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Abstract  24 

Traditional stationarity strategy for extrapolating future design floods requires 25 

renovation in response to the possible nonstationarity caused by changing climate. 26 

Capable of tackling such problem, the expected-number-of-events (ENE) method is 27 

employed with both Annual Maximum (AM) and Peaks over Threshold (POT) 28 

sampling schemes expatiated. The existing paradigms of the ENE method are 29 

extended focusing on the over-dispersion emerged in POT arrival rate, for which by 30 

virtue of the ability to account, the Negative Binomial (NB) distribution is proposed 31 

as an alternative since the common assumption of homogeneous Poisson process 32 

would likely be invalid under nonstationarity. Flood return levels are estimated and 33 

compared under future climate scenarios (embodied by the two covariates of 34 

precipitation and air temperature) using the ENE method for both sampling schemes 35 

in the Weihe basin, China. To further understand how flood estimation responds to 36 

climate change, a global sensitivity analysis is performed. It is found that design 37 

floods dependent on nonstationarity are usually but not necessarily more different 38 

from those analyzed by stationarity strategy due to the interaction between air 39 

temperature and precipitation. In general, a large decrease in flood projection could be 40 

induced under nonstationarity if air temperature presents dramatically increasing trend 41 

or reduction occurs in precipitation, and vice versa. AM-based flood projections are 42 

mostly smaller than POT estimations (unless a low threshold is assumed) and more 43 

sensitive to changing climate. The outcome of the biased flood estimates resulting 44 

from an unrestricted use of the Poisson assumption suggests a priority to the NB 45 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-619, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



3 

distribution when fitting POT arrival rate with significantly larger variance than the 46 

mean. The study supplements the knowledge of future design floods under changing 47 

climate and makes an effort to improve guidance of choices in flood inference. 48 

 49 
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1. Introduction 52 

Flood frequency analysis, one of the most widely used tools in hydrology, is of great 53 

significance for theoretical research and practical application in flood projection and 54 

risk management. Reliable flood return level estimation requires careful 55 

considerations basically from three aspects, i.e., sampling schemes, probability 56 

distribution models, and return level concept. 57 

Primarily, two kinds of sampling schemes are used in common for the flood-related 58 

studies (Coles, 2001), i.e., the Annual Maximum (AM) (block defined as year scale in 59 

block maxima sampling) and Peaks over Threshold (POT) (also known as partial 60 

duration series). The AM sampling, extracting the annual maximum peak flows from 61 

the observed discharge series, is simpler than the POT sampling that collects the 62 

discharges above a fixed high threshold. Hence, the AM realizes a wider use in 63 

hydrology than the POT, but losing ‘real flood’ information is inevitable because 64 

small discharge included in a dry year could be misleading (Lang et al., 1999). The 65 

POT, free from the sampling restriction of the AM that picks only one event per year, 66 

seems to be rational as it substantially contains two flood characteristics to be 67 

portrayed separately: the magnitude and the arrival rate (annual number of 68 

exceedances above the threshold) (Önöz and Bayazit, 2001). 69 

No matter for AM or POT floods, flood frequency analysis has undoubtedly, for a 70 

long time, indulged in such a prevailing approach that flood events, subject to the 71 

underlying assumptions of being independent and identically distributed (i.i.d.), share 72 
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the same probability distribution. This description can be epitomized as the 73 

stationarity strategy used in traditional flood frequency analysis (Coles, 2001). Since 74 

the impacts of climate change on hydrological system have been reported repeatedly 75 

(IPCC, 2013), nonstationarity, as a special concept in contrast to stationarity, has 76 

generally enjoyed popular supports in academia. A number of researchers have been 77 

absorbed in, for instance, revealing the invalidation of stationarity strategy (Khaliq et 78 

al., 2006; Milly et al., 2008), describing the temporal variability of hydrological 79 

characteristics (Villarini et al., 2009a; Machado et al., 2015; Xiong et al., 2015a), and 80 

exploring the reasons behind the changes (Ishak et al., 2013; López and Francés, 2013; 81 

Jiang et al., 2015; Xiong et al., 2015b). 82 

Important as it is, questions around “stationarity is still alive or wanted dead” (Lins 83 

and Cohn, 2011; Koutsoyiannis, 2011) have been subsequently pointed out sharply, 84 

remaining more or less as a controversial puzzle. In an attempt to clarify these issues, 85 

so far there have appeared various arguments. For example, Lins and Cohn (2011) 86 

admitted the existence of nonstationarity but simultaneously suggested the use of 87 

stationarity to elude the potentially high uncertainty of nonstationary influences on 88 

hydrologic studies. Montanari and Koutsoyiannis (2014) asserted that stationarity is 89 

immortal for the need of mitigating natural hazards. Koutsoyiannis and Montanari 90 

(2015) stated, persuasively, that the misunderstanding of stationarity has let “changes” 91 

be mistakenly labeled as “nonstationarity.” Likewise, Serinaldi and Kilsby (2015) 92 

deliberately titled their main topic with “stationarity is undead” to alert of the 93 

uncertainty related to nonstationary flood frequency analysis. In response to the 94 
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thoughtful literatures with the opposing opinions mentioned above, Milly et al. (2015) 95 

reiterated the viewpoints of Milly et al. (2008) who claimed that “stationarity is dead” 96 

by using “Policy Forum” to communicate the necessity of considering nonstationarity 97 

in hydrology in the 21
st
 century. Stedinger and Griffis (2011) explained conservatively 98 

that formulating nonstationary models with finite flood records can be defensible 99 

when physical-causal basis for multi-decadal projections is known. Indeed, 100 

stationarity, as the solid cornerstone laid for hydrologic frequency analysis, does 101 

deserve to be active (Koutsoyiannis, 2011). Nevertheless, there is reason to afford an 102 

opportunity to nonstationarity for advancing hydrologic research (Milly et al., 2015). 103 

Advocating nonstationarity at present is intended to arouse the consciousness in the 104 

scientific community due to the on-going climate changes yet without smothering 105 

stationarity. 106 

In the presence of nonstationarity, a good few of studies (also this paper) 107 

materialize nonstationary hydrologic variables with resorting to the time-variant 108 

characters of the variable moments (Khaliq et al., 2006), i.e., nonstationary 109 

flood-frequency distribution model is constructed by the theoretical probability 110 

distribution whose statistical parameters are assumed to be no longer fixed over time 111 

(Stedinger and Griffis, 2011; Milly et al., 2015). To addressing the causes of 112 

nonstationarity, researchers attribute the changes, qualitatively, by nonparametric 113 

cross-correlation analyses (Ishak et al., 2013), and quantitatively, by linking the 114 

time-varying distribution parameters to the exploratory variables, e.g., time and 115 

potential driving forces (Prosdocimi et al., 2015; Serinaldi and Kilsby, 2015; Silva et 116 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-619, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



7 

al., 2015; Xiong et al., 2015b), among many others. 117 

Analyses for flood frequency or return level have been accomplished with the AM, 118 

POT, or both worldwide with either stationary or nonstationary hypotheses (e.g., 119 

Villarini et al., 2012; López and Francés, 2013; Machado et al., 2015; Xiong et al., 120 

2015a). However, attentions paid to the comparison of AM and POT flood series in 121 

flood frequency analysis are relatively limited in the previous research endeavors. 122 

Rosbjerg (1985) whose research was completed on a stationary background deemed 123 

that the POT series modeled with heavy-tailed distributions should yield more 124 

advisable flood estimates than AM. Madsen et al. (1997) suggested that the POT 125 

series was generally preferable to AM series for at-site flood estimation under 126 

stationarity. More recently, Bezak et al. (2014) found that the POT series gave higher 127 

flood estimates than the AM series for larger return periods on stationary conditions. 128 

Prosdocimi et al. (2015) concluded that POT models outperformed AM models in 129 

respect of detecting the external causes of nonstationary floods. 130 

It is worth noting that nonstationarity in the flood series caused by the changing 131 

environments has made stationarity strategy for return level estimation problematic 132 

(Khaliq et al., 2006; Sivapalan and Samuel, 2009; Villarini et al., 2009b; López and 133 

Francés, 2013). There have been numerous studies on return level inference 134 

associated with hydro-climatic extreme events that consider nonstationary conditions. 135 

For example, return level was proposed, with the corresponding return period as the 136 

expected waiting time until an exceedance occurs (Olsen et al., 1998; Wigley, 2009; 137 

Salas and Obeysekera, 2014), or as the quantile over which the expected number of 138 
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events (ENE) during a given return period is one (Parey et al., 2007, 2010). 139 

Comparative analyses on such two methods were performed in Cooley (2013), Du et 140 

al. (2015), etc. Besides, risk-oriented approaches for deriving flood estimators 141 

considering nonstationarity have also been devised in some literatures with diversities 142 

in their scope (Sivapalan and Samuel, 2009). 143 

These profound studies, with considerable efforts made on the extrapolation of 144 

hydro-climatic extremes under nonstationarity, have presented capacity and depth in 145 

theory, and most focus on the block (e.g., AM) sampling. Other sampling, i.e., the 146 

POT, seems not to receive much attention in estimating return levels by the method 147 

adapted to the context of nonstationarity in the literatures except Parey et al. (2010) 148 

who set an example with the application of the ENE method to the POT case yet 149 

without much more discussions on mathematical treatment, and Silva et al. (2015) 150 

who estimated the flood hazards based on the POT framework by making the 151 

engineering design life period equal to the past observation periods. Additionally, 152 

exploration on future design floods in nonstationarity context is still limited as well as 153 

the analyses on how climate change could influence flood projections. 154 

This paper is aimed to achieve multi-decadal flood projections under the future 155 

climate scenarios and investigate the effect of climate changes on design floods. 156 

Essentially, the study can serve as a complement of the available ENE method from 157 

the following aspects. First, design floods are estimated with two sampling schemes 158 

of AM and POT and compared on not only stationary but also nonstationary 159 

conditions. Second, the ENE method is extended for the POT sampling with an 160 
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emphasis on describing the POT arrival rates. The POT arrival rates have in fact been 161 

chronically accepted on faith to follow a homogeneous Poisson process under 162 

stationarity (Shane and Lynn, 1964). However, such assumption has been reported to 163 

be invalid due to two-type sources of nonstationarity which will be addressed herein: 164 

(i) heterogeneity of Poisson process intensity (Cunnane, 1979; Villarini et al., 2012; 165 

Silva et al., 2015), for which the Poisson distribution is retained no longer with 166 

invariant Poisson process intensity, or rather, parameterized as functions of climatic 167 

covariates; (ii) over-dispersion of observations. Theoretically, the Poisson distribution 168 

holds identical variance and mean of population, whereas it is often the case that the 169 

variance is rarely equal to, and even significantly higher than, the mean (Cunnane, 170 

1979). Therefore, the Negative Binomial (NB) distribution is recruited as an 171 

alternative to the Poisson distribution following the findings from Ben-Zvi (1991) and 172 

Önöz and Bayazit (2001). Finally, the sensitivity of flood estimations to changing 173 

climate is analyzed for reference to future inference. 174 

2. Methodology 175 

Analysis of flood return levels is undertaken briefly following: preliminary diagnosis 176 

for nonstationarity evidence, modeling of both AM and POT samplings under 177 

stationarity and nonstationarity, respectively, (i.e., using the assumed probability 178 

distributions with parameters as functions of constant or climatic covariates), 179 

extrapolation of flood by applying the ENE method to these models, and investigation 180 

on how climatic effect affects flood estimations. 181 
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2.1. Diagnostics for nonstationarity 182 

Justifying the presence of nonstationarity is of great importance for the investigation 183 

of hydro-climatic events in a changing world (Montanari and Koutsoyiannis, 2014; 184 

Serinaldi and Kilsby, 2015; Milly et al., 2015; Xiong et al., 2015b). Importance 185 

attached to the gradual evolution of observation time series, is emphasized, for which 186 

the preliminary detection is implemented by three nonparametric trend tests: the 187 

Mann-Kendall (MK) (Mann, 1945; Kendall, 1975), the pre-whitening (PW) (von 188 

Storch, 1995), and the trend-free pre-whitening (TFPW) (Yue et al., 2002). The latter 189 

two tests are proposed initially to mitigate the adverse influence of lag-1 serial 190 

correlation 1
r  on the robustness of the MK method. Instead of testing the MK 191 

statistics ( )
MK

Z  of the original observation series  , 1,2,...,
t

X t N , they use the 192 

new independent series of 1 1t t t
X X r X


    and t

Y   from Eq. (1), respectively. 193 

2 1

1 2
2 1

1 1
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t t
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t t

t t t
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  

       (1) 194 

where S  is the Sen’s slope (Sen, 1968). The partial MK test (Libiseller and Grimvall, 195 

2002) is then employed to identify the attribution of the detected significant trend via 196 

the statistics as 197 

2

ˆ( ) ( )

ˆ(1 ) ( 1)(2 5) 18

MK MK

PMK

Z X Z E
Z

N N N








  
      (2) 198 

where ̂  denotes the correlation coefficient between ( )
MK

Z X  of dependent 199 

variable X  and ( )
MK

Z E  of a physical covariate E . This test can be thought of 200 
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testing the significance of trend in the modified dependent variable after removing the 201 

linear dependence on a covariate. It is inferred that dependent variable may co-vary 202 

with the physical covariate if the p-value of PMK
Z  becomes larger than the given 203 

significance level (0.05). The closer the p-value is to one, the greater the extent to 204 

which the dependent variable relates to the physical covariate. 205 

To verify the conjecture if the homogeneous Poisson process assumption is valid 206 

under changing circumstances, the Bohning (1994) test is applied to the observed 207 

series of POT arrival rates for testing against the alternative hypothesis that the 208 

variance of population 2
S  is larger than the mean X . The test statistic 209 

2
1

1
2

n S

X

  
  

   
 asymptotically converges to the normal distribution for a large 210 

population. Given the finite sample size, a bootstrap simulation is performed to 211 

generate randomly 10000 replications from original series and for each replication 212 

calculate the statistic values. According to the given significance level (0.05), the 213 

Poisson assumption would be rejected if the p-value of the attained empirical 214 

distribution for test statistic is less than 0.05. 215 

2.2. Probability distribution modeling 216 

Modelling of flood series was undertaken for recruiting the theoretical probability 217 

distribution as potential candidates. In this paper, the distribution to be considered is 218 

selected based on the successful applications in previous studies (e.g., Madsen et al., 219 

1997; Lang et al., 1999; Du et al., 2015) but for the purpose at current stage not 220 

including all of them. The AM floods are assumed to follow three different types of 221 
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probability distributions of the lognormal 3 (LNO3), Log-Pearson type 3 (LP3), and 222 

Generalized Extreme Value (GEV) (Jenkinson, 1955). They all include three 223 

parameters ( , , )
t t t t
   : the location parameter t

  associated with the magnitude 224 

of the series; the scale parameter t
  related to the variability of the series; and the 225 

shape parameter t
  that reflects the skewness and also the tail behavior of the 226 

probability distribution, which is thought to be enough for a good description of flood 227 

characteristics. 228 

The POT floods are in fact portrayed separately by the magnitude of POT 229 

exceedances over a fixed threshold u and the attached arrival rates  , 1, 2,...,
t

M t  . 230 

The former series is modeled by the Generalized Pareto (GP) distribution (Pickands, 231 

1975). This distribution is bound to the threshold u on the left with two-dimensional 232 

parameters ( t
 , t

 ). If 0
t

  , it will be transferred to an exponential distribution 233 

with a single parameter 1
t

 . For fitting POT arrival rate, both Poisson and 234 

Negative Binomial (NB) (Anscombe, 1950) distributions are employed. The 235 

traditional use of the Poisson distribution only contains one parameter, i.e., the 236 

location parameter that is also termed the Poisson process intensity. This limitation 237 

makes it difficult to better adapt to the application under changing climate as 238 

explicated in the introduction. However, the alternative proposal of the NB 239 

distribution is competent in this regards owing to the scale parameter involved to 240 

represent the over-dispersion that may exist in POT arrival rate.  241 

Table 1 summarizes the basic information for these distribution candidates. The 242 

parametric link function ( )g   is a fairly general specification used to transform the 243 
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distribution parameters of concern, for example, as natural logarithms (to ensure the 244 

positive value), or as identities. The Generalized Additive Models in Location, Scale, 245 

and Shape (GAMLSS) (Rigby and Stasinopoulos, 2005) is adopted for modeling the 246 

selected distribution, since it has been proven beneficial in providing a higher degree 247 

of flexibility to describe different hydro-meteorological variables through various 248 

families of distribution (López and Francés, 2013).

 

For each candidate distribution, 249 

the transformed parameters ( t
 , t

 , t
 ) are modeled under stationarity (as constant) 250 

and nonstationarity (as linear functions of climatic covariates), respectively. 251 

constant if stationary
( | , , )

if nonstationaryE
t t t

g   


  
 

     (3) 252 

where a multidimensional vector of physical covariates candidates, 1 2
(1, , , ...)E EE , 253 

has a value of one in the first location for the intercept term. 0 1 2
β ,β ,β , ...)  is the 254 

vector of parametric coefficients to be numerically estimated by maximum likelihood 255 

technique. The computation can be easily finished by the iteration algorithms for 256 

optimization available in GAMLSS package on R software and determine the 257 

effective number of covariates ( n


). The assumption of a linear dependence on 258 

physical covariates should be regarded as a tradeoff between the diversity of 259 

covariates and the suspicion of over-fitting, which can be practicable in consideration 260 

of the referential experience (e.g., Villarini et al., 2009a, b; Xiong et al., 2015a, b). It 261 

must be noted that the mathematical expectation ( )
t t

E M m   is satisfied under 262 

stationarity whether using the Poisson or NB distribution (Coles, 2001). The 263 

combination of GP model for the magnitudes and (Poisson/NB) model for the arrival 264 

rates constitutes together a complete POT model. If time-varying parameters in the 265 
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POT model exist, the nonstationary POT model will then be constructed.  266 

2.3. Model selection and assessment 267 

The model selection follows a generalized Akaike information criterion, i.e.,268 

2 # n  


, to balance the considerations between structure complexity and 269 

goodness-of-fit, in which the penalty factor # 2  refers to the original AIC (Akaike, 270 

1974) and # ln( )N  to the Bayesian information Criterion (BIC) (Schwarz, 1978). 271 

 is the value of the likelihood function. The priority choice is the model with 272 

minimum AIC and/or BIC values that tends to best capture the variation of 273 

observation with the simplest model structure. The model adequacy is diagnosed with 274 

a focus on the normality and independence of theoretical residuals t
r . Exempt from 275 

the influence of variability in the estimated parameters for a nonstationary model, the 276 

theoretical residuals t
r  can be produced by inverting the fitted distribution function 277 

and finding the equivalent standard normalized quantiles (Dunn and Smyth, 1996), i.e., 278 

1
(Prob )

t t
r


  , where 

1
  is the inverse function of standard normal distribution, 279 

Prob
t  is an abstraction for the theoretical probability at time t , having separate 280 

forms equal to, ( )
t t

F x   for the AM, ( , )
t t

H x u for the magnitudes of POT 281 

exceedance, and a randomized value on the interval282 

[Pr( 1 ), Pr( )]
t t t t t t

M m M m    for a discrete integer response from the POT 283 

arrival rates (Rigby and Stasinopoulos, 2005). The following tests for t
r  are utilized 284 

(at the 5% significance level): 285 

(i) The normal Q-Q plot and its detrended version called the worm plot (Buuren 286 

and Fredriks, 2001). Given an observation series t
x  rearranged in the 287 
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descending order with the rank of ( )
t

n x , the empirical probability *
Prob

t
 is 288 

defined by 
( ) 0.44

0.12

t
n x

N




 (Gringorten, 1963). The normal Q-Q plot of 289 

1 *
(Prob )

t


  against t

r  indicate a reasonable model if all the point-pairs lie 290 

around the unit diagonal (1:1 line). Instead of the vertical axis in Q-Q plot, the 291 

worm plot shows the differences between 1 *
(Prob )

t


  and t

r . A preferable 292 

model-fitting can be demonstrated if the distribution of data resembles a flat 293 

worm-like string within the 95% confidence interval. 294 

(ii) The coefficients of determination for probability ( 2

PP
R ) in Eq. (4) and for 295 

quantile (
2

QQ
R ) in Eq. (5), respectively. The higher the values of them, the 296 

better the model performs. 297 

* 2

2 1

* 2

1

[Prob Prob ]

1

[Prob Prob ]

N

t t

t

PP N

t t

t

R 





 






      (4) 298 

1 * 2

2 1

1 * 2

1

[ (Prob ) ]

1

[ (Prob ) ]

N

t t

t

QQ N

t t

t

r

R

r









 

 

 





     (5) 299 

2.4. Return level formulations 300 

To begin with, stationarity strategy of flood return level estimation in the classical 301 

extreme value theory is revisited in perspective of both the AM and POT. Under the 302 

stationarity assumption, the T-year return level T
x , subject to AM observations, is 303 

defined as the quantile for which the exceedance probability Pr( )
T

X x  is 1 T  for 304 

any particular year. 305 

Pr( ) 1 ( ) 1
T T

X x F x T           (6) 306 
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In view of the POT series with the threshold u , the exceedance probability of Eq. (7) 307 

has a similar form to that of Eq. (6) but with an additional constant item m , i.e., 308 

average annual arrival rates of the POT. 309 

1
Pr( ) 1 ( , )

T T
X x X u H x u  

m T
    


      (7) 310 

As Coles (2001) warns, overreliance on the stationarity strategy of flood return 311 

level estimation presented above is risky unless the use of stationary assumption is 312 

pertinent. There is thereof a growing interest to understand how flood return levels 313 

could be when the possible nonstationarity has been accounted for.  314 

The method of expected number of events (ENE) is therefore employed that 315 

facilitates the presentation of design flood in both stationarity and nonstationarity 316 

contexts. It defines return level T
x  being a unique value such that the expected 317 

number of events over T
x  in the next T-year return period will be one (Parey et al. 318 

2007, 2010). This advantage makes the method able to provide unique design value 319 

for reference even though the flood behaviors observe nonstationarity, which is 320 

beyond the capacity of traditional stationarity strategy. For instance, dramatic (or 321 

pointless) T-year return levels of AM floods that change along the time axis will be 322 

obtained when applying Eq. (6) to the nonstationary models with time-varying 323 

parameters (López and Francés, 2013). The general formulation for any hypothetic 324 

probability distribution models can be expressed by 325 

 

0

0

0

0

1

1

[1 ( )] 1                              for AM

[1 ( , )] ( ) 1          for POT

t T

T t

t t

t T

T t t

t t

F x

H x u E M



 



 

 

  









    (8) 326 
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where 
0

1t   is the starting year of the flood return period. Here 0
t  is set to be the 327 

end year of observation record for illustrating the method with future application. It 328 

can be noted that the magnitude of each POT exceedance in one year t  is assumed to 329 

follow the same distribution ( , )
T t

H x u . The mathematical expectation ( )
t

E M  can 330 

be substituted by either Poisson or NB model with a given assumption for arrival rates, 331 

which on stationarity conditions, however, can transform Eq. (8) as 332 

0 0 0

0 0 0

1
1 ( ) ,   1, 2,...,                        for AM

1 ( , ) 1 ( ) ,   1, 2,...,          for POT

T

T

F x t t t t T
T

H x u m T t t t t T

     

      





  (9) 333 

that coincides with the inferences in Eqs. (6) and (7), respectively.  334 

In this study, the return level inferences are executed under both stationarity and 335 

nonstationarity. Taking account of the contradiction between the limited sample size 336 

and reliability of flood estimation, the return level formulations are intended to engage 337 

the study of design flood coupled with the nonparametric bootstrap resampling 338 

technique, as recommended to enhance the representativeness of sample (Salas and 339 

Obeysekera, 2014; Serinaldi and Kilsby, 2015). The i.i.d. assumption for stationarity 340 

strategy leads to a direct resampling of observation series for calculating the 95% 341 

confidence interval of return levels, while under nonstationarity the original data 342 

should be transformed into a standardized variable t
x  to follow an identical standard 343 

distribution before bootstrapping. This standard distribution is subjectively selected 344 

and naturally based on the distributional family that the fitting model belongs to, e.g., 345 

the standard Gumbel distribution used for the GEV model, the standard exponential 346 

distribution for the GP model. For the sake of convenience, the standard normal 347 

distribution is used for all constructed models. The nonstationary flood inference 348 
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comprises several steps: 349 

(i) Calculate T-year flood return levels T
x  by applying Eq. (8) to the distribution 350 

models built in section 2.2 for AM and POT series, respectively. 351 

(ii) Transform flood observation values t
x  into t

x  using Eq. (10) (Coles, 2001) 352 

with the known model parameters obtained in step (1).  353 

(iii) Resample t
x  with replacement for a large replication (i.e., 5000) and generate 354 

new observation samples by the inverse solution of Eq. (10).  355 

(iv) Refit the same distribution for each new observation sample and calculate the 356 

return levels following step (1). The 95% confidence intervals for T
x  are 357 

obtained. 358 

 

 

ln 1 0

0

t t t t t t

t

t t t t

x
x

x

    

  

      
 

 

      (10) 359 

2.5. Global sensitivity analysis 360 

A variance-based global sensitivity analysis is carried out with the Sobol’ method 361 

(Sobol’, 1993) to help understand the influence level of changing climate on return 362 

level estimations, which is important for future flood inference with due caution to the 363 

uncertainty originating from climate scenarios. This method is independent of model 364 

structure enabling an effective identification of both single and interactive parameter 365 

sensitivities and has been reported to outperform other methods (Tang et al., 2007). 366 

However, it is out of the scope to consider its own advantages/disadvantages.  367 

Designate   being all the parameters to be studied by the Sobol’ method (i.e., 368 

climatic covariates) and flood return level T
x  as a response variable that can be 369 
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expressed according to the target function of Eq. (8). The total variance of T
x  can be 370 

decomposed into  371 

1,2,...
...

i ij k

i i i j

V V V V


           (11) 372 

where i
V  is the first-order variance of the i-th parameter, indicating the contribution 373 

of single parameter to overall model uncertainty; 
ij

V  is the second-order variance 374 

explained by the interactions between paired parameters of index i  and j , and so 375 

on. The first-order sensitivity indices for the i -th parameter quantify the average 376 

proportion of i
V  on the total variance (without any interactions with other 377 

parameters)  378 

i

i

V
S

V
         (12) 379 

and the total-order sensitivity indices are 380 

...
...

1
i

i ij ij k i i

T

V V V V V V
S

V V V

   
   ~ ~     (13) 381 

where i
V

~  defines the average variance without any effect from the i -th parameter.  382 

The difference between the first-order and total-order sensitivity indices is the 383 

interaction between the i -th parameter and others ( i j k  ). Due to the complexity 384 

of analytical solutions, V , i
V , and ~ i

V  are approximately estimated by Monte 385 

Carlo numerical integration (Saltelli, 2002) using Eqs. (14-18), to which the 386 

Sensitivity package on R provides easy access with the high computing power. 387 

1 11

1

2 22

1

1

Ai AkA

A Ai AkA

s

n nn

Ai AkA

 

 

 

 
 
 


 
 
 
 

=     ; 

1 11

1

2 22

1

1

Bi BkB

B Bi BkB

s

n nn

Bi BkB

 

 

 

 
 
 


 
 
 
 

=       (14) 388 
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0

1

1ˆ ( )
n

A

s

s

h h
n 

             (15) 389 

 2 2

0

1

1 ˆˆ ( )
n

A

s

s

V h h
n 

             (16) 390 

 2

~ 0

1

1 ˆˆ ( ) ( , )
n

A B A

i s is is

s

V h h h
n 

             (17) 391 

 2

~ ~ 0

1

1 ˆˆ ( ) ( , )
n

A A B

i s is is

s

V h h h
n 

            (18) 392 

where A

s
  and B

s
  are two different sample matrices by Monte Carlo simulation 393 

that each column shows the sample vector for each parameter. The sample vector is 394 

randomly selected from a uniform distribution for the given parameter ranges. 395 

1, 2,...,s n  specifies the row number with the total simulation sample size of n  396 

(set to 1000 herein). A

is
  (or B

is
 ) represents the sample vector in the i-th column of 397 

A

s
  ( B

s
 ) highlighted with the box in Eq. (14), while 

~

A

is
  ( ( )

~

B

is
 ) denotes all the 398 

sample vectors except that of the i-th parameter. The function 
~

( , )
A B

is is
h    can be 399 

perceived as the calculation with A

s
  of which the i-th sample vector has been 400 

replaced by that from B

s
 , which is similar to understand 

~
( , )

B A

is is
h   .  401 

3. Study area and data 402 

3.1. Study area description 403 

The Weihe is the biggest tributary of the Yellow River with a length of 818 km. It 404 

originates from the Niaoshu Mountain at Weiyuan County, mainly flows through 405 

Gansu and Shaanxi Provinces and Ningxia Hui Autonomous Region, and joins the 406 

Yellow River at Tongguan County. The Weihe basin, located in Northern China, has 407 
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an approximate drainage area of 134,800 km
2 

(Xiong et al., 2014). It has a temperate 408 

continental monsoon climate, naturally showing semi-humid and semi-arid 409 

characteristics (Zuo et al., 2012). Average annual total precipitation of the Weihe 410 

basin is unevenly distributed with more (800-1000 mm) in the southern region and 411 

less (400-700 mm) precipitation in the northern region. The annual mean air 412 

temperature in the whole basin is about 6-14℃, and average annual mean runoff 413 

depth is about 100 mm (Du et al., 2015). The catchment downstream of Huaxian 414 

gauging station is used as the study region. This region covers 80% of the Weihe 415 

basin with a 106,498 km
2
 drainage area. Figure 1 presents the geographical 416 

information of the Weihe basin and the study region. 417 

3.2. Meteorological data 418 

The observations of daily total precipitation and daily mean air temperature from 22 419 

meteorological stations over the period 1960-2009 were provided by the China 420 

Meteorological Administration. The weighted areal precipitation and air temperature 421 

series were generated by the Thiessen polygon (e.g., Du et al., 2015), using 10 and 12 422 

stations in and around the Huaxian catchment, respectively. Five physical factors were 423 

chosen as proxies to represent physical covaraites ( ) based on the previous research 424 

(Xiong et al., 2015a): annual total precipitation (
total

P ); annual maximum precipitation 425 

on consecutive one, three, and seven days (denoted as 
_1max d

P , 
_ 3max d

P , and 
_ 7max d

P , 426 

respectively); and annual mean air temperature (
mean

T ). These factors can be viewed 427 

as the pertinent surrogate on behalf of basin climatic characteristics that may exert 428 

important effects on river runoff generation, rainfall-runoff process, etc. 429 
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Having access to the future meteorological data (i.e., projected precipitation and air 430 

temperature) is of great significance for extrapolating future design floods when the 431 

return level formulations of Eq. (8) are used with physically-based models. In this 432 

paper the General Circulation Models (GCMs) data sets that have been used 433 

worldwide are employed to obtain insight into the unknown future climate and the 434 

statistical downscaling model (Wilby et al., 2002), a model combining multiple linear 435 

regression and stochastic weather generator, to deal with the mismatched spatial 436 

resolution between the large-scale GCMs outputs and local-scale climate information. 437 

The statistical downscaling model (SDSM) is selected for use due to its merits such as 438 

the convenient operation of producing spatially and temporally continuous fine-scale 439 

precipitation and air temperature information at a basin scale (Raff et al., 2009). Its 440 

technical procedure mainly includes: analyzing the correlation between the NOAA 441 

National Centres for Environmental Prediction (NCEP) reanalysis predictors and 442 

historical precipitation record by a multiple linear regression; running weather 443 

generator in the SDSM to simulate precipitation based on the constructed multiple 444 

linear regressions; calibrating the SDSM by assessing the predictive performance; and 445 

projecting precipitation scenarios from the GCMs data in the calibrated SDSM. The 446 

details of SDSM have been interpreted in the recent publication (Du et al., 2015) thus 447 

not being covered here for brevity. Interested readers can find more information in 448 

Wilby et al. (2002). The data of 26 NCEP reanalysis predictors for the period of 449 

1960-2009 were available from the NOAA Earth System Research Laboratory (ESRL) 450 

(http://www.esrl.noaa.gov). The latest version of GCMs from the Coupled Model 451 
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Intercomparison Project Phase 5 (CMIP5) have projected new generation scenarios of 452 

greenhouse gas emissions, i.e., the Representative Concentration Pathways (RCPs), as 453 

recommended by the Fifth Assessment Report of the Intergovernmental Panel on 454 

Climate Change (IPCC, 2013). The RCP8.5, a scenario representative of considerable 455 

greenhouse gas concentration levels, was chosen as motivated by Peters et al. (2013) 456 

who considered that the RCP8.5 reflects the recent trends of global carbon dioxide 457 

emissions reasonably. The same 26 predictors of seven different GCMs (CanESM2, 458 

CCSM4, CNRM-CM5, GFDL-ESM2M, MIROC-ESM, MIROC-ESM-CHEM, and 459 

NorESM1-M) under the RCP8.5 scenario for the future period of 2010-2099 were 460 

downloaded from the CMIP5 website (http://cmip-pcmdi.llnl.gov/cmip5). Gridded 461 

daily data of both NCEP and GCMs were first interpolated to each of 22 462 

meteorological stations by the Inverse Distance Weighting method (Atkinson and Tate, 463 

2000), and then processed into weighted areal series for the Huaxian catchment by the 464 

Thiessen polygon. 465 

3.3. Flood data 466 

Daily flow records of the Huaxian station were collected from 1960 to 2009 by the 467 

Yangtze River Waterway Bureau. Two sampling schemes of AM and POT were 468 

utilized to describe the flood events. The threshold of POT sampling is determined 469 

according to the preselected annual number of peaks per year on average (Lang et al., 470 

1999). The peaks defined as the highest values on a centered 17-day window, are 471 

restrained by the criteria of Eq. (19), proposed by USWRC (1982). 472 
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int 1 2

5 log( )

0.75 min( , )

TI Area

Q Q Q

 


       (19) 473 

where TI  is the time interval between two consecutive peaks in days, Area is the 474 

basin area (km
2
) and int

Q  represents the intermediate flows between two consecutive 475 

peaks (Q1 and Q2). Assuming that average POT arrival rate per year is two, three, and 476 

four, respectively, the POT series are screened out, i.e., three POT magnitude series 477 

denoted by POT2 ( u =1060 m
3
/s), POT3 ( u =780 m

3
/s), and POT4 ( u =530 m

3
/s); 478 

and their corresponding arrival rate series by POT_AR2, POT_AR3, and POT_AR4, 479 

respectively. 480 

4. Results 481 

4.1. Data analyses: stationary or nonstationary? 482 

Based on the diagnostics in section 2.1, changes of temporal trends were explored 483 

over the observation period of 1960-2009 for all flood-feature series (Table 2) 484 

including AM, POT magnitudes (POT2, POT3, and POT4), and POT arrival rates 485 

(POT_AR2, POT_AR3, and POT_AR4), as well as the physical covariates (
total

P ,486 

_1max d
P ,

_ 3max d
P ,

_ 7max d
P , and 

mean
T ). A significantly decreasing trend was detected in 487 

the AM series regardless of whether the MK, PW, or TFPW method was used. 488 

Similarly, no differences occurred among the results of the MK, PW, and TFPW tests 489 

for the POT series. The POT magnitudes showed non-significantly declined 490 

tendencies in POT2, POT3, and POT4 series. However, their corresponding arrival 491 

rates (POT_AR2, POT_AR3, and POT_AR4) exhibited dramatically negative trends. 492 

The statistics M K
Z  (-4.12, -4.00, and -3.35), PW

Z  (-3.19,-2.72, and -2.52), and 493 
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TFPW
Z  (-4.26, -3.80, and -3.73) whose values in brackets were presented orderly for 494 

POT_AR2, POT_AR3, and POT_AR4 indicated that these downward trends in the 495 

POT arrival rates became more significant with the generally increasing threshold. 496 

Moreover, the results of Bohning (1994) test statistic demonstrated that the 497 

assumption of homogeneous Poisson process would not be applicable to describe POT 498 

arrival rates under current environments for the three POT arrival rates. Physical 499 

covariates regarding the precipitation-related variables (
total

P ,
_1max d

P ,
_ 3max d

P ,
_ 7max d

P ) 500 

presented no significant trends according to the MK tests, but declining trends were 501 

detected in both 
total

P  and 
_ 7max d

P  by their respective PW and TFPW statistics. 502 

mean
T  showed a clear uptrend using all the trend tests (not shown in Table 2).  503 

How could the detected trends in floods be when linking with the potential 504 

influencing factor (climatic covariates)? The PMK test was applied to investigate 505 

whether the trends can still be significant after removing the dependence on each of 506 

the physical covariates (
total

P ,
_1max d

P ,
_ 3max d

P ,
_ 7max d

P , and 
mean

T ) and the associate 507 

extent. The p-values of the PMK test showed that the detected trends in AM and 508 

POT_AR2 would disappear once associated with either 
mean

T  or 
total

P . POT_AR3 509 

and POT_AR4 series also had a dependence on 
total

P  and 
mean

T , respectively. 510 

However, the detected trends were less affected by 1max - d
P , -3max d

P , and 7max- d
P . 511 

The nonstationarity of the hydrologic system in the Weihe basin detected here has 512 

also been proven earlier (Zuo et al., 2012, 2014; Du et al., 2015; Xiong et al., 2014, 513 

2015a; Jiang et al., 2015), thereby motivating the interest of extrapolating flood return 514 

levels that considers nonstationarity. 515 
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4.2. Flood-frequency distribution models for AM and POT 516 

Table 3 lists the stationary models and the nonstationary models calibrated by optimal 517 

combination of climatic covariates   under the assumption of LNO3, LP3, and 518 

GEV distributions, respectively. The Q-Q plots for these models visually confirmed 519 

the reasonable model performance since the resulting points did not significantly 520 

deviate from 1:1 line (Fig. 2). In case of stationarity, LP3 model yielded the smallest 521 

AIC/BIC value among the candidates with slightly higher values of 2
92.5%

PP
R   522 

and 2
91.1%

QQ
R   thus being regarded as the optimum. It has been found that in 523 

nonstationarity context the optimum should again owe to the model of LP3 524 

distribution whose AIC/BIC values (820.9/830.5) were much less than the remaining 525 

ones, with favorable model adequacy suggested by 2

PP
R  and 2

QQ
R . In this 526 

nonstationary model, the location parameter t
  negatively correlates to 

mean
T  but 527 

positively correlates to total
P , in accordance with the trend test result of the AM series 528 

in section 4.1. The similar results for fitting the AM flood series of the Weihe basin 529 

can be found in Xiong et al. (2015a).  530 

Table 4 presents detailed fitting information of the stationary GP models for the 531 

three POT magnitude series (POT2, POT3, and POT4) that were found to be better 532 

than the models under nonstationarity. It may not be the case respecting their POT 533 

arrival rate series (POT_AR2, POT_AR3, and POT_AR4) where nonstationary 534 

models produced much improvement over the corresponding stationary models 535 

according to the AIC/BIC values. For example, the AIC value of nonstationary 536 

Poisson model was 149.9 much lower than that (182.9) of stationary Poisson model in 537 
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case of POT_AR2. Table 5 shows both the optimal Poisson and NB models with 538 

parameters fitted as functions of climatic covariates. The Poisson distribution 539 

remained to be preferred over the NB distribution for fitting POT_AR3 and 540 

POT_AR4. However, the worm plots in Fig. 3 reveal a better performance of the NB 541 

model for fitting POT_AR2 and this model also has a lower AIC/BIC value than the 542 

Poisson model. It was found that the best model (NB) fitted for POT_AR2 showed a 543 

time-varying scale parameter dependent on total
P  while the other NB models fitted 544 

for POT_AR3 and POT_AR4 had constant scale parameters. Integrating the separate 545 

results for magnitudes and arrival rates, the optimal nonstationary POT models are 546 

epitomized orderly for POT2, POT3, and POT4: 547 

POT2~GP[ln( )=7.03, =0.11]+NB[ln( )=2.791 0.004 0.480 , ln( ) 0.013 ]

POT3~GP[ln( ) 6.76, 0.13]+PO[ln( ) 1.088 0.004 ]

POT4~GP[ln( ) 6.56, 0.1]+PO[ln( ) 0.004 0.07

t t t total mean t total

t t t total

t t t total

P T P

P

P

   

  

  

   

    

    4 ]
mean

T

(20) 548 

4.3. Flood projections under the climate scenarios 549 

Given that both 
total

P  and 
mean

T  have been parameterized in the nonstationary 550 

models for AM and POT, the future scenarios of 
total

P  and 
mean

T  are in need of the 551 

investigation of future flood return levels projected by the ENE method. Herein the 552 

scenarios generated by the seven GCMs in Du et al. (2015) were applied. Figure 4 553 

shows the average projections (red lines) and their ranges (gray shadow) from the 554 

seven GCMs over the future period 2010-2099 for 
total

P  and 
mean

T , respectively. The 555 

result announced the notably rising 
mean

T  (average annual growth of around 0.0596℃) 556 

and the negligible increase in 
total

P  (average annual growth of approximately 0.13mm) 557 

over the future period. Flood return levels are inferred under both stationarity and 558 
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nonstationarity denoted as s

T
x  and _non s

T
x , respectively, for the convenience of 559 

explanation. To eliminate the uncertainty brought by single GCM, the averaged 560 

projections for 
total

P  and 
mean

T  (red lines) were finally used to calculate _non s

T
x . 561 

Variations of T-year flood return levels estimated by using the models in Table 3 are 562 

presented in Fig. 5a. The largest flood magnitudes were estimated by the LNO3 model 563 

followed by the GEV and LP3 models. With the use of LNO3 model, _non s

T
x  564 

presented values above and then below s

T
x  as return period T prolonged through a 565 

transition T of around 30 years. For both LP3 and GEV model, _non s

T
x  were generally 566 

lower than the corresponding s

T
x . However, differences between _non s

T
x  and s

T
x  567 

appeared to reduce over T of 30-50 years for the LP3 model while enlarged evidently 568 

in case of the GEV model (The largest magnitude of their difference can reach above 569 

2000 m
3
/s) where no overlap of their 95% confidence intervals announced. It is 570 

interesting to note that _non s

T
x  have similar estimations to s

T
x  in both cases of the 571 

LNO3 and LP3 models with T around 30, in which there is much overlap of 572 

confidence intervals between _non s

T
x  and s

T
x .  573 

Figure 5b displays the results of flood return levels for the POT series (POT2, 574 

POT3, and POT4) where s

T
x  estimated from stationary POT model, i.e., stationary 575 

GP with constant arrival rate m , and _non s

T
x  from climatic covariates-dependent 576 

POT model, i.e., a combination of stationary GP and nonstationary (Poisson/NB) 577 

models. Three important findings were delivered: (i) the overall differences between 578 

s

T
x  and _non s

T
x  became larger as T increased. _non s

T
x  were always lower than s

T
x  579 

whether the Poisson or NB distribution was employed; (ii) the difference of _non s

T
x  580 
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arising from the use of Poisson and NB models expands orderly for POT4, POT3, and 581 

POT2 floods; (iii) no matter for s

T
x  or _non s

T
x , flood estimations dropped in order of 582 

POT2, POT3, and POT4 series for any given T. For example, it was observed that 583 

50-year s

T
x  had the different estimations of 7858 m

3
/s, 6897 m

3
/s, and 5429 m

3
/s for 584 

POT2, POT3, and POT4, respectively.  585 

Comparing the results for AM and POT series, flood return levels s

T
x  estimated 586 

with POT was larger than those with AM if the threshold was set relatively high such 587 

as 
POT 2

u (1060 m
3
/s) and vice versa. However, no similar features were found in 588 

_non s

T
x  on nonstationarity conditions. 589 

4.4. Sensitivity of flood estimations to changing climate 590 

How the flood return levels would co-vary with the parameters of climatic covariates 591 

total
P  and 

mean
T  is checked by the Sobol’ sensitivity analysis. The parameter samples 592 

were generated randomly with ranges defined by the seven climatic scenarios in Fig. 4. 593 

Sensitive parameters are designated as those that have a contribution of at least 10 594 

percent. Parameters controlling 50 percent of the overall model variance are thought 595 

to be highly sensitive.  596 

The first-order and total-order Sobol’ indices in nonstationary models fitted for AM 597 

over the return period of 90 years are shown in Fig. 6. In Fig. 6a, Sobol’ indices 598 

computed with the LNO3 model discerned both 
total

P  and 
mean

T  as sensitive 599 

parameters. The total contribution of 
total

P  (averagely 65%) to overall output variance 600 

was larger than that of 
mean

T  (averagely 47%). High parameter sensitivity was 601 

captured in Fig. 6b for the LP3 model in which the total-order indices of above-50 602 
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present occurred in both 
total

P  and 
mean

T with a steadily rising trend in indices. The 603 

results for GEV model in Fig. 6c showed the low indices (at about 0.3) for 
total

P  but 604 

anyway demonstrated the sensitivity to it whereas 
mean

T  was classified as highly 605 

sensitive parameter that would exhibit more effect on output variance. An 606 

imperceptibly increasing tendency was found in Sobol’ indices for both parameters 607 

total
P  and 

mean
T  in the GEV model. In all of the results presented for the three models, 608 

the highest sensitivity for 
total

P  existed in the LP3 model reaching up to 0.75, 609 

followed by the LNO3 model explaining about 67% of the total variance at most, and 610 

the GEV model presented the lowest sensitivity to 
total

P  (no more than 0.35). These 611 

models were all greatly sensitive to 
mean

T  with small difference in the values of 612 

total-order indices and the highest value again occurred in the LP3 model controlling 613 

44 to 63 percent of flood response. The temporal dynamics of respective parameter 614 

interactions (shown in Fig. 6 with the shading area) indicated that all the model 615 

sensitivities to 
mean

T , as would be expected, were more highly interactive, with 616 

approximately 11-27 percent of its influence on model output coming from 617 

interactions with other parameters, than that to 
total

P   618 

Figure 7 shows the results for POT floods which are in general not as sensitive to 619 

climate change as AM floods on nonstationarity conditions. Overall, the total-order or 620 

first-order sensitivity indices became larger in sequence of POT4, POT3, and POT2. 621 

mean
T  was seen as sensitive though its Sobol’ indices were not very high (averagely 622 

above 0.1), while the sensitivity to 
total

P  presented much lower values than that to 623 

mean
T , especially in case of POT4 using the Poisson model where 

total
P  was assigned to 624 
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be non-sensitive parameter. Sensitivities of POT flood response to 
total

P  and 
mean

T  625 

were also compared when using the Poisson and NB models, respectively. Adopting 626 

the NB instead of Poisson model for fitting POT_AR2 is likely to attach less 627 

uncertainty as discovered in Fig. 7a where the sensitivity indices with the NB were 628 

mostly below 0.22 in contrast to that with the Poisson model. However, the opposite 629 

results were found with POT3 and POT4 for which climate effect is stronger with NB 630 

model. These findings might increase confidence in promotion of the NB distribution 631 

for significantly heterogeneous POT arrival rates (e.g., POT_AR2 with variant scale 632 

parameter) while for nonstationary POT arrival rates without significantly changing 633 

variance, a time-varying Poisson process can be competent. 634 

Changes in _non s

T
x  computed with different values of the average scenarios 635 

increased by increments of 0-20% (each scenario series was altered alone with other 636 

parameters fixed) are shown in Fig. 8 with the specific examples corresponding to the 637 

return level of 5, 10 and 80 years. It is seen that for the LNO3 model, an increase only 638 

imposed in 
mean

T  caused a declining flood response, and such response would be 639 

stronger as return period prolonged or increment enlarged. A shift in flood response to 640 

single variation of 
total

P  from the escalating to moderating trend was also noted. 641 

Analyses conducted on the LP3 and GEV models shows that their derived flood return 642 

levels both corresponded to rising values in response to increasing 
total

P  and were 643 

quickened to descend by a large growth in 
mean

T . However, with the use of GEV model, 644 

the variation of return level as a response to increasing 
total

P  is rarely reflected (the 645 

biggest rise is roughly 360m
3
/s). Similar results were observed for POT floods that a 646 
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rising 
mean

T  leading to the decrease of flood response has a larger influence than an 647 

increasing 
total

P  (corresponding to higher flood estimation). Based on the analyses, 648 

flood estimations under nonstationarity would presumably be lower with a single 649 

effect of increasing air temperature or declining precipitation. 650 

These analyses make sense of our results in section 4.3 explaining somewhat why 651 

there is not much difference between _non s

T
x  and s

T
x  while a downward trend in 652 

floods has been verified. In the LNO3 model, separate change in 
mean

T  causes a 653 

continuing decrease in _non s

T
x  as T increases while single variation of 

total
P  presents 654 

different effect that makes _non s

T
x  first increase with a short T and then decrease for a 655 

longer T. Taking into account that 
total

P  has a higher overall importance than 
mean

T  656 

(Fig. 6) and the latter shows a significantly upward trend (Fig. 4), their short-term 657 

inverse effects are likely to generate _non s

T
x  similar to s

T
x  and with the growth of 658 

return period, the agreement of effects between them might result in a significantly 659 

lower _non s

T
x  than s

T
x . Analogously, the accumulation of inverse effects between 660 

total
P  and 

mean
T  in the LP3 model has rendered a very small difference between _non s

T
x  661 

and s

T
x . In the GEV model, a gently increasing 

mean
T  is mainly responsible for the 662 

markedly declining _non s

T
x  as the strong effect of 

mean
T  on _non s

T
x  has been notified. 663 

Likewise, changes in 
mean

T  also control POT flood response that lower values of 664 

_non s

T
x  would be caused given the long-term significant growth of temperature 665 

scenarios used here.  666 
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5. Discussion  667 

The ENE method provides a new path to expand flood design to nonstationarity 668 

conditions with both AM and POT samplings conveniently with an input of future 669 

climate scenarios into the pre-constructed flood-frequency distribution model. A 670 

preliminary challenge is providing the faithful evidence with real nonstationarity 671 

(Villarini et al., 2009a) if we allowing for the nonstationary modeling with historical 672 

flood. Encouraged by the data analyses (section 4.1) and the preceding studies of the 673 

Weihe basin (Zuo et al., 2012; Xiong et al., 2014, 2015a; Du et al., 2015), the present 674 

study is designed to release nonstationarity for future flood extrapolation under 675 

changing climate. In addition to climate change, further research could examine other 676 

physical covariates like human impact, an important factor to influence flood process 677 

(Zuo et al., 2014; Jiang et al., 2015) which, however, is not included here given 678 

current difficulty in prediction of future anthropogenic factors that may requires 679 

specific studies of other disciplines (e.g., sociology, economics).  680 

The confirmed nonstationarity is parameterized by modeling different probability 681 

distributions with time-varying parameters as functions of climatic covariates so that 682 

the effect of climate on complex flood response can be explained (Villarini et al., 683 

2009a, b; Prosdocimi et al., 2015). In this sense, these physically-based nonstationary 684 

models adopted here lay a more reliable basis to ensure the quality of flood projection 685 

than those purely using explanatory covariates like time without clear causality, which, 686 

however, has long been used before (Du et al., 2015). The optimal POT models that 687 

combined stationary magnitudes with time-variant arrival rates were discovered 688 
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(Tables 4 and 5), similar to that in Parey et al. (2010), but different from Silva et al. 689 

(2015) who found that both POT magnitudes and arrival rates changed dependent on 690 

the physical covariates. This result conforms to the preliminary test for nonstationarity 691 

in section 4.1, which also motivates the proposal of the NB distribution instead of 692 

traditional usage of the Poisson for POT arrival rate modeling. A comparison between 693 

the Poisson and NB distributions highlights the superiority of the latter for fitting 694 

POT_AR2 (Fig. 3) where the time-varying scale parameter was found (Table 5). This 695 

might implicitly assume the inapplicability of the homogeneous Poisson while POT 696 

arrival rate shows high variability in variance considering other comparable studies 697 

conducted elsewhere (e.g., Ben-Zvi, 1991; Villarini et al., 2012). However, there are 698 

some divergent voices, such as Cunnane (1979) and Önöz and Bayazit (2001), who 699 

suggested the use of Poisson distribution even when the Poisson distribution 700 

assumption was rejected by statistical tests, and Bezak et al. (2014), who found that 701 

the NB distribution did not offer improvements over the Poisson distribution for 702 

fitting POT arrival rates. It is necessary to point out that the climate-dominated 703 

nonstationary model as well as the climate scenarios we implemented here are not 704 

mandatory but rather identified for a specific basins of interest (López and Francés, 705 

2013). The proposal for future climate scenarios here is to use GCMs, an advanced 706 

tool used worldwide for replicating current climate condition and predicting unknown 707 

future climate. While beyond the scope of this paper, it must be noted that there have 708 

been still difficulties in adequate climate projection based on GCMs due to their 709 

inherent defects such as the oversimplified conceptualization of nonlinear processes, 710 
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coarse resolution, and moderate performance in modeling rainfall characteristics like 711 

the frequency, intensity, and extremes (e.g., Raff et al., 2009; Koutsoyiannis, 2011; 712 

Chen et al., 2012; Du et al., 2015). To relieve the negative impact and attain more 713 

credible climate scenarios in study area of interest, endeavors on complete assessment 714 

related to the choice of the scenarios, climate models and downscaling methods are of 715 

realistic significance.  716 

Appling the future changing climate scenarios to the nonstationary climatic 717 

covariate-dependent POT models, return levels _non s

T
x  derived with the nonstationary 718 

Poisson distribution are invariably higher than those from the NB distribution, and 719 

their differences become more evident with the increasing POT threshold. A typical 720 

example can be found in Fig. 5 comparing the results between POT2 and POT4, 721 

specifically for a shorter return period when the gaps are negligibly small in case of 722 

POT4 but easily recognizable for POT2. Similar outcome has been reported early for 723 

stationarity strategy in Önöz and Bayazit (2001) that flood estimates were nearly 724 

identical based on both Poisson and NB distributions. It is natural to suppose that the 725 

difference levels of flood estimations between the Poisson and NB distribution are 726 

associated with the given POT threshold. Likewise, this surmise is tenable when 727 

comparing estimated floods between the AM and POT samplings. POT sampling does 728 

not always give higher flood designs than AM under either stationarity or 729 

nonstationarity assumption (e.g., POT4). Various results have been found in other 730 

research, e.g., Önöz and Bayazit (2001) applied POT series with fewer than average 731 

three events per year to stationary flood estimation and found that POT always gave 732 
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lower estimates than AM, whether using Poisson or NB distribution, Bezak et al. 733 

(2014) recently showed that POT series with an average of five events per year 734 

produced higher flood estimations than AM when the Poisson distribution was 735 

assumed. One plausible explanation for these phenomena is that the POT series 736 

extracted above a low threshold lose the significance of ‘real flood’, while the POT 737 

series with a very high threshold are more liable to expose the nonstationarity in 738 

response to changing climate as have been stated by the increasing MK statistics 739 

orderly for POT_AR4, POT_AR3, and POT_AR2 (section 4.1). 740 

Results for either AM or POT floods declare that the ENE method could yield 741 

design floods much and/or little lower than those derived from the stationary model 742 

with identical distribution assumption. For example, _non s

T
x  from the optimal 743 

nonstationary LP3 model deviated slightly from s

T
x  estimated with stationary LP3 744 

model for the return periods of 30-50 years. POT4 shows a minor difference between 745 

s

T
x  and _non s

T
x  using the Poisson model. However, such result may not be 746 

dependable for other discussed distributions like GEV where the striking difference 747 

(>2000m
3
/s) between s

T
x  and _non s

T
x  has been informed (Fig. 6c). Accordingly, it is 748 

revealed that under changing climate scenarios, nonstationary flood frequency model 749 

embedded in the ENE method does not necessarily lead to the results that are 750 

significantly different from those obtained by traditional stationarity strategy.  751 

A sensitivity analysis of flood estimations to changing climate in section 4.4 752 

effectively illustrates our reports with, e.g., the LP3 model for extrapolating AM 753 

floods that nonstationarity cannot readily be conjectured to be the transformed 754 
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parlance of “changes” (Koutsoyiannis and Montanari, 2015) due to the underlying 755 

parameter interactions emerged in the ENE inference. This model captures the most 756 

nonstationary variation of flood thus being preferred at first glance for application to 757 

the ENE method. However, the high sensitivity to changing climate detected in it has 758 

to be taken into account cautiously because of the implication that uncertainty 759 

problem involved might be added. Contrasting to the AM floods, the application to 760 

POT series seems not to be that sensitive (Fig. 7), and from this perspective, it should 761 

be henceforth devoted sufficient attention for nonstationary flood return level analysis 762 

in view of its relatively lower uncertainty originating from climate scenarios. 763 

Comparing the Poisson and NB models respecting POT flood estimations, climate 764 

variability has a lower influence on flood projection (or cause less uncertainty) when 765 

using the NB distribution for the POT series with a high threshold, e.g., POT2 and 766 

that the best model fitted for nonstationary POT2 series is confirmed with the NB 767 

instead of Poisson distribution. The promotion of the NB distribution in 768 

nonstationarity context is in this regards of necessity. It is presumably that a weaker 769 

reliability of flood projection on nonstationarity condition would be made if future 770 

climate is poorly predicted and/or nonstationarity in POT arrival rate inappropriately 771 

represented by a homogeneous Poisson process. 772 

In light of the analyses above, we believe that the ENE method has the potential for 773 

flood projections as it is easily understandable and computationally efficient. 774 

Nevertheless, the ENE method still faces barriers to reliable flood predictions as the 775 

method is by its very nature subjugated to so many mathematical hypotheses. 776 
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Therefore, carefulness should be taken in practice for nonstationary flood projections 777 

that have been carried out herein given the limitations incumbent upon the method, 778 

such as the cause-effect mechanism of nonstationarity, the extent to which climate 779 

scenarios asymptotically converge to the reality in the future and the uncertainty 780 

associated with nonstationarity inference (e.g., Lins and Cohn, 2011; Koutsoyiannis, 781 

2011; Montanari and Koutsoyiannis, 2014; Salas and Obeysekera, 2014; Serinaldi and 782 

Kilsby, 2015; Silva et al., 2015). 783 

6. Conclusions 784 

Flood return levels have been projected under future changing climate scenarios by 785 

applying the expected number of exceedances (ENE) method to both Annual 786 

Maximum (AM) and Peaks over Threshold (POT) series of the Weihe basin, China. 787 

To evaluate the climatic effect on flood projection, the sensitivity of flood response to 788 

future changing climate is explored via the Sobol’ method. The initial detection of 789 

nonstationarity confirms a significantly decreasing trend in the observed AM floods 790 

while the POT records are characterized by stationary flood magnitudes with the 791 

heterogeneous occurrences. The findings can therefore motivate the proposal of the 792 

Negative Binomial (NB) distribution for fitting POT arrival rates given the previous 793 

report that the common assumption of homogeneous Poisson process might be invalid 794 

under nonstationarity. Time-varying flood-frequency models parameterized for 795 

describing nonstationarity are constructed via functional relation between distribution 796 

parameters and climatic covariate, which have been proven to yield superiority over 797 
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stationary ones for the series of AM and POT arrival rates. The variations of AM 798 

floods are best captured by the physical covariates-dependent LP3 model. For fitting 799 

the over-dispersed POT series (with significantly variant variance higher than the 800 

mean in its arrival rates, hereinafter), the NB distribution model is demonstrated to be 801 

preferable to the Poisson model.  802 

The comparison of differences between the return levels calculated with AM and 803 

POT floods reveals that the AM flood projections are mostly lower than the POT 804 

estimation except when POT series are sampled with small threshold (attributed to the 805 

damage of real flood information). The AM-based flood extrapolation is more 806 

vulnerable to climate change than flood estimation with POT. From this perspective, 807 

we suggest that POT series should be warranted more attention in nonstationary flood 808 

frequency analysis, as the relatively complicated sampling criteria has long limited its 809 

application.  810 

Comparison with respect to the POT-based flood projection shows that the presence 811 

of over-dispersed flood occurrences could lead to overestimation of return levels if 812 

treating the assumption of homogeneous Poisson process without discretion. The gaps 813 

based on the choices between the Poisson and NB models would enlarge with the 814 

increasing POT threshold value. Referring to the advantage in model fitting and low 815 

detrimental impact on future flood extrapolation (i.e., incurring less uncertainty 816 

originating from changing climate than the Poisson model), the NB distribution would 817 

be a better choice when POT arrival rates exhibit significant heterogeneity (e.g., 818 

POT_AR2 tested in this study). 819 
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Under future changing climate, flood return levels derived with the ENE method 820 

are usually but not always more different from those analyzed by traditional 821 

stationarity strategy although the significant representation of nonstationarity in flood 822 

samples has been notified. Such results could be indirectly approved due to the 823 

generally opposite impacts of increasing air temperature and precipitation (used as the 824 

climatic covariates in this study) as well as the different extent to which the flood 825 

estimation responds to them. This information has important implication to the 826 

influence of multifactorial interactions included in the ENE inferences which could 827 

perhaps maintain the dynamic balance between stationarity and nonstationarity. It is 828 

therefore as stressed that nonstationarity cannot be taken as equivalent to change. 829 

However, assuming a separate variation of increasing air temperature or declining 830 

precipitation, lower flood estimation under nonstationarity could be induced in 831 

general. 832 

This study can be useful in guiding decisions with flood design under changing 833 

climate and as an attempt for future inference to contribute to the further development 834 

of relieving the concomitant problems attached with nonstationary flood extrapolation. 835 

Given that this region-specific research only considers the impact of climate change, it 836 

is suggested a more sufficient consideration of physical covariates relevant to flood 837 

response for application to other studies. 838 
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Tables 

Table 1. Summary of the probability distribution functions and parametric link functions 
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Table 2. Temporal trends tested (↑ for increase and ↓ for decrease) by the statistic of the MK 

(
MK

Z ), PW (
PW

Z ), and TFPW (
TFPW

Z ). The PMK test discerns the potential drivers (p-values 

highlighted in bold) for the series with significant trends. 

Series MK
Z  

PW
Z  

TFPW
Z  Potential drivers 

    total
P  _1max d

P

 

_ 3max d
P

 

_ 7max d
P

 

mean
T  

AM -3.72(↓) -3.61((↓) -3.58(↓) 0.07 0.00 0.00 0.01 0.15 

POT2 -0.96 -0.76 -0.84   (-)   

POT3 -1.92 -1.55 -1.86   (-)   

POT4 -1.49 -1.38 -1.47   (-)   

POT_AR2 -4.12(↓) -3.19(↓) -4.26(↓) 0.09 0.00 0.00 0.03 0.11 

POT_AR3 -4.00(↓) -2. 72(↓) -3.80(↓) 0.08 0.00 0.01 0.01 0.04 

POT_AR4 -3.35(↓) -2.52(↓) -3.73(↓) 0.03 0.00 0.01 0.02 0.06 
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Table 3. Optimal models for AM under stationarity and nonstationarity. 

Model Estimated parametric functions 

(standard error) 

AIC 

BIC 

2
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R

(%) 

2
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96.7 92.4 

Nonstationarity     

LNO3 ln( ) 9.424 0.003 0.364 (1.321,0.001,0.101)

ln( ) 1.151 0.003   (0.136,0.001)  

110.002 (4.209)

t total mean

t total

t

P T
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
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833.8 
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LP3 8.741 0.003 0.307 (1.149,0.001,0.102)

ln( ) 2.740  (0.102)

0.451 (0.181)

t total mean

t

t

P T





  

 


 

820.9

830.5 

 

87.7 90.8 

GEV 1789.594 3.818 215.657 (2161.661,1.717, 230.536)

ln( ) 9.736 0.336          (4.102,0.151)  

0.108 (0.048)
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Table 4. Optimal GP models for the POT magnitudes. 

POT magnitudes POT2 POT3 POT4 

Threshold ( )u  1060 780 530 

ln( )
t

  (standard error) 7.03(0.163) 6.76(0.149) 6.56(0.114) 

t
  (standard error) 0.11(0.049) 0.13(0.062) 0.10(0.043) 

AIC 1611.3 2371.9 3067.5 

BIC 1616.5 2377.9 3074.1 
2

PP
R (%) 99.5 98.7 99.7 

2

QQ
R (%) 97.9 98.2 99.4 
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Table 5. Optimal nonstationary Poisson and NB models for the POT arrival rates. 

Distribution Estimated parametric functions 

(standard error)
 

AIC BIC 
2

PP
R

(%) 

2

QQ
R

(%) 

Poisson      

POT_AR2 ln( ) 0.005 0.241  (0.001,0.048)
t total mean

P T    149.9 153.6 90.2 89.7 

POT_AR3 ln( ) 1.088 0.004  (0.315,0.001)
t total

P     171.1 174.9 90.4 90.1 

POT_AR4 ln( ) 0.004 0.074  (0.001,0.033)
t total mean

P T    181.8 185.6 92.7 90.2 

NB      

POT_AR2 ln( ) 2.791 0.004 0.480  (0.567,0.001)

ln( ) 0.013  (0.007)

t total mean

t total

P T

P





  

 
 

143.8 151.3 92.4 91.7 

POT_AR3 ln( ) 0.004 0.113  (0.001,0.042)

ln( ) 5.06 (0.302)

t total mean

t

P T



 
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171.2 177.0 90.0 86.9 

POT_AR4 ln( ) 2.327 0.003 0.276  (1.023,0.001,0.132)

ln( ) 6.07 (0.498)

t total mean

t

P T



  
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183.3 190.9 89.5 87.8 
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Figures 

 

Figure 1. Geographic positions of the hydrological and meteorological stations in the Weihe basin.  
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Figure 2. Q-Q plots of standard normal quantiles 
t

r  against empirical quantiles for the models in 

Table 3.
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Figure 3. Worm plots of nonstationary Poisson and NB models for POT_AR2 in Table 5. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-619, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 9 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



55 

 

Figure 4. Projected series of total
P  and mean

T  for the future period of 2010-2099 averaged from 

the seven GCMs (red lines) with their ranges shown by gray shadows.  
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Figure 5. Flood return levels 
T

x  estimated from the models for AM in Table 3(left) and for POT 

with the results of Tables 4 and 5 (right). 
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Figure 6. Difference in T-year AM-based return levels between stationarity and nonstationarity 

(
_non s

T
x -

s

T
x ) in case of LNO3, LP3, and GEV models, respectively, and the Sobol’ sensitivity 

indices of parameters 
total

P  and 
mean

T  for each model. 
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Figure 7. Difference in T-year POT-based return levels between stationarity and nonstationarity 

(
_non s

T
x -

s

T
x ) when using the Poisson and NB models, respectively, and the Sobol’ sensitivity 

indices of parameters 
total

P  and 
mean

T  for each model. 
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Figure 8. Variation of return level 
_non s

T
x  (T = 5, 10, 80) computed with a separate increase of 

0-20% in series 
total

P  and mean
T , respectively, for AM (with nonstationary LNO3, LP3, and GEV 

distributions) and POT models (using the Poisson and NB distribution). 
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