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Abstract. In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic

properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water

flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential,

functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive

root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical5

solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case

for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance

to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles.

The analytical solutions allow one to verify numerical resolution and to get a generalization of the hydric behaviour with the

main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in10

uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The

model could successfully be applied to maize root conductance measurements to derive radial and axial hydraulic properties.

Very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a

soil-root model. In this study we also looked for optimal root traits that maximize water uptake under a carbon cost constraint.

Optimal traits were shown to be highly dependent on the root hydraulic properties and close to observed ones in maize roots.15

We finally used the obtained functions for evaluating the impact of root maturation versus root growth on water uptake. Very

diverse uptake strategies arise from the analysis. These solutions open new avenues to look for optimal genotype x environment

x management interactions by optimization, for example, of plant-scale macroscopic parameters suitable in ecohydrogolocial

models when the single roots analysed in this study will be combined in a root growth model.
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1 Introduction

Global crop production is negatively affected by drought that is the most significant stress in agriculture (Cattivelli et al., 2008).

Drought stress can be defined as the plant’s inability to take up and transport the required amount of water to the shoot leading

to stomatal closure and reduced yield (Campos et al., 2004). Transferring water from the soil to the shoot, thus preventing leaves

from dehydration, is a major role of the vascular root systems (McElrone et al., 2013). Root water uptake (RWU) is driven5

by water potential gradients between soil and atmosphere and is mainly controlled by stomatal regulation, plant hydraulic

resistance and soil water availability (Volpe et al., 2013). Both root system architecture and hydraulics are key for the location

and intensity of water uptake (Leitner et al., 2014). These properties are encapsulated in the concept of root system hydraulic

architecture (Lobet et al., 2014). Under high transpiration demand, from the root-soil interface to the evaporative sites, water

crosses first radially the root tissues towards the root xylem vessels and flows then up to the leaves (Passioura, 1980). The10

tissues’ ability to transfer the water radially is called hydraulic radial conductivity while the capacity to conduct water axially

is the axial conductance or xylem conductance.

Measurements of root hydraulic properties demonstrated that radial conductivity and axial conductance both change with

root tissue maturation for a given plant genotype (Frensch and Steudle, 1989a; Doussan et al., 1998b; Zwieniecki et al.,

2002). The root anatomy and disposition of cell layers on water pathways impact root radial conductivity (Steudle, 2000).15

The development of endodermal and exodermal apoplastic barriers, first with a Casparian band, then with suberin lamellae

and lignified tertiary walls constitutes major hydraulic impedances to water flow (Enstone et al., 2002). Aquaporins also play

a central role in root radial conductivity by facilitating water flow across cell membranes (Chaumont and Tyerman, 2014)

and their location and expression change with the maturation of apoplastic barriers (Hachez et al., 2006). Besides, root axial

conductance increases with abundance, shape and size of xylem vessels, increasing from apical regions with protoxylem20

to basal regions with late metaxylem vessels (McCully and Canny, 1988). These maturation steps make younger (distal)

root regions more functional for water uptake, while mature (proximal) regions are more adapted to water axial transfer, as

confirmed by water flow measurements of Sanderson (1983) in barley or Zarebanadkouki et al. (2016) in lupine. Uniform

root hydraulic properties would on the contrary concentrate water uptake on the proximal region (Landsberg and Fowkes,

1978). Figure 1 (top) summarizes estimates and measurements of root radial conductivity and axial conductance of primary25

maize roots as a function of distance to root tip (Frensch and Steudle, 1989b; Frensch et al., 1996; Zwieniecki et al., 2002;

Doussan et al., 1998b; Bramley et al., 2007). Figure 1 (bottom panels) also illustrates the changes of primary root anatomy with

distances to tip as observed by Steudle and Peterson (1998) with cross sections. With an inverse modelling approach coupled to

tracer data from Varney and Canny (1993), Doussan et al. (1998b) produced an extensive estimation of root hydraulic property

profiles with piecewise functions for both maize primary and lateral roots. The hydraulic conductivity profiles of Zwieniecki30

et al. (2002) comes as well from an inverse modelling exercise (Meunier et al., 2017).

Despite these evidences that uniform root properties are more the exception than the rule, today a majority of models assume

explicitly (Biondini, 2008; Roose and Schnepf, 2008) or implicitly (Zhuang et al., 2001) that roots have homogenous properties.

For instance, most crop and hydrological models assume that root water uptake is proportional to root length density, implicitly
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assuming uniform root radial properties and non-limiting xylem conductances while numerical models already showed that the

arrangement of root hdyraulic properties dramatically affects dynamics and efficiency of water uptake (Bechmann et al., 2014).

It is important to realise that assuming uniform root properties will not only impact the root water uptake and water potential

distributions, but also the total root conductance, when up-scaled to the full plant (Couvreur et al., 2012). Today, there is no

easy way to predict how root property distribution impacts these plant scale properties.5

An analytical solution for root water uptake and flow was developed by Landsberg and Fowkes (1978) but only for uniform

roots. One noteworthy exception is the work of Ariyaratna (1990), which consider linear increase of the radial conductivity.

Besides this study, no general analytical solution of the root water flow equation was found until now.

Figure 1. Top: Maize radial conductivity (left axis) and axial conductance (right axis) of primary roots as measured in several studies.

Bottom: maize primary root cross-sections obtained at different development stages. The root cross-sections are the work of Steudle and

Peterson (1998). The scale bars are 100 microns long. Ex = exodermis, En = endodermis, CB = casparian band, P = protoxylem, EM =

early metaxylem, LM = late metaxylem. (a) Immature Ex, En with CB, mature P, mature EM and immature LM, (b) mature Ex, En with

asymmetrically thickened walls, mature P and EM, immature LM (c) similar to (b) with mature LM. Reproduced by courtesy of Steudle and

Peterson.

On the other hand, solving the water flow equation in the root system can also be achieved using finite difference for any

root hydraulic property distribution (Alm et al., 1992) and for any root system architecture (Doussan et al., 1998a). Typically10

the water flow equation in the root system is solved by segmenting root system into small root parts called root segments.
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Water potentials within the structure are discrete so that each segment has (i) an unique xylem water potential connected to

contiguous segment xylem potentials by axial conductances, and (ii) a soil-root interface water potential connected to the

segment xylem potential by a radial conductance. Analogically to Ohm’s law, radial and axial rates of water flow in each

segment are proportional to the associated water potential differences. The water flow equations are solved for the generated

root system hydraulic architecture by inverting a conductance matrix of the root system network (Doussan et al., 1998a; Javaux5

et al., 2008). If root segments were divided into smaller sub-segments though, water potentials and flows would slightly vary

in each segment. The result is consequently an approximation of the exact solution that would be obtained for root segments

of infinitesimal length. Developing analytical solutions would allow the community to verify numerical models’ accuracy for

heterogeneous roots.

In this paper we show that uniform root property assumption may be relaxed and yet analytical solutions of the water flow10

equation in roots are within our reach. Our objective is to present novel mathematical solutions of the water flow equation in

roots with non-uniform radial and axial hydraulic properties closer to reality and more efficient than current existing models. We

also developed solutions for growing roots at given elongation rates, which make the uptake distribution time-dependent. This

widens the solution of Landsberg and Fowkes (1978) to roots growing at rates potentially decoupled from tissue maturation

rate. These solutions can be used for numerical model benchmarking or, as it was done here, to derive root hydraulic properties15

from conductance measurements and to assess the impact of hydraulic traits on root water uptake patterns. Eventually, we also

develop an up-scaled model to predict how heterogeneous root hydraulic properties impact root conductance and water uptake

distribution and their evolution with time.
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2 Theory

2.1 Water flow equation in a single root

In the following, we only consider single root, i.e. without laterals. Consequently we sometimes use simply the word roots for

single roots. When used, the terms root stretch or root segment designate a portion of a single root characterized by specific

root properties.5

Assuming that root water content does not fluctuate, water mass balance in infinitesimal root segments of a cylindrical root

of radius r [L] and total length l [L] under uniform soil-root interface water potential yields (Landsberg and Fowkes, 1978):

dJx(z)

dz
=−2πrkr(z)(Ψx(z)−Ψsoil) (1)

where Jx [L3T−1] is the axial flow of water within the xylem in the root, kr [LT−1P−1] is the root radial conductivity, Ψx [P]

is the xylem water potential, Ψsoil [P] is the uniform water potential at soil-root interface, and z [L] is the distance from the10

root tip along the root axis. We use the abbreviations L, T and P for length, time and pressure unit dimensions, respectively.

The axis z is always chosen parallel to the root axis. Note that the right-hand side term corresponds to root radial flow rate per

unit root length qr [L2T−1]:

qr =−2πrkr(z)(Ψx(z)−Ψsoil) (2)

Axial flow is driven by the water potential gradient in the xylem vessels:15

Jx(z) =−kx(z)
dΨx(z)

dz
(3)

with kx [L4T−1P−1] the axial conductance of the root. Combining Eq. (1) and (3), we obtain:

d

dz

(
kx(z)

dΨx(z)

dz

)
= 2πrkr(z)(Ψx(z)−Ψsoil) (4)

which is the general equation of water flow equation in roots.

2.2 General solutions of root water flow20

The differential Eq. (4) can be solved for various distributions of root properties and boundary conditions. Since Eq. (4) is a

second-order differential equation, its general solution is of the form:

Ψx(z) = Ψsoil + c1,if1,i(z) + c2,if2,i(z) (5)
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Where c1,i and c2,i are constants whose values depend on root hydraulic properties and boundary conditions at root’s ends

and f1,i and f2,i are differentiable functions of z whose type depends on the root hydraulic property profiles. The subscript i

as it will be further explained is used to distinguish root stretches. It can vary between 1 and N, the total number of stretches in

the single root. The length between the root apex and a root stretch proximal part is called li. When i=N , li = l.

For simple functions kx(z) and kr(z) (i.e. constant, linear and exponential), analytical expressions for f1(z) and f2(z),5

c1,i and c2,i are derived in Appendix A. However, kx(z) and kr(z) profiles along a root generally correspond to piecewise

collections of these simple functions (see for example (Doussan et al., 1998b)). Hence, we establish a procedure to compute

analytical expressions of water flow in a single root with segments connected in series with contrasted hydraulic property

profiles. Figure 2 presents a sketch of a single root made of five stretches delimited by dashed vertical lines.

Deriving the coefficients c1,i and c2,i in any root stretch i requires boundary conditions at the limits of each stretch (i.e., at10

z = li−1, the root stretch i’s distal end and at z = li, its proximal end). The bottom flux boundary condition at the distal end of

stretch i is called Ji−1 [L3T−1], and the xylem water potential at the proximal end of stretch i is Ψproximal,i [P] as it appears

in Fig. 2 and as stated in Eq. (6):

Jx(li−1) = Ji−1

Ψx(li) = Ψproximal,i

(6)

Note that J0 = 0 (no axial flow at the root tip), and Ψproximal,N = Ψcollar (the xylem water potential at the proximal end of15

the last root stretch N is the plant collar potential).

Figure 2. Single root made of five stretches (the dashed vertical lines are stretch boundaries). For root stretch i, boundary condition at

z = li−1 (distal end) is the water flow Ji−1 and at z = li (proximal end) the xylem water potential Ψproximal,i. For details, see text.

2.3 Derivation of macroscopic root hydraulic properties

Only J0 and Ψproximal,N are predefined root boundary conditions and none of the root stretches has both boundary conditions

known (Ji−1 and Ψproximal,i) so the solution of the water flow equation is not straightforward unless the root is made of a

single stretch. To solve this problem, the concept of root macroscopic parameters is used.20

The root macroscopic parameters consist in the root system conductance Krs [L3T−1P−1] and the Standard Uptake Density

SUD [L−1] (Couvreur et al., 2012; Meunier et al., 2017). These parameters are used in soil-root water transfer models that
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stem from principles of water flow in root hydraulic architecture but do not rely on an explicit geometrical description of root

system (Couvreur et al., 2012). In contrast to Couvreur, Meunier et al. (2017) revisited these definitions and applied them to

any root or part of a root system. They are calculated in homogeneous soil conditions and are defined here as function of the

root length li as:

Krs,i = Jx(li)
Ψsoil−Ψx(li)

SUDi(z) = qr(z)
Jx(li)

(7)5

These macroscopic parameters are always independent of the boundary conditions: they only depend on root geometric

(radius and length) and hydraulic properties (kr(z) and kx(z)). Let us note that the Krs,i and SUDi as defined in Eq. (7)

represent the root macroscopic parameters after addition of i stretches ignoring thus the root stretches after the considered

zone. The terms Krs and SUD are used instead of Krs,N and SUDN , respectively, and correspond to the macroscopic

parameters of the entire root:10

Krs = Jx(l)
Ψsoil−Ψx(l)

SUD(z) = qr(z)
Jx(l)

(8)

The macroscopic parameters may be calculated by a recursive equation (see Appendix B for demonstration):


Krs,i = kx(li)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)
Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

SUDi(z) = 2πrkr(z)
kx(li)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f1,i(z)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f2,i(z)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)

(9)

where Lagrange notation is used for derivative. The recursive formulation is useful to solve the water flow equation when

dealing with multiple-stretched roots. We start, in such a case, with the calculation of Krs,1 (i.e., the conductance of the most15

distal stretch) using Eq. (9) (with Krs,0 = 0 because the axial flow is null at root apex). The obtained Krs,1 is then used as

Krs,i−1 to calculate the effective conductance of the distal part from the second stretch Krs,2 using Eq. (9). This procedure is

then used again to derive the Krs,i of all stretches until the root collar is reached. The obtained set of Krs,i’s or Krs,i−1’s are

then used to calculate the coefficients c1,i and c2,i for the different stretches using:


c1,i =

(Ψproximal,i−Ψsoil)(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))
Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

c2,i =
(Ψproximal,i−1−Ψsoil)(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))

Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

(10)20

as demonstrated in Appendix B. Since in Eq. (10), only the potential at the proximal part of the stretch is needed as a

boundary condition (in addition to the distal root conductance), the calculation starts at the proximal end of the root system

where the root collar potential Ψcollar is known. The obtained c1,i and c2,i for the proximal stretch are subsequently used in Eq.
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(5) to calculate the water potential at the distal part of the stretch. The water potential is then used to calculate the coefficients

of the next stretch (towards the root tip). This procedure is used until the most distal stretch is reached. As SUD depends on

the collar water flow, it can not be calculated for each zone. However it can be derived at the end of the procedure when the

xylem water potential is defined everywhere inside the root and when the total root conductance has been already calculated.

2.4 Resolution of the root water flow equation5

We here analyse six cases of hydraulic conductance variations along a root axis: the uniform root (already developed by

Landsberg and Fowkes (1978)), a single root with linear root hydraulic property profiles and a single root with exponential

root hydraulic property profiles. For the two latter cases, the radial conductivity and the axial conductance may change alone

or simultaneously. Table 1 summarizes the six cases with the corresponding local hydraulic properties. Note that the linear

increase of axial conductance was already studied by Ariyaratna (1990). Table 2 summarizes the solutions of the root water10

flow equation obtained for the six considered cases. The resolution details are provided in Appendix A.

The parameters used in Table 1 are gathered as well as their units in Table 3 (two first columns). To simplify the solutions

of the root water flow equation, some parameters are combined. The definition of combined parameters is also given in Table

3 with their corresponding units (two last columns).

These functions can be combined in complex root with several root stretches with Eq. (9), (10) and the entire root boundary15

conditions: Ψcollar and J0 = 0.

Figure 3 shows the procedure to solve the water flow problem in a root with variable hydraulic properties. First we need to

know whether the root is made of one or several stretches. Then we have to determine the coefficients c1,i and c2,i for each

single zone, i ∈ [1N ] by determining the type of root stretch we deal with and by using Eq. (10). Thanks to these coefficients,

we obtain the root conductance after addition of each stretch by applying Eq. (9). Finally we calculate the xylem potential,20

the axial flow, the radial flow per root length and the macroscopic parameters using the appropriate equations and analytical

functions given in Table 2. The corresponding equations are mentioned in the figure.

If the root is made of only one stretch, there is no need to calculate intermediary root conductances. The solutions of Table 2

are then used with the no flux boundary condition coefficients to obtain the macroscopic parameters as well as the water xylem

potential radial and axial water flow profiles along the root axis. This particular case is analysed in Appendix C.25

2.5 Properties of an ageing root

The water flow equation resolution derived in the previous sections was obtained for a root of a specific length. In the next

sections, we show how to modify the solution when the root is growing and developing.
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Figure 3. Flowchart of the water flow equation resolution in roots with heterogeneous hydraulic properties

2.5.1 Root growth

In this section we introduce the root elongation. As in many studies, the properties are measured as a function of emerging time

instead of distance to tip, we provide here a tool to switch from one to another. Basically an equation of the root elongation

rate is required. We consider here an instantaneous growth rate v(t)LT−1], function of the actual time t [T], given by:

v(t) = v0exp

(
−v0

lmax
t

)
(11)5

where v0 [LT−1] is the initial elongation rate and lmax [L] is the root maximal length (Pagès et al., 2004). Note that if lmax [L]

is large enough, then the elongation rate is almost constant and equals v0. When the transition ages (i.e. root ages at which root

hydraulic property change), agei [T], are known, the stretch lengths, stretchi(t) [L] are given by:

stretchi(t) =


0, t < agei

lmax

(
1− exp

(
−v0

lmax
(t− agei)

))
, t≥ agei and t≤ agei+1

lmax

(
exp

(
− v0

lmax
(t− agei+1)

)
− exp

(
− v0

lmax
(t− agei)

))
, t > agei+1

(12)

See Appendix D for details.10

2.5.2 Root development

When roots get older, their macroscopic hydraulic parameters vary not only because they grow but also because of root tissue

maturation. Maturation is defined here as an evolution of root hydraulic properties as a function of root age (and not of distance

to root tip as done in the previous sections). This process is modelled by introducing root hydraulic properties depending on

root age, such as:15

kr = kr0exp(−mt)

kx = kx0exp(mt)
(13)
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wherem [T−1] is the maturation rate. These equations are similar to the ones used in the exponential root hydraulic properties

subsection (see Sect. A3) except that they define the properties as a function of time instead of distance to tip. Other root

development rate can be imagined, similar to the other functions developed in the previous sections.
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3 Model illustration

In this section, we highlight the potential of the newfunctions with a modelling exercises. We start with simple theoretical

illustrations of the model. We then explain how pressure probe measurements can be used to derive local hydraulic properties.

These results are then inserted first in a soil-root model to test the uptake efficiency of a heterogeneous root as compared to

a uniform one, and then in an optimization algorithm to assess the breeding potential of the analysed roots (i.e. distance to5

an optimal root). Finally we show how root vs development rates can reveal very contrasted uptake strategies. Another added

value of analytical solutions is their potential use to verify the current numerical solution. One example is given in Appendix

E.

3.1 Comparison between uniform and heterogeneous roots

3.1.1 Roots with the same total conductance10

First, three theoretical roots were simulated. Figure 4 represents how the radial conductivity (a) and the axial conductance (b)

depend on distance to tip for these three roots. The blue solid lines represent a root with constant hydraulic properties while

the dashed and dotted are roots with linear and exponential hydraulic property profiles (radially and axially), respectively. The

numerical values are chosen so that the conductance Krs of the three roots is rigorously the same.

Figure 4. Variation with distance to root tip of radial conductivity (a) and axial conductance (b) along a single root with constant hydraulic

properties (solid blue line), a single root with linear hydraulic profiles (dashed lines) and a single root with exponential hydraulic profiles

(dotted lines). The origin of the z-axis is at the root tip.

The water flow equation is then solved for these three roots and the xylem potential as well as the radial and axial flow are15

computed to assess their divergences. Xylem water potential is obtained thanks to Eq. (A1) for the uniform root, (A4) for the
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linearly changing root and (A5) for the exponentially varying root. The calculations were performed for a constant Ψcollar of

-3000 hPa and a uniform soil water potential of 0 hPa. Radial flow per root length qr and axial water flow Jx are obtained

applying Eq. (2) and Eq. (3), respectively, to the three different cases.

We also define two root parameters combining root hydraulic and geometric properties:

τ(z) =
√

2πrkr(z)
kx(z)

κ(z) =
√

2πrkr(z)kx(z)
5

The units of these root parameters are [L−1] and [L−3P−1T−1], respectively. These parameters have the same definitions

than in the case of the uniform root but they depend now on the position along the root axis (see Appendix A.1). τ indicates

how fast the root system conductance changes and how homogeneous the water uptake along the root axis under homogeneous

soil conditions is. κ is an indicator of the maximal possible root system conductance.

3.1.2 Water flow in a maize lateral root10

Here, we compare single roots with complex hydraulic profiles (as they have been observed) and constant root hydraulic

properties in terms of distribution of water xylem potential, radial and axial flows and macroscopic parameters. Lateral maize

root properties from Doussan et al. (1998b) are analysed here. This constitutes an illustration of the multiple-stretched single

root. In their study, they described axial conductance and radial conductivity as stepwise functions of the root age or distance

to tip. They justified it by the root tissue maturation and development. We converted the transition ages to distance to tip15

transition position as explained in the previous section. We considered a constant elongation rate of 1 cm per day. Three

other root hydraulic property uniform functions were also tested: minimal, maximal and mean values of observed profiles for

both hydraulic properties. Whether constant root hydraulic properties could mimic more complex situations is consequently

investigated comparing the different scenarios in terms of uptake, flow and macroscopic parameters.

3.2 Inverse modeling of root hydraulic properties20

A root pressure probe was used to measure total root conductance as well as axial conductance of unbranched brace maize

roots. To do so, nine maize were grown in aluminium containers filled with silty soil. When plants were seven weeks old, the

containers were opened, roots were carefully washed from the soil and selected maize brace roots were excised from the stem.

They were then connected to a pressure probe in order to derive their hydraulic properties in an experiment really similar to

the one first presented by Frensch and Steudle (1989a). We only give the general idea here. For more details, we refer to the25

explanations of Frensch and Steudle (1989a).

Unbranched intact roots were around 35 cm long when first connected to the root pressure probe. A series of pressure clamps

were carried out (3-5 clamps) to induce a flow of water into the root after a stable value of root pressure was reached, which

took between 30 to 120 min. Increments of 20 to 50kPa were used for successive pressure clamps. Pressure was held constant

at each increment for 10 to 120 s. The distance that metal rode (meniscus) inside the capillary had moved was used to calculate30
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the water volume and as a consequence the flow rate by dividing by the duration of the step. The linear regression of flow rate

plotted against the applied pressure difference led to the total root conductance for this specific length. The root was then cut

towards its tip and reconnected to the root pressure probe to repeat the measurement until the root end was reached.

Axial hydraulic conductance was determined after cutting the root connected to the root pressure probe with a razor blade

at a distance of 2 cm from its proximal end. Similar to the measurement of total conductance, a series of pressure clamps were5

carried out to induce water flow into the small root segment. The local axial conductance was calculated as the product of the

segment length by the slope of the linear regression of flow rate plotted against the applied pressure difference.

The profile of axial conductance was first fitted using piecewise functions. Both axial conductances absolute values and posi-

tions of the transition were optimized. When obtained, further optimization was required to derive the profile of radial conduc-

tivity using the total root conductance. Several scenarios, including uniform, single- and multi-stretches hydraulic properties,10

were tested. Since the number of fitting parameters was not constant between scenarios, adjusted coefficient of determination

allowed us to discriminate the best scenario. An uniform root (both radially and axially) was also tested to compare the results

with the solution of Landsberg and Fowkes (1978).

3.3 Root in a heterogeneous soil

The uniform and heterogeneous hydraulic profiles that best fitted the measurements of the previous experiments were then15

tested to compute the macroscopic parameters, Krs and SUD, for any root length. These calculations allowed us to simulate

the water flow in the soil-root continuum. To do so, we used the model developed by Couvreur et al. (2012) and Couvreur et al.

(2014) that only requires the macroscopic parameters (in terms of root parameters) to predict the water flow from the bulk soil

to the root collar. The soil sink term is calculated as the sum of the local radial flow to the root which, in turn, are given by

(Meunier et al., 2017)20

qr(z) = TactSUD(z) +Krs (Ψsr(z)−Ψseq)SUD(z)

with Tact [L3T−1] the proximal end water flow, Ψsr(z) [P ] the soil-root interface potential and Ψseq =
∫ l

0
SUD(z)Ψsr(z)dz [P ]

the equivalent soil potential. In the simulations, the root were supposed to be vertical in a 3D loamy soil box of 10 x 10 x 30

cm3 with a constant total water uptake of 1 cm3d−1 and a constant elongation rate of 1 cm. When the root collar potential

reached −1.5MPa, the root top boundary condition was switched from flux to pressure-head. A constant pressure was then25

maintained as top boundary condition and the total uptake was consequently reduced (Meunier et al., 2016).

3.4 Optimal geometric properties

The new solutions of the water flow equation are key to estimate optimal geometric properties of roots. As an illustration we

may want to maximize the root conductance Krs of uniform roots and compare the results with those of roots with varying

hydraulic property profiles. Using a carbon cost as a constraint, it writes:30

13



maximize Krs(r, l) subject to V0 = πr2l

where V0 [L3] is the volume constraint. To solve this optimization problem, Lagrange multipliers λ are useful. We define a

new function L:

L(r, l,λ) =Krs(r, l) +λ
(
πr2l−V0

)
whose maximum is found when:5

∇r,l,λL= 0

The previous equation is equivalent to:


∂Krs
∂r + 2λπrl = 0

∂Krs
∂l +λπr2 = 0

V0 = πr2l

(14)

Using appropriate equations to calculate the root conductance, we find an optimal radius and length that maximize root

water uptake. As an illustration, we compare the optimal root radius of a root with constant hydraulic properties, a root whose10

constant root properties depend on the root radius (Biondini, 2008) and a root with heterogeneous root properties as observed

in the pressure probe experiment. Mathematically, it writes, respectively:


Constant kr and kx : kr(z) = kr0 and kx(z) = kx0

Uniform kr(r) and kx(r) : kr(r) = kr0
r0
r and kx(r) = b∗r5

Heterogeneous kr and kx : kr(z) = f(z) and kx(z) = g(z)

(15)

The parametrization for the heterogeneous root and the uniform root are the best heterogeneous and uniform profiles derived

from the pressure probe experiment for brace roots. For the root whose hydraulic properties depend on the root radius, we kept15

the parameters of Biondini (2008) for maize(r0 [L], kr0 [L4P−1T−1] and b∗ [L−1P−1T−1]). The constraint volume V0 was

the mean observed volume for the maize brace roots. f(z) and g(z) are observed functions for the radial and axial hydraulic

property, respectively.

3.5 Root water uptake strategy

In this last example, we again consider a single growing root whose development and elongation rates can both vary. We20

varied the root parameters m (development) and v0

lmax
(growth) between 0.05 and 0.5 [d−1] and between 0.01 and 0.1 [d−1],

14



respectively to investigate the impact of relative growth and maturation processes on macroscopic parameters and uptake

patterns.
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4 Results

4.1 Comparison between uniform and heterogeneous roots

4.1.1 Roots with the same total conductance

Solutions of the water flow equation are shown in Fig. 5 for three different root property distributions (the legend is the same

as in figure 4): uniform, linear and exponential profiles. Are represented here xylem water potential (subplot a), the radial flow5

per root length (subplot b) and the axial water flow (subplot c).

Figure 5. Solutions of the root water flow equation: xylem water potential (a), radial water flow per root length (b) and axial water flow

(c) along a root with constant properties (solid blue line), a root with linear hydraulic profiles (dashed lines) and a root with exponential

hydraulic profiles (dotted lines). The origin of the z-axis is at the root tip.

Even if the collar axial flow is identical for each root (because they have the same conductance), their xylem water potential

and root water uptake profiles differ . The potential drop is more homogeneously distributed along the roots with heterogeneous

properties. Furthermore, it is observed that qr is a monotonic increasing function of distance in the case of the uniform root,

but that the maximal uptake is not located at the root collar anymore for the two other cases. Consequently the axial flow differ10

between these three cases.

Root parameters τ and κ are represented in Fig. 6, subplots (a) and (b), respectively. These parameters are constant for a

uniform root. τ is monotonically decreasing for non-uniform roots because the radial conductivity is decreasing and the axial

conductance is increasing along the root axis. The root with linear hydraulic property profiles has a non-monotonic κ while this

parameter is always increasing for roots with exponentially changing hydraulic properties. These hydraulic parameters must be15

set in relation with the root macroscopic parameters represented in the bottom line of Fig. 6. In subplot (a) SUD is represented
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along the z-axis (note that this subplot is the same as the second subplot of Fig. 5 except that the curve is now normalized so

that its integral on total root length is one). Krs is plotted as a function of the root length in subplot (b). It is worth noting

that the root system conductances differ very much between these cases. Depending on how kr and kx vary along the root,

Krs might even decrease with increasing root length (linear root case). This occurs when additional segments with a low kr

are added so that the extra inflow across these segments does not compensate for the extra pressure head loss due to axial flow5

through these segments. However, when kr decreases with root length levels off and the kx increases stronger with increasing

root length, as it is the case in the exponential scenario, the root system conductance may increase steadily with root length.

Figure 6. Variation along a single root of root (top line) and macroscopic (bottom line) hydraulic parameters: τ (a), κ (b), SUD (c) and Krs

(d) of a single root with constant properties (solid blue line), a single root with linear hydraulic profiles (dashed lines) and a single root with

exponential hydraulic profiles (dotted lines).

4.1.2 Water flow in a maize lateral root

The local hydraulic property distribution for the lateral roots of maize, as derived by Doussan et al. (1998b), are shown in the

two first subplots of Fig. 7 (blue solid lines). These subplots are equivalent to the Fig. 4B of the study of Doussan et al. (1998b)10

when a constant elongation rate of 1 cm per day is assumed. We removed the isolated distal region (whose axial conductance

is null and that consequently does not affect root water fluxes). The red dashed, dotted and dashed-dotted lines correspond

to hypothetical roots with uniform properties corresponding to minimal, maximal and mean values of observed hydraulic

properties. When we compare the Doussan distribution of water radial flow per root length and potential with those of constant
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hydraulic property models (Fig. 7, c and d ), we observe that it is not possible to represent its complex behaviour with an

apparent/effective uniform model. The drop of water potential is much steeper with heterogeneous than with homogeneous

properties (red lines). The decrease in water potential and the increase in axial flow are far more uniform along the composite

root than along the homogeneous roots.

Figure 7. Distributions of radial conductivity (a), axial conductance (b), xylem water potential (c) and axial water flow (d) in a maize lateral

root. We used hydraulic properties obtained by Doussan et al. (1998b) (blue solid line) for a maize lateral root or equivalent properties (red

lines) with minimal (dashed), maximal (dotted) or mean (dashed-dotted) values. The origin of the z-axis is at the root tip.

We used Eq. (9) to derive the macroscopic parameters of the four roots (the complex root and the three uniform roots). Again5

both the SUD and theKrs could not be well represented by uniform root properties. It is indeed impossible with these solutions

to represent non-monotonic functions as the standard uptake density (subplot (a), Fig. 8) and the root conductance (subplot

(b), Fig. 8). This questions the typical assumptions made by hydrological and crop models, for which the root conductance is

considered proportional to the root length density.

While Krs increases monotonically towards the proximal end for uniform roots, this is no more the case for the hetero-10

geneous root. When considering variations in hydraulic properties along the maize root axis, the analytical solutions that

account for these changes revealed considerably different behaviours. The root conductance even decreases with root length.

Similarly with the newly developed solutions, the maximal water uptake location was no more located at root proximal end.

Non-monotonic functions of root water uptake emerged from the new solutions. Therefore, the search for optimal root systems

(i.e. ideotypes) should also account for variations of root properties along roots.15
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Figure 8. Macroscopic parameters: final SUD (a) and Krs changes (b) for a growing maize lateral root with the local hydraulic properties

estimated by Doussan et al. (1998b) (blue solid line) or the equivalent uniform roots (red lines) with minimal (dashed), maximal (dotted) or

mean (dashed-dotted) hydraulic property values. The color legend is the same as in the previous figure.

4.2 Inverse modeling of root hydraulic properties

The analytical solutions developed here may serve as well to get local root hydraulic properties distributions along root axes.

Here we used experimental measurements of the observed axial and total root conductances as measured by the root pressure

probe (represented with black markers in the first and last subplots, respectively of Fig. 9). A perfect fit of the xylem conduc-

tance profile could be obtained with a piecewise function (black dashed line, first subplot). The second subplot reveals the best5

radial conductivity profiles for some of the tested functions: linear (orange), exponential (yellow), stepwise (purple), 2 steps

linear piecewise (light blue), 3 steps linear piecewise (green). The resulting total root conductance profiles are represented

with the same legend in the last subplot with contrasting performances (the adjusted coefficients of determination are indicated

as well). In the third subplot, radial to axial hydraulic properties ratios are plotted as a function of the distance from root

tip. The best scenario is the stepwise function for the radial conductivity profile coupled to a piecewise function for the axial10

conductance profile (mauve scenario)

The last scenario that is represented in fig. 9 is an axially and radially uniform root (dark blue). If with such profiles,

it is possible to reasonably fit the total root conductance profile (adjusted r2 = 0.81), then, of course, the modelled xylem

conductance profile does not fit at all, since high variations were observed between both root extremities.

The combination of pressure probe experiments with the newly developed solutions of the water flow equation in routine15

would allow us to derive the local hydraulic properties of roots that are critical for root system water uptake and plant perfor-

mance (Vadez, 2014). Different root types and plant genotypes will be compared in further experiments.
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Figure 9. Hydraulic properties of the maize brace roots: axial and total hydraulic conductance of different root types as function of distance

from root tip (dark symbols, first and last subplot, respectively). Data presented as dots are average of 5 measurements and the error bars

represent the standard divisions. Profiles plotted as solid lines are the best profiles obtained from simulation of water flow into unbranched

roots of varying length (last subplot). Second subplot: best fitted profiles of radial conductivity that reproduce measured profiles of total

hydraulic conductance. Third subplot: ratio of radial conductivity to axial conductance derived from the analysis along the root axis. The

best fitted axial conductance profile was used for each scenario except for the uniform root (dark blue).

4.3 Root in a heterogeneous soil

When inserted in a soil-root model, the maize brace uniform root and the one with best scenario of hydraulic properties present

contrasted uptake patterns and performances as revealed in fig. 10. In all subplots of this figure, the uniform and heterogeneous

roots are represented with dashed and solid lines, respectively. The uniform root decreases its uptake after 6 days because its

collar potential reaches the threshold at that time. At the very end of the simulation (20 days), this root had transpired 15% less5

water than the heterogeneous root, in total. This can be explained by the location of the root water uptake: while the uniform

root always takes up water at the top, the heterogeneous root keeps looking for water at its tip. While, as a consequence, the

heterogeneous root never feels a too low potential, the top water potential rapidly decreases for the uniform root and critical

potential are reached within the xylem vessels that force the root reducing its water uptake. The uptake location can be seen

from the clipped domain where water velocities at the end of the simulations are shown. A movie of the change in the main10
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water uptake depth is also provided in the supplementary material. While after five days, the z-averaged soil potentials look

similar for both roots, they diverge at the end of the simulation (bottom subplot).

Figure 10. Root perfomances in a coupled soil-root model: changes of instantaneous and cumulative water uptake (top, left) and of collar

and equivalent potential (top, right) for an uniform (dashed) and heterogeneous (solid) roots. In the bottom, the z-averaged profiles of soil

potentials are plotted early and late in the simulation. The resulting water velocities at the end of the simulation are also shown in the clipped

domain for both scenarios.

This simulation underlines how critical the root water uptake location is for the root performance. The environment (that

was not changed in the presented simulation) is, of course, important for the overall plant transpiration. The soil hydraulic

properties (that redistribute more or less the water) and the climatic demand (that is more or less severe) strongly influence the5

results. What is needed to keep in mind at this stage, however, is that the water flow equation solutions, through the macroscopic

parameters, can be inserted in water flow models, i.e. in heterogeneous environments to predict how efficient a particular root

is. In further studies, the roots will be combined in an architecture and root systems performances will be assessed.
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4.4 Optimal geometric properties

In this section, we look for optimal root traits that would maximize the root water uptake. As an illustration, we compare the

root conductances of a uniform single root, a uniform single root with hydraulic properties varying with its radius, and a single

root with exponential hydraulic property profiles. The root conductances of the three cases are shown in Fig. 11: the dashed

line is the uniform root, the solid line is the uniform root whose hydraulic properties depend on the root radius and the dotted5

one is the heterogeneous root observed with the pressure probe experiment. The red stars point the optimal radii at which the

conductances are maximal for the three scenarios. The black star is the observed pair radius-conductance of maize brace root.

Figure 11. Root conductance as a function of root radius under a volume constraint for a uniform root whose hydraulic properties depend on

the root radius (solid line), a uniform root (dashed line) and a root with observed heterogeneous conductivity profiles (dotted line). The red

stars point the optimal radii (i.e., that maximize the root conductance), the black star the observed one.

Unlike previous approaches (Biondini, 2008; Roose and Schnepf, 2008) we consider here that the hydraulic properties may

be functions of the root tissues and do not necessarily depend on the root radius. As highlighted by the red stars, the optimal

root radii vary considerably when integrating this concept. We find that optimal root radius is closer to the observed one than10

with old approaches.

4.5 Root water uptake strategy

Figure 12-a shows the integral of Krs over time when simulating 40 days of growth and maturation of a root whose lmax is 10

cm. Four extreme situations are represented: fast growth and slow maturation (case 1), slow growth and maturation (case 2), fast

growth and maturation (case 3) and slow growth and fast maturation (case 4), respectively. The conductances of these particular15

roots are plotted as a function of time in Fig. 12-b. They exhibit very contrasted strategies in terms of total root conductance
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and uptake distributions. When the root growth is fast, the Krs quickly reaches a high value. If the root maturation process is

rapid, the final conductance is low. It can also be observed that the root properties change slowly when the root growth is low

and rapidly when the root elongation rate is high. Figure 12-c represents the relative SUD(z) (i.e., multiplied by root length)

as a function of the relative root position z (i.e., divided by root length) after 20 days of growth. Again contrasted strategies

appear with a maximal water uptake location at the root tip for cases 3 and 4 or at the root collar for cases 1 and 2. It is worth5

noting that a constant elongation rate means a very small elongation rate to maximal root length ratio. So depending on the

maturation rate, the constant elongation case rate is similar to case 2 or 4. This illustrates that plants might control their uptake

patterns not only by changing their local conductances (Tardieu et al., 2015) but also by adapting their growth rate.

Figure 12. Integral of the root conductance over time when changing the elongation rate v0
lmax

(x-axis) and the maturation rate m (y-axis)

(a). Root hydraulic conductances of the four extreme cases numbered and indicated in (a) as a function of time (b). Relative uptake of the

four single roots after 20 days as a function of the relative position to the root tip (l is the root length and z = 0 at the tip) (c).
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5 Conclusions

Six new solutions of the water flow equation in single roots with different hydraulic property distributions are presented in

addition to the uniform hydraulic property solution of Landsberg and Fowkes (1978). These novel solutions account for root

hydraulic properties that vary as a function of the distance to root tip. When the radial conductivity and the axial conductance

change linearly or exponentially alone or in combination along the root axis, analytical solutions of the xylem potential and5

water flow inside the root were developed. Explicit equations for macroscopic parameters of the corresponding single roots

were derived from these analytical solutions. Moreover, they were associated to make complex single roots of changing root

hydraulic property profiles as observed in nature or combined with elongation to obtain the root macroscopic parameters and

uptake profile as a function of root age, even in heterogeneous soils. These complex functions were not well represented by

root of equivalent but constant root hydraulic properties.10

This enabled us investigating the effects of root maturation or root tissue development and differentiation on root water

uptake. This gave interesting perspectives to evaluate both growth and maturation and their combined effects on root water

uptake. We demonstrated how combinations of different maturation and growth functions lead to different strategies of water

uptake.

These solutions were also used to revisit optimal root geometrical parameters for water uptake. Indeed, Landsberg and15

Fowkes (1978) model had been used to define optimal root systems in terms of water uptake subject to minimal carbon cost

(Biondini, 2008). In contrast to their monotonic behaviour of root water uptake capacity with root length, we demonstrated that

local root hydraulic conductivity varying with root length lead to very different behaviours. The root effective conductance may

increase with root length more steadily than in case of a uniform root or even decrease with root length. Similarly, the maximal

water uptake location was no more located at root proximal end. Non-monotonic root water uptake distributions emerged from20

the new solutions. Therefore, the search for optimal root systems (ideotypes) should not only focus on root architecture or

general averaged root hydraulic properties but also account for variations of root properties along roots.

The new models can used to derive local hydraulic properties of roots or be combined as building blocks to generate complete

root system hydraulic architectures defining plant genotypes in order to compare plant performances in contrasted environments

using soil-root-atmosphere continuum model such as R-SWMS (Javaux et al., 2008). For the latter, first single roots will be25

associated in root system hydraulic architectures thanks to root growth architectural models. Plant macroscopic parameters will

then be derived by combination of root growth and maturation analytical function at the single root scale. The generated root

systems will be then tested in contrasted environments through calculated macroscopic parameters and the model of Couvreur

et al. (2012) to look for best genotype by environment by management association.
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6 Code availability

The code is available and can be freely shared.

7 Data availability

Not applicable
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Table 1. Local hydraulic properties kr(z) and kx(z) for the different cases.

kr(z) kx(z)

Constant (uniform) root kr(z) = kr0 kx(z) = kx0

Linear kr kr(z) = a0z+ b0 kx(z) = kx0

Linear kx kr(z) = kr0 kx(z) = c0z+ d0

Linear kr and kx kr(z) = a0z+ b0 kx(z) = c0z+ d0

Exponential kr kr(z) = γ2exp(−β2z) kx(z) = kx0

Exponential kx kr(z) = kr0 kx(z) = γ1exp(β1z)

Exponential kr and kx kr(z) = γ2exp(−β2z) kx(z) = γ1exp(β1z)

29



Table 2. Linearly independent functions f1 and f2 solutions of Eq. (4) according to the functions describing local root hydraulic properties.

f1(z) f2(z)

Constant (uniform) root cosh(τz) sinh(τz)

Linear kr Ai

(
az+b

a
2
3 k

1
3
x0

)
Bi

(
az+b

a
2
3 k

1
3
x0

)
Linear kx

√
2
c
I0
(

2
√

d+cz
c2

) √
2
c
K0

(
2
√

d+cz
c2

)
Linear kr and kx exp

(
−
√
az√
c0

)
M

√ac3/20 +bc0−ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+d0)

c3/2

 exp

(
−
√
az√
c0

)
U

−√ac3/2
0 −bc0+ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+d0)

c3/2


Exponential kr I0

(
2
√
γrexp(−β2z)

β2

)
K0

(
2
√
γrexp(−β2z)

β2

)
Exponential kx

√
γxexp(−β1z)

β1
I1

(
2
√
γxexp(−β1z)

β1

) √
γxexp(−β1z)

β1
K1

(
2
√
γxexp(−β1z)

β1

)
Exponential kr and kx β

− β1
β γ

β1
2β (exp(−βz))

β1
2β Γ

(
1− β1

β

)
I
− β1
β

(
2
√
exp(−βz)γ

β

)
β
− β1
β γ

β1
2β (exp(−βz))

β1
2β Γ

(
1+

β1
β

)
I β1
β

(
2
√
exp(−βz)γ

β

)

Ai and Bi are the Airy functions of the first and second kind; M and U , the confluent hypergeometric function of the first

and second kind; Iν and Kν , the modified Bessel function of the first and second kind of order ν and Γ is the gamma function.
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Table 3. Local hydraulic property function parameters, their units, the expression of combined parameters and their corresponding units.

Parameter Unit Combined parameter Unit

kr0 LT−1P−1

kx0 L4T−1P−1

a0 T−1P−1 a= 2πra0 LT−1P−1

b0 LT−1P−1 b= 2πrb0 L2T−1P−1

c0 L3T−1P−1 c= c0
2πrkr0

L

d0 L4T−1P−1 d= d0
2πrkr0

L2

γ1 L4T−1P−1 γr = 2πrγ2
kx0

L−2

γ2 LT−1P−1 γx = 2πrkr0
γ1

L−2

β1 L−1 γ = 2πr γ2
γ1

L−2

β2 L−1 β = β1 +β2 L−1
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Appendix A: New solutions of the root water flow equation

In this appendix, we provide detailed solutions of the water flow equation when the root hydraulic properties are constant

(Landsberg and Fowkes, 1978) or when they vary linearly or exponentially, alone or together along the root axis. These

solutions of the water flow equation (4) have been obtained using the symbolic calculation toolbox of Matlab. All solutions are

summarized in Table 2.5

A1 Constant root hydraulic properties

The solution of the water flow equation in a uniform root has been proposed by Landsberg and Fowkes (1978). We present

their methodology and principal results in this section to illustrate with the simplest case how to derive the water flow equation

solution and the macroscopic parameters.

The simplest root is made of constant root properties: axial conductance kx0 [L4T−1P−1] and radial conductivity kr0 [LT−1P−1]:10

kr(z) = kr0

kx(z) = kx0

Equation (4) becomes:

kx0
d2Ψx(z)

dz2
= 2πrkr0 (Ψx(z)−Ψsoil)

The general solution of this differential equation is given in terms of hyperbolic sinus and cosinus:

Ψx(z) = Ψsoil + c1cosh(τz) + c2sinh(τz) (A1)15

where we define τ [L−1]:

τ =

√
2πrkr0
kx0

Here, the independent functions f1(z) and f2(z) are thus cosh(τz) and sinh(τz).

The coefficients are obtained for the bottom no-flux boundary conditions in case of single stretch root (see Appendix C and

particularly Eq. (C1)):20

c
nf
1 = Ψcollar−Ψsoil

cosh(τl)

cnf2 = 0

Here and in the following, the superscript nf stands for non-flux. Using these coefficients, we find the general solution of

the xylem water potential profile:
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Ψnf
x (z) = Ψsoil + (Ψcollar −Ψsoil)

cosh(τz)

cosh(τ l)

The axial flow is then obtained using Eq. (3)

Jnfx (z) =−κ(Ψcollar −Ψsoil)
sinh(τz)

cosh(τ l)

And the macroscopic parameters are derived thanks to Eq. (C4)

Knf
rs (l) = κtanh(τ l)5

SUDnf (z) = τ
cosh(τz)

sinh(τ l)

where tanh is the hyperbolic tangent and κ [L3T−1P−1] is the asymptotic root conductance defined by:

κ= kx0τ

For the bottom flux boundary condition (see Eq. (6)), the coefficients are:10

c1 = (Ψproximal,i−Ψsoil)
(

κ
κcosh(τli)+Krs,i−1sinh(τli)

)
c2 = (Ψproximal,i−Ψsoil)

(
Krs,i−1

κcosh(τli)+Krs,i−1sinh(τli
)
)

And the solution of the water flow equation in the root becomes:

Ψx(z) = Ψsoil + (Ψproximal,i−Ψsoil)
κcosh(τz) +Krs,i−1sinh(τz)

κcosh(τ li) +Krs,i−1sinh(τ li)

which leads to the following axial flow:

Jx(z) =−κ(Ψproximal,i−Ψsoil)
κsinh(τz) +Krs,i−1cosh(τz)

κcosh(τ li) +Krs,i−1sinh(τ li)
15

The macroscopic parameters become:

Krs,i(li) = κ

(
κsinh(τ li) +Krs,i−1cosh(τ li)

κcosh(τ li) +Krs,i−1sinh(τ li)

)
SUDi(z) = τ

(
κcosh(τz) +Krs,i−1sinh(τz)

κsinh(τ li) +Krs,i−1cosh(τ li)

)
The flux boundary solutions are a generalization of the non-flux solutions as they converge towards the same results as20

Krs,i−1→ 0.
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A2 Linear root hydraulic property profiles

In case of roots with linear hydraulic property profiles, different cases are distinguished and are investigated successively.

A2.1 Linear kr

Equation (4) can be solved with different root linear hydraulic property profiles. Let us consider a constant axial conductance

and a radial conductivity varying linearly along the root:5 kr(z) = a0z+ b0

kx(z) = kx0

where a0 [T−1P−1] and b0 [LT−1P−1] are shape parameters.

Equation (4) yields:

kx0
d2Ψx(z)

dz2
= 2πr(a0z+ b0)(Ψx(z)−Ψsoil)

and can be rewritten as:10

d2Ψx(z)

dz2
=

(az+ b)

kx0
(Ψx(z)−Ψsoil)

where we have defined:

a= 2πra0

b= 2πrb0

with a [LT−1P−1] and b [L2T−1P−1] the revised shape parameters. The general solution of this differential equation is now:

Ψx(z) = Ψsoil + c1Ai

(
az+ b

a
2
3 k

1
3
x0

)
+ c2Bi

(
az+ b

a
2
3 k

1
3
x0

)
(A2)15

where c1 and c2 can anew be obtained using boundary conditions. Ai and Bi are the Airy functions of the first and second

kind, respectively. It is worth noting that we obtain a similar solution if the root radius changes linearly along the root while kx

remains constant.

A2.2 Linear kx

If the root axial conductance varies while the radial conductivity is constant, i.e.:20
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kr(z) = kr0

kx(z) = c0z+ d0

with c0 [L3T−1P−1] and d0 [L4T−1P−1] the shape parameters, the general water flow Eq. (4) yields:

(c0z+ d0)
d2Ψx(z)

dz2
+ c0

dΨx(z)

dz
= 2πrkr0 (Ψx(z)−Ψsoil)

Again we rewrite the equation as:

(cz+ d)
d2Ψx(z)

dz2
+ c

dΨx(z)

dz
= (Ψx(z)−Ψsoil)5

with the following definitions of the revised shape parameters:

c= c0
2πrkr0

d= d0

2πrkr0

The units of c and d are [L] and [L2], respectively. The general solution becomes:

Ψx(z) = Ψsoil +

√
2

c

(
c1I0

(
2

√
d+ cz

c2

)
+ c2K0

(
2

√
d+ cz

c2

))
(A3)

Iν and Kν are the modified Bessel function of the first and second kind of order ν (ν = 0, here), respectively.10

A2.3 Linear kr and kx

We assume now a linear relation between the hydraulic properties and the distance to the tip:kr(z) = a0z+ b0

kx(z) = c0z+ d0

The water flow equation becomes:

(c0z+ d0)
d2Ψx(z)

dz2
+ c0

dΨx(z)

dz
= 2πr(a0z+ b0)(Ψx(z)−Ψsoil)15

After rewriting the parameters it yields:

(c0z+ d0)
d2Ψx(z)

dz2
+ c0

dΨx(z)

dz
= (az+ b)(Ψx(z)−Ψsoil)
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with:

a= 2πra0

b= 2πrb0

This equation has now the general solution:

Ψx(z) = Ψsoil + exp

(
−
√
az
√
c0

)
5 (

c1M

(√
ac

3/2
0 + bc0− ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+ d0)

c
3/2
0

)
+ c2U

(
−
√
ac

3/2
0 − bc0 + ad0

2
√
ac

3/2
0

,1,
2
√
a(c0z+ d0)

c
3/2
0

))
(A4)

with M and U the confluent hypergeometric function of the first and second kind, respectively.

A3 Exponential root hydraulic property profiles

Let us finally consider a root whose root hydraulic properties vary exponentially along the root axis:

kx(z) = γ1exp(β1z)

kr(z) = γ2exp(−β2z)
10

with γ1 [L4T−1P−1], β1 [L−1], γ2 [LT−1P−1] and β2 [L−1] are shape parameters.

The water flow equation becomes:

∂2Ψx(z)

∂z2
+β1

∂Ψx(z)

∂z
= γexp(−βz)(Ψx(z)−Ψsoil)

with γ = 2πr γ2

γ1
[L−2] and β = β1 +β2 [L−1].

Solutions of this differential equation are of type:15

Ψx(z) = Ψsoil +β−
β1
β γ

β1
2β (exp(−βz))

β1
2β[

c1Γ

(
1− β1

β

)
I− β1

β

(
2
√
exp(−βz)γ

β

)
+ c2Γ

(
1 +

β1

β

)
I β1
β

(
2
√
exp(−βz)γ

β

)]
(A5)

with Γ the gamma function and Iν , again, the Bessel function of the first kind.

The cases of mixed constant/exponential hydraulic property may be easily solved using the same methodology.20
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Appendix B: Macroscopic parameters

To calculate the general form of the macroscopic parameters defined as:

Krs,i = Jx(li)
Ψsoil−Ψx(li)

SUDi(z) = qr(z)
Jx(li)

(B1)

we need to combine combining Eq. (3) and (5) with the root stretch boundary conditions (6). The two unknowns, c1,i and

c2,i, are given, in matrix notation, by:5

−kx(li−1)f ′1,i(li−1) −kx(li−1)f ′2,i(li−1)

f1,i(li) f2,i(li)

c1,i
c2,i

=

 Ji−1

Ψproximal,i−Ψsoil

 (B2)

Inverting the system, Eq. (B2) yields:


c1,i =

kx(li−1)f ′2,i(li−1)(Ψproximal,i−Ψsoil)+f2,i(li)Ji−1

kx(li−1)(f ′2,i(li−1)f1,i(li)−f ′1,i(li−1)f2,i(li))

c2,i =
−kx(li−1)f ′1,i(li−1)(Ψproximal,i−Ψsoil)−f1,i(li)Ji−1

kx(li−1)(f ′2,i(li−1)f1(li)−f ′1,i(li−1)f2,i(li))

(B3)

In homogeneous soil conditions, the proximal flow Ji−1 may be expressed as the product of the upstream conductance

(Krs,i−1 root property) by the potential difference between the soil and the proximal xylem water potential of the root stretch:10

Ji−1 =Krs,i−1 (Ψsoil−Ψx(li−1)) =−Krs,i−1 (c1,if1,i(li−1) + c2,if2,i(li−1)) (B4)

Substituting Eq. (B4) in Eq. (B3) for the ith stretch, we obtain a set of two equations with two unknowns which after solving

for c1,i and c2,i gives:


c1,i =

(Ψproximal,i−Ψsoil)(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))
Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

c2,i =
(Ψproximal,i−1−Ψsoil)(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))

Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

(B5)

It is important to mention that these coefficients only depend on the properties of the distal stretches to the stretch of interest15

and on the effective conductivity that lumps the properties and their spatial variation in all distal stretches. Combining the

coefficients (B5), the definitions of the macroscopic parameters (B1) and the general solutions (5), (2) and (3), the root system

conductance and the standard uptake density after addition of i stretches become:


Krs,i = kx(li)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)
Krs,i−1f1,i(li−1)f2,i(li)−Krs,i−1f1,i(li)f2,i(li−1)−f ′1,i(li−1)f2,i(li)kx(li−1)+f1,i(li)f ′2,i(li−1)kx(li−1)

SUDi(z) = 2πrkr(z)
kx(li)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f1,i(z)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f2,i(z)

(−Krs,i−1f2,i(li−1)+f ′2,i(li−1)kx(li−1))f ′1,i(li)+(Krs,i−1f1,i(li−1)−f ′1,i(li−1)kx(li−1))f ′2,i(li)

(B6)
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Appendix C: Special case of a single-stretched root

If the root system consist in a single stretch, the distal boundary condition is no-flux and the proximal boundary conditions

corresponds to the root collar water potential Ψcollar [P]. l1 is equivalent to l. Mathematically, the boundary conditions become:

Jx(0) = 0

Ψx(l) = Ψcollar

(C1)

The boundary conditions (C1) used in case of a root made of a single stretch can be rewritten as:5

−kx(0)f ′1(0) −kx(0)f ′2(0)

f1(l) f2(l)

cnf1

cnf2

=

 0

Ψcollar −Ψsoil

 (C2)

As in Appendix A, the superscript nf means no-flux bottom boundary condition. It is used when the root is made of only one

stretch. Inverting the matrix we obtain the constants:

c
nf
1 =

f ′2(0)(Ψcollar−Ψsoil)
f ′2(0)f1(l)−f ′1(0)f2(l)

cnf2 =
−f ′1(0)(Ψcollar−Ψsoil)
f ′2(0)f1(l)−f ′1(0)f2(l)

(C3)

The ’non-flux’ coefficients (C3) are actually a particular case of the ’flux’ coefficients (B5) since the latter tend to the former10

as Krs,i−1→ 0 (or Ji−1→ 0).

The macroscopic parameters of the single-stretch root are finally given by (using the no-flux coefficients (C3) or equivalently

evaluating Eq. (B6) with Krs,i−1 = 0 ):

K
nf
rs = kx(l)

(
f ′2(0)f ′1(l)−f ′1(0)f ′2(l)
f ′2(0)f1(l)−f ′1(0)f2(l)

)
SUDnf (z) = 2πrkr(z)

kx(l)

(
f ′2(0)f1(z)−f ′1(0)f2(0)
f ′2(0)f ′1(l)−f ′1(0)f ′2(l)

) (C4)
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Appendix D: Stretch lengths in heterogeneous roots

Let us consider a growing single root with an initial elongation rate v0 [LT−1] and a maximal length lmax [L]. Its actual

elongation rate v(t) [LT−1] is given, as in Pagès et al. (2004), at any time t [T] by:

v(t) = v0exp

(
−v0

lmax
t

)
(D1)

Integrating Eq. (D1) between 0 and time t, we obtain the actual root length l [L]:5

l(t) =

t∫
0

v(t′)dt′ = lmax

[
1− exp

(
−v0

lmax
t

)]
(D2)

In the case of the root made of one stretch, the root length can be easily substituted by Eq. (D2) to obtain the macroscopic

parameters as a function of time instead of root length. If the root is split in distinct stretches, as we substitute l by t, we need

to replace the transition positions by transition ages. An equation of the different root stretch lengths stretchi(t) [L] is required

(we use the indices i to indicate the zones from the tip to the collar, see Fig. 2).10

Inverting Eq. (D2), the root age age(z, t) [T] at any distance z to the root tip z and at any time t yields:

age(z, t) = t+
lmax
v0

ln

(
z

lmax
+ exp

(
−v0

lmax
t

))
,∀z ∈ [0 l(t)] (D3)

Equation (D3) is then used to derive the macroscopic parameters and the water flow equation solution of a single root as a

function of age or when the root hydraulic properties are defined as a function of time instead of as a function of the distance

to the tip. We can also calculate the stretch lengths, stretchi. When the root is older than any transition age (called hereafter15

agei[t]), it is simply the length differences between two successive transition ages. When the root is younger, then either the

root zone length is zero (if the young transition age is not reached yet) or growing limited by the total root length:

stretchi(t) =


0, t < agei

lmax

(
1− exp

(
−v0

lmax
(t− agei)

))
, t≥ agei and t≤ agei+1

lmax

(
exp

(
− v0

lmax
(t− agei+1)

)
− exp

(
− v0

lmax
(t− agei)

))
, t > agei+1

(D4)
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Appendix E: Use of the analytical solutions to verify numerical models

One of the main advantages of analytical solutions is their possible use to verify the accuracy of numerical algorithms. All

the developed solutions should be asymptotic solutions provided by numerical algorithms for infinitely small root segments.

In fig. E1, we show how we tested the numerical accuracy of Doussan et al. (1998a)’s algorithm for single root with varying

hydraulic properties. In the illustrated case, exponential radial and axial hydraulic functions are chosen for a single root that is5

10 cm long. The analytical solution is the solid black line, while blue lines are numerical solution for smaller and smaller root

segments (darker and darker blue).

Figure E1. Numerical approximation (blue dashed line) vs analytical solution (dark solid line). The smaller the segment size, the better the

numerical accuracy.

As the root segment size decreases, the numerical solution tends towards the analytical solution in terms of both xylem

potential and axial flow.
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