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The paper compares the efficiency of a combination of two linearisation schemes for the 

solution of the non-linear Richards’ equation with different time adaptation criteria. The first 

scheme is a method presented by Ross in 2003, a kind of semi-implicit scheme, calculating the 

non-linearities with the solution of the last time step. The second scheme is using Newton 

iterations. The authors first show, that if applied to the water content-formulation of Richards’ 

equation, the method of Ross is equivalent to the first iteration of a Newton iteration. As the 

water-content form is only applicable to strictly unsaturated conditions, they use discretisations 

of the mixed form for the rest of the paper. In the Ross-type scheme, called time-adaptive 

(though both schemes use adaptive time stepping), the authors apply only the first-iteration of a 

Newton-scheme, calculating the coefficients again with the old solution, and shorten the time 

step until convergence. In the Newton-iteration scheme they calculate the coefficients with the 

last iterate until convergence. Thus in the Ross-type scheme the assembly of the linear-equation 

system to be solved is faster for the second or later iterates. For the adaption of the time step the 

authors either use an heuristic approach based on the number of Newton iterations (only for the 

Newton-based scheme), an approach based on an estimation of the truncation error, or a limit 

on the maximal allowed change of saturation. The different combinations of time-step control 

and linearisation approach are applied to three different test cases from the literature. The 

computational costs, measured in a normalized number of solves, are plotted against precision, 

measured as the deviation of the results from a reference solution calculated with a very fine 

time step and a given grid size. The authors conclude that there was no real advantage of the 

Ross-type scheme.  

 

General comments:  

The authors address a question, which has been intensively discussed in the last decades. 

Numerous papers on the best linearisation schemes and time-step adaptation procedures can be 

found easily in the literature, partially co-authored by one of the authors of this paper, many of 

them also cited in the paper. Thus the main question is, if the analysis of a very special scheme 

is a meaningful contribution to the literature and suited for publication in HESS. As there 

remain a lot of questions to be addressed (see specific comments below), the paper could be 

accepted only after major revisions. However, I am not convinced that the contributions made 

by the paper will be significant even after revision.  

We fully agree that this question has been intensively discussed. However, we believe that the 

existing algorithms are still not efficient enough, especially for the recent developments of large 

scale models used to simulate climate change or to compute global water balances for example. 

It is more and more recognized that water flow in the unsaturated zone has to be modelled using 

mechanistic models to improve the reliability of large scale models. However, the difficulty in 

solving Richards equation in an efficient way (i.e. avoiding time steps in the order of minutes 

for simulations over several years) hampers its use in large scale models. Therefore, we believe 

that there is a real need of efficient algorithms for solving Richards equation. We will add a few 

sentences on this motivation in the introduction. 

Did we find THE algorithm? No, unfortunately …  

Is our contribution significant? We show for the first time that (i) the ‘new’ Ross method is a 

Newton-Raphson method, (ii) the algorithm which performs the best for each test case does not 

exist amongst the most existing popular algorithms and (iii) two stopping criteria have to be 

used instead of only one as it is implemented in many codes.  



 

Specific comments:  

equation (1) + (2): As a rigid solid matrix is assumed, s0 could only describe the compressibility 

of the fluid. As water is nearly incompressible at the pressures occurring in variably saturated 

soils, the compressibility term is unnecessary and should be dropped.  

We agree with the physical meaning of s0. However, from a numerical point of view, this 

term is very useful for solving saturated/unsaturated problems in transient.  

 

line 177: "The time-adaptive algorithm consists of keeping the pressure head constant and 

changing the time step length." Actually, this formulation is misleading. For each tested time 

step a new solution for the pressure heads is calculated. Thus they are not kept constant. 

However, the non-linear parameters are always calculated with the solution from the old time 

step, corresponding to a semi-implicit scheme. Even the matrix has to be reassembled for each 

tested time step. Thus only the evaluation of the non-linear functions is avoided. An alternative 

would be the use of an interpolation table for the hydraulic functions to reduce the 

computational costs and still keep the accuracy high. The misleading formulation is also used in 

line 6 of the abstract.  

We fully agree. We will improve the text accordingly. 

 

line 210: I do not understand this formulation  maxmax i S  is the maximum of the actual 

change, how can it exceed itself? Do you mean exceeds (1+λ)ΔSmax?  

The equation did not appear properly in the manuscript provided by HESS, sorry.  

1nt   is an estimate of the next time step. After computation over 
1nt  , the saturation 

change can exceed the user provided Smax. We will provide some more details in the 

revised version. 

 

line 219-226: Is this important here? If necessary at all, please move it to the introduction  

We think we have to refer to this kind of approach and we will move this part in the 

introduction. 

 

line 243: replace "superior to" by "larger than"  

Will be changed in the revised version. 

 

line 253: "Implicit standard finite volumes" is not really a precise description. I guess you mean 

a cell-centred finite volume scheme for the spatial discretisation with an implicit Euler-scheme 

for the temporal discretisation. Actually, already in chapter 3, equation (15) the discretisation is 

given. Shouldn’t you just refer to that section?  

You are right concerning the method we used and we will provide the detailed information. 

However, equation (15) is more general. It also holds for other spatial discretizations like finite 

elements.  

 



line 261: "the error based on the maximum change of the state variables between two iterations" 

would be 
1, 1 1,max n k n k

i i i     . If your formula is correct you are looking at "the error base 

on the maximal change of the state variables in the last iteration". This actually is a very bad 

convergence condition as it cannot distinguish between "already converged" and "no 

convergence at all". However, it is also completely unclear to me, why the time truncation error 

should be a sensible stopping condition. A reasonable stopping condition is based on the 

reduction of the non-linear residual compared to the initial non-linear residual. This would 

really be related to a reduction of the error in the solution of the non-linear equation.  

Concerning the first criterion, it is not in the last iteration (see iteration numbered by k). It 

is during the iterative process. If this criterion is met, the process is stopped and the 

computation of the next time step is performed. This is a very popular stopping method, 

not only for unsaturated flow but also for density driven flow for example.  

Time stopping criteria have been applied by others (see references in the manuscript). 

Residuals are also used as stopping criterion but it performs like the criterion based on the 

maximum change of the state variable. Both criteria are linearly linked (Ackerer et al. 

1999 Modeling Variable Density Flow and Solute Transport in Porous Medium: 1. 

Numerical Model and Verification. Transport in Porous Media 35: 345–373).  

We will add the following in the revised manuscript: 

We checked the error on the residuals for the two kinds of stopping criteria (pressure 

based and truncation). The maximum absolute value of the residual was always smaller 

than the error used in the stopping criterion. Our stopping criteria are more restrictive than 

the absolute residual error. 

 

equation (27) and (28): is it really necessary to write out this equations? Is it not enough to state 

that relative and absolute error bounds are given?  

We will change the text accordingly. 

 

line 269-271: Actually, not all possible combinations have been performed. You could also 

have tested using only the truncation error (if this makes sense).  

We make all possible combinations but we reported only the most significant results in 

the paper as stated in L270-L271. 

 

line 293-294: as the spatial discretisation error (though not explicitly mentioned) is addressed 

here: How did you check, that the grid really was fine enough? As you try to get very accurate 

solutions in time (down to an error of 10
-5

), did you really make sure, that the grid is fine enough 

to produce changes significantly lower than 10
-5

 

if further refined?  

We did it in the traditional way, by successive grid refinements. See below, discussion on 

figures 4,6,8…  

 

line 301-303: As you are using a mixed scheme: why did you not just calculate ΔSmax from the 

saturations? I am also a bit confused about notation. In equation (20) Smax was a "user-defined 

maximum saturation change", now it is something calculated from the solution...  



We want to compare methods that use different criteria to stop the iterative procedure. 

Equation (29) gives the relationship between both user’s defined criteria.  

We will better explain it in the revised version. 

 

line 306-315: If the mixed form of Richards’ equation is used, with a (locally 

mass-conservative) finite volume discretisation and the linear equations are solved sufficiently 

accurate, why should there be mass balance at all? It is obvious from the beginning that this 

could only hint to errors in your code. Thus the statement in line 314-315 is trivial.  

We agree. We mentioned that the mass balance errors were negligible and our 

comparisons are not based on this error. We just check this error because it is commonly 

used to compare numerical schemes (even the codes which solve mixed form of RE). 

 

line 328-330: I do not understand, why the computational costs of the time-adaptive algorithm 

are calculated by (Nsol+Nparam)/2. For each iteration step in the iterative scheme you have to 

calculate the nonlinear parameters and their derivatives, assemble a matrix and solve a linear 

equation system. For each iteration step in the time-adaptive scheme you have to assemble a 

matrix and solve a linear equation system, while you have to calculate the non-linear 

parameters and their derivates only once for each time step. So the cost reduction depends on 

the number of iterations necessary (if it is always one iteration, there is no cost reduction at all) 

and on the relative computational cost of nonlinear parameter evaluation compared to assembly 

and solution of the linear equation system. Why should this result just in this simple formula?  

We assume that the computational costs are depending on the time required to compute 

the non-linear parameters and the time required to solve the system of equations i.e. 

Nparam, the number of calls of the subroutine which computes the parameter values and 

Nsol the number of calls to solve the equations. For the standard approach, Nparam is 

equal to Nsol. So we have computational costs that are equal to 2Nsol for the standard 

approach and (Nsol+Nparam) for the time adaptive scheme. This is why we used Nsol for 

the standard approach and (Nsol+Nparam)/2 for the time adaptive scheme.  

 

figure 4, 6 and 8: for the two saturation-based schemes which allow the highest precision in all 

three scenarios, there is often a reduced increase of precision with costs at high precision. This 

could be a hint that the spatial resolution was not high enough and that in this cases the spatial 

discretisation error became relevant. I would thus not agree with the conclusions in line 

368-371.  

We agree on the reduced increase of precision and we do not have any clear explanation. 

The grid size is the same for all schemes, so we assume that the error due to the spatial 

discretization is the same for all schemes. 

We redo the computation of TC1 with a spatial discretization two times finer and relative 

tolerances of 10
-4

 and 10
-5

. The differences could not be seen on the profile (see figure 

below obtained for a tolerance of 10
-5

). Therefore, we disagree with the reviewer’s 

statement; the spatial discretization is high enough. 



 

 

figure 4, 6 and 8: there is something strange with all the figures. While in the tables there are 

only values for four precisions given, there are always six points in the figures for the truncation 

based algorithms but only four points for all other algorithms. This does not make sense.  

Tables with too many numbers are boring. We provide more point in figures to better 

underline the trends which are difficult to see in tables. 

 

line 342-348: As both stopping criteria for the non-linear iterations are not very adequate and a 

condition based on the reduction of non-linear defect should be used, I will not comment on the 

comparison of this non-adequate criteria.  

The criteria are quite popular and, for our examples, more restrictive than residual based 

stopping criteria. We will develop this in the revised manuscript. 

 

line 372-375: I do not agree with the last statement. As the saturation based time stepping TA_S 

already produced the same precision when a precision of 10
-4 

was demanded, it also had a 

comparable efficiency with the truncation error based algorithm for this case. The only problem 

was, that the error was not reduced with the higher precision, probably linked to a not fine 

enough spatial grid. A not mentioned point is, that for the saturation based time step control, 

there was a linear decrease of the error with the specified precision, whereas this was more 

erratic for the truncation based time step control. 

As already mentioned, it is not a problem of spatial discretization.   

We will mention the linear decrease in the revised version. 

 

line 398-401: I do not understand this statement. After all, the algorithm did compute a solution, 

so why was the time step too long for reaching convergence? And if it did not reach 

convergence, how could it calculate the next time steps?  

We revised figure 7 and changed the text accordingly. There was some mixed up use of 

the data files. We checked all computations and dataset. Thanks for pointing out this 

error. 

 

line 405-407: Actually, the first two scenarios also had a step change of boundary conditions at 



the beginning and thus a "non-monotonic" change of boundary conditions. Thus this is not 

really completely different  

Table 2 clearly indicates that the boundary conditions are not changing in time for the first 

two scenarios.  

 

line 410: "to avoid a too rough discretisation of the upper boundary conditions": did you make 

sure that the times at which the boundary condition changed where reached exactly? If you did 

not do this, you get unnecessarily wrong solutions. This is not a question of the time stepping 

strategy, but of common sense and not difficult to implement. As I do not know if this was done, 

I am not going to discuss the further results of test case 3.  

The upper boundary fluxes change with a time step of 1 day (see Fig. 9). To well describe 

this time varying boundary conditions, we fixed the maximum time step length to 0.2 day.  

For a given time, the boundary conditions are linearly interpolated. We will explain this 

issue more properly in the revised manuscript. 

 

line 447-449: this also means that most of the algorithms are not really suitable for error control. 

The relation between specified precision and obtained error is not linear for most of the 

algorithms.  

We agree.  

 

line 450-452: This is a trivial remark as a locally mass conservative discretisation scheme is 

used. It would be different for e.g. standard finite-elements as used in Hydrus.  

It is trivial for the experts and it would not be different for finite elements schemes which 

also preserve mass if the mass balance is computed consistently with the method i.e. on 

the dual mesh. 

 

line 453-456: What should really be implemented is a convergence condition based on a 

reduction of the non-linear residual.  

As stated previously, the stopping criteria we used are more restrictive. 

 

line 457-460: This should be formulated much clearer: The time-adaptive algorithm with the 

truncation based time-stepping condition did fail to produce accurate results for almost all test 

cases and converged to the wrong result in the first test cases. Thus it is useless. I would not 

expect that this will change for 2D or 3D problems. With the saturation-based time-stepping, 

the time-adaptive algorithm was overall comparable to the standard iterative approach. 

However, it always was rather costly at high precision, where the time steps are small and thus 

the number of iterations per time step was also small. Thus the advantage of not calculating the 

non-linear parameters did not pay off. This also should be similar for 2D and 3D calculations. 

Time adaptive performed quite well for the test TC2 (see fig. 6). The difference between 

our 1D and 2-3D calculations is of course the number of elements and therefore the 

number of time the parameters have to be computed. Therefore, for a given accuracy, the 

time adaptive algorithm might be more efficient. We will reformulate this part.  



 

line 462-468: I still do not get, why the time truncation error should be a relevant stopping 

condition for the non-linear iterations within one time step. Obviously the maximal change of 

the potential alone is not a reasonable condition, as it is linked to the fluxes and saturation 

changes via highly non-linear functions. 

Our study shows that the time truncation error is a relevant criterion. The three test cases 

that we have done show the relevance of the algorithm that uses the time truncation error 

and the maximum change of the pressure. The reason is twofold: 

- Non linearity which is controlled by the maximum change of a variable between two 

successive iterations. We choose here the maximum change of the state variables 

(pressure or saturation) which is more restrictive than residual errors. 

- The approximation of the derivative in time which is first order. It is possible to fulfill 

the criterion related to the iteration but still have a poor approximation of the time 

derivative due to a too large time step. Therefore, we checked the truncation error. 

This is why both criteria are useful for solving the Richards equation.  

 

 


