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Anonymous Referee #1  

This manuscript provides a performance assessment of different known algorithms to solve 
the Richard’s equation. In particular, the authors investigate the performance of the Ross 
method versus the Newton‐Raphson with different time‐stepping strategies. A nice set of 
guidelines are provided in the end. The article is well written and provides a nice contribution 
in this area.  

We thank the referee for his/her review whose constructive comments helped in improving 
the manuscript. We are of course pleased that she/he considers that the manuscript presents a 
nice contribution to the challenging problem of solving Richards equation. 

The line numbers refer to the marked manuscript. 

Based on this, I suggest the publication of the manuscript after minor revision is addressed to 
tackle this points:   

Minor comments:  

The author should clearly state the assumptions in Equation (1), rigid solid matrix (negligible 

dro/ro) changes in porosity) but also need to say that
1

0

  . In this context, it is worth 

mention that the specific storage coefficient used in Equation (1) is not exactly the same as 
the specific storage coefficient of the flow equation. The specific storage coefficient is the 
sum of compressibility of water and soil. In equation (1) the changes in porosity are neglected 
and therefore “so” is not exactly the specific storage. Only the part corresponding to the 
compressibility of water. 

The text has been changed (L32-33). 

 

Line 36: actually there are three standard forms of the equation: pressure, saturation and 
mixed  

We do not understand this comment. In the initial manuscript, we wrote L36 ‘Equation 
(1) is also called the mixed form of RE. Two alternative formulations exist for RE’ and 
showed the three forms of the RE (eq. 1, 2 and 3). We made some modification of the 
text (L39-40).  

 

Equation (13) may be is worth to explain how to calculate fluxes q or simply refer to the 
appendix here for an example. 

It is explained in the appendix, eq A32. We refer to it.  

 

Equation (15), maybe is worth explaining index k  

It was explained two lines later (L147 in the initial manuscript).  

 

It is not clear whether the method suggested by Ross (2003) is mathematically equivalent to 
Newton‐Raphson or simply performs the same way in this example. In case it is 
mathematically equivalent, a more detail derivation is required. In case it performs equally in 
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this case the manuscript should clearly state this fact. Could it be that in2D and 3D the 
performance of these two algorithms are different? 

The method suggests by Ross is mathematically equivalent to Newton Raphson as we 
explain in equation (8)-(13). There was a typo in equation (13) which may lead to 
misunderstanding. We corrected equation (13). 
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Anonymous Referee #2  

Received and published: 14 March 2017  

The paper compares the efficiency of a combination of two linearisation schemes for the 
solution of the non-linear Richards’ equation with different time adaptation criteria. The first 
scheme is a method presented by Ross in 2003, a kind of semi-implicit scheme, calculating 
the non-linearities with the solution of the last time step. The second scheme is using Newton 
iterations. The authors first show, that if applied to the water content-formulation of Richards’ 
equation, the method of Ross is equivalent to the first iteration of a Newton iteration. As the 
water-content form is only applicable to strictly unsaturated conditions, they use 
discretisations of the mixed form for the rest of the paper. In the Ross-type scheme, called 
time-adaptive (though both schemes use adaptive time stepping), the authors apply only the 
first-iteration of a Newton-scheme, calculating the coefficients again with the old solution, 
and shorten the time step until convergence. In the Newton-iteration scheme they calculate the 
coefficients with the last iterate until convergence. Thus in the Ross-type scheme the 
assembly of the linear-equation system to be solved is faster for the second or later iterates. 
For the adaption of the time step the authors either use an heuristic approach based on the 
number of Newton iterations (only for the Newton-based scheme), an approach based on an 
estimation of the truncation error, or a limit on the maximal allowed change of saturation. The 
different combinations of time-step control and linearisation approach are applied to three 
different test cases from the literature. The computational costs, measured in a normalized 
number of solves, are plotted against precision, measured as the deviation of the results from a 
reference solution calculated with a very fine time step and a given grid size. The authors 
conclude that there was no real advantage of the Ross-type scheme.  

 

In the following, the line numbers refer to the revised marked manuscript, except when the 
initial manuscript is mentioned. 

 

 

General comments:  

The authors address a question, which has been intensively discussed in the last decades. 
Numerous papers on the best linearisation schemes and time-step adaptation procedures can 
be found easily in the literature, partially co-authored by one of the authors of this paper, 
many of them also cited in the paper. Thus the main question is, if the analysis of a very 
special scheme is a meaningful contribution to the literature and suited for publication in 
HESS. As there remain a lot of questions to be addressed (see specific comments below), the 
paper could be accepted only after major revisions. However, I am not convinced that the 
contributions made by the paper will be significant even after revision.  

 We fully agree that this question has been intensively discussed. However, we believe 
that the existing algorithms are still not efficient enough, especially for the recent 
developments of large scale models used to simulate climate change or to compute global 
water balances for example. It is more and more recognized that water flow in the unsaturated 
zone has to be modelled using mechanistic models to improve the reliability of large scale 
models. However, the difficulty in solving Richards equation in an efficient way (i.e. avoiding 
time steps in the order of minutes for simulations over several years) hampers its use in large 
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scale models. Therefore, we believe that there is a real need of efficient algorithms for solving 
Richards equation.  

 We added a few sentences on this motivation in the introduction (L85-L92). 

 Did we find THE algorithm? No, unfortunately …  

 Is our contribution significant? We show for the first time that (i) the ‘new’ Ross 
method is a Newton-Raphson method, (ii) the algorithm which performs the best for each test 
case does not exist amongst the most existing popular algorithms and (iii) two stopping 
criteria have to be used instead of only one as it is implemented in many codes.  

  

Specific comments:  

equation (1) + (2): As a rigid solid matrix is assumed, s0 could only describe the 
compressibility of the fluid. As water is nearly incompressible at the pressures occurring in 
variably saturated soils, the compressibility term is unnecessary and should be dropped.  

 We agree with the physical meaning of s0. However, from a numerical point of view, 
this term is very useful for solving saturated/unsaturated problems in transient. Changed in 
L32-L33. 

  

 line 177: "The time-adaptive algorithm consists of keeping the pressure head constant 
and changing the time step length." Actually, this formulation is misleading. For each tested 
time step a new solution for the pressure heads is calculated. Thus they are not kept constant. 
However, the non-linear parameters are always calculated with the solution from the old time 
step, corresponding to a semi-implicit scheme. Even the matrix has to be reassembled for each 
tested time step. Thus only the evaluation of the non-linear functions is avoided. An 
alternative would be the use of an interpolation table for the hydraulic functions to reduce the 
computational costs and still keep the accuracy high. The misleading formulation is also used 
in line 6 of the abstract.  

 We fully agree. The text has been changed (L200-L203). 

  

 line 210: I do not understand this formulation  maxmaxi S  is the maximum of the 

actual change, how can it exceed itself? Do you mean exceeds (1+λ)ΔSmax?  

 The equation did not appear properly in the manuscript provided by HESS, sorry.  

 1nt   is an estimate of the next time step. After computation over 1nt  , the saturation 
change can exceed the user provided Smax. The text has been changed (L234-L236). 

  

 line 219-226: Is this important here? If necessary at all, please move it to the 
introduction  

 We think we have to refer to this kind of approach and we moved this part in the 



5 

 

introduction (L68-L77). 

  

 line 243: replace "superior to" by "larger than"  

 Changed L269. 

  

 line 253: "Implicit standard finite volumes" is not really a precise description. I guess 
you mean a cell-centred finite volume scheme for the spatial discretisation with an implicit 
Euler-scheme for the temporal discretisation. Actually, already in chapter 3, equation (15) the 
discretisation is given. Shouldn’t you just refer to that section?  

 You are right concerning the method we used and we provide more detailed 
information L279-L281. However, equation (15) is more general. It also holds for other 
spatial discretizations like finite elements.  

  

 line 261: "the error based on the maximum change of the state variables between two 

iterations" would be 1, 1 1,max n k n k
i i i     . If your formula is correct you are looking at 

"the error base on the maximal change of the state variables in the last iteration". This actually 
is a very bad convergence condition as it cannot distinguish between "already converged" and 
"no convergence at all". However, it is also completely unclear to me, why the time truncation 
error should be a sensible stopping condition. A reasonable stopping condition is based on the 
reduction of the non-linear residual compared to the initial non-linear residual. This would 
really be related to a reduction of the error in the solution of the non-linear equation.  

 Concerning the first criterion, it is not in the last iteration (see iteration numbered by 
k). It is during the iterative process. If this criterion is met, the process is stopped and the 
computation of the next time step is performed. This is a very popular stopping method, not 
only for unsaturated flow but also for density driven flow for example.  

 Time stopping criteria have been applied by others (see references in the manuscript). 

 Residuals are also used as stopping criterion but it performs like the criterion based on 
the maximum change of the state variable. Both criteria are linearly linked (Ackerer et al. 
1999 Modeling Variable Density Flow and Solute Transport in Porous Medium: 1. Numerical 
Model and Verification. Transport in Porous Media 35: 345–373).  

 We add the following in the revised manuscript (L299-L302): 

“We also analyzed convergence based on the non-linear residual. It was found less 
restrictive than the previous criteria. Due to the definition of the NR method, the 
residual tends to zero but it does not ensure a small value of . Therefore, the results 
related to the reduction of the non-linear residuals are not reported.” 

  

 equation (27) and (28): is it really necessary to write out this equations? Is it not 
enough to state that relative and absolute error bounds are given?  
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 The tolerance values can be different. We provide more details (L291-L296). 

  

 line 269-271: Actually, not all possible combinations have been performed. You could 
also have tested using only the truncation error (if this makes sense).  

 We make all possible combinations but we reported only the most significant results in 
the paper as stated in L270-L271 in the initial manuscript. 

  

 line 293-294: as the spatial discretisation error (though not explicitly mentioned) is 
addressed here: How did you check, that the grid really was fine enough? As you try to get 
very accurate solutions in time (down to an error of 10-5), did you really make sure, that the 
grid is fine enough to produce changes significantly lower than 10-5 

if further refined?  

 We did it in the traditional way, by successive grid refinements. See below, discussion 
on figures 4,6,8… We added some information L324-L326. 

  

 line 301-303: As you are using a mixed scheme: why did you not just calculate ΔSmax 
from the saturations? I am also a bit confused about notation. In equation (20) Smax was a 
"user-defined maximum saturation change", now it is something calculated from the 
solution...  

 We want to compare methods that use different criteria to stop the iterative procedure. 
Equation (29) gives the relationship between both user’s defined criteria.  

 We changed the text L334-L336. 

  

 line 306-315: If the mixed form of Richards’ equation is used, with a (locally mass-
conservative) finite volume discretisation and the linear equations are solved sufficiently 
accurate, why should there be mass balance at all? It is obvious from the beginning that this 
could only hint to errors in your code. Thus the statement in line 314-315 is trivial.  

 We agree. We mentioned that the mass balance errors were negligible and our 
comparisons are not based on this error. We just check this error because it is commonly used 
to compare numerical schemes (even the codes which solve mixed form of RE). 

  

 line 328-330: I do not understand, why the computational costs of the time-adaptive 
algorithm are calculated by (Nsol+Nparam)/2. For each iteration step in the iterative scheme 
you have to calculate the nonlinear parameters and their derivatives, assemble a matrix and 
solve a linear equation system. For each iteration step in the time-adaptive scheme you have 
to assemble a matrix and solve a linear equation system, while you have to calculate the non-
linear parameters and their derivates only once for each time step. So the cost reduction 
depends on the number of iterations necessary (if it is always one iteration, there is no cost 
reduction at all) and on the relative computational cost of nonlinear parameter evaluation 
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compared to assembly and solution of the linear equation system. Why should this result just 
in this simple formula?  

 We assume that the computational costs are depending on the time required to 
compute the non-linear parameters and the time required to solve the system of equations i.e. 
Nparam, the number of calls of the subroutine which computes the parameter values and Nsol 
the number of calls to solve the equations. For the standard approach, Nparam is equal to 
Nsol. So we have computational costs that are equal to 2Nsol for the standard approach and 
(Nsol+Nparam) for the time adaptive scheme. This is why we used Nsol for the standard 
approach and (Nsol+Nparam)/2 for the time adaptive scheme.  

 We added a sentence in the text (L362). 

  

 figure 4, 6 and 8: for the two saturation-based schemes which allow the highest 
precision in all three scenarios, there is often a reduced increase of precision with costs at high 
precision. This could be a hint that the spatial resolution was not high enough and that in this 
cases the spatial discretisation error became relevant. I would thus not agree with the 
conclusions in line 368-371.  

 We agree on the reduced increase of precision and we do not have any clear 
explanation. The grid size is the same for all schemes, so we assume that the error due to the 
spatial discretization is the same for all schemes. 

 We redo the computation of TC1 with a spatial discretization two times finer and 
relative tolerances of 10-4 and 10-5. The differences could not be seen on the profile (see figure 
below obtained for a tolerance of 10-5). Therefore, we disagree with the reviewer’s statement; 
the spatial discretization is high enough. 

  

  

 figure 4, 6 and 8: there is something strange with all the figures. While in the tables 
there are only values for four precisions given, there are always six points in the figures for 
the truncation based algorithms but only four points for all other algorithms. This does not 
make sense.  
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 Tables with too many numbers are boring. We provide more point in figures to better 
underline the trends which are difficult to see in tables. It is explained L332-L333 in the initial 
manuscript. 

  

 line 342-348: As both stopping criteria for the non-linear iterations are not very 
adequate and a condition based on the reduction of non-linear defect should be used, I will not 
comment on the comparison of this non-adequate criteria.  

 The criteria are quite popular and, for our examples, more restrictive than residual 
based stopping criteria. We add some comments L299-L302. 

  

 line 372-375: I do not agree with the last statement. As the saturation based time 
stepping TA_S already produced the same precision when a precision of 10-4 was demanded, 
it also had a comparable efficiency with the truncation error based algorithm for this case. The 
only problem was, that the error was not reduced with the higher precision, probably linked to 
a not fine enough spatial grid. A not mentioned point is, that for the saturation based time step 
control, there was a linear decrease of the error with the specified precision, whereas this was 
more erratic for the truncation based time step control. 

 As already mentioned, it is not a problem of spatial discretization.   

 We mentioned the linear decrease L409-L412. 

  

 line 398-401: I do not understand this statement. After all, the algorithm did compute a 
solution, so why was the time step too long for reaching convergence? And if it did not reach 
convergence, how could it calculate the next time steps?  

 We revised figure 7 and changed the text accordingly. There was some mixed up use 
of the data files. We checked all computations and dataset. Thanks for pointing out this error. 
We changed the comments (L432-442). 

  

 line 405-407: Actually, the first two scenarios also had a step change of boundary 
conditions at the beginning and thus a "non-monotonic" change of boundary conditions. Thus 
this is not really completely different  

 Table 2 clearly indicates that the boundary conditions are not changing in time for the 
first two scenarios.  

  

 line 410: "to avoid a too rough discretisation of the upper boundary conditions": did 
you make sure that the times at which the boundary condition changed where reached 
exactly? If you did not do this, you get unnecessarily wrong solutions. This is not a question 
of the time stepping strategy, but of common sense and not difficult to implement. As I do not 
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know if this was done, I am not going to discuss the further results of test case 3.  

 The upper boundary fluxes change with a time step of 1 day (see Fig. 9). To well 
describe this time varying boundary conditions, we fixed the maximum time step length to 0.2 
day.  

 For a given time, the boundary conditions are linearly interpolated. We explained this 
issue more properly L451-L455. 

  

 line 447-449: this also means that most of the algorithms are not really suitable for 
error control. The relation between specified precision and obtained error is not linear for 
most of the algorithms.  

 We agree.  

  

 line 450-452: This is a trivial remark as a locally mass conservative discretisation 
scheme is used. It would be different for e.g. standard finite-elements as used in Hydrus.  

 It is trivial for the experts and it would not be different for finite elements schemes 
which also preserve mass if the mass balance is computed consistently with the method i.e. on 
the dual mesh. 

  

 line 453-456: What should really be implemented is a convergence condition based on 
a reduction of the non-linear residual.  

As stated previously, the stopping criteria we used are more restrictive. 

  

 line 457-460: This should be formulated much clearer: The time-adaptive algorithm 
with the truncation based time-stepping condition did fail to produce accurate results for 
almost all test cases and converged to the wrong result in the first test cases. Thus it is useless. 
I would not expect that this will change for 2D or 3D problems. With the saturation-based 
time-stepping, the time-adaptive algorithm was overall comparable to the standard iterative 
approach. However, it always was rather costly at high precision, where the time steps are 
small and thus the number of iterations per time step was also small. Thus the advantage of 
not calculating the non-linear parameters did not pay off. This also should be similar for 2D 
and 3D calculations. 

 Time adaptive performed quite well for the test TC2 (see fig. 6). The difference 
between our 1D and 2-3D calculations is of course the number of elements and therefore the 
number of time the parameters have to be computed. Therefore, for a given accuracy, the time 
adaptive algorithm might be more efficient. We re-wrote the conclusion (L494-L525).  

  

 line 462-468: I still do not get, why the time truncation error should be a relevant 
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stopping condition for the non-linear iterations within one time step. Obviously the maximal 
change of the potential alone is not a reasonable condition, as it is linked to the fluxes and 
saturation changes via highly non-linear functions. 

 Our study shows that the time truncation error is a relevant criterion. The three test 
cases that we have done show the relevance of the algorithm that uses the time truncation 
error. 

 We re-wrote the conclusion (L494-L525).  
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ABSTRACT 

The solution of the mathematical model for flow in variably saturated porous media described 1 

by Richards equation (RE) is subject to heavy numerical difficulties due to its highly non-2 

linear properties and remains very challenging. Two different algorithms are used in this work 3 

to solve the mixed-form of RE: the traditional iterative algorithm and a time-adaptive 4 

algorithm consisting of changing the time step magnitude within the iteration procedure while 5 

the non-linear parameters are computed with the state variable at the previous time.the state 6 

variable is kept constant. The Ross method is an example of this type of scheme, and we show 7 

that it is equivalent to the Newton-Raphson method with a time-adaptive algorithm.  8 

Both algorithms are coupled to different time stepping strategies: the standard heuristic 9 

approach based on the number of iterations and two strategies based on the time truncation 10 

error or on the change of water saturation. Three different test cases are used to evaluate the 11 

efficiency of these algorithms.  12 
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The numerical results highlight the necessity of implementing two types of errors: the 13 

iterative convergence error (maximum difference of the state variable between two iterations) 14 

and an estimate of the time truncation errors. The algorithms using these two types of errors 15 

together were found to be the most efficient when highly accurate results are required. 16 

 17 

Key words: Unsaturated flow, Newton-Raphson, Time stepping 18 

 19 
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1. Introduction 20 

Water movement in soils is one of the key processes in the water cycle since it contributes to 21 

the renewal of groundwater resources through recharge, to vegetation growth through 22 

transpiration, to soil fertility through salinization/alteration and to atmospheric humidity 23 

through evaporation and transpiration. Water movement is usually modeled using the 24 

Richards equation (Richards, 1931), which is now commonly adopted for many studies in soil 25 

science and/or hydrology, including the use of physically based hydrological models applied 26 

to large-scale catchments and for long time simulations (e.g., for climate change studies). 27 

However, this equation is highly nonlinear and despite numerous efforts over the last 40 28 

years, its numerical solution requires much computational time.  29 

Assuming a rigid solid matrix, the Richards equation (RE) is given by, 30 

 

 
0

( )

w

r

S s f
t t

k z

 

 

       
    

q

q K

  (1) 31 

where θ is the volumetric water content [L3/L3], Sw is the water saturation [-], s0 is the specific 32 

storage coefficient accounts for fluid compressibility [L-1],   is the pressure head [L], q is the 33 

water flux based on the extended Darcy’s law [L/T], t is the time [T], z is the vertical 34 

coordinate (positive upward) [L], f is the sink/source term [T-1], K is the saturated hydraulic 35 

conductivity tensor [L/T] and ( )rk   is the relative hydraulic conductivity [-]. The model 36 

includes initial and boundary conditions of the Dirichlet (prescribed pressure head) or 37 

Neumann (prescribed flux) type. 38 

Equation (1) is also called the mixed form of RE. Two alternative formulations of the mixed 39 

form exist for RE.  40 

The pressure form is defined by: 41 

Code de champ modifié
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where  C







 is the specific moisture capacity [L-1], and the soil moisture form that is 43 

restricted to unsaturated conditions is defined by: 44 
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where ( ) ( )r

d
k

d

 


D K  is the pore water diffusivity [L2/T]. 46 

Constitutive relations are required to solve RE. For the pressure-water content relationship, 47 

the most common model is the Van Genuchten model (van Genuchten, 1980): 48 
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 (4) 49 

where 1 1/m   , wS  is the effective saturation, r  and s  are the residual and saturated 50 

volumetric water content respectively,   and   are experimentally estimated coefficients. 51 

This model is usually associated with Mualem model (Mualem, 1976) for the relative 52 

permeability of the aqueous phase: 53 
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 (5) 54 

A summary of the most popular relations can be found in Belfort et al. (2013). 55 

Due to the strong heterogeneities of the unsaturated zone and nonlinearities in the constitutive 56 

relations (Eq. (4)(4) and (5)(5)), analytical solution of RE does not exist except in special 57 

Code de champ modifié
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cases (Celia et al., 1990; van Dam and Feddes, 2000). Therefore, numerical methods such as 58 

finite difference (Feddes et al., 1988; Romano et al., 1998; van Dam and Feddes, 2000), finite 59 

element (Gottardi and Venutelli, 2001), and mixed finite element (Bause and Knabner, 2004; 60 

Bergamaschi and Putti, 1999; Fahs et al., 2009; Farthing et al., 2003) are used to solve RE.  61 

Iterative methods based on the Picard (fixed point) or Newton-Raphson approach (Lehmann 62 

and Ackerer, 1998; Paniconi and Putti, 1994) are the most popular techniques for solving this 63 

highly nonlinear equation. Alternative iterative methods are based on transform formulations 64 

(Crevoisier et al., 2009; Ross and Bristow, 1990; Williams et al., 2000; Zha et al., 2013) or 65 

the method of lines (Fahs et al., 2009; Matthews et al., 2004; Miller et al., 1998; Tocci et al., 66 

1997).  67 

Adaptive time stepping strategies based on time truncation error control were found to be 68 

superior to others approaches (Hirthe and Graf, 2012; Kavetski et al., 2001; Tocci et al., 69 

1997). The Method of Lines using the DASPK integrator was applied to the Richards’ 70 

equation by Matthews et al. (2004), Miller et al. (1998), Tocci et al. (1997) among others. The 71 

Method of Lines consists of discretization of the spatial part of the PDE only, leading to a 72 

system of ordinary differential equations. It has been found to be significantly more efficient 73 

than other temporal discretizations (Miller et al., 2006). However, Kavetski and Binning 74 

(2002b) reported difficulties in obtaining convergence for the DASPK solver associated with 75 

an arithmetic mean of inter-block conductivities for the most difficult problem addressed by 76 

Miller et al. (1998).  77 

Additionally, very few non-iterative schemes have been developed (Kavetski and Binning, 78 

2004, 2002a; Paniconi et al., 1991).  79 

 80 
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Despite the many existing numerical methods, solution of the RE is still a challenging 81 

research topic with many remaining questions about reduction of the computational time, 82 

treatment of nonlinearities, and improvement of the accuracy of these methods for difficult 83 

problems such as infiltration in very dry soils (Diersch and Perrochet, 1999; Forsyth et al., 84 

1995; R. G. Hills, 1989). The need of efficient algorithms for solving this equation has 85 

increased during the last decades because it has been recognized that explicit modelling of 86 

flow in the unsaturated zone has to be implemented in Land Surface Models (Vergnes et al., 87 

2012). In their recent review of land surface models, Clarke et al. (2015) push for a 88 

mechanistic modelling of the flow in soils. They consider that the implementation of the 89 

mixed form of the Richards equation is an improvement of the modeling of soil moisture 90 

variations. They also underline the need of efficient algorithms for solving the RE to allow the 91 

implementation of stochastic approaches and/or automatic parameter estimations.  92 

In this study, we analyzed the performance of different algorithms based on the Newton-93 

Raphson method since the classical Picard scheme has been found less efficient (Lehmann 94 

and Ackerer, 1998). Applied to the soil moisture form of the RE equation, we demonstrate 95 

that the recently developed Ross method (Ross, 2003; Crevoisier et al., 2009; Zha et al., 2013) 96 

is equivalent to Newton-Raphson method (section 2). A detailed presentation of the Newton-97 

Raphson method applied to the mixed form or RE is given in section 3. The standard Newton-98 

Raphson algorithm is based on the computation of the corresponding matrices in an iterative 99 

way by updating the parameters until convergence. An alternative algorithm has been 100 

suggested more recently where the parameters are kept unchanged within one time step and 101 

the time step is adapted to reach convergence. This algorithm has been applied to the 102 

pressure-based form of RE by Kavetski and Binning (2002a) and to the soil moisture form by 103 

Crevoisier et al. (2009), Ross (2003), Zha et al. (2013). Although this algorithm is called “non 104 

iterative” because the parameters are not updated during the calculation, iterations may be 105 
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necessary to adapt the magnitude of the time step. Therefore, in the following, we will refer to 106 

the usual algorithm as “iterative” and to the alternative algorithm as “time-adaptive”. To our 107 

knowledge, this alternative algorithm has never been applied to the mixed form of RE. 108 

Section 4 is dedicated to both algorithms and to the time stepping strategy used for solving 109 

RE. Finally, in section 5, the numerical accuracy and robustness of the algorithms applied to 110 

the mixed-form of RE are evaluated using three different test cases.  111 

 112 

2. The Ross method and the Newton-Raphson method 113 

The moisture-based formulation is applicable in unsaturated conditions only and is prone to 114 

numerical difficulties in the case of heterogeneous soils, explaining the reduced attention 115 

directed to this formulation. However, discontinuous water content can be handled by adapted 116 

schemes and moisture-based formulation appears to be very accurate for initially dry 117 

conditions (Zha et al., 2013, 2015).  118 

Ross (2003) suggested a non-iterative formulation that has been recently extended to different 119 

soil conditions (Crevoisier et al., 2009; Varado et al., 2006a) and to two and three dimensions 120 

(Zha et al., 2013).  121 

In its initial one-dimensional finite-volume formulation and for a volume (cell) i, the Ross 122 

method (Ross, 2003) is based on the following set of equations: 123 

     1 1
, ,

n n n n
i i s i r i i i

z z
S S q q

t t
     
 

 
     

 
 (6) 124 

with: 125 

 

   

   

1 1
1 1

1

1 1
1 1

1

n n
n n n n ni i

i i i in n
i i

n n
n n n n ni i

i i i in n
i i

q q
q q S S S S

S S

q q
q q S S S S

S S









 
   



 
   



      
               


                    

 (7) 126 

where 1n
iS  is the water saturation at cell/node i at time (n+1), q  (resp. q ) is the water flux 127 

between cell i and (i-1) (resp. i+1) at time  , 0,1nt t t    
 

and z  is the size of the 128 

cell i. ,s i  is the saturated water content and ,r i  is the residual water content. For simplicity, 129 

we assume here that all cells are of the same size. 130 
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The previous mass balance equation (6) leads to the following equation for cell i: 131 

 

     

 

1 1
1 1 , ,

1

1
1 1

1

n n n
n n n n
i i s i r i i in n n

i i i

n
n n n n
i in

i

q q qz
S S S S

S t S S

q
S S q q

S

 


   
 




   



         
                         

 
     

 (8) 132 

 133 

The Newton-Raphson method was initially developed as a root-finding algorithm of an 134 

arbitrary equation that has been generalized for solving a system of non-linear equations. 135 

Applied to the soil moisture form of the RE and using an implicit scheme, the NR consists in 136 

defining a residual based on the mass balance equation (Eq. (6)) at iteration k for time step 137 

n+1 and for cell i written as: 138 

   1, 1, 1, 1,
, ,

n k n k n n k n k
i s i r i i i

z
R S S q q

t
    

 


    


 (9) 139 

where 1,n k
iR   is called the residual.  140 

The NR consists in computing the solution at iteration k+1 by estimating the residual of the 141 

next iteration 1, 1n k
iR    using a first order Taylor development and setting it equal to zero as: 142 

  
1,

1, 1 1, 1,
1,

0
n k

n k n k n ki
i i in k

R
S S R

S


   

   


 (10) 143 

 144 

The derivatives of this residual are: 145 

  

1, 1,

1, 1,
1 1

1, 1, 1,

, ,1, 1, 1,

1, 1,

1, 1,
1 1

n k n k
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i i i
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

 
 

  
 

  

 


 
 

 
  

         
  
 

 (11) 146 

 147 

which leads to the following set of linear equations: 148 
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     

    
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   
   
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

 
   

 

  


 (12) 149 

 150 

For the first iteration, we have  
1, 1 1  n k n

i iS S  and 
1, n k n

i iS S , and therefore : 151 

 

     
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1 1
1 1

1

1
1 1
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n n n
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 
 




  

 
  

  
   
   














 

 (13) 152 

 153 

Whatever the formulation of the fluxes q (as a function of the pressure (see eq. A1) or the 154 

water content, expressed by Kirchhoff transform as in Ross (2003) or not), the implicit Ross 155 

method (eq. (8) with 1)  ) is equivalent to the first iteration of the Newton-Raphson 156 

method (eq. (13)).  157 

 158 

3. Newton Raphson method for the mixed form Richards’ equation 159 

Because the pressure-based formulation does not ensure mass conservation - except for the 160 

approximation provided by Rathfelder and Abriola (1994) - and due to the limitations of the 161 

moisture-based formulation (see previous section), the mixed formulation has been widely 162 

used since the work of Celia et al. (1990).  163 

The mixed form of the Richards equation given by equation (1) is rewritten as: 164 

  0 ( )w rS s k z f
t t

    
      

 
K  (14) 165 

and is discretized by: 166 

 
1, 1 1, 1

1, 1, 1 1, 1,
1 1

n k n n k n
n k n k n k n k

n nt t

   
    

 

 
  

 
A B

θ
E F

ψ ψ θ
ψ  (15) 167 

where A is the discretized form of the divergence term, B and E are the discretized forms of 168 

the storage terms and F is the discretized form of the sink/source term and the boundary 169 
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conditions, n is the time step and k the iteration counter. 1 nt  is the time step magnitude 170 

defined by 1 1   n n nt t t . Matrices A, B, E and vector F depend on the numerical scheme 171 

used for the spatial discretization. The implicit scheme is applied for the spatial discretization. 172 

For the Newton-Raphson method, the residual is defined now by: 173 

 

1, 1,
1, 1, 1, 1,

1 1
1,( )

n k n n k n
n k n k n k n k

n
k

n
n

t t

 
   

 
  

 


 


ψ ψ θ θ
R ψ A E Fψ B  (16) 174 

and its derivatives are: 175 

1, 1, 1, 1,
1 1, 1,

1, 1 1, 1

1, 1,

1 1, 1,
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n k n k n k n k n

n k n k
n k n n k n

n k n k

n n k

n

n

k

k

t t

t

   
 

  




 

  

  
  
   

 
 
  


A B B

A

E

ψ ψ
R ψ ψ

ψ ψ

θ

ψ ψ

F  (17)
 176 

Looking for 1, 1n k ψ  such as 1, 1( ) 0n k  R ψ , the system to solve is similar to Eq. (10): 177 

 1,1, 1 1,'( () )n kn k n k    R ψ ψ R ψ  (18) 178 

with 1, 1 1, 1 1,n k n k n k      ψ ψ ψ . 179 

 180 

The NR formulation is also used for the non-iterative scheme by applying only one NR step 181 

per time step, with 1 1,1n n ψ ψ  where 1,0n n ψ ψ  (Paniconi et al., 1991; Zha et al., 2015). 182 

 183 

4. Algorithms and time stepping strategy 184 

The usual algorithm used to solve RE consists in defining a time step that remains constant 185 

and to iteratively compute the parameters and variables in the following way: 186 

For a given time step n 187 

- Define the time step length 1nt   depending on the time stepping strategy. 188 

- Initialization of the iterative process by setting 1,1n n ψ ψ .  189 

do k=1, maxit 190 
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1. Computation of the variable 1,n kθ , the parameter 1,n kK and their derivatives 191 

1,

1,

n k

n k

d

d





θ

ψ
,

1,

1,

n k

n k







K

ψ
using 1,n kψ . 192 

2. Computation of the system matrix 'R  and the residual R . 193 

3. Computation of the system solution 1, 1n k ψ . 194 

4. Check convergence. If convergence is achieved, exit. 195 

enddo 196 

Next time step 197 

where k is the iteration counter and maxit the maximum number of iterations. 198 

 199 

The time-adaptive algorithm consists in calculating the non-linear parameters with the 200 

pressure heads computed at time step n and adapting the time step length.of keeping the 201 

pressure head constant and changing the time step length. The algorithm is described by the 202 

following: 203 

 204 

For a given time step n 205 

- Computation of the variable nθ , the parameter nK and their derivatives 206 

n

n

d

d

θ

ψ
,

n

n



K

ψ
using nψ . 207 

do k=1, maxit 208 

1. Define a time step 1,n kt   depending on the time stepping strategy. 209 

2. Computation of the system matrix 'R  and the residual R . 210 

3. Computation of the system solution 1, 1n k ψ . 211 

4. Check convergence. If convergence is achieved, exit. 212 

enddo 213 

Next time step 214 

 215 

The main advantage of the alternative algorithm is its avoidance of the computation of the 216 

variable θ , the parameter K and their derivatives 
d

d

θ

ψ
 and 



K

ψ
 during the iterations. Due to 217 
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the highly nonlinear relations between θ , K , 
d

d

θ

ψ
, 


K

ψ
 and the pressure, this computation 218 

may require significant CPU time. 219 

 220 

The most popular time step management during the simulation is that of the heuristic type 221 

(Miller et al., 2006). The time step 1 nt  is computed depending on  nt  and the number of 222 

iterations k necessary to reach convergence in the following way: 223 

 

1
1 1 1

1
1 2

1
2 2 2

1 0

1 0







     
     
     

n n

n n

n n

if k m t k t k .

if m k m t t

if m k t k t k .

 (19) 224 

 225 
where k1, k2, m1, m2 are user-defined constants.  226 

Other heuristic time step management procedures have been suggested by Kirkland et al., 227 

(1992) based on the water volumes exchanged between the adjacent cells of the grid and by 228 

Ross (2003), where the time step size is controlled by the maximum allowed change in the 229 

saturation.  230 

For the Ross method, the fluxes are computed first and the time step magnitude is calculated 231 

accordingly using 232 

 

 

1

max

n max

n n
,i ,i

i
i s ,i r ,i

S
t

q q

z  



 


 

 
 
   

 (20) 233 

where maxS  is the user-defined maximum allowed saturation change. After the computation 234 

of the actual change in the saturation S , the time step is modified if the maximum of the 235 

actual computed change exceeds    1 i imax S  , where   is a user-defined value, 236 

according to: 237 

  
1 1 1

max
n ,k n ,kmax

i i

S
t t

S
  

  


 (21) 238 

and the system of equations is solved again. More details about handling the fluxes at 239 

boundaries and saturated conditions can be found in Crevoisier et al. (2009), Ross (2003) and 240 

Varado et al. (2006b). 241 

 242 

Adaptive time stepping strategies based on time truncation error control were found to be 243 

superior to others approaches (Hirthe and Graf, 2012; Kavetski et al., 2001; Tocci et al., 244 
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1997). The Method of Lines using the DASPK integrator was applied to the Richards’ 245 

equation by Matthews et al. (2004), Miller et al. (1998), Tocci et al. (1997) among others. The 246 

Method of Lines consists of discretization of the spatial part of the PDE only, leading to a 247 

system of ordinary differential equations. It has been found to be significantly more efficient 248 

than other temporal discretizations (Miller et al., 2006). However, Kavetski and Binning 249 

(2002b) reported difficulties in obtaining convergence for the DASPK solver associated with 250 

an arithmetic mean of inter-block conductivities for the most difficult problem addressed by 251 

Miller et al. (1998).  252 

The adaptive scheme used in this work evaluates the time steps through truncation error due 253 

to the temporal discretization as proposed by Thomas and Gladwell (1988). This scheme was 254 

already applied to the pressure-based formulation by Kavetski et al. (2001) and to the 255 

moisture-based formulation by Kavetski and Binning (2004).  256 

The difference between the first-order and second-order time approximations can be 257 

considered as an estimate of the local truncation error of the first-order scheme. The first-258 

order approximation is given by: 259 

 

1 1
(1)
  
  



n
n n nt

t

ψ
ψ ψ   (22) 260 

The second-order approximation is: 261 

 

 

 

2
21 1 1

(2) 2

1
1

1

2

1

2

  




 
    

 
  

      

n n
n n n n

n n
n n

t t
t t

t
t t

ψ ψ
ψ ψ

ψ ψ
ψ

 (23) 262 

using 
1 2

1
2


  

  
  

n n n
nt

t t t

ψ ψ ψ
. 263 

This truncation error is given by: 264 
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 
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 
  

 

 (24) 265 

When the truncation error is smaller than γ, the temporal truncation error tolerance defined by 266 

the user, the size of the next time step is calculated by: 267 

 

1
max1

min ,
max( , )

n n
n
t

t t s r
EPS







 
     

 
 (25) 268 

When the truncation error is superior tolarger than γ, the computation is repeated with a 269 

reduced time step defined as following: 270 

 

min1
max ,

max( , )
n n

n
t

t t s r
EPS


 

 
     

 
 (26) 271 

where rmax and rmin are user-defined constants used to avoid too drastic changes of the time 272 

step. s is considered to be a safety factor that ensures that the time step changes are 273 

reasonable. EPS is used to avoid floating point errors when the truncation error becomes too 274 

small.  275 

 276 

5. Evaluation of the algorithms’ performance 277 

We applied the NR method to the mixed form of RE using the standard iterative algorithm 278 

and the time-adaptive algorithm. A cell centered finite volume scheme for the spatial 279 

discretization with an implicit Euler-scheme for the temporal discretization has Implicit 280 

standard finite volumes have been used to solve the partial differential equation and 281 

arithmetic means are used to compute the inter-block hydraulic conductivity. The detailed 282 

discretizations of the matrix 1,'( )n kR ψ  and the vector 1,( )n kR ψ  (see Eq. (18)) are given in 283 
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Appendix 1. The time-adaptive algorithms have been applied as described by the authors: 284 

Ross (2003) for the time stepping based on the saturation changes and Kavetski et al. (2001) 285 

for the time stepping based on the truncation errors. 286 

For the standard iterative algorithm, we defined two types of errors to check the convergence: 287 

the error based on the maximum change of the state variables between two iterations defined 288 

by 1, 1 1,max n k n k
i i i       and the truncation error t defined by Eq. (24). Convergence is 289 

assumed to be achieved when: 290 

 1, 1
, ,

n k
a r imax          (27) 291 

where ,a  and ,r  are the absolute and relative user-defined tolerances and 1, 1n k
imax    is the 292 

pressure corresponding to   and when: 293 

 1, 1
, ,

n k
t t a t r imax        (28) 294 

where ,t a  and ,t r  the parameters have the same meaning as those for the previous criterion 295 

but 1, 1n k
imax    represents the pressure value corresponding to t . 296 

The tested algorithms are summarized in Table 1. Computations of all possible combinations 297 

for the standard iterative scheme have been performed. We present only the four most 298 

efficient algorithms. We also analyzed convergence based on the non-linear residual. It was 299 

found less restrictive than the previous criteria. Due to the definition of the NR method, the 300 

residual tends to zero but it does not ensure a small value of  . Therefore, the results related 301 

to the reduction of the non-linear residuals are not reported. 302 

We investigated three one-dimensional problems with various initial and boundary conditions 303 

and hydraulic functions to assess the accuracy, efficiency and computational costs of the 304 
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different algorithms. The selected test cases represent a range of difficult infiltration problems 305 

widely analyzed in the literature:  306 

- TC1: infiltration in a homogeneous initially dry soil with constant prescribed pressure 307 

at the surface and prescribed pressure at the bottom (Celia et al., 1990); 308 

- TC2: infiltration in a homogeneous soil initially at hydrostatic equilibrium with a 309 

prescribed constant flux at the soil surface and prescribed pressure at the bottom 310 

(Miller et al., 1998); 311 

- TC3: infiltration/evaporation in an initially dry heterogeneous soil, with variable 312 

positive and negative fluxes at the surface and free drainage at the base of the soil 313 

column (Lehmann and Ackerer, 1998). 314 

For the three test cases, the soil hydraulic functions were described by Mualem-Van 315 

Genuchten models (Mualem, 1976; van Genuchten, 1980), see Eq. (4)(4) and (5)(5).  316 

The required parameters, boundary conditions and initial conditions are summarized in Table 317 

2. The evolution of the relative hydraulic conductivity, the water saturation and the specific 318 

moisture capacity with respect to the pressure values are shown in Figures 1, 2 and 3, 319 

respectively. For TC1, the pressure will vary from -1000 cm to -75 cm only due to the 320 

specific conditions of this test case. Therefore, the parameter variations are smaller than those 321 

for the other test cases. Since the parameters’ variations are more abrupt for test cases 2 and 3, 322 

their solutions are more challenging. 323 

Preliminary tests were performed to define the optimal spatial discretization i.e. a finer spatial 324 

discretization provided very similar results for a given convergence criterion and a given time 325 

stepping strategy. Therefore, Wwe can assume that the errors are only originated from the 326 

time step size and the linearization. 327 

The following criteria were used for the time stepping strategy: 328 
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- k1=0.80, k2=1.20, m1=5, m2=10, which are the usual values for the heuristic strategy 329 

defined by Eq. (19)(19); 330 

- rmin=0.10, rmax=4.0,s=0.9, EPS=10-10, which are the standard values for the time 331 

stepping scheme based on time discretization error defined by Eq. (26)(26) (Kavetski 332 

et al., 2001); 333 

To perform a consistent comparison of the time step strategies, the maximum allowed change 334 

in saturation (see equation (20) and (21)) has been evaluated using the maximum change in 335 

the pressure, according to the following relationship: 336 
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 (29) 337 

The simulations have been performed using different values of r  and with 0 0a .  . 338 

 339 

We used several criteria to evaluate the performance of these codes. A typical error used in 340 

solving RE is the global cumulative mass balance error defined by:  341 
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  (30) 342 

where iz  is the size of the cell/element i, 1n
i
  is its water content at time n+1t , 0

i  is the 343 

initial water content, and k
inq  and k

outq  are the inflow and outflow, respectively, at the domain 344 

boundaries at time tk. M is the number of cells/elements. The fluxes at the boundaries are 345 

defined by  11

2
k k kq q q   . The mass balance errors were checked for each runs but were 346 

found to be negligible since we solved the mass-conserving RE form. 347 
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While it is necessary to satisfy the global mass balance for an accurate numerical scheme, a 348 

low mass balance error is not sufficient to ensure the accuracy of the solution. Therefore, 349 

solutions have also been compared with the reference solution obtained using a very fine 350 

temporal discretization and the iterative Newton-Raphson method. This comparison is based 351 

on the average relative error defined by: 352 
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   (31) 353 

where M is the number of cells, refψ  is the reference solution and ψ̂  is the tested numerical 354 

solution. 1  represents the average absolute relative error (called L1-norm in the following), 355 

2  is the average quadratic error (L2-norm) and   is the highest local relative difference 356 

between the numerical and the reference solutions (L-norm).  357 

Since the time-adaptive algorithm does not require the computation of the parameters and 358 

their derivatives during the iterative procedure, we use Nsol to denote the number of times 359 

where the system of equations is solved and Nparam to denote the number of times where the 360 

parameters are computed. Of course, these counters are equal to each other for the standard 361 

algorithm, which leads to computational costs depending on 2Nsol.and Nparam is less than Nsol 362 

for the time-adaptive algorithm. For comparison purposes, the computational costs are 363 

estimated by Nsol for the standard algorithm and by (Nsol +Nparam)/2 for the time-adaptive 364 

algorithm. The efficiency of the algorithms have been evaluated by comparing the 365 

computational costs for a given relative tolerance r . The errors are presented in the tables 366 

and the figures. The figures show some additional results not listed in the tables that already 367 

contains much information. 368 

 369 
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TC1: Infiltration in a homogenous soil with constant boundary conditions 370 

This test case simulates an infiltration into a homogeneous porous medium. This problem is 371 

addressed here because it has been widely analyzed previously by many authors like 372 

Bouchemella et al. (2015), Celia et al. (1990), El Kadi and Ling (1993), Rathfelder and 373 

Abriola, (1994), Tocci et al. (1997), among others. The computations were performed with a 374 

spatial discretization of 0.1 cm. The initial time step size was set to 1.0 10-5 s, and the 375 

maximum time step size was set to 400 s.  376 

The results for the iterative and time-adaptive algorithms are presented in Tables 3 and 4, 377 

respectively. When both convergence criteria are used (algorithms SH_t and 378 

SS_t), Ntrunc represents the number of times where the truncation error is the most 379 

restrictive condition. For the heuristic time stepping schemes, the convergence is mostly 380 

linked to the truncation error (Ntrunc is close to Nsol), whereas when the saturation time 381 

stepping scheme is used, the most restrictive criterion is the maximum difference in the 382 

pressure.  383 

When the time stepping scheme is based on saturation, for both iterative and time-adaptive 384 

algorithms, the number of iterations required to solve the problem is proportional to the 385 

relative tolerance. Therefore, highly accurate solutions incur high computational costs.  386 

For the time-adaptive scheme, the number of parameter changes Nparam is close to the number 387 

of iterations for low tolerance values. Small tolerance values lead to small time steps, 388 

avoiding time step adjustments. This is not the case for larger tolerance values that lead to 389 

larger time steps and therefore to additional iterations (see for example TA_T for the 390 

tolerance of r =10-2 – Table 4). 391 

The three types of errors provide the same information. The best solution for one type of error 392 

is also the best solution for the two others. 393 
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On average, the iterative algorithm is faster than the time-adaptive algorithm that requires 394 

more iterations for a given error. This is also shown in Figure 4 that presents the convergence 395 

rate of the L2-norm with respect to the computational costs, i.e., the number of iterations or 396 

number of iterations and number of parameter changes. The time-adaptive algorithm with 397 

time stepping based on the truncation errors performs quite poorly compared to the other 398 

algorithms. Irrespective of the tolerance, this algorithm leads to a wetting front moving faster 399 

(Fig. 5).  400 

When the relative tolerance is set to a very low value ( r =10-5), the iterative scheme with 401 

time stepping based on the saturation changes shows behavior that is different from that found 402 

for the less restrictive tolerance. The criterion based on truncation errors is no longer 403 

significant (Ntrunc=252), possibly explaining why the accuracy of the scheme remains 404 

constant. This also indicates that errors due to time discretization have to be handled, either in 405 

the convergence criterion or in the time stepping strategy. 406 

For this test case, the most efficient algorithms are the iterative algorithms using the time 407 

stepping strategy based on truncation error (ST_or based on the saturation changes 408 

(SS_t. Saturated based time stepping strategies (SS_t and TA_S) shows a linear 409 

decrease of L2 with computational costs., except for the case of For very high precision (L2< 410 

10-4), where ST_outperforms the other algorithms. No convincing explanation has been 411 

found for the insignificant change in accuracy for SS_t at high precision. . 412 

 413 

TC2: Infiltration in a homogenous soil with hydrostatic initial conditions 414 

This test case models an infiltration in a 200 cm vertical column of unconsolidated clay loam 415 

with non-uniform grain size distribution and was considered by Miller et al. (1998) to be a 416 

very challenging test. This problem was found to be more challenging from the numerical 417 
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point of view compared to TC1 due to the relative permeability function that enhances the 418 

non-linear behavior of Richards’ equation (Fig. 1, 2, 3). The cell size has been set to 0.125 419 

cm, the initial time step to 10-5s and the maximum time step magnitude to 1000 s. 420 

The different norms for the iterative and the time-adaptive schemes are given in Tables 5 and 421 

6.   422 

Investigation of this test case leads to similar qualitative conclusions when the time stepping 423 

scheme is based on the saturation differences (SS_t and TA_S). The standard scheme 424 

SH_ fails to provide an accurate solution within a reasonable number of iterations (less 425 

than 107).  426 

The most efficient methods are the schemes using the time stepping strategy based on 427 

truncation errors (Fig. 6). However, as found for TC1, the adaptive time algorithm TA_T 428 

failed to provide highly accurate results (L2-norm error less than approximately 4.5 10-4).  429 

Figure 7 shows the time step magnitudes for approximately equal L2-norms for the two time-430 

adaptive algorithms and for the iterative algorithm using truncation errors for time stepping 431 

(4.254 10-4 within 3503 iterations for ST_, 4.563 10-4 within 3094 3098 iterations for 432 

TA_T and 4.844 10-4 within 113583 iterations for TA_S). The increase in the time step length 433 

after 10 s is the same, irrespective of the algorithm. For a smaller time, both truncation time 434 

stepping strategies differ for the estimate of the first time step only. The scheme using the 435 

saturation based time stepping is penalized by the poor estimate of the first maximum allowed 436 

saturation change. This leads to the estimate of the first time step magnitude that was too long 437 

for reaching convergence. The time step evolution is very similar for the three strategies: a 438 

linear increase until around 0.1s, followed by a very slow increase until 20-30s and a regular 439 

increase until the end of the simulation. ST_ and TA_T strategies lead to the same time 440 
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steps when time reaches 1s. The time step sizes remain smaller for TA_S which explains the 441 

significant higher number of iterations required to solve this test case. 442 

 443 

TC3: Infiltration/evaporation in a heterogeneous soil  444 

This case study simulates infiltration in an initially dry heterogeneous soil with a succession 445 

of rainfall and evaporations as upper boundary conditions during 35 days. This problem 446 

differs from the two previous cases by the soil heterogeneity and also by the non-monotonic 447 

boundary conditions at the soil surface. It is expected that non-monotonic discontinuous 448 

boundary conditions will increase the difficulty of finding accurate solutions. The soil profile 449 

consists of three 60 cm thick layers. The layers are discretized using cells with the size of 0.10 450 

cm. The prescribed fluxes are changing every day. For a given time, these fluxes are linearly 451 

interpolated. To avoid a too rough time discretization of these boundary conditions, the 452 

maximum time step magnitude has been fixed at 0.20 day. The maximum time step 453 

magnitude is chosen as 0.20 days to avoid a too rough discretization of the upper boundary 454 

conditions. The initial time step is set to 10-5 day. 455 

The relative errors estimated by the iterative algorithms and the time-adaptive algorithms are 456 

presented in Tables 7 and 8, respectively, and are plotted in Figure 8. 457 

The standard iterative scheme fails to converge within the maximum number of iterations 458 

(107) when the tolerance is not sufficiently restrictive. The detailed analyses of the 459 

computation showed that the time step size was quite large compared to the more restrictive 460 

conditions until day 28.0 where the infiltration fluxes were equal to 1.50 cm/day and where 461 

the conditions were near saturation due to the previous infiltration period. This led to a 462 

decrease of the time step to close to the minimum value (10-8 s), causing the procedure to 463 
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stop. More restrictive conditions lead to smaller time steps from the beginning of the 464 

simulation and a better approximation of the solutions during the entire simulation. 465 

The iterative scheme coupled with the truncation based time step strategy showed a 466 

surprisingly unstable behavior for r =10-3. The scheme did not converge for 467 

3 30.96 10 ;1.0410r
     . The results presented in Table 7 and Figure 8 are obtained for 468 

30.90 10r
 . At this stage of our work, we were not able to provide a meaningful 469 

explanation for this effect. 470 

The time-adaptive algorithm with the saturation based time stepping scheme is the most 471 

efficient for an L2-norm greater than 10-4. For more accurate results, the iterative method with 472 

the time stepping strategy using the truncation error must be preferred. The impact of the time 473 

stepping strategy for these two algorithms is shown in Figure 9 for approximately the same 474 

L2-norm (2.051 10-3 within 1283 iterations for TA_S and 1.517 10-3 within 6504 iterations for 475 

ST_). The time step changes is related to the boundary conditions variations as expected. 476 

The strategy based on the saturation variation leads to a longer time step than the strategy 477 

using the time truncation error. This difference can be quite important (see the simulation 478 

between days 25 and 30). The consequences of this difference are a reduced number of 479 

iterations but also a less accurate computation, irrespective of the error norm. 480 

 481 

6. Summary and conclusions 482 

The solution of RE is complex and very time consuming due to its highly non-linear 483 

properties. Several algorithms have been tested for the mixed-form of Richards equation, 484 

including time-adaptive methods. Based on the numerical examples that differ in their 485 
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parameters (level of non-linearity) and in their initial and boundary conditions, the 486 

conclusions and recommendations are: 487 

1. Our numerical developments showed that the method suggested by Ross (2003) in its 488 

implicit formulation can be considered as a Newton-Raphson method with a time-489 

adaptive algorithm. 490 

2. The different algorithms have different convergence rates (accuracy improvement of 491 

the scheme as a function of the computational costs). Therefore, an algorithm can be 492 

very efficient for a given accuracy and less efficient for another level of precision. 493 

However, for these three test cases and in average, the best performance in terms of 494 

efficiency was obtained using a stopping criterion based on truncation error with its 495 

corresponding time step strategy (ST_Similar results were obtained by Kavetski 496 

et al. (2001) for the pressure-based RE and by Kavetski and Binning (2004) for the 497 

moisture-based RE. 498 

3. The mass balance is not a good criterion for the evaluation of the results because the 499 

mixed-form preserves the mass balance, irrespective of the pressure distribution within 500 

the profile.  501 

4. The use of both criteria (  , the maximum variable difference between two iterations, 502 

t the The time truncation error) should be implemented in the numerical codes using 503 

the standard iterative procedure. The use of   the maximum variable difference 504 

between two successive iterations only, which is the case in many numerical 505 

codesusually implemented, does not provide any information about the accuracy of the 506 

time derivative approximation.  507 

5. Our 1-dimensional examples showed that time-adaptive algorithm TA_T is very 508 

sensitive to the type of problem to solve. The time-adaptive algorithm TA_S was less 509 
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efficient than the usual schemes. However, for a larger amount of elements like in 2D 510 

or 3D problems, this conclusion might be different because the time dedicated to the 511 

computation of the parameters can be significant higher, unless tabulated values are 512 

used to evaluate the parameters and the required derivatives. did not show a significant 513 

advantage of the time-adaptive algorithm that avoids the computation of the 514 

parameters for each iteration. However, this may depend on the number of elements 515 

used for the spatial discretization, and this conclusion may be different for 2D or 3D 516 

domains. 517 

 518 

Depending on the type of the problem that must be solved (parameters behavior with respect 519 

to the pressure, time variations of the boundary conditions), the time truncation errors may be 520 

predominant compared to the error corresponding to the pressure changes between two 521 

successive iterations. Therefore, we recommend the use of both types of errors by 522 

implementing the truncation errors either in the convergence procedure (convergence reached 523 

if   and 
t  are smaller than a user’s defined tolerance) the implementation of this stopping 524 

criteria associated with  or in the time stepping strategy as defined by Kavetski et al. (2001). 525 

 526 

 527 
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Section d'équation  1 653 

APPENDIX 1. 654 
 655 

The numerical method used in the paper is implicit standard finite difference. For a cell i of 656 

the grid, the unsaturated flow equation (4) can be discretized in the following way: 657 

 658 
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 (A1) 659 

 660 

where n is the time step, iK  is the inter-block conductivity between cell i and (i-1) defined by 661 
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, iK  is the inter-block conductivity between cell i and (i+1) 662 

defined by 1 1
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1

2i i iz z z       is the distance between the 663 

center of cell (i-1) and i.  1

1

2i i iz z z       is the distance between the center of cell i and 664 

(i+1). 665 
 666 
 667 
The residual is: 668 
 669 
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 671 
where k is the iteration counter.  672 
 673 
The residual derivatives are: 674 
 675 
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 677 
Therefore, the system to solve is: 678 
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 682 
With the following derivatives of the fluxes 1,n k

iq 
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and 1,n k
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 690 
The component of the vector of the residuals R  is given by equation (A2) and the 691 
coefficients of the matrix 'R  for cell i are: 692 
 693 

1, 1, 1, 1,
1

1, 1,
1

1, 1, 1, 1, 1,
1

, 01, 1,

1,

1,

' 1

'

n k n k n k n k
i i i i

i i n k
i i i

n k n k n k n k n k
i i i i i

i i i wn k n k
i i i i

n k
i
n k
i

K K
R t

z z

d K K
R z S s t

d z z

K
t

 


  
 



   
  

 
  

    
  

 
 





   
         

     
                






1, 1, 1,
1

1, 1, 1, 1,
1

, 1 1,
1

1

' 1

n k n k n k
i i i

i i

n k n k n k n k
i i i i

i i n k
i i i

K

z z

K K
R t

z z

 

 


  
 

 

   
  

 
  

  
      

   
         

 (A7)(A1) 694 

 695 

In case of prescribed flux at the upper boundary, the residual is written as: 696 

 697 
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     1, 1, 1, 1
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 699 

Using the derivatives as defined in (A5) and (A6), the matrix coefficients are changed as 700 

follow: 701 
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 704 

If the flux is applied at the bottom of the profile, similar developments lead to the residual:  705 
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and its derivatives 709 
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 712 

If the pressure is described at the top of the soil, the corresponding flux is defined by: 713 
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 716 

And the derivative is: 717 
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 720 

The corresponding residual and the matrix coefficients are: 721 
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 725 

Similarly, if the pressure is prescribed at the soils column’s bottom, we have: 726 

 727 

     1, 1, 1, 1,
0

n k n n k n n k n k
N N N N w N N N N N NR z S s t q q t z f      

 
              (A16)(A1) 728 

and 729 

1, 1, 1, 1,
1

1, 1,
1

1, 1, 1, 1,

, 01, 1,

1,

1,

' 1

' 1
/ 2 / 2

n k n k n k n k
N N N N

N N n k
N N N

n k n k n k n k
N N BC N N

N N N wn k n k
N N N N

n k
N
n k
N

K K
R t

z z

d K K
R z S s t t

d z z

K
t

 


  
 




   
  

 
  

   
 

 





   
         

     
                 






1, 1, 1,
1 1

n k n k n k
N N N

N N

K

z z

  
 

 

  
      

 (A17)(A1) 730 

 731 

The numerical code is written in FORTRAN 90 and is available upon request.  732 
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 Standard iterative algorithm 
Time-adaptive 
algorithm 

 Time stepping Stopping criterion   

 
Heuristic 
(19)(19) 

Truncation 
(25)(25) 
(26) 

Saturation 
(20)(20) 
(21)(21) 

Pressure 
(27)(27) 

Truncation 
(28)(28) 

Truncation 
(25)(25) 
(26) 

Saturation 
(20)(20) 
(21)(21) 

SH_ x   x    
SH_t x   x x   
ST_  x  x    
SS_t   x x x   
TA_T      x  
TA_S       x 

Table 1: Different options of the tested algorithms. Reference to the corresponding equation 
in parenthesis. 

 

 

 L IC 
uBC  lBC  Ks r  s      

TC1 30 -1000.0 75    1000    9.22 10-3 0.102 0.368 0.0335 2.0 

TC2 200 z-200 q=3.7 10-5 0   7.18 10-5 0.095 0.410 0.019 1.31 

TC3 60 -100.0 q(t) q(t)=KM(t) 6.26 10-3 0.0286 0.366 0.028 2.239 

 60 -100.0   1.51 10-4 0.106 0.469 0.0104 1.395 

  60 -100.0     6.26 10-3 0.0286 0.366 0.028 2.239 

Table 2: Domain size (L), initial conditions (IC), boundary conditions at the soil surface 
(BCu) and at the soil bottom (BCl), saturated hydraulic conductivity (Ks), residual and 
saturated water contents ( r , s ) and shape parameters ( , ) for the different test cases. 

KM(t) is the hydraulic conductivity of the last grid cell. 
Length and time units are centimeters and seconds respectively. 

 

Mis en forme : Français (France)

Mis en forme : Français (France)

Mis en forme : Français (France)

Mis en forme : Français (France)

Mis en forme : Français (France)

Mis en forme : Français (France)

Mis en forme : Français (France)

Mis en forme : Français (France)

Mis en forme : Français (France)
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Tol. Algorithm L1 L2 L Ntrunc Nsol 

10-5 

SH_ 1.918 10-3 8.829 10-3 0.106  2177 

SH_t 8.391 10-6 6.459 10-5 8.782 10-4 542371 615880 

ST_ 3.968 10-4 1.045 10-3 3.512 10-3  6160 

SS_t 1.136 10-5 3.406 10-5 2.817 10-4 252 3920446 

10-4 

SH_ 2.557 10-3 1.375 10-2 0.168  1701 

SH_t 7.818 10-5 2.259 10-4 1.593 10-3 170438 194420 

ST_ 1.331 10-3 1.316 10-3 1.181 10-2  1950 

SS_t 8.607 10-6 3.525 10-5 3.899 10-4 154597 392041 

10-3 

SH_ 3.956 10-3 1.166 10-2 0.125  1312 

SH_t 2.320 10-4 7.553 10-4 7.883 10-3 52723 60303 

ST_ 2.241 10-3 5.702 10-3 1.792 10-2  620 

SS_t 6.567 10-5 1.585 10-4 1.453 10-3 9895 39110 

10-2 

SH_ 6.559 10-3 1.716 10-2 0.119  1018 

SH_t 2.224 10-3 7.923 10-3 7.111 10-2 15540 17888 

ST_ 9.954 10-3 2.630 10-2 8.727 10-2   243 

SS_t 8.283 10-4 2.271 10-3 1.478 10-2 862 3804 

Table 3: Relative errors and number of iterations obtained for the iterative algorithm 
depending on different convergence criteria for TC1. 
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Tol. Algorithm L1 L2 L Nparam Nsol 

10-5 TA_T 5.016 10-3 2.376 10-2 0.269 32197 35938 

TA_S 6.152 10-6 2.429 10-5 2.561 10-4 9316700 9322946 

10-4 TA_T 5.598 10-3 2.580 10-2 0.284 10169 11520 

TA_S 2.839 10-5 1.363 10-4 1.654 10-3 931616 938144 

10-3 TA_T 1.524 10-2 7.085 10-2 0.822 3231 4032 

TA_S 2.537 10-4 1.271 10-3 1.568 10-2 93114 100898 

10-2 TA_T 6.241 10-2 0.274 2.459 1023 1402 

TA_S 2.519 10-3 1.224 10-2 0.142 9267 18292 

Table 4: Relative errors and number of iterations obtained for the time-adaptive algorithm 
depending on different convergence criteria for TC1. 



47 

 

 
 

Tol. Algorithm L1 L2 L Ntrunc Nsol 

10-5 

SH_ 6.966 10-3 1.818 10-2 5.878 10-2  573 

SH_t 3.697. 10-4 9.766 10-4 3.332 10-3 53769 59643 

ST_ 1.578 10-4 4.254 10-4 2.451 10-3  3503 

SS_t - - - - n. c. 

10-4 

SH_ 6.966 10-3 1.818 10-2 5.878 10-2  509 

SH_t 6.968 10-4 1.979 10-3 5.726 10-3 16557 18428 

ST_ 5.814 10-4 1.492 10-3 6.711 10-3  1033 

SS_t 3.279 10-6 1.239 10-5 8.603 10-5 0 2474120 

10-3 

SH_ 6.966 10-3 1.818 10-2 5.878 10-2  410 

SH_t 3.699 10-3 9.761 10-3 3.275 10-2 4830 5444 

ST_ 1.553 10-3 4.226 10-3 2.457 10-2  317 

SS_t 2.355 10-5 6.230 10-5 2.341 10-4 0 247426 

10-2 

SH_ 6.892 10-3 1.800 10-2 5.780 10-2  309 

SH_t 9.135 10-3 2.409 10-2 7.925 10-2 376 580 

ST_ 2.756 10-3 1.134 10-2 7.715 10-2  180 

SS_t 2.973 10-4 7.884 10-4 3.252 10-3 0 24757 

Table 5: Relative errors and number of iterations obtained for the iterative algorithm 
depending on different convergence criteria for TC2 (n.c.: non convergence in less than 107 
iterations). 
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Tol. Algorithm L1 L2 L Nparam Nsol 

10-5 TA_T 1.230 10-4 4.563 10-4 3.346 10-3 3089 3098 

TA_S 8.741 10-6 2.308 10-5 7.905 10-5 1136193 1136199 

10-4 TA_T 1.572 10-3 4.497 10-3 2.404 10-2 986 987 

TA_S 2.701 10-5 7.219 10-5 3.095 10-4 113616 113616 

10-3 TA_T 4.707 10-3 1.346 10-2 7.169 10-2 323 323 

TA_S 1.754 10-4 4.844 10-4 2.391 10-3 11358 11358 

10-2 TA_T 5.220 10-3 1.683 10-2 0.101 135 135 

TA_S 1.596 10-3 4.444 10-3 2.243 10-2 1132 1132 

Table 6: Relative errors and number of iterations obtained for the time-adaptive algorithm 
depending on different convergence criteria for TC2. 
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Tol. Algorithm L1 L2 L Ntrunc Nsol 

10-5 

SH_ 9.994 10-3 1.119 10-2 1.554 10-2  1644 

SH_t 6.612 10-4 7.346 10-4 1.116 10-3 171636 190588 

ST_ 6.830 10-4 7.775 10-4 1.648 10-3  16984 

SS_t 7.185 10-5 7.935 10-5 1.297 10-4 197481 1646346 

10-4 

SH_ 6.664 10-3 7.280 10-3 1.033 10-2  1734 

SH_t 3.512 10-3 3.898 10-3 5.811 10-3 57312 63956 

ST_ 1.300 10-3 1.517 10-3 2.412 10-3   6504 

SS_t 5.380 10-5 6.536 10-5 1.010 10-4 41073 186351 

10-3 

SH_ - - -  n.c.  

SH_t 2.625 10-3 2.899 10-3 4.971 10-3 22047 24779 

ST_ 4.730 10-3 5.422 10-3 1.036 10-2   1297* 

SS_t 7.569 10-4 8.820 10-4 1.402 10-3 16474 31276 

10-2 

SH_ - - -  n.c. 

SH_t 5.493 10-3 6.306 10-3 1.171 10-3 7438 8812 

ST_ 6.621 10-3 7.402 10-3 1.042 10-2  810 

SS_t 7.511 10-3 8.780 10-3 1.378 10-2 5838 7535 

Table 7: Relative errors and number of iterations obtained for the iterative algorithm 
depending on different convergence criteria for TC3 (n.c.: non convergence in less than 107 
iterations, * convergence failed for 10-3, r =0.90 10-3). 
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Tol. Algorithm L1 L2 L Nparam Nsol 

10-5 TA_T 9.814 10-3 9.949 10-3 1.286 10-2 8369 8703 

TA_S 7.980 10-5 8.797 10-5 1.472 10-4 1357075 1357160 

10-4 TA_T 1.731 10-2 1.760 10-2 2.748 10-2 2653  2934 

TA_S 1.067 10-4 1.247 10-4 1.997 10-4 135386 135498 

10-3 TA_T 2.922 10-2 3.105 10-2 4.545 10-2 889 1153 

TA_S 1.433 10-4 1.788 10-4 3.367 10-4 13314 13397 

10-2 TA_T 1.996 10-2 2.449 10-2 5.536 10-2 347 515 

TA_S 1.851 10-3 2.051 10-3 3.925 10-3 1232 1283 

Table 8: Relative errors and number of iterations obtained for the time-adaptive algorithm 
depending on different convergence criteria for TC3. 
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List of Figures 

Figure 1: Relative hydraulic conductivity as a function of the pressure for the three test cases 
(L1, L2 and L3 are the three layers for test case 3). 

Figure 2: Water saturation as a function of the pressure for the three test cases (L1, L2 and L3 
are the three layers for test case 3). 

Figure 3: Specific moisture capacity as a function of the pressure for the three test cases (L1, 
L2 and L3 are the three layers for test case 3). 

Figure 4: Evolution of the L2 relative error with computational costs for TC1. 

Figure 5: Pressure profiles in the domain for the TA_T algorithm. 

Figure 6: Evolution of the L2 relative error with computational costs for TC2. 

Figure 7: Time step magnitudes during the simulation for TC2. 

Figure 8: Evolution of the L2 relative error with computational costs for TC3. 

Figure 9: Time step magnitudes during the simulation for TC3 for the time stepping strategy 
based on truncation error (TA_S in blue, TA_T in black, time varying boundary conditions at 
the top). 
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Figure 1: Relative permeability as a function of the pressure for the three test cases 

(L1, L2 and L3 are the three layers for test case 3). 
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Figure 2: Water saturation as a function of the pressure for the three test cases 

(L1, L2 and L3 are the three layers for test case 3). 
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Figure 3: Specific moisture capacity as a function of the pressure for the three test cases 

(L1, L2 and L3 are the three layers for test case 3). 
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Figure 4: Evolution of the L2 relative error with computational costs for TC1. 



56 

 

 

 

 

Figure 5: Pressure profiles in the domain for the TA_T algorithm. 
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Figure 6: Evolution of the L2 relative error with computational costs for TC2. 
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Figure 7: Time step magnitudes during the simulation for TC2. 
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Figure 8: Evolution of the L2 relative error with computational costs for TC3. 
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Figure 9: Time step magnitudes during the simulation for TC3 for the time stepping strategy 
based on truncation error (TA_S in blue, TA_T in black, time varying boundary conditions at 
the top). 

 


