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ABSTRACT 

The solution of the mathematical model for flow in variably saturated porous media described 

by Richards equation (RE) is subject to heavy numerical difficulties due to its highly non-

linear properties and remains very challenging. Two different algorithms are used in this work 

to solve the mixed-form of RE: the traditional iterative algorithm and a time-adaptive 

algorithm consisting of changing the time step magnitude within the iteration procedure while 

the non-linear parameters are computed with the state variable at the previous time. The Ross 

method is an example of this type of scheme, and we show that it is equivalent to the Newton-

Raphson method with a time-adaptive algorithm.  

Both algorithms are coupled to different time stepping strategies: the standard heuristic 

approach based on the number of iterations and two strategies based on the time truncation 

error or on the change of water saturation. Three different test cases are used to evaluate the 

efficiency of these algorithms.  
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The numerical results highlight the necessity of implementing an estimate of the time 

truncation errors.  
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1. Introduction 

Water movement in soils is one of the key processes in the water cycle since it contributes to 

the renewal of groundwater resources through recharge, to vegetation growth through 

transpiration, to soil fertility through salinization/alteration and to atmospheric humidity 

through evaporation and transpiration. Water movement is usually modeled using the 

Richards equation (Richards, 1931), which is now commonly adopted for many studies in soil 

science and/or hydrology, including the use of physically based hydrological models applied 

to large-scale catchments and for long time simulations (e.g., for climate change studies). 

However, this equation is highly nonlinear and despite numerous efforts over the last 40 

years, its numerical solution requires much computational time.  

Assuming a rigid solid matrix, the Richards equation (RE) is given by, 
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where θ is the volumetric water content [L
3
/L

3
], Sw is the water saturation [-], s0  accounts for 

fluid compressibility [L
-1

],   is the pressure head [L], q is the water flux based on the 

extended Darcy’s law [L/T], t is the time [T], z is the vertical coordinate (positive upward) 

[L], f is the sink/source term [T
-1

], K is the saturated hydraulic conductivity tensor [L/T] and 

( )rk   is the relative hydraulic conductivity [-]. The model includes initial and boundary 

conditions of the Dirichlet (prescribed pressure head) or Neumann (prescribed flux) type. 

Equation (1) is also called the mixed form of RE. Two alternative formulations of the mixed 

form exist for RE.  

The pressure form is defined by: 
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where  C









 is the specific moisture capacity [L
-1

], and the soil moisture form that is 

restricted to unsaturated conditions is defined by: 
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where ( ) ( )r

d
k

d


 


D K  is the pore water diffusivity [L

2
/T]. 

Constitutive relations are required to solve RE. For the pressure-water content relationship, 

the most common model is the Van Genuchten model (van Genuchten, 1980): 
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where 1 1/m   , wS  is the effective saturation, r  and s  are the residual and saturated 

volumetric water content respectively,   and   are experimentally estimated coefficients. 

This model is usually associated with Mualem model (Mualem, 1976) for the relative 

permeability of the aqueous phase: 
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 (5) 

A summary of the most popular relations can be found in Belfort et al. (2013). 

Due to the strong heterogeneities of the unsaturated zone and nonlinearities in the constitutive 

relations (Eq. (4) and (5)), analytical solution of RE does not exist except in special cases 

(Celia et al., 1990; van Dam and Feddes, 2000). Therefore, numerical methods such as finite 

difference (Feddes et al., 1988; Romano et al., 1998; van Dam and Feddes, 2000), finite 
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element (Gottardi and Venutelli, 2001), and mixed finite element (Bause and Knabner, 2004; 

Bergamaschi and Putti, 1999; Fahs et al., 2009; Farthing et al., 2003) are used to solve RE.  

Iterative methods based on the Picard (fixed point) or Newton-Raphson approach (Lehmann 

and Ackerer, 1998; Paniconi and Putti, 1994) are the most popular techniques for solving this 

highly nonlinear equation. Alternative iterative methods are based on transform formulations 

(Crevoisier et al., 2009; Ross and Bristow, 1990; Williams et al., 2000; Zha et al., 2013) or 

the method of lines (Fahs et al., 2009; Matthews et al., 2004; Miller et al., 1998; Tocci et al., 

1997).  

Adaptive time stepping strategies based on time truncation error control were found to be 

superior to others approaches (Hirthe and Graf, 2012; Kavetski et al., 2001; Tocci et al., 

1997). The Method of Lines using the DASPK integrator was applied to the Richards’ 

equation by Matthews et al. (2004), Miller et al. (1998), Tocci et al. (1997) among others. The 

Method of Lines consists of discretization of the spatial part of the PDE only, leading to a 

system of ordinary differential equations. It has been found to be significantly more efficient 

than other temporal discretizations (Miller et al., 2006). However, Kavetski and Binning 

(2002b) reported difficulties in obtaining convergence for the DASPK solver associated with 

an arithmetic mean of inter-block conductivities for the most difficult problem addressed by 

Miller et al. (1998). Additionally, very few non-iterative schemes have been developed 

(Kavetski and Binning, 2004, 2002a; Paniconi et al., 1991).  

 

Despite the many existing numerical methods, solution of the RE is still a challenging 

research topic with many remaining questions about reduction of the computational time, 

treatment of nonlinearities, and improvement of the accuracy of these methods for difficult 

problems such as infiltration in very dry soils (Diersch and Perrochet, 1999; Forsyth et al., 
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1995; R. G. Hills, 1989). The need of efficient algorithms for solving this equation has 

increased during the last decades because it has been recognized that explicit modelling of 

flow in the unsaturated zone has to be implemented in Land Surface Models (Vergnes et al., 

2012). In their recent review of land surface models, Clarke et al. (2015) push for a 

mechanistic modelling of the flow in soils. They consider that the implementation of the 

mixed form of the Richards equation is an improvement of the modeling of soil moisture 

variations. They also underline the need of efficient algorithms for solving the RE to allow the 

implementation of stochastic approaches and/or automatic parameter estimations.  

In this study, we analyzed the performance of different algorithms based on the Newton-

Raphson method since the classical Picard scheme has been found less efficient (Lehmann 

and Ackerer, 1998). Applied to the soil moisture form of the RE equation, we demonstrate 

that the recently developed Ross method (Ross, 2003; Crevoisier et al., 2009; Zha et al., 2013) 

is equivalent to Newton-Raphson method (section 2). A detailed presentation of the Newton-

Raphson method applied to the mixed form or RE is given in section 3. The standard Newton-

Raphson algorithm is based on the computation of the corresponding matrices in an iterative 

way by updating the parameters until convergence. An alternative algorithm has been 

suggested more recently where the parameters are kept unchanged within one time step and 

the time step is adapted to reach convergence. This algorithm has been applied to the 

pressure-based form of RE by Kavetski and Binning (2002a) and to the soil moisture form by 

Crevoisier et al. (2009), Ross (2003), Zha et al. (2013). Although this algorithm is called “non 

iterative” because the parameters are not updated during the calculation, iterations may be 

necessary to adapt the magnitude of the time step. Therefore, in the following, we will refer to 

the usual algorithm as “iterative” and to the alternative algorithm as “time-adaptive”. To our 

knowledge, this alternative algorithm has never been applied to the mixed form of RE. 

Section 4 is dedicated to both algorithms and to the time stepping strategy used for solving 
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RE. Finally, in section 5, the numerical accuracy and robustness of the algorithms applied to 

the mixed-form of RE are evaluated using three different test cases.  

 

2. The Ross method and the Newton-Raphson method 

The moisture-based formulation is applicable in unsaturated conditions only and is prone to 

numerical difficulties in the case of heterogeneous soils, explaining the reduced attention 

directed to this formulation. However, discontinuous water content can be handled by adapted 

schemes and moisture-based formulation appears to be very accurate for initially dry 

conditions (Zha et al., 2013, 2015).  

Ross (2003) suggested a non-iterative formulation that has been recently extended to different 

soil conditions (Crevoisier et al., 2009; Varado et al., 2006a) and to two and three dimensions 

(Zha et al., 2013).  

In its initial one-dimensional finite-volume formulation and for a volume (cell) i, the Ross 

method (Ross, 2003) is based on the following set of equations: 
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where 
1n

iS  is the water saturation at cell/node i at time (n+1), q
 (resp. q

) is the water flux 

between cell i and (i-1) (resp. i+1) at time  , 0,1nt t t    

 

and z  is the size of the 

cell i. ,s i  is the saturated water content and ,r i  is the residual water content. For simplicity, 

we assume here that all cells are of the same size. 

The previous mass balance equation (6) leads to the following equation for cell i: 
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The Newton-Raphson method was initially developed as a root-finding algorithm of an 

arbitrary equation that has been generalized for solving a system of non-linear equations. 

Applied to the soil moisture form of the RE and using an implicit scheme, the NR consists in 

defining a residual based on the mass balance equation (Eq. (6)) at iteration k for time step 

n+1 and for cell i written as: 
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where 1,n k

iR   is called the residual.  

The NR consists in computing the solution at iteration k+1 by estimating the residual of the 

next iteration 1, 1n k

iR    using a first order Taylor development and setting it equal to zero as: 
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The derivatives of this residual are: 
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which leads to the following set of linear equations: 
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For the first iteration, we have  
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Whatever the formulation of the fluxes q (as a function of the pressure (see eq. A1) or the 

water content, expressed by Kirchhoff transform as in Ross (2003) or not), the implicit Ross 

method (eq. (8) with 1)  ) is equivalent to the first iteration of the Newton-Raphson 

method (eq. (13)).  

 

3. Newton Raphson method for the mixed form Richards’ equation 

Because the pressure-based formulation does not ensure mass conservation - except for the 

approximation provided by Rathfelder and Abriola (1994) - and due to the limitations of the 

moisture-based formulation (see previous section), the mixed formulation has been widely 

used since the work of Celia et al. (1990).  

The mixed form of the Richards equation given by equation (1) is rewritten as: 
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and is discretized by: 
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where A is the discretized form of the divergence term, B and E are the discretized forms of 

the storage terms and F is the discretized form of the sink/source term and the boundary 

conditions, n is the time step and k the iteration counter. 1 nt  is the time step magnitude 

defined by 1 1   n n nt t t . Matrices A, B, E and vector F depend on the numerical scheme 

used for the spatial discretization. The implicit scheme is applied for the spatial discretization. 

For the Newton-Raphson method, the residual is defined now by: 
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Looking for 1, 1n k ψ  such as 1, 1( ) 0n k  R ψ , the system to solve is similar to Eq. (10): 

 1,1, 1 1,'( () )n kn k n k    R ψ ψ R ψ  (18) 

with 1, 1 1, 1 1,n k n k n k      ψ ψ ψ . 

 

The NR formulation is also used for the non-iterative scheme by applying only one NR step 

per time step, with 1 1,1n n ψ ψ  where 1,0n n ψ ψ  (Paniconi et al., 1991; Zha et al., 2015). 

 

4. Algorithms and time stepping strategy 

The usual algorithm used to solve RE consists in defining a time step that remains constant 

and to iteratively compute the parameters and variables in the following way: 

For a given time step n 

Define the time step length 1nt   depending on the time stepping strategy. 

Initialization of the iterative process by setting 
1,1n n ψ ψ .  

do k=1, maxit 

1. Computation of the variable 1,n kθ , the parameter 1,n kK and their 

derivatives 
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ψ
using 

1,n kψ . 

2. Computation of the system matrix 'R  and the residual R . 

3. Computation of the system solution 
1, 1n k ψ . 

4. Check convergence. If convergence is achieved, exit. 
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enddo 

Next time step 

where k is the iteration counter and maxit the maximum number of iterations. 

 

The time-adaptive algorithm consists in calculating the non-linear parameters with the 

pressure heads computed at time step n and adapting the time step length. The algorithm is 

described by the following: 
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3. Computation of the system solution 
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4. Check convergence. If convergence is achieved, exit. 

enddo 

Next time step 

 

The main advantage of the alternative algorithm is its avoidance of the computation of the 

variable θ , the parameter K and their derivatives 
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the highly nonlinear relations between θ , K , 
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may require significant CPU time. 

 

The most popular time step management during the simulation is that of the heuristic type 

(Miller et al., 2006). The time step 1 nt  is computed depending on  nt  and the number of 

iterations k necessary to reach convergence in the following way: 
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where k1, k2, m1, m2 are user-defined constants.  

Other heuristic time step management procedures have been suggested by Kirkland et al., 

(1992) based on the water volumes exchanged between the adjacent cells of the grid and by 

Ross (2003), where the time step size is controlled by the maximum allowed change in the 

saturation.  

For the Ross method, the fluxes are computed first and the time step magnitude is calculated 

accordingly using 

 

 

1

max

n max

n n

,i ,i

i

i s ,i r ,i

S
t

q q

z  



 


 

 
 
  
 

 (20) 

where maxS  is the user-defined maximum allowed saturation change. After the computation 

of the change in the saturation S , the time step is modified if the maximum of the 

computed change exceeds    1 i imax S  , where   is a user-defined value, according to: 

 
 

1 1 1

max

n ,k n ,kmax

i i

S
t t

S

  
  


 (21) 

and the system of equations is solved again. More details about handling the fluxes at 

boundaries and saturated conditions can be found in Crevoisier et al. (2009), Ross (2003) and 

Varado et al. (2006b). 

 

The adaptive scheme used in this work evaluates the time steps through truncation error due 

to the temporal discretization as proposed by Thomas and Gladwell (1988). This scheme was 

already applied to the pressure-based formulation by Kavetski et al. (2001) and to the 

moisture-based formulation by Kavetski and Binning (2004).  

The difference between the first-order and second-order time approximations can be 

considered as an estimate of the local truncation error of the first-order scheme. The first-

order approximation is given by: 

 

1 1

(1)

  
 



n
n n nt

t

ψ
ψ ψ   (22) 

The second-order approximation is: 
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 

 

2
2

1 1 1

(2) 2

1
1

1

2

1

2

  




 
    

 

  
    

  

n n
n n n n

n n
n n

t t
t t

t
t t

ψ ψ
ψ ψ

ψ ψ
ψ

 (23) 

using 
1 2

1

2


  

 
  

n n n
nt

t t t

ψ ψ ψ
. 

This truncation error is given by: 

 

1
1 1 1 1

(2), (1),

1 1
1

1

1
max max

2

1
max

2

n n
n n n n i i
t i i i i

n n n n
n i i i i

i n n

t
t t

t
t t

 
  

   


   

 




 
    

 

 
  

 

 (24) 

When the truncation error is smaller than γ, the temporal truncation error tolerance defined by 

the user, the size of the next time step is calculated by: 

 

1

max1
min ,

max( , )

n n

n

t

t t s r
EPS









 
     

 
 (25) 

When the truncation error is larger than γ, the computation is repeated with a reduced time 

step defined as following: 

 

min1
max ,

max( , )

n n

n

t

t t s r
EPS



 

 
     

 
 (26) 

where rmax and rmin are user-defined constants used to avoid too drastic changes of the time 

step. s is considered to be a safety factor that ensures that the time step changes are 

reasonable. EPS is used to avoid floating point errors when the truncation error becomes too 

small.  
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5. Evaluation of the algorithms’ performance 

We applied the NR method to the mixed form of RE using the standard iterative algorithm 

and the time-adaptive algorithm. A cell centered finite volume scheme for the spatial 

discretization with an implicit Euler-scheme for the temporal discretization has been used to 

solve the partial differential equation and arithmetic means are used to compute the inter-

block hydraulic conductivity. The detailed discretizations of the matrix 1,'( )n kR ψ  and the 

vector 1,( )n kR ψ  (see Eq.(18)) are given in Appendix 1. The time-adaptive algorithms have 

been applied as described by the authors: Ross (2003) for the time stepping based on the 

saturation changes and Kavetski et al. (2001) for the time stepping based on the truncation 

errors. 

For the standard iterative algorithm, we defined two types of errors to check the convergence: 

the error based on the maximum change of the state variables between two iterations defined 

by 1, 1 1,max n k n k

i i i       and the truncation error t defined by Eq. (24). Convergence is 

assumed to be achieved when: 

 
1, 1

, ,

n k

a r imax          (27) 

where ,a  and ,r  are the absolute and relative user-defined tolerances and 
1, 1n k

imax  
 is the 

pressure corresponding to   and when: 

 
1, 1

, ,

n k

t t a t r imax        (28) 

where ,t a  and ,t r  have the same meaning as those for the previous criterion but 
1, 1n k

imax  
 

represents the pressure value corresponding to t . 

The tested algorithms are summarized in Table 1. Computations of all possible combinations 

for the standard iterative scheme have been performed. We present only the four most 
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efficient algorithms. We also analyzed convergence based on the non-linear residual. It was 

found less restrictive than the previous criteria. Due to the definition of the NR method, the 

residual tends to zero but it does not ensure a small value of  . Therefore, the results related 

to the reduction of the non-linear residuals are not reported. 

We investigated three one-dimensional problems with various initial and boundary conditions 

and hydraulic functions to assess the accuracy, efficiency and computational costs of the 

different algorithms. The selected test cases represent a range of difficult infiltration problems 

widely analyzed in the literature:  

- TC1: infiltration in a homogeneous initially dry soil with constant prescribed pressure 

at the surface and prescribed pressure at the bottom (Celia et al., 1990); 

- TC2: infiltration in a homogeneous soil initially at hydrostatic equilibrium with a 

prescribed constant flux at the soil surface and prescribed pressure at the bottom 

(Miller et al., 1998); 

- TC3: infiltration/evaporation in an initially dry heterogeneous soil, with variable 

positive and negative fluxes at the surface and free drainage at the base of the soil 

column (Lehmann and Ackerer, 1998). 

For the three test cases, the soil hydraulic functions were described by Mualem-Van 

Genuchten models (Mualem, 1976; van Genuchten, 1980), see Eq. (4) and (5).  

The required parameters, boundary conditions and initial conditions are summarized in Table 

2. The evolution of the relative hydraulic conductivity, the water saturation and the specific 

moisture capacity with respect to the pressure values are shown in Figures 1, 2 and 3, 

respectively. For TC1, the pressure will vary from -1000 cm to -75 cm only due to the 

specific conditions of this test case. Therefore, the parameter variations are smaller than those 
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for the other test cases. Since the parameters’ variations are more abrupt for test cases 2 and 3, 

their solutions are more challenging. 

Preliminary tests were performed to define the optimal spatial discretization i.e. a finer spatial 

discretization provided very similar results for a given convergence criterion and a given time 

stepping strategy. Therefore, we can assume that the errors are only originated from the time 

step size and the linearization. 

The following criteria were used for the time stepping strategy: 

- k1=0.80, k2=1.20, m1=5, m2=10, which are the usual values for the heuristic strategy 

defined by Eq. (19); 

- rmin=0.10, rmax=4.0,s=0.9, EPS=10
-10

, which are the standard values for the time 

stepping scheme based on time discretization error defined by Eq. (26) (Kavetski et 

al., 2001). 

To perform a consistent comparison of the time step strategies, the maximum allowed change 

in saturation (see equation (20) and (21)) has been evaluated using the maximum change in 

the pressure, according to the following relationship: 

 
 

 1 11
n

n ,k

max a r imax

s ,imax r ,imax imax

d
S

d


  

  

   


 (29) 

The simulations have been performed using different values of r  and with 0 0a .  . 

 

We used several criteria to evaluate the performance of these codes. A typical error used in 

solving RE is the global cumulative mass balance error defined by:  

 
 

 

1 0

n+1 1

1

1

MB(t )

M
n

i i i

i

n
k k k

in out

k

z

q q t

 







 



 




  (30) 
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where iz  is the size of the cell/element i, 
1n

i


 is its water content at time n+1t , 
0

i  is the 

initial water content, and 
k

inq  and 
k

outq  are the inflow and outflow, respectively, at the domain 

boundaries at time t
k
. M is the number of cells/elements. The fluxes at the boundaries are 

defined by  11

2

k k kq q q   . The mass balance errors were checked for each runs but were 

found to be negligible since we solved the mass-conserving RE form. 

While it is necessary to satisfy the global mass balance for an accurate numerical scheme, a 

low mass balance error is not sufficient to ensure the accuracy of the solution. Therefore, 

solutions have also been compared with the reference solution obtained using a very fine 

temporal discretization and the iterative Newton-Raphson method. This comparison is based 

on the average relative error defined by: 

 

1/

ˆ1

k
k

ref

i i

k k
ref

i
i

M

 




 
 
 
 

   (31) 

where M is the number of cells, refψ  is the reference solution and ψ̂  is the tested numerical 

solution. 1  represents the average absolute relative error (called L1-norm in the following), 

2  is the average quadratic error (L2-norm) and   is the highest local relative difference 

between the numerical and the reference solutions (L-norm).  

Since the time-adaptive algorithm does not require the computation of the parameters and 

their derivatives during the iterative procedure, we use Nsol to denote the number of times 

where the system of equations is solved and Nparam to denote the number of times where the 

parameters are computed. Of course, these counters are equal to each other for the standard 

algorithm, which leads to computational costs depending on 2Nsol. Nparam is less than Nsol for 

the time-adaptive algorithm. For comparison purposes, the computational costs are estimated 
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by Nsol for the standard algorithm and by (Nsol +Nparam)/2 for the time-adaptive algorithm. The 

efficiency of the algorithms have been evaluated by comparing the computational costs for a 

given relative tolerance r . The errors are presented in the tables and the figures. The figures 

show some additional results not listed in the tables that already contains much information. 

 

TC1: Infiltration in a homogenous soil with constant boundary conditions 

This test case simulates an infiltration into a homogeneous porous medium. This problem is 

addressed here because it has been widely analyzed previously by many authors like 

Bouchemella et al. (2015), Celia et al. (1990), El Kadi and Ling (1993), Rathfelder and 

Abriola, (1994), Tocci et al. (1997), among others. The computations were performed with a 

spatial discretization of 0.1 cm. The initial time step size was set to 1.0 10
-5

 s, and the 

maximum time step size was set to 400 s.  

The results for the iterative and time-adaptive algorithms are presented in Tables 3 and 4, 

respectively. When both convergence criteria are used (algorithms SH_t and 

SS_t), Ntrunc represents the number of times where the truncation error is the most 

restrictive condition. For the heuristic time stepping schemes, the convergence is mostly 

linked to the truncation error (Ntrunc is close to Nsol), whereas when the saturation time 

stepping scheme is used, the most restrictive criterion is the maximum difference in the 

pressure.  

When the time stepping scheme is based on saturation, for both iterative and time-adaptive 

algorithms, the number of iterations required to solve the problem is proportional to the 

relative tolerance. Therefore, highly accurate solutions incur high computational costs.  

For the time-adaptive scheme, the number of parameter changes Nparam is close to the number 

of iterations for low tolerance values. Small tolerance values lead to small time steps, 
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avoiding time step adjustments. This is not the case for larger tolerance values that lead to 

larger time steps and therefore to additional iterations (see for example TA_T for the 

tolerance of r =10
-2

 – Table 4). 

The three types of errors provide the same information. The best solution for one type of error 

is also the best solution for the two others. 

On average, the iterative algorithm is faster than the time-adaptive algorithm that requires 

more iterations for a given error. This is also shown in Figure 4 that presents the convergence 

rate of the L2-norm with respect to the computational costs, i.e., the number of iterations or 

number of iterations and number of parameter changes. The time-adaptive algorithm with 

time stepping based on the truncation errors performs quite poorly compared to the other 

algorithms. Irrespective of the tolerance, this algorithm leads to a wetting front moving faster 

(Fig. 5).  

When the relative tolerance is set to a very low value ( r =10
-5

), the iterative scheme with 

time stepping based on the saturation changes shows behavior that is different from that found 

for the less restrictive tolerance. The criterion based on truncation errors is no longer 

significant (Ntrunc=252), possibly explaining why the accuracy of the scheme remains 

constant. This also indicates that errors due to time discretization have to be handled, either in 

the convergence criterion or in the time stepping strategy. 

For this test case, the most efficient algorithms are the iterative algorithms using the time 

stepping strategy based on truncation error (ST_or based on the saturation changes 

(SS_t. Saturated based time stepping strategies (SS_t and TA_S) shows a linear 

decrease of L2 with computational costs. For very high precision (L2< 10
-4

), 

ST_outperforms the other algorithms. No convincing explanation has been found for the 

insignificant change in accuracy for SS_t at high precision.  
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TC2: Infiltration in a homogenous soil with hydrostatic initial conditions 

This test case models an infiltration in a 200 cm vertical column of unconsolidated clay loam 

with non-uniform grain size distribution and was considered by Miller et al. (1998) to be a 

very challenging test. This problem was found to be more challenging from the numerical 

point of view compared to TC1 due to the relative permeability function that enhances the 

non-linear behavior of Richards’ equation (Fig. 1, 2, 3). The cell size has been set to 0.125 

cm, the initial time step to 10
-5

s and the maximum time step magnitude to 1000 s. 

The different norms for the iterative and the time-adaptive schemes are given in Tables 5 and 

6.   

Investigation of this test case leads to similar qualitative conclusions when the time stepping 

scheme is based on the saturation differences (SS_t and TA_S). The standard scheme 

SH_ fails to provide an accurate solution within a reasonable number of iterations (less 

than 10
7
).  

The most efficient methods are the schemes using the time stepping strategy based on 

truncation errors (Fig. 6). However, as found for TC1, the adaptive time algorithm TA_T 

failed to provide highly accurate results (L2-norm error less than approximately 4.5 10
-4

).  

Figure 7 shows the time step magnitudes for approximately equal L2-norms for the two time-

adaptive algorithms and for the iterative algorithm using truncation errors for time stepping 

(4.254 10
-4

 within 3503 iterations for ST_, 4.563 10
-4

 within 3098 iterations for TA_T and 

4.844 10
-4

 within 11358 iterations for TA_S). The time step evolution is very similar for the 

three strategies: a linear increase until around 0.1s, followed by a very slow increase until 20-

30s and a regular increase until the end of the simulation. ST_ and TA_T strategies lead to 
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the same time steps when time reaches 1s. The time step sizes remain smaller for TA_S which 

explains the significant higher number of iterations required to solve this test case. 

 

TC3: Infiltration/evaporation in a heterogeneous soil  

This case study simulates infiltration in an initially dry heterogeneous soil with a succession 

of rainfall and evaporations as upper boundary conditions during 35 days. This problem 

differs from the two previous cases by the soil heterogeneity and also by the non-monotonic 

boundary conditions at the soil surface. It is expected that non-monotonic discontinuous 

boundary conditions will increase the difficulty of finding accurate solutions. The soil profile 

consists of three 60 cm thick layers. The layers are discretized using cells with the size of 0.10 

cm. The prescribed fluxes are changing every day. For a given time, these fluxes are linearly 

interpolated. To avoid a too rough time discretization of these boundary conditions, the 

maximum time step magnitude has been fixed at 0.20 day. The initial time step is set to 10
-5

 

day. 

The relative errors estimated by the iterative algorithms and the time-adaptive algorithms are 

presented in Tables 7 and 8, respectively, and are plotted in Figure 8. 

The standard iterative scheme fails to converge within the maximum number of iterations 

(10
7
) when the tolerance is not sufficiently restrictive. The detailed analyses of the 

computation showed that the time step size was quite large compared to the more restrictive 

conditions until day 28.0 where the infiltration fluxes were equal to 1.50 cm/day and where 

the conditions were near saturation due to the previous infiltration period. This led to a 

decrease of the time step to close to the minimum value (10
-8

 s), causing the procedure to 

stop. More restrictive conditions lead to smaller time steps from the beginning of the 

simulation and a better approximation of the solutions during the entire simulation. 
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The iterative scheme coupled with the truncation based time step strategy showed a 

surprisingly unstable behavior for r =10
-3

. The scheme did not converge for 

3 30.96 10 ;1.0410r
     . The results presented in Table 7 and Figure 8 are obtained for 

30.90 10r
 . At this stage of our work, we were not able to provide a meaningful 

explanation for this effect. 

The time-adaptive algorithm with the saturation based time stepping scheme is the most 

efficient for an L2-norm greater than 10
-4

. For more accurate results, the iterative method with 

the time stepping strategy using the truncation error must be preferred. The impact of the time 

stepping strategy for these two algorithms is shown in Figure 9 for approximately the same 

L2-norm (2.051 10
-3

 within 1283 iterations for TA_S and 1.517 10
-3 

within 6504 iterations for 

ST_). The time step changes is related to the boundary conditions variations as expected. 

The strategy based on the saturation variation leads to a longer time step than the strategy 

using the time truncation error. This difference can be quite important (see the simulation 

between days 25 and 30). The consequences of this difference are a reduced number of 

iterations but also a less accurate computation, irrespective of the error norm. 

 

6. Summary and conclusions 

The solution of RE is complex and very time consuming due to its highly non-linear 

properties. Several algorithms have been tested for the mixed-form of Richards equation, 

including time-adaptive methods. Based on the numerical examples that differ in their 

parameters (level of non-linearity) and in their initial and boundary conditions, the 

conclusions and recommendations are: 
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1. Our numerical developments showed that the method suggested by Ross (2003) in 

its implicit formulation can be considered as a Newton-Raphson method with a 

time-adaptive algorithm. 

2. The different algorithms have different convergence rates (accuracy improvement 

of the scheme as a function of the computational costs). Therefore, an algorithm 

can be very efficient for a given accuracy and less efficient for another level of 

precision. However, for these three test cases and in average, the best performance 

in terms of efficiency was obtained using a stopping criterion based on truncation 

error with its corresponding time step strategy (ST_Similar results were 

obtained by Kavetski et al. (2001) for the pressure-based RE and by Kavetski and 

Binning (2004) for the moisture-based RE. 

3. The mass balance is not a good criterion for the evaluation of the results because 

the mixed-form preserves the mass balance, irrespective of the pressure 

distribution within the profile.  

4.  The time truncation error should be implemented in numerical codes using the 

standard iterative procedure. The use of the maximum variable difference between 

two successive iterations only, which is usually implemented, does not provide 

any information about the accuracy of the time derivative approximation.  

Our 1-dimensional examples showed that time-adaptive algorithm TA_T is very 

sensitive to the type of problem to solve. The time-adaptive algorithm TA_S was less 

efficient than the usual schemes. However, for a larger amount of elements like in 2D 

or 3D problems, this conclusion might be different because the time dedicated to the 

computation of the parameters can be significant higher, unless tabulated values are 

used to evaluate the parameters and the required derivatives.  
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Depending on the type of the problem that must be solved (parameters behavior with respect 

to the pressure, time variations of the boundary conditions), the time truncation errors may be 

predominant compared to the error corresponding to the pressure changes between two 

successive iterations. Therefore, we recommend  the implementation of this stopping criteria 

associated with  the time stepping strategy as defined by Kavetski et al. (2001). 
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Section d'équation  1 

APPENDIX 1. 

 

The numerical method used in the paper is implicit standard finite difference. For a cell i of 

the grid, the unsaturated flow equation (4) can be discretized in the following way: 
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where n is the time step, iK  is the inter-block conductivity between cell i and (i-1) defined by 
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The residual is: 
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where k is the iteration counter.  

 

The residual derivatives are: 
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Therefore, the system to solve is: 
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With the following derivatives of the fluxes 1,n k
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
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The component of the vector of the residuals R  is given by equation (A2) and the 

coefficients of the matrix 'R  for cell i are: 
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In case of prescribed flux at the upper boundary, the residual is written as: 
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Using the derivatives as defined in (A5) and (A6), the matrix coefficients are changed as 

follow: 
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If the flux is applied at the bottom of the profile, similar developments lead to the residual:  
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and its derivatives 
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If the pressure is described at the top of the soil, the corresponding flux is defined by: 
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And the derivative is: 
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The corresponding residual and the matrix coefficients are: 
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Similarly, if the pressure is prescribed at the soils column’s bottom, we have: 
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The numerical code is written in FORTRAN 90 and is available upon request.  
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 Standard iterative algorithm 
Time-adaptive 

algorithm 

 Time stepping Stopping criterion   

 
Heuristic 

(19) 

Truncation 

(25) (26) 

Saturation 

(20) (21) 

Pressure 

(27) 

Truncation 

(28) 

Truncation 

(25) (26) 

Saturation 

(20) (21) 

SH_ x   x    

SH_t x   x x   

ST_  x  x    

SS_t   x x x   

TA_T      x  

TA_S       x 

Table 1: Different options of the tested algorithms. Reference to the corresponding equation 

in parenthesis. 

 

 

 L IC 
uBC  lBC  Ks r  s      

TC1 30 -1000.0 75    1000    9.22 10
-3

 0.102 0.368 0.0335 2.0 

TC2 200 z-200 q=3.7 10
-5

 0   7.18 10
-5

 0.095 0.410 0.019 1.31 

TC3 60 -100.0 q(t) q(t)=KM(t) 6.26 10
-3

 0.0286 0.366 0.028 2.239 

 60 -100.0   1.51 10
-4

 0.106 0.469 0.0104 1.395 

  60 -100.0     6.26 10
-3

 0.0286 0.366 0.028 2.239 

Table 2: Domain size (L), initial conditions (IC), boundary conditions at the soil surface 

(BCu) and at the soil bottom (BCl), saturated hydraulic conductivity (Ks), residual and 

saturated water contents ( r , s ) and shape parameters ( , ) for the different test cases. 

KM(t) is the hydraulic conductivity of the last grid cell. 

Length and time units are centimeters and seconds respectively. 
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Tol. Algorithm L1 L2 L Ntrunc Nsol 

10
-5

 

SH_ 1.918 10
-3

 8.829 10
-3

 0.106  2177 

SH_t 8.391 10
-6

 6.459 10
-5

 8.782 10
-4

 542371 615880 

ST_ 3.968 10
-4

 1.045 10
-3

 3.512 10
-3

  6160 

SS_t 1.136 10
-5

 3.406 10
-5

 2.817 10
-4

 252 3920446 

10
-4

 

SH_ 2.557 10
-3

 1.375 10
-2

 0.168  1701 

SH_t 7.818 10
-5

 2.259 10
-4

 1.593 10
-3

 170438 194420 

ST_ 1.331 10
-3

 1.316 10
-3

 1.181 10
-2

  1950 

SS_t 8.607 10
-6

 3.525 10
-5

 3.899 10
-4

 154597 392041 

10
-3

 

SH_ 3.956 10
-3

 1.166 10
-2

 0.125  1312 

SH_t 2.320 10
-4

 7.553 10
-4

 7.883 10
-3

 52723 60303 

ST_ 2.241 10
-3

 5.702 10
-3

 1.792 10
-2

  620 

SS_t 6.567 10
-5

 1.585 10
-4

 1.453 10
-3

 9895 39110 

10
-2

 

SH_ 6.559 10
-3

 1.716 10
-2

 0.119  1018 

SH_t 2.224 10
-3

 7.923 10
-3

 7.111 10
-2

 15540 17888 

ST_ 9.954 10
-3

 2.630 10
-2

 8.727 10
-2

   243 

SS_t 8.283 10
-4

 2.271 10
-3

 1.478 10
-2

 862 3804 

Table 3: Relative errors and number of iterations obtained for the iterative algorithm 

depending on different convergence criteria for TC1. 
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Tol. Algorithm L1 L2 L Nparam Nsol 

10
-5

 
TA_T 5.016 10

-3
 2.376 10

-2
 0.269 32197 35938 

TA_S 6.152 10
-6

 2.429 10
-5

 2.561 10
-4

 9316700 9322946 

10
-4

 
TA_T 5.598 10

-3
 2.580 10

-2
 0.284 10169 11520 

TA_S 2.839 10
-5

 1.363 10
-4

 1.654 10
-3

 931616 938144 

10
-3

 
TA_T 1.524 10

-2
 7.085 10

-2
 0.822 3231 4032 

TA_S 2.537 10
-4

 1.271 10
-3

 1.568 10
-2

 93114 100898 

10
-2

 
TA_T 6.241 10

-2
 0.274 2.459 1023 1402 

TA_S 2.519 10
-3

 1.224 10
-2

 0.142 9267 18292 

Table 4: Relative errors and number of iterations obtained for the time-adaptive algorithm 

depending on different convergence criteria for TC1. 
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Tol. Algorithm L1 L2 L Ntrunc Nsol 

10
-5

 

SH_ 6.966 10
-3

 1.818 10
-2

 5.878 10
-2

  573 

SH_t 3.697. 10
-4

 9.766 10
-4

 3.332 10
-3

 53769 59643 

ST_ 1.578 10
-4

 4.254 10
-4

 2.451 10
-3

  3503 

SS_t - - - - n. c. 

10
-4

 

SH_ 6.966 10
-3

 1.818 10
-2

 5.878 10
-2

  509 

SH_t 6.968 10
-4

 1.979 10
-3

 5.726 10
-3

 16557 18428 

ST_ 5.814 10
-4

 1.492 10
-3

 6.711 10
-3

  1033 

SS_t 3.279 10
-6

 1.239 10
-5

 8.603 10
-5

 0 2474120 

10
-3

 

SH_ 6.966 10
-3

 1.818 10
-2

 5.878 10
-2

  410 

SH_t 3.699 10
-3

 9.761 10
-3

 3.275 10
-2

 4830 5444 

ST_ 1.553 10
-3

 4.226 10
-3

 2.457 10
-2

  317 

SS_t 2.355 10
-5

 6.230 10
-5

 2.341 10
-4

 0 247426 

10
-2

 

SH_ 6.892 10
-3

 1.800 10
-2

 5.780 10
-2

  309 

SH_t 9.135 10
-3

 2.409 10
-2

 7.925 10
-2

 376 580 

ST_ 2.756 10
-3

 1.134 10
-2

 7.715 10
-2

  180 

SS_t 2.973 10
-4

 7.884 10
-4

 3.252 10
-3

 0 24757 

Table 5: Relative errors and number of iterations obtained for the iterative algorithm 

depending on different convergence criteria for TC2 (n.c.: non convergence in less than 10
7
 

iterations). 
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Tol. Algorithm L1 L2 L Nparam Nsol 

10
-5

 
TA_T 1.230 10

-4
 4.563 10

-4
 3.346 10

-3
 3089 3098 

TA_S 8.741 10
-6

 2.308 10
-5

 7.905 10
-5

 1136193 1136199 

10
-4

 
TA_T 1.572 10

-3
 4.497 10

-3
 2.404 10

-2
 986 987 

TA_S 2.701 10
-5

 7.219 10
-5

 3.095 10
-4

 113616 113616 

10
-3

 
TA_T 4.707 10

-3
 1.346 10

-2
 7.169 10

-2
 323 323 

TA_S 1.754 10
-4

 4.844 10
-4

 2.391 10
-3

 11358 11358 

10
-2

 
TA_T 5.220 10

-3
 1.683 10

-2
 0.101 135 135 

TA_S 1.596 10
-3

 4.444 10
-3

 2.243 10
-2

 1132 1132 

Table 6: Relative errors and number of iterations obtained for the time-adaptive algorithm 

depending on different convergence criteria for TC2. 
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Tol. Algorithm L1 L2 L Ntrunc Nsol 

10
-5

 

SH_ 9.994 10
-3

 1.119 10
-2

 1.554 10
-2

  1644 

SH_t 6.612 10
-4

 7.346 10
-4

 1.116 10
-3

 171636 190588 

ST_ 6.830 10
-4

 7.775 10
-4

 1.648 10
-3

  16984 

SS_t 7.185 10
-5

 7.935 10
-5

 1.297 10
-4

 197481 1646346 

10
-4

 

SH_ 6.664 10
-3

 7.280 10
-3

 1.033 10
-2

  1734 

SH_t 3.512 10
-3

 3.898 10
-3

 5.811 10
-3

 57312 63956 

ST_ 1.300 10
-3

 1.517 10
-3

 2.412 10
-3

   6504 

SS_t 5.380 10
-5

 6.536 10
-5

 1.010 10
-4

 41073 186351 

10
-3

 

SH_ - - -  n.c.  

SH_t 2.625 10
-3

 2.899 10
-3

 4.971 10
-3

 22047 24779 

ST_ 4.730 10
-3

 5.422 10
-3

 1.036 10
-2

   1297* 

SS_t 7.569 10
-4

 8.820 10
-4

 1.402 10
-3

 16474 31276 

10
-2

 

SH_ - - -  n.c. 

SH_t 5.493 10
-3

 6.306 10
-3

 1.171 10
-3

 7438 8812 

ST_ 6.621 10
-3

 7.402 10
-3

 1.042 10
-2

  810 

SS_t 7.511 10
-3

 8.780 10
-3

 1.378 10
-2

 5838 7535 

Table 7: Relative errors and number of iterations obtained for the iterative algorithm 

depending on different convergence criteria for TC3 (n.c.: non convergence in less than 10
7
 

iterations, * convergence failed for 10
-3

, r =0.90 10
-3

). 
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Tol. Algorithm L1 L2 L Nparam Nsol 

10
-5

 
TA_T 9.814 10

-3
 9.949 10

-3
 

10
-3

 

1.286 10
-2

 8369 8703 

TA_S 7.980 10
-5

 8.797 10
-5

 1.472 10
-4

 1357075 1357160 

10
-4

 
TA_T 1.731 10

-2
 1.760 10

-2
 2.748 10

-2
 2653  2934 

TA_S 1.067 10
-4

 1.247 10
-4

 1.997 10
-4

 135386 135498 

10
-3

 
TA_T 2.922 10

-2
 3.105 10

-2
 4.545 10

-2
 889 1153 

TA_S 1.433 10
-4

 1.788 10
-4

 3.367 10
-4

 13314 13397 

10
-2

 
TA_T 1.996 10

-2
 2.449 10

-2
 5.536 10

-2
 347 515 

TA_S 1.851 10
-3

 2.051 10
-3

 3.925 10
-3

 1232 1283 

Table 8: Relative errors and number of iterations obtained for the time-adaptive algorithm 

depending on different convergence criteria for TC3. 
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Figure 7: Time step magnitudes during the simulation for TC2. 

Figure 8: Evolution of the L2 relative error with computational costs for TC3. 

Figure 9: Time step magnitudes during the simulation for TC3 for the time stepping strategy 

based on truncation error (TA_S in blue, TA_T in black, time varying boundary conditions at 
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Figure 1: Relative permeability as a function of the pressure for the three test cases 

(L1, L2 and L3 are the three layers for test case 3). 
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Figure 2: Water saturation as a function of the pressure for the three test cases 

(L1, L2 and L3 are the three layers for test case 3). 
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Figure 3: Specific moisture capacity as a function of the pressure for the three test cases 

(L1, L2 and L3 are the three layers for test case 3). 
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Figure 4: Evolution of the L2 relative error with computational costs for TC1. 
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Figure 5: Pressure profiles in the domain for the TA_T algorithm. 
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Figure 6: Evolution of the L2 relative error with computational costs for TC2. 
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Figure 7: Time step magnitudes during the simulation for TC2. 

 



48 

 

 

 

 

Figure 8: Evolution of the L2 relative error with computational costs for TC3. 
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Figure 9: Time step magnitudes during the simulation for TC3 for the time stepping strategy 

based on truncation error (TA_S in blue, TA_T in black, time varying boundary conditions at 

the top). 

 


