy of Steudle and

Peterson.

In this paper we show that uniform root property assumption may be relaxed and yet analytical solutions of the water flow

equation in roots are within our reach. Our objective is to present novel mathematical solutions of the water flow equation

in roots with non-uniform radial and axial hydraulic properties. This widens the solution of Landsberg and Fowkes (1978) to

roots growing at rates potentially decoupled from tissue maturation rate and opens new avenues for looking for root system

ideotypes, i.e. root systems perfectly adapted to their environment.5

In the following, we only consider root branches without laterals. Consequently we sometimes use simply the word roots

for root branches. When used, the terms root stretch or root segment designate a portion of the root branch characterized by

specific root properties. The solutions we developed here will be used as building blocks for branched root systems in further

studies.
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2 Theory

2.1 Water flow equation in a root branch

Assuming that root branch water content does not fluctuate, water mass balance in infinitesimal root segments of a cylindrical

branch of radius r [L] and total length l [L] under uniform soil-root interface water potential yields (Landsberg and Fowkes,

1978):5

dJx(z)
dz

=−2πrkr(z)(Ψx(z)−Ψsoil) (1)

where Jx [L3T−1] is the axial flow of water inside the root, kr [LT−1P−1] is the root radial conductivity, Ψx [P] is the xylem

water potential and Ψsoil [P] is the uniform water potential at soil-root interface, and z [L] is the distance from the root tip along

the root axis. The axis z is always chosen parallel to the root axis. Note that the right-hand side term corresponds to root radial

flow rate per unit root length qr [L2T−1]:10

qr =−2πrkr(z)(Ψx(z)−Ψsoil) (2)

Axial flow is driven by the water potential gradient in the xylem vessels:

Jx(z) =−kx(z)
dΨx(z)
dz

(3)

with kx [L4T−1P−1] the intrinsic axial conductance of the root. Combining Eq. (1) and (3), we obtain:

d

dz

(
kx(z)

dΨx(z)
dz

)
= 2πrkr(z)(Ψx(z)−Ψsoil) (4)15

which is the general equation of water flow equation in roots.

2.2 General solutions of root water flow

The differential Eq. (4) can be solved for various kinds of root properties and boundary conditions. Since Eq. (4) is a second-

order differential equation, its general solution is:

Ψx(z) = Ψsoil + c1,if1,i(z) + c2,if2,i(z) (5)20

Where c1,i and c2,i are constants whose values depend on root hydraulic properties and boundary conditions and f1,i and

f2,i are differentiable functions of z whose type depends on the root hydraulic property profiles. The subscript i as it will be

further explained is used to distinguish root stretches. It can vary between 1 and N, the total number of stretches.
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For simple functions kx(z) and kr(z) (i.e. uniform, linear and exponential), we derive analytical expressions for f1(z) and

f2(z), c1,i and c22, i in Appendix A. However, kx(z) and kr(z) profiles generally correspond to piecewise collections of these

simple functions. Hence, we establish a procedure to compute analytical expressions of water flow in root stretches connected

in series with contrasted hydraulic property profiles. Figure 2 presents a sketch of a root branch made of five stretches delimited

by dashed vertical lines.5

Deriving the coefficients c1,i and c2,i in any root stretch i requires boundary conditions at the limits of each stretch (i.e., at

z = li−1, the root stretch i’s distal end and at z = li, its proximal end). The bottom flux boundary condition at the distal end of

stretch i is called Ji−1 [L3T−1], and the xylem water potential at the proximal end of stretch i is Ψproximal,i [P] as it appears

in Fig. 2:




Jx(li−1) = Ji−1

Ψx(li) = Ψproximal,i

(6)10

Note that J0 = 0 (no axial flow at the root tip), and Ψproximal,N = Ψcollar (the xylem water potential at the proximal end of

the last root stretch N is that of plant collar).

Figure 2. Root branch made of five stretches (the dashed vertical lines are stretch boundaries). For root stretch i, boundary condition at

z = li−1 (distal end) is the water flow Ji−1 and at z = li (proximal end) the xylem water potential Ψproximal,i. For details, see text.

2.3 Macroscopic root hydraulic properties

At this point, as only J0 and Ψproximal,N are predefined full root boundary conditions, none of the root stretches has both

boundary conditions known (Ji−1 and Ψproximal,i) so the water flow solution is not straightforward unless the root branch is15

made of a single stretch. To solve this problem, the concept of root macroscopic parameters is used.

The root macroscopic parameters consist in the root system conductance Krs [L3T−1P−1] and the Standard Uptake Density

SUD [L−1] (Meunier et al., Submitted). These parameters are used in soil-root water transfer models that stem from principles

of water flow in root hydraulic architecture but do not rely on the associated geometrical description of root system (Couvreur
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et al., 2012). Hence the transpiration stream is directly collected from the soil, for instance as sink terms at each soil location

(Couvreur et al., 2014). They are calculated in homogeneous soil conditions and are defined as:




Krs,i = Jx(li)

Ψsoil−Ψx(li)

SUDi(z) = qr(z)
Jx(li)

(7)

It is worth noting that the macroscopic parameters are always independent of the boundary conditions: they only include the

root geometric (radius and length) and hydraulic properties (kr(z) and kx(z)). The macroscopic parameters are calculated by5

a recursive equation:





Krs,i = kx(li)
(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)

Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

SUDi(z) = 2πrkr(z)
kx(li)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f1,i(z)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f2,i(z)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)

(8)

as demonstrated in Appendix B. Let us note that the Krs,i and SUDi as they have been defined in Eq. (7) represent the root

branch macroscopic parameters after addition of i stretches ignoring thus the root stretches after the considered zone. However

they are useful to solve the water flow equation when dealing with multiple-stretched root branches. Indeed in such a start, we10

start with the calculation of Krs,1 (i.e., the conductance of the most distal stretch) using Eq. (8) (with Krs,0 = 0 because the

very distal axial flow is null). The obtained Krs,1 is then used as Krs,i−1 to calculate the effective conductance of the distal

part from the second stretch Krs,2 using Eq. (8). This procedure is then used again to derive the Krs,i of all stretches until the

root collar is reached. The obtained set of Krs,i’s or Krs,i−1’s are then used to calculate the coefficients c1,i and c2,i for the

different stretches using (demonstration given in Appendix B):15




c1,i =

(Ψproximal,i−Ψsoil)(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))
Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

c2,i =
(Ψproximal,i−1−Ψsoil)(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))

Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

(9)

Since in Eq. (9), only the pressure head at the proximal part of the stretch is needed as a boundary (in addition to the distal

root conductance), the calculation is started at the proximal part of the root system where the root collar potential Ψcollar is

known. The obtained c1,i and c2,i for the proximal stretch are subsequently used in Eq. (5) to calculate the water potential at

the distal part of the stretch. The water potential is then used to calculate the coefficients of the next stretch (towards the root20

tip). This procedure is used until the most distal stretch is reached. As SUD depends on the collar water flow, it can not be

calculated for each zone. However it can be derived at the end on the procedure when the xylem water potential is defined
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everywhere inside the root and when the total root conductance has been already calculated. Note that we use the terms Krs

and SUD for Krs,N and SUDN which corresponds to the macroscopic parameters of the entire root branch:




Krs = Jx(l)

Ψsoil−Ψx(l)

SUD(z) = qr(z)
Jx(l)

(10)

2.4 Resolution of the root water flow equation

We here analyse six cases: the uniform root (already developed by Landsberg and Fowkes (1978)), a root branch with linear5

root hydraulic property profiles and a root branch with exponential root hydraulic property profiles. For the two latter cases,

the radial conductivity and the intrinsic conductance may change alone or simultaneously. Table 1 summarizes the six cases

with the corresponding local hydraulic properties.

The parameters used in Table 1 are gathered as well as their units in Table 2 (two first columns). To simplify the solutions

of the root water flow equation, some parameters are combined. The expression of the adjusted parameters is also contained in10

Table 2 with their corresponding units (two last columns).

Table 3 summarizes the solutions of the root water flow equation obtained for the six considered cases. The resolution details

are provided in Appendix A.

These functions can be combined in complex root with several root stretches using the flux boundary conditions (9) as

explained in the previous section.15

Figure 3 shows the procedure to solve the water flow problem in a root with variable hydraulic properties. First we need to

know whether the root is made of one or several stretches. Then we have to determine the coefficients c1,i and c2,i for each

single zone, i ∈ [1N ] by determining the type of root stretch we deal with and by using Eq. (9). Thanks to these coefficients,

we obtain the root conductance after addition of each stretch by applying Eq. (8). Finally we calculate the xylem potential, the

axial flow, the radial flow per root branch length and the macroscopic parameters using the appropriate equations and analytical20

functions given in Table 3. The corresponding equations are mentioned in the figure.

If the root branch is made of only one stretch, there is no need to calculate intermediary root conductances. The solutions

of Table 3 are then used with the no flux boundary condition coefficients to obtain the macroscopic parameters as well as the

water xylem potentialn radial and axial water flow profiles along the root axis. This particular case is analysed in Appendix C.
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Figure 3. Flowchart of the water flow equation resolution in roots with heterogeneous hydraulic properties

2.5 Properties of a growing root

In this section we introduce the time dimension. As in many studies, the properties are measured as a function of emerging time

instead of distance to tip, we provide here a tool to switch from one to another. Basically an equation of the root elongation

rate is required. We consider here an instantaneous growth rate v(t)LT−1], function of the actual time t [T], given by:

v(t) = v0exp

( −v0

lmax
t

)
(11)5

where v0 [LT−1] is the initial elongation rate and lmax [L] is the root maximal length (Pagès et al., 2004). When the transition

ages, agei [T], are known, the stretch lengths, stretchi(t) [L] are given by:

stretchi(t) =





0, t < agei

lmax

(
1− exp

(
−v0
lmax

(t− agei)
))

, t≥ agei and t≤ agei+1

lmax

(
exp

(
− v0
lmax

(t− agei+1)
)
− exp

(
− v0
lmax

(t− agei)
))

, t > agei+1

(12)

See Appendix D for details.

3 Model Testing10

3.1 Model Illustration

We now illustrate some of the results developed in Sect. 2 and related applications. Figure 4 represents how the radial conduc-

tivity (a) and the intrinsic axial conductance (b) depend on distance to tip for three different roots. The blue solid lines represent

a root with uniform hydraulic properties while the dashed and dotted are roots with linear and exponential hydraulic property

profiles (radially and axially), respectively. The numerical values are chosen so that the collar axial flows Jx(l) of the three15
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roots are the same under identical potential difference between the soil-root interface and the root collar. Their conductance

Krs is thus equal.

Figure 4. Local radial conductivity (a) and intrinsic axial conductance (b) of a root branch with uniform hydraulic properties (solid blue

line), a root branch with linear hydraulic profiles (dashed lines) and a root branch with exponential hydraulic profiles (dotted lines). The

origin of the z-axis is at the root tip.

Solutions of the water flow equation are shown in Fig. 5 for the three roots (the legend is the same as in the previous figure).

In subplot (a) xylem water potential obtained thanks to Eq. (A1) (solid line), (A4) (dashed lines) and (A5) (dashed-dotted line)

are represented when considering a constant Ψcollar of -3000 hPa and a uniform soil water potential of 0 hPa. In subplot (b)5

and (c) the radial flow per root branch length qr and the axial water flow Jx are obtained applying respectively Eq. (2) and Eq.

(3) to the different cases.

Even if the collar axial flow is identical for each root, the xylem water potential and the root water uptake profiles look totally

different. The drop in potential is more homogeneously distributed along the roots with heterogeneous properties. While qr is

a monotonic, increasing function in the case of the uniform root, its maximal value is not reach at the root collar in the two10

other situations: the maximal uptake is not located at the root collar. Consequently the axial flow first increases faster for the

roots with non-uniform properties before slowing down to reach the same value at the root collars.

We define two root parameters combining root hydraulic and geometric properties:




τ(z) =

√
2πrkr(z)
kx(z)

κ(z) =
√

2πrkr(z)kx(z)

The units of these root parameters are [L−1] and [L−3P−1T−1], respectively. These parameters have the same definitions15

than in the case of the uniform root but they depend now on the position along the root axis (see Appendix A.1). τ and κ are

9
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Figure 5. Solutions of the root water flow equation: xylem water potential (a), radial water flow per root branch length (b) and axial water

flow (c) of a root with uniform properties (solid blue line), a root with linear hydraulic profiles (dashed lines) and a root with exponential

hydraulic profiles (dotted lines). The origin of the z-axis is at the root tip.

represented in Fig. 6, subplots (a) and (b), respectively. These parameters are constant for the uniform root. τ is monotoni-

cally decreasing for the non-uniform roots because the intrinsic axial conductance is decreasing and the radial conductivity is

increasing along the root axis. The root with linear hydraulic profiles has a non-monotonic κ while this parameter is always

increasing for the root with exponentially changing hydraulic properties. These hydraulic parameters must be set in relation

with the root macroscopic parameters represented in the bottom line of Fig. 6. In subplot (a) SUD is represented along the5

z-axis (note that this subplot is the same as the second subplot of Fig. 5 except that the curve is now normalized so that its

integral on total root branch length is one). Krs is plotted as a function of the root length in subplot (b). As in the uniform root

case τ indicates how fast the root system conductance changes and how homogeneous the water uptake along the root axis

under homogeneous soil conditions is. κ is an indicator of the maximal possible root system conductance. It is worth noting

that the root system conductances differ very much between the cases. Depending on how kr and kx vary along the root, Krs10

might even decrease with increasing root length (linear root case). This occurs when additional segments with a low kr are

added so that the extra inflow across these segments does not compensate for the extra pressure head loss due to axial flow

through these segments. However, if the kr decrease with root length levels off and the kx increases stronger with increasing

root length, as it is the case in the exponential scenario, the root system conductance may increase steadily with root length.

3.2 Comparison between uniform and heterogeneous root hydraulic profiles15

Here we compare root branches with complex hydraulic profiles (as they have been observed) and uniform root hydraulic

properties in terms of distribution of water xylem potential, radial and axial flows and macroscopic parameters. We therefore

10
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Figure 6. Local (top line) and macroscopic (bottom line) hydraulic parameters: τ (a), κ (b), SUD (c) and Krs (d) of a root branch with

uniform properties (solid blue line), a root branch with linear hydraulic profiles (dashed lines) and a root branch with exponential hydraulic

profiles (dotted lines).

investigate whether uniform root hydraulic properties could mimic more complex situations. Two cases are examined: the

lateral lupine roots studied by Zarebanadkouki et al. (2016) and the lateral maize roots analysed by Doussan et al. (1998b).

3.2.1 A lupine lateral root: example of a single stretch root branch

First we analysed the water uptake in lupine lateral root described by Zarebanadkouki et al. (2016) as an illustration of the

single-stretch root model solution. These authors observed water uptake along lateral root compatible with exponential changes5

in radial conductivity and intrinsic axial conductance along root axis. In Fig. 7 the hydraulic properties (subplots (a) and (b)

for the radial conductivity and the intrinsic axial conductance, respectively), together with the pressure head (c) and radial flow

(d) distribution along the root axis are given by the blue solid lines. These results are compared with three alternative models,

where the root axis has uniform hydraulic properties with minimal (red dashed line, subplots (a) and (b)), maximal (red dotted

line, subplots (a) and (b)) and mean (red dashed-dotted line, subplots (a) and (b)) values in order to verify whether uniform10

properties could reproduce the uptake distribution properly. The third and fourth subplots in Fig. 7 show the main solutions

of the root water flow equation: xylem water potential and axial water flow, respectively. The complex root branch can not

be properly represented by uniform root properties. The water potential drop of the complex root is again more uniformly
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distributed along the root axis in the case of heterogeneous properties because the radial conductivity is maximal at the root tip

and the intrinsic axial conductance increases progressively.

Figure 7. Distributions of radial conductivity (a), intrinsic axial conductance (b), xylem water potential (c) and axial water flow (d) for a

lupine lateral root. We used local hydraulic properties obtained by Zarebanadkouki et al. (2016) (blue solid line) or equivalent properties (red

lines) with minimal (dashed), maximal (dotted) and mean (dashed-dotted) values. The origin of the z-axis is at the root tip.

We can estimate the macroscopic parameters for these lateral lupine roots (SUD and Krs) as a function of the root branch

length with our solutions for the water flow equations. The distribution of these two parameters is shown in Fig. 8 for different

hypotheses: heterogeneous root properties as obtained by Zarebanadkouki et al. (2016) or uniform mean (dashed-dotted red5

line), minimal (dashed red line) and maximum (dotted red line) hydraulic properties. We observe that these macroscopic

parameters are poorly represented by the uniform root branches. A complex root branch can not be accurately approximated by

an equivalent root branch with uniform hydraulic properties because it generates complex macroscopic parameter functions.

3.2.2 A maize lateral root: example of a root branch with multiple stretches

Similarly we examine the case of a lateral maize root as described by Doussan et al. (1998b). This constitutes an illustration of10

the multiple-stretches root branch. In their study, they described intrinsic axial conductance and radial conductivity as stepwise

functions of the root age or distance to tip. They justified it by the root tissue maturation and development. These functions

are shown in the two first subplots of Fig. 9: the radial conductivity (a) and the intrinsic axial conductance (b) as obtained

by the authors are presented with blue solid lines. These subplots are equivalent to the Fig. 4B of the study of Doussan et al.

(1998b) when a constant elongation rate of 1 cm per day is assumed. We removed the isolated distal region (whose intrinsic15

axial conductance is null and that consequently does not influence the rest of the root). The red dashed, dotted and dashed-

dotted lines correspond to roots with uniform properties with minimal, maximal and mean values observed for both hydraulic

properties, respectively. The solution of the water flow equation is represented for the four cases in Fig. 9, subplots (c) and (d).
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Figure 8. Macroscopic parameters: final SUD (a) and Krs changes (b) for a growing lateral root branch of lupine with the local hydraulic

properties measured by Zarebanadkouki et al. (2016) (blue solid line) or the equivalent uniform root branches (red lines) with minimal

(dashed), maximal (dotted) or mean (dashed-dotted) hydraulic property values.

When we compare the Doussan distribution of water radial flow per root branch length and potential with those of uniform

hydraulic property models, we observe that it is not possible to represent its complex behaviour with an apparent/effective

uniform model. The drop of water potential is much steeper with heterogeneous than with homogeneous properties (red lines).

The decrease in water potential and the increase in axial flow are far more uniform along the composite root than along the

homogeneous roots. This is in fact similar to what we found for the case of the single stretch root branch with changing root5

properties.

We used Eq. (8) to derive the macroscopic parameters of the four root branches (the complex root branch and the three uni-

form root branches). Again both the SUD and the Krs could not be well represented by uniform roots. It is indeed impossible

with these solutions to represent non-monotonic functions as the standard uptake density (subplot (a), Fig. 10) and the root

conductance (subplot (b), Fig. 10).10
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Figure 9. Distributions of radial conductivity (a), intrinsic axial conductance (b), xylem water potential (c) and axial water flow (d) in a

maize lateral root branch. We used hydraulic properties obtained by Doussan et al. (1998b) (blue solid line) for a maize lateral root branch

or equivalent properties (red lines) with minimal (dashed), maximal (dotted) or mean (dashed-dotted) values. The origin of the z-axis is at

the root tip.

Figure 10. Macroscopic parameters: final SUD (a) and Krs changes (b) for a growing maize lateral root branch with the local hydraulic

properties estimated by Doussan et al. (1998b) (blue solid line) or the equivalent uniform roots (red lines) with minimal (dashed), maximal

(dotted) or mean (dashed-dotted) hydraulic property values. The legend is the same as in the previous figure.
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3.3 Properties of a growing root

When roots get older, their macroscopic hydraulic parameters vary not only because the root length increases but also because

by root tissues changes by maturation. Maturation is defined here as the hydraulic property changes as a function of root age.

This process is modelled by introducing root hydraulic properties depending on root age, such as:




kr = kr0exp(−mt)

kx = kx0exp(mt)
(13)5

wherem [T−1] is the maturation rate. These equations are similar to the ones used in the exponential root hydraulic properties

subsection (see Sect. A3) except that they define the properties as a function of time instead of distance to tip. We investigate

here the sensitivity of growth and maturation processes on root macroscopic parameters. Figure 11 presents an analysis of

the relative effects of maturation versus growth on the macroscopic properties of an ageing root system. We varied the root

parametersm and v0
lmax

between 0.05 and 0.5 and between 0.01 and 0.1, respectively to investigate the impact of relative growth10

and maturation processes. Figure 11-a shows the integral of Krs over time when simulating 40 days of growth and maturation

of a root whose lmax is 10 cm. The numbers one to four represent extreme situations: fast growth and slow maturation (case

1), slow growth and maturation (case 2), fast growth and maturation (case 3) and slow growth and fast maturation (case 4),

respectively. The conductances of these particular branches are plotted as a function of time in Fig. 11-b. They exhibit very

contrasted strategies. When the root growth is fast, theKrs quickly reaches a high value. If the root maturation process is rapid,15

the final conductance is low. It can also be observed that the root properties change slowly when the root growth is low and

rapidly when the root elongation rate is high. Figure 11-c plots the relative SUD (i.e., multiplied by root length) as a function

of the relative root position z (i.e., divided by root length) after 20 days of growth. Again contrasted strategies appear with a

maximal water uptake location at the root tip for cases 3 and 4 or at the root collar for cases 1 and 2. It is worth noting that a

constant elongation rate means a very small elongation rate to maximal root length ratio. So depending on the maturation rate,20

the constant elongation case rate is similar to case 2 or 4.

Figure 12 represents the effects of elongation rate on the root branch development (a) and its conductance (b). We consider a

maize lateral root branch whose hydraulic properties are given by the two first subplots of Fig. 9 where the x-axis is now time

and no more length. It corresponds to the hydraulic properties calculated by Doussan et al. (1998b). Coupling the intrinsic axial

conductance and radial conductivity transition ages, we obtain six different stretches in addition to the isolated distal region.25

From the tip to the collar: linear kx (between 0 and 5 days), linear kr and kx (5-7), linear kx (7-11), uniform root (11-15),

linear kr (15-18) and uniform (18-...). Each zone between two successive transition ages has its own colour from dark blue to

orange. The maximal root length is 10 cm and four elongation rates are computed: 0.5cm/d (dotted lines in both panel and for

all curves), 1cm/d (dashed-dotted lines), 1.5cm/d (dashed lines) and 2cm/d (solid lines).

In subplot (a) are shown both the total root branch length (black lines) and the stretch lengths (from the dark blue to30

the oranges lines, representing respectively the stretches from the tip to the root collar). At any time the sum of the stretch

lengths is to the total root branch length. From its origination time, each single root stretch appears, reaches a maximal value
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Figure 11. Integral of the root conductance over time when changing the elongation rate v0
lmax

(x-axis) and the maturation rate m (y-axis)

(a). Root hydraulic conductances of the four extreme cases numbered and indicated in (a) as a function of time (b). Relative uptake of the

four branches after 20 days as a function of the relative position to the root tip (l is the root branch length and z = 0 at the tip) (c).

and then decreases. The maximal value of each zone is reached when arrives the consecutive transition time. In subplot (b)

are represented the root branch conductance Krs and the effect of changing the initial elongation rate on this macroscopic

parameter.

3.4 Optimal geometric properties

The new solutions of the water flow equation are key to estimate optimal geometric properties of root branches. As an illustra-5

tion we may want to maximize the root branch conductance Krs of uniform roots and compare the results with those of roots

with varying hydraulic property profiles. Using a carbon cost as a constraint, it writes:

maximize Krs(r, l) subject to V0 = πr2l

where V0 [L3] is the volume constraint. To solve this optimization problem we use Lagrange multipliers λ. We define a new

function L:10

L(r, l,λ) =Krs(r, l) +λ
(
πr2l−V0

)

whose maximum is found when:

16

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-633, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 20 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 12. Total root branch length (black line), root stretch lengths (from dark blue to orange lines, representing respectively stretches from

the tip to the collar) (a) and root branch conductanceKrs as a function of time (b). Lengths and conductances are computed for four different

initial elongation rates: 0.5cm/d (dotted lines), 1cm/d (dashed-dotted lines), 1.5cm/d (dashed lines) and 2cm/d (solid lines).

∇r,l,λL= 0

The previous equation is equivalent to:





l ∂Krs∂r + 2λπrl = 0

∂Krs
∂l +λπr2l = 0

V0 = πr2l

(14)

Using appropriate equations to calculate the root conductance, we find an optimal radius and length that maximize root

water uptake. As an illustration, we compare the optimal root radius of a root with uniform and constant hydraulic properties,5
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a root whose uniform root properties depend on the root radius (Biondini, 2008) and a root whose hydraulic properties vary

exponentially along the root axis. Mathematically, it writes, respectively:





Uniform kr and kx : kr(z) = kr0 and kx(z) = kx0

Uniform kr(r) and kz(r) : kr(r) = kr0
r0
r and kx(r) = bπ

8µr
5

Exponential kr and kz : kr(z) = γ2exp(−β2z) and kr(z) = γ2exp(−β2z)

(15)

The parametrization for the exponential root and the uniform root whose hydraulic properties depend on the root radius

come respectively from Zarebanadkouki et al. (2016) and Biondini (2008). The uniform hydraulic properties of the first root5

are the mean values of the exponential conductivities evaluated for optimal geometric parameters. The root conductances of

the three cases are shown in Fig. 13 for a volume constraint of 0.05 cm3: the dashed line is the uniform root, the dotted line is

the uniform root whose hydraulic properties depend on the root radius and the solid one is the root with exponential hydraulic

property profiles. The red stars point the optimal radii.

Figure 13. Root branch conductance as a function of root branch radius under a constant volume constraint for a uniform root whose

hydraulic properties depend on the root radius (dotted line), a uniform root (dashed line) and a root with exponential conductivity profiles

(solid line). The red stars point the optimal radii (i.e., that maximize the root branch conductance).

Unlike previous approaches (Biondini, 2008; Roose and Schnepf, 2008) we consider here that the hydraulic properties may10

be intrinsic functions of the root tissues and do not necessarily depend on the root radius. As highlighted by the red stars, the

optimal root radii vary considerably when integrating this concept: from 0.025 cm for the uniform profile (varying according

to the root radius) to 0.11 cm for the exponential root. We find that optimal roots have a larger radius and therefore a shorter

length when presenting exponential conductivity profiles.
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4 Conclusions

Six new solutions of the water flow equation in root branches are presented in addition to the uniform root of Landsberg and

Fowkes (1978). In the newly considered cases the root hydraulic properties vary as a function of the distance to root tip. When

the radial conductivity and the intrinsic axial conductance change linearly or exponentially alone or in combination, exact

solutions of the xylem potential and water flow inside the root exist. They were used to calculate the macroscopic parameters5

of the corresponding root branches. Moreover they were associated to make complex root branches of changing root hydraulic

property profiles as observed in nature or combined with an elongation rate to obtain the root macroscopic parameters and

uptake profile as a function of root age. As illustrated these complex functions were not well represented by root of equivalent

but uniform root hydraulic properties.

Considering these changes in hydraulic properties along roots also enabled us investigating the effects of root maturation or10

root tissue development and differentiation on root water uptake. This gave interesting perspectives to evaluate both growth and

maturation and their combined effects on root water uptake. The obtained analytical solutions allowed us to assess the impact

of changing axial or radial conductivity along a root branch on root water uptake. These changes can be linked to dynamics of

root growth and root tissue maturation so that different strategies of growth and maturation dynamics, e.g. rapid growth and

slow maturation versus slow growth and rapid maturation, were investigated using these analytical functions.15

These solutions were also used to define optimal root branch geometrical parameters for water uptake. Indeed, Landsberg

and Fowkes (1978) model has been used for decades to define optimal root systems in terms of water uptake subject to

minimal carbon cost (Biondini, 2008). Using the water uptake solution developed in their manuscript, one typically observes a

monotonic behaviour of root water uptake capacity with root length. The use of such a model also typically implies that, for a

uniform root in a uniform soil water potential, the uptake increases monotonically towards the proximal end. This is no more20

systematically the case with the newly developed solutions. When considering variations in hydraulic properties along a root

axis, which typically correspond with an increase in axial and a decrease in radial conductivity with distance to root tip, the

analytical solutions that account for these changes revealed considerably different behaviours. The root effective conductance

may increase with root length more steadily than in case of a uniform root or even decrease with root length. Similarly with

the newly developed solutions, the maximal water uptake location was no more located at root proximal end. Non-monotonic25

functions of root water uptake emerged from the new solutions. Therefore, the search for optimal root systems should also

account for variations of root properties along roots.

The new models will be combined as building blocks to generate complete root system hydraulic architectures defining plant

genotypes in order to compare plant performances in contrasted environments using soil-root-atmosphere continuum model

such as R-SWMS (Javaux et al., 2008).30

5 Code availability

The code is available and can be freely shared.
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6 Data availability

Not applicable
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Table 1. Local hydraulic properties kr(z) and kx(z) for the different cases.

kr(z) kx(z)

Uniform root kr(z) = kr0 kx(z) = kx0

Linear kr kr(z) = a0z+ b0 kx(z) = kx0

Linear kx kr(z) = kr0 kx(z) = c0z+ d0

Linear kr and kx kr(z) = a0z+ b0 kx(z) = c0z+ d0

Exponential kr kr(z) = γ2exp(−β2z) kx(z) = kx0

Exponential kx kr(z) = kr0 kx(z) = γ1exp(β1z)

Exponential kr and kx kr(z) = γ2exp(−β2z) kx(z) = γ1exp(β1z)
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Table 2. Local hydraulic property function parameters, their units, the expression of adjusted parameters and their corresponding units.

Parameter Unit Adjusted parameter Unit

kr0 LT−1P−1

kx0 L4T−1P−1

a0 T−1P−1 a= 2πra0 LT−1P−1

b0 LT−1P−1 b= 2πrb0 L2T−1P−1

c0 L3T−1P−1 c= c0
2πrkr0

L

d0 L4T−1P−1 d= d0
2πrkr0

L2

γ1 L4T−1P−1 γr = 2πrγ2
kx0

L−2

γ2 LT−1P−1 γx = 2πrkr0
γ1

L−2

β1 L−1 γ = 2πr γ2
γ1

L−2

β2 L−1 β = β1 +β2 L−1
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Table 3. Linearly independent functions f1 and f2 according to the considered local root hydraulic properties.

f1(z) f2(z)

Uniform root cosh(τz) sinh(τz)

Linear kr Ai

(
az+b

a
2
3 k

1
3
x0

)
Bi

(
az+b

a
2
3 k

1
3
x0

)
Linear kx

√
2
c
I0
(

2
√

d+cz
c2

) √
2
c
K0

(
2
√

d+cz
c2

)
Linear kr and kx exp

(
−
√
az√
c0

)
M

√ac3/2
0 +bc0−ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+d0)

c3/2

 exp

(
−
√
az√
c0

)
U

−√ac3/2
0 −bc0+ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+d0)

c3/2


Exponential kr I0

(
2
√
γrexp(−β2z)

β2

)
K0

(
2
√
γrexp(−β2z)

β2

)
Exponential kx

√
γxexp(−β1z)

β1
I1

(
2
√
γxexp(−β1z)

β1

) √
γxexp(−β1z)

β1
K1

(
2
√
γxexp(−β1z)

β1

)
Exponential kr and kx β

− β1
β γ

β1
2β (exp(−βz))

β1
2β Γ

(
1− β1

β

)
I
− β1
β

(
2
√
exp(−βz)γ

β

)
β
− β1
β γ

β1
2β (exp(−βz))

β1
2β Γ

(
1+

β1
β

)
I β1
β

(
2
√
exp(−βz)γ

β

)
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Appendix A: New solutions of the root water flow equation

In this appendix, we provide detailed solutions of the water flow equation when the root hydraulic properties are uniform

(Landsberg and Fowkes, 1978) or when they vary linearly or exponentially, alone or together along the root axis. These

solutions of the water flow equation (4) have been obtained using the symbolic calculation toolbox of Matlab. All solutions are

summarized in Table 3.5

A1 Uniform root hydraulic properties

The solution of the water flow equation in a uniform root has been proposed by Landsberg and Fowkes (1978). We present

their methodology and principal results in this section to illustrate with the simplest case how to derive the water flow equation

solution and the macroscopic parameters.

The simplest root is made of uniform root properties: intrinsic axial conductance kx0 [L4T−1P−1] and radial conductivity10

kr0 [LT−1P−1]:




kr(z) = kr0

kx(z) = kx0

Equation (4) becomes:

kx0
d2Ψx(z)
dz2

= 2πrkr0 (Ψx(z)−Ψsoil)

The general solution of this differential equation is given in terms of hyperbolic sinus and cosinus:15

Ψx(z) = Ψsoil + c1cosh(τz) + c2sinh(τz) (A1)

where we define τ [L−1]:

τ =
√

2πrkr0
kx0

Here, the independent functions f1(z) and f2(z) are thus cosh(τz) and sinh(τz).

The coefficients are obtained for the bottom no-flux boundary conditions in case of single stretch root branch (see Appendix20

C and particularly Eq. (C1)):




cnf1 = Ψcollar−Ψsoil

cosh(τl)

cnf2 = 0
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Here and in the following, the superscript nf stands for non-flux. Using these coefficients, we find the general solution of

the xylem water potential profile:

Ψnf
x (z) = Ψsoil + (Ψcollar −Ψsoil)

cosh(τz)
cosh(τ l)

The axial flow is then obtained using Eq. (3)

Jnfx (z) =−κ(Ψcollar −Ψsoil)
sinh(τz)
cosh(τ l)

5

And the macroscopic parameters are derived thanks to Eq. (C4)

Knf
rs (l) = κtanh(τ l)

SUDnf (z) = τ
cosh(τz)
sinh(τ l)

where tanh is the hyperbolic tangent and κ [L3T−1P−1] is the asymptotic root conductance defined by:10

κ= kx0τ

For the bottom flux boundary condition (6) (solution for a root branch with multiple stretches), the coefficients are:




c1 = (Ψproximal,i−Ψsoil)

(
κ

κcosh(τli)+Krs,i−1sinh(τli)

)

c2 = (Ψproximal,i−Ψsoil)
(

Krs,i−1
κcosh(τli)+Krs,i−1sinh(τli

)
)

And the solution of the water flow equation in the root becomes:

Ψx(z) = Ψsoil + (Ψproximal,i−Ψsoil)
κcosh(τz) +Krs,i−1sinh(τz)
κcosh(τ li) +Krs,i−1sinh(τ li)

15

which leads to the following axial flow:

Jx(z) =−κ(Ψproximal,i−Ψsoil)
κsinh(τz) +Krs,i−1cosh(τz)
κcosh(τ li) +Krs,i−1sinh(τ li)

The macroscopic parameters become:

Krs,i(li) = κ

(
κsinh(τ li) +Krs,i−1cosh(τ li)
κcosh(τ li) +Krs,i−1sinh(τ li)

)
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SUDi(z) = τ

(
κcosh(τz) +Krs,i−1sinh(τz)
κsinh(τ li) +Krs,i−1cosh(τ li)

)

The flux boundary solutions are a generalization of the non-flux solutions as they converge towards the same results as

Krs,i−1→ 0.

A2 Linear root hydraulic property profiles5

In case of roots with linear hydraulic property profiles, different cases are distinguished and are investigated successively.

A2.1 Linear kr

Equation (4) can be solved with different root linear hydraulic property profiles. Let us consider a uniform intrinsic axial

conductance and a radial conductivity varying linearly along the root:



kr(z) = a0z+ b0

kx(z) = kx0

10

where a0 [T−1P−1] and b0 [LT−1P−1] are shape parameters.

Equation (4) yields:

kx0
d2Ψx(z)
dz2

= 2πr(a0z+ b0)(Ψx(z)−Ψsoil)

and can be rewritten as:

d2Ψx(z)
dz2

=
(az+ b)
kx0

(Ψx(z)−Ψsoil)15

where we have defined:




a= 2πra0

b= 2πrb0

with a [LT−1P−1] and b [L2T−1P−1] the revised shape parameters. The general solution of this differential equation is now:

Ψx(z) = Ψsoil + c1Ai

(
az+ b

a
2
3 k

1
3
x0

)
+ c2Bi

(
az+ b

a
2
3 k

1
3
x0

)
(A2)

where c1 and c2 can anew be obtained using boundary conditions. Ai and Bi are the Airy functions of the first and second20

kind, respectively. It is worth noting that we obtain a similar solution if the root radius changes linearly along the root while kx

remains constant.
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A2.2 Linear kx

If the root intrinsic axial conductance varies while the radial conductivity is uniform, i.e.:




kr(z) = kr0

kx(z) = c0z+ d0

with c0 [L3T−1P−1] and d0 [L4T−1P−1] the shape parameters, the general water flow Eq. (4) yields:

(c0z+ d0)
d2Ψx(z)
dz2

+ c0
dΨx(z)
dz

= 2πrkr (Ψx(z)−Ψsoil)5

Again we rewrite the equation as:

(cz+ d)
d2Ψx(z)
dz2

+ c
dΨx(z)
dz

= (Ψx(z)−Ψsoil)

with the following definitions of the revised shape parameters:




c= c0

2πrkr0

d= d0
2πrkr0

The units of c and d are [L] and [L2], respectively. The general solution becomes:10

Ψx(z) = Ψsoil +

√
2
c

(
c1I0

(
2

√
d+ cz

c2

)
+ c2K0

(
2

√
d+ cz

c2

))
(A3)

Iν and Kν are the modified Bessel function of the first and second kind of order ν (ν = 0, here), respectively.

A2.3 Linear kr and kx

We assume now a linear relation between the hydraulic properties and the distance to the tip:



kr(z) = a0z+ b0

kx(z) = c0z+ d0

15

The water flow equation becomes:

(c0z+ d0)
d2Ψx(z)
dz2

+ c0
dΨx(z)
dz

= 2πr(a0z+ b0)(Ψx(z)−Ψsoil)

After rewriting the parameters it yields:
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(c0z+ d0)
d2Ψx(z)
dz2

+ c0
dΨx(z)
dz

= (az+ b)(Ψx(z)−Ψsoil)

This equation has now the general solution:

Ψx(z) = Ψsoil + exp

(
−
√
az√
c0

)

(
c1M

(√
ac

3/2
0 + bc0− ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+ d0)
c3/2

)
+ c2U

(
−√ac3/20 − bc0 + ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+ d0)
c3/2

))
(A4)5

with M and U the confluent hypergeometric function of the first and second kind, respectively.

A3 Exponential root hydraulic property profiles

Let us finally consider a root whose root hydraulic properties vary exponentially along the root axis:




kx(z) = γ1exp(β1z)

kr(z) = γ2exp(−β2z)

with γ1 [L4T−1P−1], β1 [L−1], γ2 [LT−1P−1] and β2 [L−1] are shape parameters.10

The water flow equation becomes:

∂2Ψx(z)
∂z2

+β1
∂Ψx(z)
∂z

= γexp(−βz)(Ψx(z)−Ψsoil)

with γ = 2πr γ2
γ1

[L−2] and β = β1 +β2 [L−1].

Solutions of this differential equation are of type:

15

Ψx(z) = Ψsoil +β−
β1
β γ

β1
2β (exp(−βz))

β1
2β

[
c1Γ

(
1− β1

β

)
I− β1

β

(
2
√
exp(−βz)γ

β

)
+ c2Γ

(
1 +

β1

β

)
I β1
β

(
2
√
exp(−βz)γ

β

)]
(A5)

with Γ the gamma function.

The cases of mixed uniform/exponential hydraulic property may be easily solved using the same methodology.
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Appendix B: Macroscopic parameters

To calculate the general form of the macroscopic parameters defined as:




Krs,i = Jx(li)

Ψsoil−Ψx(li)

SUDi(z) = qr(z)
Jx(li)

(B1)

we need to combine combining Eq. (3) and (5) with the root stretch boundary conditions (6). The two unknowns, c1,i and

c2,i, are given, in matrix notation, by:5


−kx(li−1)f ′1,i(li−1) −kx(li−1)f ′2,i(li−1)

f1,i(li) f2,i(li)




c1,i
c2,i


=


 Ji−1

Ψproximal,i−Ψsoil


 (B2)

Inverting the system, Eq. (B2) yields:





c1,i = kx(li−1)f ′2,i(li−1)(Ψproximal,i−Ψsoil)+f2,i(li)Ji−1

kx(li−1)(f ′2,i(li−1)f1,i(li)−f ′1,i(li−1)f2,i(li))

c2,i = −kx(li−1)f ′1,i(li−1)(Ψproximal,i−Ψsoil)−f1,i(li)Ji−1

kx(li−1)(f ′2,i(li−1)f1(li)−f ′1,i(li−1)f2,i(li))

(B3)

In homogeneous soil conditions, the proximal flow Ji−1 may be expressed as the product of the upstream conductance

(Krs,i−1 intrinsic root property) by the potential difference between the soil and the proximal xylem water potential of the root10

stretch:

Ji−1 =Krs,i−1 (Ψsoil−Ψx(li−1)) =−Krs,i−1 (c1,if1,i(li−1) + c2,if2,i(li−1)) (B4)

Substituting Eq. (B4) in Eq. (B3) for the ith stretch, we obtain a set of two equations with two unknowns which after solving

for c1,i and c2,i gives:




c1,i =

(Ψproximal,i−Ψsoil)(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))
Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

c2,i =
(Ψproximal,i−1−Ψsoil)(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))

Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

(B5)15

It is important to mention that these coefficients only depend on the properties of the distal stretches to the stretch of interest

and on the effective conductivity that lumps the properties and their spatial variation in all distal stretches. Combining the

coefficients (B5), the definitions of the macroscopic parameters (B1) and the general solutions (5), (2) and (3), the root system

conductance and the standard uptake density after addition of i stretches become:





Krs,i = kx(li)
(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)

Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

SUDi(z) = 2πrkr(z)
kx(li)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f1,i(z)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f2,i(z)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)

(B6)20
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Appendix C: Special case of a single-stretched root

If the root system consist in a single stretch, the distal boundary condition is no-flux and the proximal boundary conditions

corresponds to the root collar water potential Ψcollar [P]. l1 is equivalent to l. Mathematically, the boundary conditions become:




Jx(0) = 0

Ψx(l) = Ψcollar

(C1)

The boundary conditions (C1) used in case of a root made of a single stretch can be rewritten as:5


−kx(0)f ′1(0) −kx(0)f ′2(0)

f1(l) f2(l)




c

nf
1

cnf2


=


 0

Ψcollar −Ψsoil


 (C2)

As in Appendix A, the superscript nf means no-flux bottom boundary condition. It is used when the root is made of only one

stretch. Inverting the matrix we obtain the constants:




cnf1 = f ′2(0)(Ψcollar−Ψsoil)

f ′2(0)f1(l)−f ′1(0)f2(l)

cnf2 = −f ′1(0)(Ψcollar−Ψsoil)
f ′2(0)f1(l)−f ′1(0)f2(l)

(C3)

The ’non-flux’ coefficients (C3) are actually a particular case of the ’flux’ coefficients (B5) since the latter tend to the former10

as Krs,i−1→ 0 (or Ji−1→ 0).

The macroscopic parameters of the single-stretch-root branch are finally given by (using the no-flux coefficients (C3) or

equivalently evaluating Eq. (B6) with Krs,i−1 = 0 ):




Knf
rs = kx(l)

(
f ′2(0)f ′1(l)−f ′1(0)f ′2(l)
f ′2(0)f1(l)−f ′1(0)f2(l)

)

SUDnf (z) = 2πrkr(z)
kx(l)

(
f ′2(0)f1(z)−f ′1(0)f2(0)
f ′2(0)f ′1(l)−f ′1(0)f ′2(l)

) (C4)
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Appendix D: Stretch lengths in heterogeneous root branches

Let us consider a growing root branch with an initial elongation rate v0 [LT−1] and a maximal length lmax [L]. Its actual

elongation rate v(t) [LT−1] is given, as in Pagès et al. (2004), at any time t [T] by:

v(t) = v0exp

( −v0

lmax
t

)
(D1)

Integrating Eq. (D1) between 0 and time t, we obtain the actual root length l [L]:5

l(t) =

t∫

0

v(t′)dt′ = lmax

[
1− exp

( −v0

lmax
t

)]
(D2)

In the case of the root made of one stretch, the root length can be easily substituted by Eq. (D2) to obtain the macroscopic

parameters as a function of time instead of root length. If the root is split in distinct stretches, as we substitute l by t, we need

to replace the transition positions by transition ages. An equation of the different root stretch lengths stretchi(t) [L] is required

(we use the indices i to indicate the zones from the tip to the collar, see Fig. 2).10

Inverting Eq. (D2), the root age age(z, t) [T] at any distance z to the root tip z and at any time t yields:

age(z, t) = t+
lmax
v0

ln

(
z

lmax
+ exp

( −v0

lmax
t

))
,∀z ∈ [0 l(t)] (D3)

Equation (D3) is then used to derive the macroscopic parameters and the water flow equation solution of a single branch

root as a function of age or when the root hydraulic properties are defined as a function of time instead of as a function of the

distance to the tip. We can also calculate the stretch lengths, stretchi. When the root is older than any transition age (called15

hereafter agei[t]), it is simply the length differences between two successive transition ages. When the root is younger, then

either the root zone length is zero (if the young transition age is not reached yet) or growing limited by the total root length:

stretchi(t) =





0, t < agei

lmax

(
1− exp

(
−v0
lmax

(t− agei)
))

, t≥ agei and t≤ agei+1

lmax

(
exp

(
− v0
lmax

(t− agei+1)
)
− exp

(
− v0
lmax

(t− agei)
))

, t > agei+1

(D4)
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