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Water movement through plant roots
Exact solutions of the water flow equation in roots with varying hydraulic properties

Meunier Félicien', Couvreur Valentin?, Draye Xavier?, Vanderborght Jan**, and Javaux Mathieu'?

'Earth and Life Institute-Environment, Université catholique de Louvain, Louvain-la-Neuve, Belgium
?Earth and Life Institute- -Agronomy, Université catholique de Louvain, Louvain-la-Neuve, Belgium
3Fouchunfrs.?enuum Juelich GmbH, Agrosphere (IBG-3), Juelich, Germany

“Division of Soil and Water Management, KU Leuven, Leuven, Belgium

Correspondence to: Félicien Meunier (felicien. meunier @uclouvain.be)

Abstract. In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic
properties. These properties are roo d[ 1 conducllvny and ﬂiﬁmc axial conductance, which control, respectively, the radial
water flow between the root su:facej the axial ﬂow he xylem. From the solution for the xylem water potential, functions
that describe the radial and axial flow along the root axis were derived. In this paper, novel solutions of the water flow equation

\é&e developed for roots whose hydraulic properties vary along their axis, which is generally the case for most plants. Si%
qu\lmw-. Arf.uhm_mnn-}r‘},; chfawt \ Limern 0n ey MMK&L : .

with distance from the root

tip \W These solutions were subqequently combined to construct¥oot bearrehes with complex hydraulic property

profiles. 'Phe;-;-eduaad flow distributions dllle;eﬁefiom those in uniform roots. We used the obtained functions for evaluating

the impact of root maturation versus root growth on water uptake which revealed very contrasted strategies for water uptake. :‘;{A,’:\{’
In this study we also looked for optimal root traits that maximize water uptake under a carbon cost constraint, Optimal traits ogp:.a}qc,

s
were shown to be highly dependent on the root hydraulic properties. u&%sehmrﬁm&%—p}mmmmﬂm e
wwalerupinkeused-t-eeohydialogicalmende]s and open consequently new avenues to look for optimal genotype x environment

X management interactions.

1 Introduction

Global crop production is negatively affected by drought that is the most significant stress in agriculture (Cattivelli et al., 2008).
Drought stress can be defined as the plant’s inability to take up and transport the required amount of water to the shoot leading to
stomatal closure and reduced yield (Campos et al., 2004). Transferring water from the soil to the shoot, thus preventing leaves
from dehydration, is a major role of the root system (McElrone et al., 2013). Root water uptake (RWU) is driven by water
potential gradients between soil and atmosphere and is mainly controlled by stomatal regulation, ‘I:ﬂtﬂ hydraulic resistance and
soil water availability (Volpe et al., 2013). Both root system architecture and hydraulics are key for the location and intensity
of water uptake (Leitner et al., 2014). These properties are encapsulated in the concept of root system hydraulic architecture
(Lobet et al., 2014). Under high transpiration demand, from the root-soil interface to the evaporative sites, water crosses first

radially the root tissues towards the root xylem vessels and flows then up to the leaves (Passioura, 1980). /\_ CD‘WM . J Zl
> Yo (adamillce

Roe tomdl dp oax
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Al contintteus solution df water flow equation was developed by Landsberg and Fowkes
Pl ot q y

bolﬂ““{ (1978) for uniform roots. This solution W&MWW&r—He&funﬂmmﬂeﬁm%bmﬂehmlughlwhts the

“}Mls sensitivity of root water uptake on plant hydraulic parameters. To the authors’ knowledge, only the uniform root was considered

- MNe Aee o odoe 4800 l{
l so far borinfinitesimal-seoments. H“YLM >
v 5 However measurements of root hydraulic properties demonstrated that radial conductivity and intrinsic axial conductance

both change with root tissue maturation (Frensch and Steudle, 1989a; Doussan et al., 1998b; Zwieniecki et al., 2002). The

anatomical properties of cell layers on water pathways impacts root radial conductivity (Steudle, 2000). The development of

endodermal and exodermal apoplastic barriers, first with a Casparian band, then with suberin lamellae and lignified tertiary

walls constitutes major hydraulic impedances (Enstone et al., 2002). Aquaporins also play a central rele in root radial con-

10  ductivity by facilitating water flow across cell membranes (Chaumont and Tyerman, 2014) and their location and expression

change with the maturation of apoplastic barriers (Hachez et al., 2006). Besides, root intrinsic axial conductance increases

Vi el with abundance, shape and size of xylem vessels, increasing from apical regions with protoxylem to basal regions with late
! }mxggxtxylem vessels @ 2000). These maturation steps make younger (distal) root regions more functional for water

. umec while mature (proximal) regions are more adapted to water axial transfer, as confirmed by water flow measurements of
[V t‘ h ) 1

15 _Newman (1976) in maize or Zarebanadkouki et al. (2016) in lupine. Uniform rqot hygdraulic properties would on the contrary
— — nafhun &34410.‘4! o PR

concentrate water uptake on the proximal region d). Figure 1 (top) summarizes estimates and mea-

surements of root radial conductivity and intrinsic axial conductance of primary maize roots as a function of distance to root

tip (Frensch and Steudle, 1989b; Frensch et al., 1996; Zwieniecki et al., 2002; Doussan et al., 1998b; Bramley et al., 2007).

ﬂ With an inverse modelling approach coupled to tracer data from Varney and Canny (1993), Doussan et al. (1998b) produced an

20 extensive estimation of root hydraulic property profiles with piecewise functions for both maize primary and lateral roots. The

hydraulic conductivity profiles of Zwieniecki comes as well from an inverse modelling exercise (Meunier ct al., Submitted).

(N'r A LFigure 1 (bottom panels) also illustrates the changes of primary root anatomy with distances to tip as observed by Steudle and
b‘ Peterson (1998) with cross sections.

Solving the water flow equation in the root system can be achieved using finite difference (Alm et al., 1992) for any root

25 hydraulic property distribution. Typically the water flow equation in the root system isﬁsﬁi solved by segmenting root system

hydrautiearehitesturg into small root parts called root segments. Water potentials within the structure are discrete so that each

segment has (i) an unique xylem water potential connected to contiguous segment xylem potentials by axial conductances,

and (ii) a soil-root interface water potential connected to the segment xylem potential by a radial conductance. Analogically to

Ohm’s law, radial and axial rates of water flow in each segment are proportional to the associated water potential differences.

30 The waler flow equalions are solved for the generated root system hydraulic architecture by inverting a conductance matrix of

the root system network (Doussan et al., 1998a; Javaux et al., 2008). If root segments were divided into smaller sub-segments

though, water potentials and flows would slightly vary in each segment. The result is consequently an approximation of the

exact solution that would be obtained for root segments of infinitesimal length, t T

//6\/3 ,‘/I/?/qu_//h"
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Figure 1. Top: Maize radial conductivity (left axis) and intrinsic axial conductance (right axis) of primary roots as measured in several
studies. Bottom: maize primary root cross-sections obtained at different development stages. The root cross-sections are the work of Steudle
and Peterson (1998). The scale bars are 100 microns long. Ex = exodermis, En = endodermis, CB = casparian band. P = protoxylem. EM
= early metaxylem, LM = late metaxylem. (a) Immature Ex, En with CB, mature P. mature EM and immature LM, (b) mature Ex, En with
asymmetrically thickened walls, mature P and EM, immature LM (c) similar to (b) with mature LM. Reproduced by courtesy of Steudle and

Peterson.

In this paper we show that uniform root property assumption may be relaxed and yet analytical solutions of the water flow
equation in roots are within our reach. Our objective is to present novel mathematical solutions of the water flow equation

in roots with non-uniform radial and axial hydraulic properties. This widens the solution of Landsberg and Fowkes (1978) to

rools growing at rates potentially decoupled from tissue maturation rate and opens new avenues for looking for root system
JToots growl

ideotypes, i.e. root systems perfectly adapted jo their environment. MoW' 7
o\
In the following, we only consider'root beseheS without laterals. Consequently we sometimes use simply the word roots

for root branehes. When used, the terms root stretch or root segment designate a portion of the root branch characterized by
specific root properties. The solutions we developed here will be used as buildin ks for branched root systems in further

studies. T I cp.-oé;.,,'._ - ,/ -gMA 'f,.,,w\/ [

f
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2 Theory
\ S ?4,

2.1 Water flow equation in a root beanechr

Assuming that root branch water content does not fluctuate, water mass balance in infinitesimal root segments of a cylindrical
branch of radius r[L] and total length {[L] under uniform soil-root interface water potential yields (Landsberg and Fowkes,

1978):

d{;Z(Z) = 72ﬁi‘k:-{z) (‘Ij_r(z) - ‘I’sui!) fWL'”u& )(?/d”'— l'-"'\ / [5 (F PMW /_\ )

where J, [L*T~] is the axial flow of waler inside the root, k, [LT~'P~'] is the root radial conductivity, ¥, [P] is the xylem

water potential and W,; [P] is the uniform water potential at soil-root interface, and 2 [L] is the distance from the root tip along
the root axis. The axis z is always chosen parallel to the root axis. Note that the right-hand side term corresponds to root radial

flow rate per unit root length g, [L2T 1]

Gr = —Qﬁl‘i\‘r (Z) (‘I’x(z) Ty ‘Ifsm'!) (2)

Axial flow is driven by the water potential gradient in the xylem vessels:

dl . (z)
= —ky(2)———= 3
J-E(z) "-T-'( ) dz ( )
with k. [L”lT‘lP_l] the #rinsic axial conductance of the root. Combining Eq. (1) and (3), we obtain:
d d¥.(z)
— | kg2 = 2mrk.(z 2(2) — Wi 4
7 (e D) =2 (2) (0 (2) — ) @)

which is the general equation of water flow equation in roots.
2.2 General solutions of root water flow

The differential Eq. (4) can be solved for various kinds ol root properties and boundary conditions. Since Eq. (4) is a second-

order differential equation, its general solution is:

afasots emily

Uo(2) = Wsou +e1ifr,i(2) +e2if2,i(2) 5

Where ¢; ; and ¢ ; are cohstants whose values depend on root hydraulic properties and boundary conditions and f; ; and
[2.; are differentiable functions of z whose type depends on the root hydraulic property profiles. The subscript i as it will be

further explained is used to distinguish root stretehes. It can vary between 1 and N, the total number of stretches.

ﬁM “/c)'ﬁ. DL]/MPQ 7«.th5
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For simple functions k;(z) and k,.(z) (i.e. uniform, linear and expougﬁial) w&gerive analytical expressions for f(z) and

Discussions

f2(z), 1, and ¢22. 7 in Appendix A. However, k. (z) and k, (z) profiles'generally correspond to p1ecew1se CQ,LECIIOHS of these
simple functions. Hence, we establish a procedure to compute analytical expressions of water flow in'root *stretehes connected
in series with contrasted hydraulic property profiles. Figure 2 presents a sketch of a root branch made of five stretches delimited
by dashed vertical lines.

Deriving the cocfficients ¢; ; and ¢ ; in any root stretch ¢ requires boundary conditions at the limits of each stretch (i.e., at
z =1l;_1, the root stretch ¢’s distal end and at z = [;, its proximal end). The bottom flux boundary condition at the distal end of
stretch 7 is called J;_, [LST‘I]. and the xylem water potential at the proximal end of stretch 7 is W prozimal,i [P] as it appears

in Fig. 2::ml eq- ¢

JI{lifl) = Jifl

Y (l ) Ip:aztnm(:

(6)

Note that .Jo = 0 (no axial flow at the root tip), and ¥ ,,,.0zimat, v = Weottar (the xylem water potential at the proximal end of

the last root stretch N is that of plant collar).

Jx=0 ].\' = Ii—l qul'O.‘i'l[l]a],i Weollar
1 I stretch;_; I St]'e[chi 1 stretch;;; |
T T y 1
1 I Krsi-1l i{{r Kisil KTS(D [ 2r
: 1 [ 1
1 | I 1
z=0 z=1_, z; =1 z=1

Figure 2. Root branch made of five stretches (the dashed vertical lines are stretch boundaries). For root stretch i, boundary condition at
z =l;_1 (distal end) is the water flow J; ) and at z = I; (proximal end) the xylem water potential ¥ prozimat,i- For details, see text.

{ Denr Vol Ve Y%
2.3

Macroscopic root hydraulic properties o 4

Ar(—(-h-i-s—pei'ﬂar-a-sﬂmly Jo and W, 00imar. v are predefined £l root boundary conditions)/none of the root stretches has both
boundary conditions known (J;_; and Wp,,opimai,:) S0 the watersfew-solution is not straightforward unless the root besash is
made of a single stretch. To solve this problem, the concept of root macroscopic parameters is used.

The root m(lctosw parameters conﬁjt}n the root system conductance K [L3T~'P~!] and the Standard Uptake Density

; Cott Vasetq et
SUDIL™'] (Meunier el al,. Submitted). These parameters are used in soil-root water transfer models that stem from principles

of water flow in root hydraulic architecture but do not rely on the associated geometrical description of root system (Couvreur

Y
You shol
5 /Jk}(_, ;u/.e,
\VWM g o MWJW
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et al., 2012). Hence the transpiration stream is directly collected from the soil, for instance as sink terms at each soil location

(Couvreur et al., 2014). They are calculated in homogeneous soil conditions and are defined as:

\ @Mot'be,‘tfm*o?& e r{/lw{/, /aufpjk QMGDL‘QQ -
(L)

[(rs.i WAL
A= T a0, () N
SUD;(z) = 42

It is worth noting that the macroscopic parameters are always independent of the boundary conditions: they only include the

root geometric (radius and length) and hydraulic properties (k. (z) and %, (z)). The macroscopic parameters are calculated by

a recursive equation: ) ] 4/{ .
% - demvadena
& (~E i failic)+ 05 GOk o)) 1)Ko frallic) = f1 - )k (o) ) 2 () \
Krsi= J‘I(h) Koo h o) e, ill) = Kes i frill) faillima) = f (o) Yk e (Lima )+ fr i () fo i ma ) ke lioq) (8) 67 W
2mrk,(2) (_I{r.s.(—lfQ .”«71)+fé_'_,(f.71]f\';“.71))f1‘.(ZH-{I\},.,-'-1f1,g(f.-1‘.r—f1'_i“i—i)k:(l.’—i))fz.-(l) ke

SUD;(2) =

Bl (—Krwitfoilli- ) By Gk i) A (Krm it fr a0 = 1] GOk (G0 31 (1)

as demonstrated in Appendix B. Let us note that the /s ; and SU D; as they have been defined in Eq. (7) represent the root
branch macroscopic parameters after addition of i stretches ignoring thus the root stretches after the considered zong/However
they are useful to solve the water flow equation when dealing with multiple-stretched root branches. béeed-i-ﬂ-sueh-ﬂ-sta-nﬂwe
start with the calculation of K, 1 (i.e., the conductance of the most distal stretch) using Eq. (8) (with K., o = 0 because the
verydrstal axial flow is nulk. 'm)‘obtained K, is then used as K, ;| to calculate the effective conductance of the distal
part from the second stretch K., 5 using Eq. (8). This procedure is then used again to derive the K5 ; of all stretches until the
root collar is reached. The obtained set of K, ;'s or I(;s;—1’s are then used to calculate the coefficients ¢; ; and cz,; for the

different stretches using (demonstration given in Appendix B):

o (¥prazimal r_'Irsaul)(_-{(r:‘i—1f2.i(t|71)+fé_;“|71)""1“i—i))
C1i= Kesi—1fri—) foa () =Ko i il fa i (1) —F o) f2 i () ks (Lo )+ 1 (G) F (- ) ke (i) 9)
_ (‘I’,.r.,:.,.."c,.‘f]7‘1’50;1)(1\':-,—.:—1f1‘i“:—1)—fi‘,.“i—1”\‘r“i—l)}
€2i= Kesictfri(i—)fo illi) = Keg i 1, i) P2 (Li—1) = f1 i) f ko (Lo O+ (8D fa (Lo 0ke (i)

Since in Eq. (9), only the pressure head at the proximal part of the stretch is needed as a boundary (in addition to the distal
root conductance), the calculation is started at the proximal part of the root system where the root collar potential ¥ooppqr is
known. The obtained ¢; ; and ¢s ; for the proximal stretch are subsequently used in Eq. (5) to calculate the water potential at
the distal part of the stretch. The water potential is then used to calculate the coefficients of the next stretch (towards the root
tip). This procedure is used until the most distal stretch is reached. As SU D depends on the collar water flow, it can not be

calculated for each zone. However it can be derived at the end ®a the procedure when the xylem water potential is defined

A
/

(4-4)
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everywhere inside the root and when the total root conductance has been already calculated. Note that we use the terms K,

and SU D for K;; 5 and SU Dy which corresponds to the macroscopic parameters of the entire root branch:

_ Je (1)
I(rs - \1!_‘0”_\Ir£(”

o ,,{z
SUD(z) = f’u,;

2.4 Resolution of the root water flow equatio . f

We here analyse six cases: the uniform root (already developed by Landsberg and Fowkes (1978)), a root branch with linear

root hydraulic property profiles and a root branch with exponential root hydraulic property profiles. For the two latter cases,
the radial conductivity and the intrinsic conductance may change alone or simultaneously. Table 1 summarizes the six cases Mqu‘;
with the corresponding local hydraulic properties. (-‘W](Or\

The parameters used in Table 1 are gathered as well as their units in Table 2 (two first columns). To simplify the solutions 2.0-
of the root water flow equation, some parameters are combined. The expression of the adjusted parameters is also contained in
Table 2 with their corresponding units (two last columns). Wiy alyus ed

s
Table 3 summarizes the solutions of the root water flow equation obtained for the six considered cases. The resolution details

are provided in Appendix A. . )

These functions can be combined in complex root with several root stretches usiig—pe :
explained in the previous section.u/tl‘H\/ 24 - 4,9 bond et /om;kﬂyu....h'&,'-—, (f/c o~d Fo=7?

Figure 3 shows the procedure to solve the water flow problem in a root with variable hydraulic properties. First we need to
know whether the root is made of one or several stretches. Then we have to determine the coefficients ¢, ; and ¢5 ; for each
single zone, i € [1 N| by determining the fype of root stretch we deal with and by using Eq. (9). Thanks to these coefficients,
we obtain lhcwmmmmmmm. Finally we calculate the xylem potential, the
axial flow, the radial flow per root branch length and the macroscopic paramelters using the appropriate equations and analylical
functions given in Table 3. The corresponding equations are mentioned in the figure.

If the root branch is made of only one stretch, there is no need to calculate intermediary root conductances. The solutions

of Table 3 are then used with the no flux boundary condition coefficients to obtain the macroscopic parameters as well as the

water xylem potentialn radial and axial water flow profiles along the root axis. This particular case is analysed in Appendix C.
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N stretches ——K,; —— ¢;;and ¢y
(Stretch 1 to N) (Stretch N to 1)

Eq.(8) Eq.(9) ¥, (z) Eq.(5)
Jx(z) Eq.(3)
q.(z) Eq.(2)

Krs Eq.(10
sun(z) =19

Root branch

1 stretch » cfand c2f
Eq.(A3)

Figure 3. Flowchart of the water flow equation resolution in roots with heterogeneous hydraulic properties

2.5 Properties of a growing root

In this section we introduce the time dimension. As in many studies, the properties are measured as a function of emerging time
instead of distance to tip, we provide here a tool to switch from one to another. Basically an equation of the root elongation

rale is required. We consider here an instantaneous growth rate v(¢) LT !, function of the actual time ¢ [T], given by:

5 vt} =wvgexp ( —% t) (1)
IHICLI
where vg [LT 1] is the initial elongation rate and [,,,,, |L] is the root maximal length (Pagés et al., 2004). When the transition
ages, age; | T|, are known, the stretch lengths, stretch; () [L] are given by: :
ges, age [T] £(¢) [L] are given by Twhids i} ?
0,t < age;
stretchi(t) = < Lpar (1 —REp (l_t”r (t— agef))), t > age; and t < age;q, (12)

o (r’-’f'p (—, i s “.()'EiJrl}) —exp (ﬂ o ﬂ.f/cu-)))- t > ageiyy

mar ma

See Appendix D for details.

10 3 Model Testing
o ] bk g
3.1 Model Illustration L one ¥ ,.f Z-yltl c pt 3

We now illustrate some of the results developed in Sect. 2 and related applications. Figure 4 r/presems how the radial conduc-
tivity (a) and the intrinsic axial conductance (b) depend on distance to tip for three different LQLG . The blue solid lines represent
a root with uniform hydraulic properties while the dashed and dotted are roots with linear and exponential hydraulic property

15 profiles (radially and axially), respectively. The numerical values are chosen so that the collar axial flows J(I) of the three
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roots are the same under identical potential difference between the soil-root interface and the root collar. Their conductance

K5 is thus equal. Lk -1 EULQK \I‘O 3 % ?,\ W 1
(Qf‘l"\ : N 0 W ] ] )
R)ﬂ. ?JQ’_ - L \ 4 mJ‘ %‘-.04 L \0 %—
\ (a) (b)
(0A035 0.12
| 0.1f
5 = 008
1 L ;
E E 0.06 i
E N s /,/:_:'
= " £ o004 o
] \\ -"‘-'.'H g
e, ] 002f -~
\\ /I
N pA
5 10 GO 5 10
Z [cm] Z [cm]

Vm{aJﬂL. ik 1B lcete. ash bR

Figure 4. L.cmNradial conductivity (a) and intrinsic axial conductance (b) of a root branch with uniform hydraulic properties (solid blue
line), a root branch with linear hydraulic profiles (dashed lines) and a root branch with exponential hydraulic profiles (dotted lines). The

origin of the z-axis is at the root tip.

Solutions of the water flow equation are shown in Fig. 5 for the three roots (the legend is the same as in the previous figure).
In subplot (a) xylem water potential obtained thanks to Eq. (A1) (solid line), (A4) (dashed lines) and (A5) (dashed-dotted line)
are represented when considering a constant Wy, of -3000 hPa and a uniform soil water potential of 0 hPa. In subplot (b)
and (c) the radial flow per root branch length g, and the axial water flow .J, are obtained applying respectively Eq. (2) and Eq.
(3) to the different cases.

Even if the collar axial flow is identical for each root, the xylem water potential and the root water uptake profiles look totally
different. The drop in potential is more homogeneously distributed along the roots with heterogeneous properties. While g, is
a monotonic, increasing function in the case of the uniform root, its maximal value is not reach at the root collar in the two
other situations: the maximal uptake is not located at the root collar. Consequently the axial flow first increases faster for the
roots with non-uniform properties before slowing down to reach the same value at the root collars.

We define two root parameters combining root hydraulic and geometric properties:

&7;( pA~
2k, (2 y\fﬂ‘? W\MQ TMMM@ ; f \
7(z2) k;(z(}) R, Mpw ‘J 'U!W o!
K(z) = \/ 211k (2)ks (2) ( ey 5 J wn% 1

The units of these root parameters are [L=!] and [L=*P~1T~1], respectively. These parameters have the same definitions

than in the case of the uniform root but they depend now on the position along the root axis (see Appendix A.1). 7 and k are
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Figure 5. Solutions of the root water flow equation: xylem water potential (a), radial water flow per root branch length (b) and axial water
flow (c) 4f a root with uniform properties (solid blue line). a root with linear hydraulic profiles (dashed lines) and a root with exponential

hydraulic profiles (dotted lines). The origin of the z-axis is at the root tip.

represented in Fig. 6, subplots (a) and (b), respectively. These parameters are constant for the uniform root. 7 is gionotoni-
cally decreasing for the non-uniform roots because the s i conductance is decreasing and thq‘mdm(ﬁﬁm‘ﬁty is
increasing along the root axis. The root with linear hydraulic profiles has a non-monotonic # while this parameter is always
increasing for the root with exponentially changing hydraulic properties. These hydraulic parameters must be set in relation
with the root macroscopic parameters represented in the bottom line of Fig. 6. In subplot (a) SU D is represented along the
z-axis (note that this subplot is the same as the second subplot of Fig. 5 except that the curve is now normalized so that its
integral on total root branch length is one). K, is plotted as a function of the root length in subplot (b). As in the uniform root
case 7 indicates how fast the root system conductance changes and how homogeneous the water uptake along the root axis
under homogeneous soil conditions is. & is an indicator of the maximal possible root system conductance. It is worth noting
that the root system conductances differ very much between the cases. Depending on how %, and k, vary along the root, K
might even decrease with increasing root length (linear root case). This occurs when additional segments with a low £, are
added so that the extra inflow across these segments does not compensate for the extra pressure head loss due to axial flow

through these segments. However, if the &, decrease with root length levels off and the £, increases stronger with increasing

root length, as it is the case in the exponential scenario, the root system conductance may increase steadily with root length.
3.2 Comparison between uniform and heterogeneous root hydraulic profiles

Here we compare root branches with complex hydraulic profiles (as they have been observed) and uniform root hydraulic

properties in terms of distribution of water xylem potential, radial and axial flows and macroscopic parameters. We therefore
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Figure 6. bacal (top line) and macroscopic (bottom line) hydraulic parameters: 7 (a}, k (b). SUD (c) and K¢ (d) of a root branch with
uniform properties (solid blue line), a root branch with linear hydraulic profiles (dashed lines) and a root branch with exponential hydraulic

profiles (dotted lines).

investigate whether uniform root hydraulic properties could mimic more complex situations. Two cases are examined: the

lateral lupine roots studied by Zarebanadkouki et al. (2016) and the lateral maize roots analysed by Doussan et al. (1998b).
3.2.1 A lupine lateral root: example of a single stretch root branch

First we analysed the water uptake in lupine lateral root described by Zarebanadkouki et al. (2016) as an illustration of the
single-stretch root model solution. These authors observed water uptake along lateral root compatible with exponential changes
in radial conductivity and intrinsic axial conductance along root axis. In Fig. 7 the hydraulic properties (subplots (a) and (b)
for the radial conductivity and the intrinsic axial conductance, respectively), together with the pressure head (c) and radial flow
(d) distribution along the root axis are given by the blue solid lines. These results are compared with three alternative models,
where the root axis has uniform hydraulic properties with minimal (red dashed line, subplots (a) and (b)), maximal (red dotted
line, subplots (a) and (b)) and mean (red dashed-dotted line, subplots (a) and (b)) values in order to verify whether uniform
Sepenen i

. . . . A
of the root water flow equation: xylem water potential and axial water flow, respectively. The complex root brarsh can not

be properly represented by uniform root properties. The water potential drop of the complex root is again more uniformly

properties could reproduce the uptake distribution properly. The third and fourth subplots in Fig. 7 show llJu}main solutions

11
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distributed along the root axis in the case of heterogeneous properties because the radial conductivity is maximal at the root tip

and the intrinsic axial conductance increases progressively.
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Figure 7. Distributions of radial conductivity (a). intrinsic axial conductance (b), xylem water potential (c) and axial water flow (d) for a
lupine lateral root. We used local hydraulic properties obtained by Zarebanadkouki et al. (2016) (blue solid line) or equivalent properties {red

lines) with minimal (dashed). maximal (dotted) and mean (dashed-dotted) values. The origin of the z-axis is at the root tip.

We can estimate the macroscopic parameters for these lateral lupine roots (SU D and I{;) as a function of the root branch
length with our solutions for the water flow equations. The distribution of these two parameters is shown in Fig. 8 for different
hypotheses: heterogeneous root properties as obtained by Zarebanadkouki et al. (2016) or uniform mean (dashed-dotted red
line), minimal (dashed red line) and maximum (dotted red line) hydraulic properties. We observe that these macroscopic
parameters arc poorly represented by the uniform root branches. A complex root branch can not be accurately approximated by

an equivalent rool branch with uniform hydraulic properties because it generates complex macroscopic parameter functions.

3.2.2 A maize lateral root: example of a root branch with multiple stretches

Similarly we examine the case of a lateral maize root as described by Doussan et al. (1998b). This constitutes an illustration of
the multiple-stretches root branch. In their study, they described intrinsic axial conductance and radial conductivity as stepwise
functions of the root age or distance to tip. They justified it by the root tissue maturation and development. These functions
are shown in the two first subplots of Fig. 9: the radial conductivity (a) and the intrinsic axial conductance (b) as obtained
by the authors are presented with blue solid lines. These subplots are equivalent to the Fig. 4B of the study of Doussan et al.
(1998b) when a constant elongation rate of 1 cm per day is assumed. We removed the isolated distal region (whose intrinsic
axial conductance is null and that consequently does not influence the rest of the root). The red dashed, dotted and dashed-
dotted lines correspond to roots with uniform properties with minimal, maximal and mean values observed for both hydraulic

properties, respectively. The solution of the water flow equation is represented for the four cases in Fig. 9, subplots (¢) and (d).

12
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Figure 8. Macroscopic parameters: final SU D (a) and K, s changes (b) for a gresssgelateral root branch of lupine with the local hydraulic

properties measured by Zarebanadkouki et al. (2016) (blue solid line) or the equivalent uniform root branches (red lines) with minimal

(dashed), maximal (dotted) or mean (dashed-dotted) hydraulic property values.

When we compare the Doussan distribution of water radial flow per root branch length and potential with those of uniform
hydraulic property models, we observe that it is not possible to represent its complex behaviour with an apparent/effective
uniform model. The drop of water potential is much steeper with heterogeneous than with homogeneous properties (red lines).
The decrease in water potential and the increase in axial flow are far more uniform along the composite root than along the
homogeneous roots. This is in fact similar to what we found for the case of th&s&n-giysgfx h root branch with changing root
properties. QX T ’&7 \rM?,W& ’

We used Eq. (8) to derive the macroscopic parameters of the four root branches (the complex root branch and the three uni-
form root branches). Again both the SU 2 and the K, could not be well represented by uniform roots. It is indeed impossible

with these solutions to represent non-monotonic functions as the standard uptake density (subplot (a), Fig. 10) and the root

conductance (subplot (b), Fig. 10).
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Figure 9. Distributions of radial conductivity (a), intrinsic axial conductance (b), xylem water potential (¢) and axial water flow (d) in a

maize lateral root branch. We used hydraulic properties obtained by Doussan et al. (1998b) (blue solid line} for a maize lateral root branch

or equivalent properties (red lines) with minimal (dashed), maximal (dotted) or mean (dashed-dotted) values. The origin of the z-axis is at

the root tip.
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Figure 10. Macroscopic parameters: final SUD (a) and K changes (b) for a growing maize lateral root branch with the local hydraulic

properties estimated by Doussan et al. (1998b) (blue solid line) or the equivalent uniform roots (red lines) with minimal (dashed), maximal

(dotted) or mean (dashed-dotted) hydraulic property values. The legend is the same as in the previous figure.
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3.3 Properties of a growing root

When roots get older, their macroscopic hydraulic parameters vary not only because the root length increases but also because
by root tissues changes by maturation. Maturation is defined here as the hydraulic property changes as a function of root age.
This process is modelled by introducing root hydraulic properties depending on root age, such as:
Ut ;’ y . 7
W 97 Hose, Viduso .
i (13)

ky = kpgeap(—mt)

= kzoexp(mt)

where m [T~!] is the maturation rate. These equations are sinjilar to the ones used in the exponential root hydraulic properties
subscction (see Sect. A3) except that they defing’the propertigs as a function of time instead of distance to tip. We investigate
here the sensitivity of growth and maturatiof processes on froot macroscopic parameters. Figure 11 presents an analysis of
the relative effects of maturation versus-gzowth on the magroscopic properties of an ageing rool 5&#@n. We varied the root
parameters m and —— betweey 0.05 and 0.5Jand between 0.01 and 0.1 Jrespectively to investigate the impact of relative growth
and maturation processes. Figure 11-a shows the integral of K.; over time when simulating 40 days of growth and maturation
of a root whose {,;,, is 10 cm. The numbers one to four represent extreme situations: fast growth and slow maturation (case
1), slow growth and maturation (case 2), fast growth and maturation (case 3) and slow growth and fast maturation (case 4),
respectively. The conductances of these particular bfanehed are plotted as a function of time in Fig. 11-b. They exhibit very
contrasted strategies. When the root growth is fast, the (,.; quickly reaches a high value. If the root maturation process is rapid,
lhe final conductance is low. It can also be observed that the root plopemeq change slowly when the root growth is low and
Apldly when the root elongation rate is high. Figure 11-c plots the relative SU D (i.e., multiplied by root length) as a function
of the relative root position z (i.e., divided by root length) after 20 days of growth. Again contrasted strategies appear with a
maximal water uptake location at the root tip for cases 3 and 4 or at the root collar for cases 1 and 2. It is worth noting that a
constant elongation rate means a very small elongation rate to maximal root length ratio. So depending on the maturation rate,
the constant elongation case rate is similar to case 2 or 4.

Figure 12 represents the effects of clongation rate on the root k}s_a_@h development (a) and its conductance (b). We consider a
maize lateral root branch whose hydraulic properties are given by the two first subplots of Fig. 9 where the x-axis is now time
and no more length. It corresponds to the hydraulic properties calculated by Doussan et al. (1998b). Coupling the intrinsic axial
conductance and radial conductivity transition ages, we obtain six different stretches in addition to the isolated distal region.
From the tip to the collar: linear k; (between 0 and 5 days), linear %, and k, (5-7), linear k; (7-11), uniform root (11-15),
linear %, (15-18) and uniform (18-...). Each zone between two successive transition ages has its own colour from dark blue to
orange. The maximal root length is 10 cm and four elongation rates are computed: 0.5¢m/d (dotted lines in both panel and for
all curves), Lemn/d (dashed-dotted lines), 1.5¢m/d (dashed lines) and 2ean/d (solid lines).

In subplot (a) are shown both the total root branch length (black lines) and the stretch lengths (from the dark blue to
the oranges lines, representing respectively the stretches from the tip to the root collar). At any time the sum of the stretch

lengths is to the total root branch length. From its origination time, each single root stretch appears, reaches a maximal value
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Figure 11. Integral of the root conductance over time when changing the elongation rate *%— (x-axis) and the maturation rate m (y-axis)
m

ar

(). Root hydraulic conductances of the four extreme cases numbered and indicated in (a) as a function of time (b). Relative uptake of the

four branches after 20 days as a function of the relative position to the root tip ({ is the root branch length and z = 0 at the tip) ().

and then decreases. The maximal value of each zone is reached when arrives the consecutive transition time. In subplot (b)

are represented the root branch conductance K, and l]5 fe)fl'ecl of changing the initial elongation rate on this macroscopic

(4
parameter. <~ = o— O\ Co fpeis

3.4 Optimal geometric properties

The new solutions of the water flow equation are key to estimate optimal geometric properties of root branches. As an illustra-
tion we may want to maximize the root branch conductance K.; of uniform roots and compare the results with those of roots

with varying hydraulic property profiles. Using a carbon cost as a constraint, it writes:

maximize K,¢(r,1) subject to Vy = mrl

where V4 [L?] is the volume constraint. To solve this optimization problem we use Lagrange multipliers A. We define a new

function L:

L(r,L,A) = K () + A (71?1 = Vo)

whose maximum is found when:
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Figure 12. Total root branch length (black line), root stretch lengths (from dark blue to orange lines, representing respectively stretches from
the tip to the collar) (a) and root branch conductance K, as a function of time (b). Lengths and conductances are computed for four different

initial elongation rates: 0.5cmn /d (dotted lines), 1crit/d (dashed-dotted lines), 1.5¢m/d (dashed lines) and 2cm/d (solid lines).

VeiaL =0

The previous equation is equivalent to:

27(( th’_’“ +2Amrl =0

oK ag!,., - ,\ﬂ'r:'l: 0 (14)
Vo = w2l

Using appropriate equations to calculate the root conductance, we find an optimal radius and length that maximize root

5 water uptake. As an illustration, we compare the optimal root radius of a root with uniform and constant hydraulic properties,
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a root whose uniform root properties depend on the root radius (Biondini, 2008) and a root whose hydraulic properties vary
exponentially along the root axis. Mathematically, it writes, respectively:

Uniform &, and ky : k-(2) = kyg and k5 (z) = ko .
Uniform k. (r) and k. () : k(1) = kyo 5 and ky(r) = 3: 3 (15)
Exponential k. and k, : b, (z) = v, exp(—32z) and k. (z) = yaexp(—/az)

g

The parametrization for the exponential root and the uniform root whose hydraulic properties depend on the root radius
come respectively from Zarebanadkouki et al. (2016) and Biondini (2008). The uniform hydraulic properties of the first root
are the mean values of the exponential conductivities evaluated for optimal geometric parameters. The root conductances of
the three cases are shown in Fig. 13 for a volume constraint of 0.05 cm?: the dashed line is the uniform root. the dotted line is
the uniform root whose hydraulic properties depend on the root radius and the solid one is the root with exponential hydraulic

property profiles. The red stars point the optimal radii.

-4
x 10
6 . : ;
(r =0.025cm) | = k(r) and ki{rJuniform
= ® ===k, and k, uniform
'IU k; and k, exp.
T 4r *  Optima 1
o]
=9 F
= i g 5(r=003cm)
ME "1 s (r=0.11 cm)
S, 2t/ : RO 1
|/ T g
R T
' .
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Figure 13. Root branch conductance as a function of root branch radius under a constant volume constraint for a uniform root whose
hydraulic properties depend on the root radius (dotted line). a uniform root (dashed line) and a root with exponential conductivity profiles

(solid line). The red stars point the optimal radii (i.e., that maximize the root branch conductance).

Unlike previous approaches (Biondini, 2008; Roose and Schnepf, 2008) we consider here that the hydraulic propertics may
be intrinsic functions of the root tissues and do not necessarily depend on the root radius. As highlighted by the red stars, the
optimal root radii vary considerably when integrating this concept: from 0.025 cm for the uniform profile (varying according
to the root radius) to 0.11 cm for the exponential root. We find/that optjmal roots have a larger radius and therefore a shorter

(e C/(Mﬂ'-"ﬁ’ ¥

)

Mui\:ﬁ\-i (

length when presenting exponential conductivity profiles.
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Six new solutions of the water flow equation in root brasetres are presented in addition to the uniform b&fof Landsberg and

Fowkes (1978). In the newly considered cases the root hydraulic properties vary as a function of the distance to root tip. When

the radial conductivity and the intrinsic axial conductance changcz‘l_in arly 9r cxponentially alone or in combination,
=3

Wi« e
solutions of the xylem potential and water flow inside the root exist. They were used to calculate the macroscopic parameters

of the corresponding rool bragehes. Moreover they were associated to make complex root branehes of changing root hydraulic

property profiles as observed in nature or combined with ¥ elongation(fdf§ to obtain the root macroscopic parameters and

uptake profile as a function of root age. As-Hustrated these complex functions were not well represented by root of equivalent

but uniform root hydraulic properties,

Considering these changes in hydraulic properties along roots also enabled us investigating the effects of root maturation or

root tissue development and differentiation on root water uptake. This gave interesting perspectives to evaluate both growth and

maturation and their combined effects on root water uptake. The obtained analytical solutions allowed us to assess the impact

of changing axial or radial conductivity along a root branch on root water uptake. These changes can be linked to dynamics of

root growth and root lissue maturation so that different strategies of growth and maturation dynamics, e.g. rapid growth and

slow maturation versus slow growth and rapid maturation, were investigated using these analytical functions.

These solutions were also used to define optimal root branch geometrical parameters for water uptake. Indeed, Landsberg

and Fowkes (1978) model has been used for decades to define optimal root systems in terms of water uptake subject to

minimal carbon cost (Biondini, 2008). Using the water uptake solution developed in their manuscript. one typically observes a

monotonic behaviour of root water uptake capacity with root length. The use of such a model also typically implies that, for a

uniform root in a uniform soil waler potential, the uplake increases monotonically towards the proximal end. This is no more

systematically the case with the newly developed solutions. When considering variations in hydraulic properties along a root

axis, which typically correspond with an increase in axial and a decrease in radial conductivity with distance to root tip, the

analytical solutions that account for these changes revealed considerably different behaviours. The root effective conductance

may increase with root length more steadily than in case of a uniform root or even decrease with root length. Similarly with

the newly developed solutions, the maximal water uptake location was no more located at root proximal end, Non-monotonic

functions of root water uptake emerged from the new solutions. Therefore, the search for optimal root systems should also

account for variations ol root properties ale.‘_ )

HoW

?Mr!wﬁa‘/@ymﬂ’wam.')

The new models will be combined(as building blocks to ¥enerate complete root system hydraulic architectures defining plant

genotypes in order to compare plant performances in contrasted environments using soil-root-atmosphere continuum model

such as R-SWMS (Javaux et al., 2008).

5 Code availability

The code is available and can be freely shared.
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Appendix A: New solutions of the root water flow equation

In this appendix. we provide detailed solutions of the water flow equation when the root hydraulic properties are uniform
(Landsberg and Fowkes, 1978) or when they vary linearly or exponentially, alone or together along the root axis. These
solutions of the water flow equation (4) have been obtained using the symbolic calculation toolbox of Matlab. All solutions are

summarized in Table 3.
Al Uniform root hydraulic properties

The solution of the water flow equation in a uniform root has been proposed by Landsberg and Fowkes (1978). We present
their methodology and principal results in this section to illustrate with the simplest case how to derive the water flow equation
solution and the macroscopic parameters.

The simplest root is made of uniform root properties: intrinsic axial conductance ko [L*T~'P~!] and radial conductivity

ko [LT-1P-1):

'lf:'(:) = 'lfrO
k:(z) = "‘.1'0
Equation (4) becomes:
ko ; = 2wk, (‘P.r(z) —Weou)

The general solution of this differential equation is given in terms of hyperbolic sinus and cosinus:

W, (2) = Usou + crcosh{7z) + casinh(rz) (Al)

where we define 7[L™]:

L |27k
T = \ —k

=0
Here, the independent functions fi(z) and f»(z) are thus cosh(7z) and sinh(7z).
The coefficients are obtained for the bottom no-flux boundary conditions in case of single stretch root branch (see Appendix

C and particularly Eq. (C1)):

Cﬂf I PN T
1= cosh(7l)

& =
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Here and in the following, the superscript nJ stands for non-flux. Using these coefficients, we find the general solution of

the xylem water potential profile:

cosh(7z)

\I;i':f(z) = ‘Ilsoi! AR (‘PcoHur = \I’soz’l} m

The axial flow is then obtained using Eq. (3)

sinh(7z)

T2 (2) = =k (Weottar = ¥sou) 2o

And the macroscopic parameters are derived thanks to Eq. (C4)

K7 (1) = stanh(7l)
cosh(7z)
sinh(7l)

where tanh is the hyperbolic tangent and # [L3T~1P~!] is the asymptotic root conductance defined by:

SUDM(z)=1

= ( Ve \ L TR {|
= o P‘} . L u‘..l«.-.n_n/ G\ \'.\’ — Qk Yl /,
e 0 8/ !
For the bottagn flux boundary condition (6) (solution for a root branch with multiple stretches), the coefficients are:
U~ C\éf.tw\

= : R | 2 K
B1.= (‘I}P"Ol"mal-l I”sml') (Hcosh{‘rl.]+I\',-}_.-4;5inh(ﬂ,-))

e . . . Krsioa
C2 = {\I’pl‘aﬁ.‘?lnﬂl.l \I”ﬁmf) (f;cosh(‘rl,)+K;—_~_571Si11h(ﬂi ))

And the solution of the water flow equation in the root becomes:

keosh(tz) + Kys i 15inh(7z)
keosh(7l;) + K5 i_1stnh(rl;)

‘I’:r(:) = ‘I"smf e (‘pprorimal,i = ‘I’sm’l)

which leads to the following axial flow:

ksinh(7z) + K, i—1cosh(7z)
reosh(7ly) + Ky i—15tnh(7l;)

J:c(z) =8 (\llprna:imnl,!' - \Il.sm'l)

The macroscopic parameters become:

ksinh{7l;) + K,g,—1cosh(7l;)
keosh(7l;) + Kys -1 sinh(7l;)

[(I‘S.'I{Il) =K (
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kecosh(tz) + (s ;_15tnh(7z
‘9[[]—)1(2):7 : (1 ) FI'S.Z 1 (J )
wksinh(7l) + K5 i—1cosh(Tl;)
The flux boundary solutions are a generalization of the non-flux solutions as they converge towards the same results as

K521 —0.

A2 Linear root hydraulic property profiles

In case of roots with linear hydraulic property profiles, different cases are distinguished and are investigated successively.
A2.1 Linear k,

Equation (4) can be solved with different root linear hydraulic property profiles. Let us consider a uniform intrinsic axial
conductance and a radial conductivity varying linearly along the root:

ki(z) =apz+by

k’I (Z) = 'l‘::rO

where ap [T~'P~!] and by [LT~'P~!] are shape parameters.

Equation (4) yields:

g 2"—7'("303 =17 bD) (\Pz(z) — Vooit)
and can be rewritten as:
d*U.(z) (az+b)

PR = i 0 (‘DI(Z) - ‘ysaii)

where we have defined:

a = 27%rag
b= QTT?'b(}

with @ [LT~'P~!] and b[L?T~'P~!] the revised shape parameters. The general solution of this differential equation is now:

z+b z4+b
U, (2) = Uy + €1 Al (“ ; ) + ¢y Bi (“2:1 ) (A2)
aikly avkyy

where ¢; and ¢ can anew be obtained using boundary conditions. Ai and Bi are the Airy functions of the first and second

kind, respectively. It is worth noling that we obtain a similar solution if the root radius changes linearly along the root while k,

remains constant.
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A2.2 Linear &,

If the root intrinsic axial conductance varies while the radial conductivity is uniform, i.e.:

""‘r{s) = kro

ky(z) =coz+dg

with ¢ [L*T'P~'] and do [L*T~'P '] the shape parameters, the general water flow Eq. (4) yields:

20, (2 10, %
(coz+do)" ‘[’.2( )+co“’.1.(2) _ 2m‘k,é‘111(2)— Vo) 0(
az az
-

Again we rewrite the equation as:

2V, (z) dV,(2)

(cz+d)—5 = (Vo (2) = Tyoir)

dz

with the following definitions of the revised shape parameters:

e= 277?'{;\'”;

d= 2#?‘1‘,-0

The units of ¢ and d are [L] and [L?], respectively. The general solution becomes: H‘J/ " __2,—
Sun ool e

— T ek

2 {4+ cz I+ cz
To(z) = WUgoi 4+ \/; c1 1o (2 : l_; ) + e Ky (2 < —;( )) (A3)

I, and K, are the modified Bessel function of the first and second kind of order v (v = 0, here), respectively.

A2.3 Linear k. and k,,

We assume now a linear relation between the hydraulic properties and the distance to the tip:

k,.(z) =aqapz +b0
kz{z) =coz+dp

The water flow equation becomes:

A>T, (z) $o d¥,(z)

(CO z+ ({0) dz2 =

Afler rewriting the parameters it yields:

30



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-633, 2016 Hydrology and =
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System ' =¢
Published: 20 December 2016 Sciences -
© Author(s) 2016. CC-BY 3.0 License. R

(coz + do) 2zl2) 4 o o) _ 0oty (0 () — W) | wtha= 2Ra, ) L= 21 bo

dz? dz

This equalion has now the general solution:

- o (E1%) 7 I

o (624 4) 7
\S§ W (2) = W goit + eap N
S _

(clM (\/Ec /2+bco —a(u 2\/5 (coz +(10)) +C2U( acu — beg + ady ; 2/alcpz + dg) ) (Ad)

3/2 ’ 3/2 3/2 1 3/2
\ NG, e f ]
with M and U the confluent hypergeometric functlon of the first and second kind, respectively. C & (/0 £

A3 Exponential root hydraulic property profiles

Let us finally consider a root whose root hydraulic properties vary exponentially along the root axis:

kz(z) = yieaxp(B12)
kr(z) = yaexp(—faz)

10 with 4 [L*T~*P~1], 31 [L7!], 42 [LT~'P~!] and 3, [L~!] are shape parameters.

The water flow equation becomes: -

D, (2 OV, (2 ‘
a ‘II“.,( )+-H1( \fl. (2) — merp(—B2) (¥alz) — Uoott) (
022 FE J fi
with v =27r 22 [L™2] and 4= 3, + 5, [L™}]. Y [/J e ? i
1 - a Hn-
Solutions of this differential equation are of type: . I A /bW/\ vy E! '
A [Zad IRY
g e

15 3 ‘ ~ CAC
\III(’) Waou + 3~ ;l’ (ea:p(ﬁldz))%ﬁli -—/—\__\_’—\_’Qx

[clr (1-8) 7 (2_%) v (14+8) (#)_)

B with I' the gamma function. L’.L»-\f -

BI
D
The cases of mixed uniform/exponential hydraulic property may be easily solved using the same methodology.
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Appendix B: Macroscopic parameters

To calculate the general form of the macroscopic parameters defined as:

e L Jo(li)
I\)‘SJ - Veoit =% (1) (Bl)
SUD;(z) = &2

we need to combine combining Eq. (3) and (5) with the root stretch boundary conditions (6). The two unknowns, ¢; ; and

a2 4, are given, in matrix notation, by:

=k (i) ] (lic1)  —ke(lia) f2i(lic) | €14 _ Jic1 B2)

fl.i(li) f‘.?,i{[i) Caq \Dprorimu.’.z' = ‘I}soil

Inverting the system, Eq. (B2) yields:

ors = Km0l ) Wprorimati=Fron)+ f2.4() iy ‘

i ke(lioa) (5, (o) frall)=f] (L) fa (1) (B3)
= =k (L)) o) (Y prorimat i— Y o) = f1. (L) oy N

- ke (L) (£, (G- )= £ (L21) F2.i (1))

In homogeneous soil conditions, the proximal flow J;_; may be expressed as the product of the upstream conductance

(I<,s ;-1 intrinsic root property) by the potential difference between the soil and the proximal xylem water potential of the root

stretch:

Jic1 = Ko izt (Vo — Vo(lich)) = — Ko i1 (erifrilliz) + eaif2.4(li-1) (B4)

Substituting Eq. (B4) in Eq. (B3) for the it" stretch, we obtain a set of two equations with two unknowns which after solving

for c1; and co; gives:

. (Tprozimati=Vooi (= Kroimifaillio1)+ £ (L- 1)k (Limh) -

C1i= Kesicafuillica} o () =Ko i fralt) fa (L) = f] (=) fa (G R (G- D+ a0 P (0 k(Lisy) (B5)
o = (\I’;-ru:nruuf.i—l*‘p.xor'!)('[(r.-’.l—1fl.l“l—l)_.[;‘.‘ux—l)k:(lll—l)) )
28 T Krwio1J1a0im1) 2,0 () =Ko o fra () fai(ic ) = FL (G0 o e (U R (Lo D+ (D) £ o)k (o)

[t is important to mention that these coefficients only depend on the properties of the distal stretches to the stretch of interest
and on the effective conductivity that lumps the properties and their spatial variation in all distal stretches. Combining the
coefficients (B5), the definitions of the macroscopic parameters (B1) and the general solutions (5), (2) and (3), the root system

conductance and the standard uptake density after addition of i stretches become:

Kyoi = ko () (=Krsimafaallion) =2 (Lo ke (L)) SO+ (Brs i frellioa) = F G-k e (o)) £ (1) ,
rs.i z\t; K,,,;_]fl.i(i._ﬂfz.;(l,]—I\r.-.i—lfl..'(i.]f’J,i“i—1)*fi'_,(l,-41)fg\;“.)k;l'l,-,l}*f-fl_.”.)fé',“i_ﬂk,“,,]) (BG)

SUD;(z) = ZzrkeAa) (=Kesimnfaillio)+ £ LoDk (lim) fr2)H (Kre o frallio) =Sl e (o)) f2,0(2)

! kol (= Kroimafoallio)+ £ o Ok o)) F )+ (K e fuillion) =] L)k (L) f3 (L)

32



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-633, 2016 Hydrology and =
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System * i
Published: 20 December 2016 Sciences
© Author(s) 2016. CC-BY 3.0 License. - 4

Discussions

Table 2. Local hydraulic property function parameters, their units, the expression of adjusted parameters and their corresponding units.

Parameter Unit Adjusted parameter Unit

kro LT-p?

kxo LT p!

ao Tipra a = 2wrag LT 'p!

bo pr-tp=2 b=2nrbo LATApt
3rp-1p—1 _ —

o | LR c= 5o Lo
4 1 1 dg 2

do LT P d= Tarkon L

T L4T71P71 Tr = QEI"‘;E \ L—’l

0 ‘\
2 I.T_]P_l — 2nrkro L—2
- . 1 ]
B L™!? = 'Zm':—:% i
B2 Lt =014+ 0 Lt
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Y \
Table 3. Linearly independent functions f; and f2 according to the coassdered local root hydraulic properties.
f1(z) f2(z)
Uniform root cosh(rz) sinh(7z)

s 3 z+b 2 +b
Linear k, Ai| S5 Bi|
a3k3, adk3

Linear ky \/glﬂ ( \/d_;—c”_.) %KO (2 v d_élc_‘) ¥/
. iy

_ /2, — /2 )
5 / i Ve T+beg—ady 2 /Glegztidn) fiz .~V T =begtady 2 /afege
Linear k; and ki, ._x,.\_:/%)u( r;ﬁ'gﬂ q \uf-ﬁé’j a ) ._-,,,(7 t,.a)r( :ﬂ-;j” 1,2 1':_;13
: 2¢/rexp(—0B32) - 2y/rexp(—3,2)
Exponential k, Lo | =2 : Ky 'T” ‘/
o . Virexp(—581z) 2y/rrexp(-G,2) Virerp(-812) 4~ 2/ vrexp(-312)
Exponential k. e I 7 i K 3,
. _B B B8y Y v _8 5 B8y N Y o= T T
Exponentmi k. and k, a4 9 ‘):'1(r:rp{—.i:)):‘fr(l—%}-].’ih(w#) a 4420 (.:;,.(_.i:))zkfr(u-%}jjﬁ(L‘f’t)‘)
It ‘ a

. <, Ta Ko

o
)
|

(> @t hone “//AM Q\M% /Am»u/@a{
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