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Abstract. The accurate assessment of profile soil moisture for spatial domains is usually difficult due to the associated costs, 

strong spatial-temporal variability, and nonlinear relationship between surface and profile moisture. Here we attempted to 10 

use observation operators built by Cumulative Distribution Frequency (CDF) matching method to directly upscale surface 

observations to profile soil moisture based on multi-station in situ measurements from the Soil and Climate Analysis 

Network (SCAN). We first analyzed the effects of temporal resolution (hourly, daily and weekly) and data length (half year 

in non-growing season, half year in growing season, one year, two years and four years) on the performance of observation 

operators. The results showed that temporal resolution had a negligible influence on the performance of observation 15 

operators. However, data length significantly changed the prediction accuracy of observation operators; prediction errors 

decreased as data length increased from half year (non-growing season) to two years, but accuracy did not further improve at 

longer interval. A dataset with a two-year duration was therefore used to test the robustness of observation operators in three 

primary climates (humid continental, humid subtropical and semiarid) of the continental USA, with the popular exponential 

filter employed as a reference approach. The results indicated that observation operators generally performed better than 20 

exponential filter method in both calibration and validation periods. This suggests that observation operators are a robust 

statistical tool for upscaling soil moisture from surface to profile. The findings here may be applied in the prediction of 

profile soil moisture from surface measurements obtained via various means, including remote sensing techniques. 

1 Introduction 

Soil moisture in the root-zone profile is a key variable that influences the agricultural, hydrological, ecological and 25 

meteorological systems of the Critical Zone. It determines water availability to crops and participates in the partitioning of 

available energy into sensible and latent heat and of precipitation into infiltration and runoff (Montaldo and Albertson, 2003). 

Continuous and accurate measurement of profile soil moisture, however, is difficult because of expensive field 

measurements, strong spatial-temporal variability, and the nonlinear relationship between surface and profile soil moisture 
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(Han et al., 2012a; Dumedah et al., 2015). In contrast, the collection of surface soil moisture data is much easier. At fine 

scales (e.g. field, hillslope, or small watershed), surface soil moisture can be attained from portable soil moisture sensors or 

derived using cosmic-ray neutron probes and ground-penetrating radar (Penna et al., 2013; Ferrara et al., 2013; Baatz et al., 

2014). At larger scales (e.g. regional and global scales), remote sensing techniques can provide surface soil moisture data at 

fine spatial or temporal resolution (Brocca et al., 2011; Panciera et al., 2014). However, these instruments generally measure 5 

soil moisture at relatively shallow layers. For example, remote sensing methods (either active or passive) retrieve near-

surface soil moisture that only reaches several centimeters beneath the soil surface (Draper et al., 2009). Therefore, it is 

necessary to link surface soil moisture to profile soil moisture via robust depth-upscaling approaches. 

 

A variety of approaches for predicting profile soil moisture from surface measurements have been proposed, ranging from 10 

simple statistical relationships to physically-based retrieval (Wagner et al., 1999). The primary methods used today can 

generally be classified into three different types: (1) data assimilation methods; (2) analytical methods; and (3) statistical or 

computational statistical methods. Data assimilation methods refer to techniques which incorporate surface soil moisture 

measurements (e.g. remote sensing products) into physically-based hydrologic models to obtain an analysis that best 

represents profile soil moisture. Various data assimilation algorithms, based on direct insertion, Kalman filter, or the 15 

extended and ensemble Kalman filter, among others, have already been developed (Evensen, 1994; Walker et al., 2002; 

Reichle et al., 2002; Heathman et al., 2003). These algorithms have provided robust estimates of root-zone soil moisture by 

integrating surface soil measurements, either remote sensing retrievals or in situ observations from a soil moisture 

monitoring network, into land surface models (Crow and Wood, 2003; Reichle et al., 2007; Draper et al., 2011; Han et al., 

2012a; Parrens et al., 2014; Dumedah et al., 2015). Although data assimilation is considered the most promising approach 20 

(Kostov and Jackson, 1993; Dumedah et al., 2015), its application may be constrained by the required model parameters (soil 

properties, vegetation features and atmospheric forcing), which are difficult to obtain at larger scales, as well as by 

uncertainties related to the physical description of soil hydrological processes (Albergel et al., 2008; Hu and Si, 2014).  

 

The analytical methods require fewer input parameters and are computationally more efficient than data assimilation 25 

methods. They are generally mathematically derived from physically-based relationships of water flows that include some 

simplification assumptions (Arya et al., 1983; Camillo and Schmugge, 1983; Wagner et al., 1999; Manfreda et al., 2014). For 

example, the exponential filter, introduced by Wagner et al. (1999), assumes that water fluxes between surface and 

subsurface layers are proportional to the soil moisture difference between these two layers. Currently, the exponential filter 

is likely the most popular analytical method since it only requires one input parameter, the characteristic time length (T), in 30 

addition to surface soil moisture observations. This method has successfully predicted subsurface soil moisture from surface 

observations for multiple regions that vary in climatic and/or soil conditions (Ceballos, et al., 2005; Albergel et al., 2008; 

Brocca et al., 2011; Ford et al., 2014; Peterson et al., 2016). 
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Statistical methods are even simpler approaches for estimating profile soil moisture because they do not account for water 

flux processes and are completely data driven. The simplest statistical method is the linear regression between surface and 

profile soil moisture data. However, this method usually produces poor estimations because of the nonlinear relationship 

between surface and profile soil moisture (Jackson, 1986; Bono and Alvarez, 2012; Shi et al., 2014). Bono and Alvarez 5 

(2012) found that multivariate regression and artificial neural network was able to produce reliable profile soil moisture 

estimations, but required soil moisture measurements from at least two different soil layers as inputs. Time stability analysis, 

introduced by Vachaud et al. (1985), has been also tested for its application to soil moisture depth upscaling. Hu and Si 

(2014) indicated that profile soil moisture can be reliably predicted from measurements at the most time stable depth. 

However, the time stable depth is not necessarily the surface layer, and this would make required measurements more costly 10 

and difficult to obtain. Furthermore, Gao et al. (2015) found that measurements of a shallow layer, when used as inputs in 

time stability analysis, were able to accurately estimate profile soil moisture. However, the depth of the shallow layer was 

defined to reach down to 40 cm, which is far beyond the scope of satellite sensors. This restricts the application of time 

stability analysis to profile soil moisture estimation because in many cases only surface measurements (≤ 5 cm) are available.  

 15 

Despite the development of data assimilation and analytical methods, soil moisture upscaling still needs robust statistical 

methods because of their high computational efficiency and applicability to a wide range of environments (Bono and 

Alvarez, 2012). The Cumulative Distribution Frequency (CDF) matching method has proven to be both efficient and widely 

applicable through the construction of observation operators. This method is primarily used to adjust for the systematic 

differences in soil moisture that arise from different sources such as in situ measurements, modeled outputs and remote 20 

sensing retrievals (Reichle and Koster, 2004; Drush et al., 2005; Brocca et al., 2011; Parrens et al., 2014). The method has 

also been extended to the spatial upscaling of point soil moisture measurements (Han et al., 2012b) and spatial transferring 

of soil moisture between different areas (Gao et al., 2013). The CDF matching method is expected to be applicable to the 

presented study because soil moisture at various layers can be regarded as belonging to different spatial domains or sources. 

In this way, profile soil moisture could be predicted by adjusting for surface soil moisture through the construction of the 25 

observation operators for surface and profile data. 

 

The primary objective of the presented research was to test the feasibility and robustness of observation operators built by 

CDF matching method in upscaling surface soil moisture to profile soil moisture by using multi-station in situ soil moisture 

observations from the Soil Climate Analysis Network (SCAN) in the United States. The paper is arranged as follows. First, 30 

we analyzed how the resolution and length of soil moisture time series affected the performance of observation operators. 

The results were used to choose an appropriate temporal resolution and length for the construction of observation operators. 
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We then tested the feasibility and robustness of observation operators under different climate regions in the continental 

United States. 

2 Materials and methods 

2.1 Soil moisture datasets 

Here the feasibility and robustness of a CDF matching method in the upscaling of soil moisture from surface to profile was 5 

tested using in situ soil moisture measurements from the Soil Climate Analysis Network (SCAN).  

 

SCAN focuses primarily on agricultural areas in the US and consists of over 200 soil moisture monitoring stations across 

different climate regions, mainly serving to monitor drought and climate change. Soil moisture content at depths of 5, 10, 20, 

50, and 100 cm was measured at each station with HydraProbe soil moisture sensors (Stevens Water Monitoring Systems 10 

Inc., Portland, OR). All SCAN soil moisture data, at both daily and hourly resolution, are available at the National Water and 

Climate Center website (www.wcc.nrcs.usda.gov/scan). A total of 31 stations were chosen for analyses according to the 

objectives of this study. General information about these 31 stations is presented in Table 1. Although these data have been 

corrected by data managers, we were able to detect outliers in the datasets. To identify outliers in one given layer, soil 

moisture at this depth was linked to values at adjacent depth(s) and rainfall events. Generally, an increase in soil moisture is 15 

closely associated with a precipitation event. When fluctuations in soil moisture at a given layer were not related with 

rainfall events and independent of the fluctuations of adjacent layers, these soil moisture values were identified as outliers 

and excluded from the analyses.  

2.2 Observation operators 

2.2.1 The CDF matching method 20 

The Cumulative Distribution Frequency (CDF) matching method was used to create observation operators. The observation 

operators were then used to predict profile soil moisture content from surface measurements by adjusting for the systematic 

differences between these two layers. It is important to note that the CDFs used in this study were built from soil moisture 

time series and assume that all soil moisture values are equally probable (Pachepsky and Hill, 2016).  

 25 

As shown in Figure 1, the CDF matching method rescales the CDF of one dataset (surface soil moisture time series in this 

study) to match that of another dataset (profile soil moisture time series in this study). The technical procedure of this 

method progressed as follows. First, the in situ measured surface and profile soil moisture datasets were ranked. Next, the 

differences (Δ) in soil moisture between corresponding elements in the surface and profile datasets were calculated. A 

polynomial fit was then used to quantify the relationship between surface soil moisture and Δ, which enabled the creation of 30 
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observation operators. Finally, Profile soil moisture could then be estimated by using the observation operators to rescale 

surface measurements. Previous studies (Reichle and Koster, 2004; Drush et al., 2005; Han et al., 2012b) have usually used a 

third-order polynomial fit to establish observation operators. This study, on the other hand, employed pre-experiments to 

identify the optimal order (results not shown here), and a fifth-order polynomial was finally used when considering the 

accuracy of fitting and the principle of parsimony.  5 

2.2.2 Time series resolution effect 

Three different temporal resolutions (hourly, daily, and weekly) were used to probe how time series resolution affects the 

performance of observation operators. To this end, three stations from SCAN with varying soil moisture values and surface-

profile soil moisture dynamics were selected for analysis, including Shagbark Hills in Iowa, Perdido Riv Farm in Alabama, 

and Sevilleta in New Mexico. These stations were chosen because of the continuity and completeness of soil moisture 10 

datasets at both daily and hourly resolutions.  

 

The testing procedure progressed as follows. First, hourly data within a given period were used to build observation 

operators. Surface moisture at daily (weekly) resolution during the same period was then incorporated into these observation 

operators to predict the corresponding daily (weekly) profile soil moisture. Next, observation operators derived from daily 15 

data were used to predict hourly (weekly) profile soil moisture in corresponding periods. Finally, observation operators 

derived from weekly data were used to predict hourly (daily) profile soil moisture in corresponding periods. Statistical 

metrics, including determination coefficient (R2), root mean square error (RMSE) and Nash-Sutcliffe coefficient (NSC; Nash 

and Sutcliffe, 1970), were used to judge whether the developed observation operators were transferable between different 

temporal resolutions. The RMSE and NSC are defined as:  20 
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where ,obs iθ and ,est iθ represent the observed and estimated profile soil moisture content, respectively, and N is the number 

of soil moisture values in the corresponding time series.  25 
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2.2.3 Time series length effect 

Three stations (Blue Creek, BC; Green River, GR; and Little Red Fox, LRF) in Utah with varying surface and profile soil 

moisture time series from 2010 to 2015, as well as continuous and complete datasets, were used to probe how time series 

length affects the performance of observation operators. Five different data lengths were chosen: a half-year growing season 

(Apr. 1 to Sept. 30; DL1); a half-year non-growing season (Oct. 1 to Mar. 31; DL2); one calendar year (DL3); two calendar 5 

years (DL4); and four calendar years (DL5). Four replicates were conducted for each data length. Specifically, soil moisture 

from the years of 2010, 2011, 2014, and 2015 was used to establish the observation operators for data lengths DL1, DL2 and 

DL3 (calibration), and data from 2012 and 2013 were used for validation. For data length DL4, soil moisture from four 

different two-year combinations (2010&2011, 2014&2015, 2010&2014 and 2011&2015) was used for calibration, and data 

from 2012 and 2013 were used for validation. As data length DL5 covers four years, four different four-year combinations 10 

(2010&2011&2012&2013, 2011&2012&2013&2014, 2012&2013&2014&2015, and 2010&2011&2014&2015) were used 

for calibration. The two years that were not included in each of the specified combinations were used for validation. 

Statistical metrics (R2, RMSE, and NSC) were used to test the feasibility and robustness of observation operators built from 

soil moisture datasets that varied in the length of both calibration and validation periods. These analyses served to identify an 

appropriate data length for the construction of robust observation operators.  Note that the surface measurements should also 15 

be ranked first during validation, after which they can act as inputs for the observation operators that derive ranked profile 

soil moisture.  

2.2.4 Testing procedures in applications 

The constructed observation operators were then applied to different climate regions to test how robust the predictions are 

for areas that vary in soil moisture.  Three primary climate regions in the continental USA were chosen (humid continental, 20 

humid subtropical, and semiarid) and three stations were selected for each climate region based on the continuity and 

completeness of soil moisture datasets. Detailed information regarding these nine stations is presented in Table 1.  

2.3 Exponential filter 

A popular analytical method, the exponential filter, the robustness of which has been validated in various climates (Wagner 

et al., 1999; Ceballos et al., 2005; Albergel et al., 2008; Brocca et al., 2011; Ford et al., 2014; Gao et al., 2014; Peterson et al., 25 

2016), served as a reference method to judge the performance of observation operators in different climate regions.  

 

According to Wagner et al. (1999), a soil profile can be divided into the surface layer and a second (subsurface) layer. The 

exponential filter was introduced to predict second-layer soil moisture (w2) from surface measurements (w1). This method 

assumes that the water flux between surface and subsurface layers is proportional to the difference in soil moisture between 30 

these two layers. The surface and subsurface soil moisture can be linked as follows: 
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Assuming C is constant and T=L/C, the solution of Eq. (3), is derived by integration as: 
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where L2 is the depth of the second layer, C is the area-representative pseudo-diffusivity constant, and T represents the 

characteristic time length. Generally, T is considered to be an integrative parameter that explains all the hydrologic, 5 

pedologic and ecological processes that influence soil moisture variations with depth (Wagner et al., 1999; Albergel et al., 

2008). To simplify the computation, Albergel et al. (2008) gave the recursive formulation of Eq. (4) as follows: 
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where SWI1 and SWI2 represent the soil water index (SWI) of the surface and second layer, respectively, and Kt is the gain 

of the exponential filter. The dimensionless SWI represents the scaled soil moisture content, which ranges from 0 to 1 based 

on the minimum and maximum values of each time series.  
 

It is important to note that predicted second-layer soil moisture (SWI2) via Eq. (5) provides scaled values. To compare these 15 

values with results from observation operators, SWI2 must be rescaled by using the maximum ( 2,maxw ) and minimum 

( 2,minw ) values of the corresponding original time series of the second layer as follows: 

2 2( ) 2,max 2,min 2,minˆ ( ) SWI ( )tw t w w w= − +                                                                                                              (7) 

where 2ˆ ( )w t is the rescaled value of predicted soil moisture at the second layer, m3 m-3. The rescaled value 2ˆ ( )w t  and the 

surface measurements 1( )w t  can then be coupled to obtain the profile soil moisture as:  20 

2 2 1 1
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where ˆ ( )pw t  is the predicted profile soil moisture at time t, and L1 is the depth of surface layer. 
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3 Results & discussion 

3.1 The effect of time series resolution 

The surface and profile soil moisture time series at different temporal resolutions for the Shagbark Hills, Perdido Riv Farms 

and Sevilleta stations are shown in Figure 2. Soil moisture is not shown at an hourly resolution because it generally 

overlapped with daily data. In general, the surface and profile soil moisture at different resolutions did not show different 5 

temporal trends. However, as the resolution became coarser, more information was lost. For instance, daily resolution data 

cannot reflect the hourly variation of soil moisture within a day and weekly resolution data may not include information 

about the daily variation of soil moisture, potentially failing to capture extreme values following rainfall events and strong 

evapotranspiration (Figure 2). 

 10 

The performance metrics for the application of observation operators built from a dataset of a certain resolution to another 

dataset with a different resolution are presented in Table 2. Generally, observation operators that had been calibrated using 

datasets of a different resolution performed well, with RMSE less than 5.39×10-3 m3 m-3 and R2 and NSC higher than 0.99. 

Furthermore, there was little variation between the three statistical metrics from all stations when the operators were 

transferred from daily to hourly datasets. However, a clear increase in RMSE was observed when the observation operators 15 

built from either daily or hourly data were applied to weekly data. In contrast, the observation operators built from weekly 

data showed no decrease in RMSE when they were applied to either hourly or daily data. This suggests that observation 

operators built from datasets with finer temporal resolutions can lose a certain degree of accuracy when they are applied to 

coarser resolution data. However, observation operators derived from coarser resolution datasets seem to be less prone to 

losing accuracy when applied to finer resolution data. Overall, the temporal resolution of soil moisture time series had a 20 

relatively weak effect on the performance of observation operators, and hence can be ignored during the construction of 

observation operators. In this study, observation operators were built from soil moisture data at a daily resolution in order to 

reach a compromise between computing efficiency and operator robustness.  

3.2 The effect of time series length  

Soil moisture data for the three stations (LRF, GR and BC) over a six-year interval are presented in Figure 3. Overall, the 25 

soil moisture time series varied between stations. At the LRF station, surface moisture content was generally lower than 

profile moisture content. Differently, soil moisture content was generally higher at the surface than in the profile at the GR 

site, except during very dry conditions. Data from the BC station showed that surface soil moisture was generally higher than 

profile soil moisture during wet conditions, but lower than profile soil moisture during dry conditions.  

 30 
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A cross correlation analysis was used to characterize surface-profile soil moisture relationships. This is because subsurface 

soil moisture shows a delayed response to atmospheric variables (e.g. precipitation and evapotranspiration) and cross 

correlation analysis is able to characterize lagged relations (Georgakakos et al., 1995; Mahmood et al., 2012; Ford et al., 

2014). As shown in Figure 4, cross correlation coefficients varied greatly over stations and time. At the LRF station, the 

cross correlations were relatively weak in 2010 and 2012, with a maximum coefficient of less than 0.04; in 2010 surface and 5 

profile soil moisture were negatively correlated at all lag times (< 50 days). This indicated that, in 2010, profile soil moisture 

was weakly influenced by surface wetness and may have been largely controlled by groundwater. When compared to the 

other years, these two years can be regarded as anomalous years from the perspective of surface-profile soil moisture 

relationships. Over the other years, maximum cross correlation at LRF ranged from 0.42 to 0.80, occurring with no lag or at 

one day of lag, except for 2013, when the coefficient peaked at a lag time of 11 days. The large variation in cross correlation 10 

over different years at the LRF station means that observation operators built by using data from one period may fail when 

applied to other periods. At the GR station, the maximum cross correlation ranged from 0.26 to 0.61 over the analyzed years 

and peaked at no lag or one-day lag, except for 2010, when maximum correlation occurred at a 10 day lag. The BC station 

showed relatively stable and large maximum cross-correlation coefficients of 0.62 to 0.77 over the years, peaking at a lag 

time from 1 day to 20 days. This means that surface and profile soil moisture at this station are well coupled across time 15 

periods and the observation operators built in one period could be successfully transferred to other periods.  

 

The effects of soil moisture time series data length on the performance of observation operators in both calibration and 

validation periods are shown in Figure 5. As expected, observation operators clearly performed better in calibration than in 

validation periods, especially when the RMSE and NSC metrics are studied. However, the performance in validation periods 20 

can serve as a better reference for judging data length effects because independent datasets are employed. Except for the 

LRF station, the performance of observation operators, based on both calibration and validation periods, improved as data 

length increased from half year (non-growing season; DL1) to two years (DL4); this was shown by an increase in predicted 

error (RMSE) and a decrease in correlated strength (R2 and NSC). As shown in Figure 3, the non-growing season generally 

had moderate soil moisture contents and did not include high and low values. As a result, observation operators built from 25 

non-growing season data would fail to represent the surface-profile soil moisture relationships across the annual level, thus 

resulting in large predicted errors. As data length increased, the observation operators became more representative, 

producing more robust predictions of profile soil moisture. However, observation operators did not perform better according 

to all three statistical metrics when data length further increased to four years (DL5), and even performed slightly worse 

during validation periods than DL4-based operators in light of RMSE and R2 values. This suggests that larger datasets do not 30 

produce greater gains when data length exceeds two years. Therefore, the observation operators in this study were built 

based on a data length of two years.  
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Special attention was given to the LRF station, which showed large prediction errors and low correlation between predictions 

and observations during both calibration and validation periods when compared with the other stations. This was not 

surprising based on the findings from Figures 3 and 4. These two figures demonstrate that the surface-profile soil moisture 

relationships in 2010 and 2012 varied from other years. In this study, soil moisture from 2010 was used as part of the 

calibration data and soil moisture from 2012 was used as part of the validation data. Therefore, observation operators built 5 

using datasets that included soil moisture values from 2010 would differ greatly from those not based on these soil moisture 

data. Validation of these observation operators in a normal year (i.e. 2013) or in a different anomalous year (i.e. 2012) would 

result in large prediction errors. This suggests that datasets describing years with anomalous surface-profile soil moisture 

relationships should be excluded in order to build robust observation operators. 

3.3 Testing of observation operators across climate regions 10 

The feasibility and robustness of observation operators was tested using stations distributed across three primary climate 

regions in the continental USA. As stated above, the exponential filter method was employed as a reference to further verify 

the robustness of observation operators.  

 

The first step of the exponential filter method is the calculation of the optimal value for the T parameter (Topt), which is 15 

obtained by maximizing the Nash-Sutcliffe coefficient (NSC); the T value at which NSC peaks is regarded as the Topt for a 

given dataset (Wagner et al., 1999). The relationships between the T parameter and NSC at various stations in calibration 

period are shown in Figure 6. The Topt varied from 1 to 23 days for different stations, except for the Holden station, which 

had negative NSC values over the whole range of T values under consideration (0-50 days) and did not even peak when T 

was set to 100 days (data not shown here). In-depth analysis showed that the Topt value was highly dependent on the type of 20 

climate. The average Topt values for the humid continental, humid subtropical and semiarid climates were 14.0, 1.3 and 17.5 

days, respectively. This is partly consistent with the findings of Albergel et al. (2008), who also found that climate impacts 

Topt, yet reported a relatively weak effect. According to Albergel et al. (2008), the Topt reflects the response of second-layer 

soil moisture (w2) to surface moisture (w1), with a higher Topt representing a slower response. In the humid subtropical 

climate, a relatively high soil moisture content over the whole profile (see Figure 9) reflects large soil hydraulic conductivity 25 

and a relatively fast response of w2 to w1. In the semiarid climate, however, both surface and subsurface soil moistures are 

relatively low, which results in low soil hydraulic conductivity and a slower second-layer response to surface infiltration.  

 

Prior to testing, each soil moisture time series was checked to avoid anomalous data. Soil moisture datasets from 2014 and 

2015 were used as calibration data for both methods at all stations except for Perdido Riv Farms, where datasets from 2013 30 

and 2014 were employed due to considerable missing values in 2015. Data from either 2013 or 2016 were used for 

validation depending on the completeness of dataset. Figures 7 to 9 show the predicted profile soil moisture time series from 
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observation operators and exponential filters in humid continental, humid subtropical and semiarid climates, respectively. 

Statistical metrics of the predicted results for all three climates are shown in Figure 10. The observation operators clearly 

performed better than the exponential filter method during the calibration; the predicted profile soil moisture almost 

completely matched the observed values at different stations, with R2 and NSC higher than 0.97 and RMSE less than 

6.74×10-3 m3 m-3. This can be attributed to the perfect adjusting of the cumulative distribution frequencies of surface 5 

moisture and profile data by observation operators (the left graphs in Figure 7-9). The exponential filter method generally 

reproduced the observed time series well, although apparent deviations existed in some stations, such as the Molly Caren 

station in the humid continental climate, for which the RMSE reached 5.83×10-2 m3 m-3 and R2 and NSC were only 0.35 and 

0.25, respectively. As shown in Figure 11, however, the prediction error (RMSE) of observation operators clearly increased, 

ranging from 8.16×10-3 to 2.34×10-2 m3 m-3, and the matching degree (NSC) of predicted and observed values clearly 10 

decreased, ranging from -0.04 to 0.99, when they were applied to validation periods. In contrast, the exponential filter 

method maintained relatively stable performance from calibration to validation periods, except for the NSC metric in the 

semiarid climate, for which a very low value was obtained at the Holden station. Nonetheless, the statistical metrics of 

observation operators remained superior to those of the exponential filter method also in the validation period. These results 

indicate that observation operators built from a soil moisture dataset with a length of two years, and which excludes 15 

anomalous values, were robust in upscaling surface soil moisture to obtain profile predictions.  

 

Figure 10 shows that the climate region affects, to different extents, the performance of both observation operators and the 

exponential filter method. For the observation operators, a semiarid climate showed significantly (P<0.05) lower RMSE than 

the other climates in calibration. However, the observation operators produced relatively larger estimation errors and lower 20 

values of R2 and NSC in the semiarid climate during validation periods, indicating a relatively weak correlation between 

predicted and observed profile soil moisture. Similarly, the semiarid climate also produced lower values of R2 and NSC than 

the other climates for the exponential filter method. However, the semiarid climate showed relatively lower prediction error 

than other climates, especially in the calibration period, probable due to the lower soil moisture values there. The lower NSC 

values calculated for the semiarid climate could be the consequence of the lower correlation between surface and profile soil 25 

moisture content in this climate. The maximum cross correlations in the semiarid climate during calibration and validation 

periods were 0.592 and 0.666, respectively. They were lower than the corresponding values in humid continental (0.736 in 

calibration, 0.738 in validation) and humid subtropical (0.932 in calibration, 0.882 in validation) climates. This indicates that 

a relatively poor coupling between surface and profile soil moisture exists in semiarid climates. 
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4. Conclusions 

In this study, we tested the feasibility and robustness of observation operators derived by Cumulative Distribution Frequency 

(CDF) matching for the upscaling of soil moisture from surface to profile by using datasets of multiple stations in the Soil 

and Climate Analysis Network (SCAN). In general, the time series resolution (hourly, daily and weekly) had negligible 

effects on the performance of observation operators and daily resolution provided a good compromise between computing 5 

efficiency and operator robustness. In contrast, time series length was shown to significantly affect the prediction accuracy 

of observation operators. Our analyses showed that soil moisture data from a two-year interval produced optimal predictions, 

and that a longer data period did not improve prediction accuracy. Therefore, soil moisture measurements over a two-year 

interval can be used as the standard dataset from which to build observation operators. 

 10 

By using the popular exponential filter method as a reference approach we were able to show that the application of 

observation operators to three primary climates (humid continental, humid subtropical and semiarid) in the continental USA 

can successfully upscale soil moisture from surface to profile. The findings described here may be applicable to the 

prediction of profile soil moisture from surface measurements obtained through various techniques, including remote sensing. 

 15 
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Table 1. The geographical information of SCAN sites used in this study.  

Site name Site ID State* Climate region** 
Latitude 

(degree) 

Longitude 

(degree) 

Soil texture*** Elevation 

(m) 5 cm  10 cm 20 cm 50 cm 100 cm 

Alkali Mesa 2138 UT Mediterranean continental 37.67 N 109.37 W L L L L CL 1966 

Blue Creek 2135 UT Mediterranean continental 41.93 N 112.43 W SIL SIL SIL SICL SIL 1582 

Cache Junction 2136 UT Mediterranean continental 41.82 N 111.98 W SIC SIC SIC SICL SIC 1351 

Cave Valley 2161 UT Mediterranean continental 37.35 N 113.12 W S S S S S 1918 

Centralia Lake 2094 KS Humid continental 39.07 N 96.17 W SIC SIC SIC SIC SICL 397 

Chicken Ridge 2150 UT Mediterranean continental 41.33 N 111.30 W SL SL FSL FSL L 2334 

Eastland 2130 UT Mediterranean continental 37.78 N 109.17 W L L L L L 2086 

Enterprise 2128 UT Semiarid 37.63 N 113.65 W SCL CL CL CL FSL 1600 

Ephraim 2126 UT Mediterranean continental 39.42 N 111.57 W CL CL CL L SIC 1678 

Green River 2131 UT Semiarid 39.02 N 110.17 W FSL FSL FSL L FSL 1252 

Grouse Creek 2160 UT Mediterranean continental 41.78 N 113.82 W L L L CL SCL 1782 

Hals Canyon 2164 UT Semiarid 38.60 N 113.75 W COSL COSL SL COSL LCOS 1600 

Holden 2127 UT Semiarid 39.20 N 112.40 W FSL FSL FSL L SL 1445 

Little Red Fox 2155 UT Semiarid 40.18 N 110.30 W CL CL CL CL CL 1645 

Manderfield 2156 UT Mediterranean continental 38.37 N 112.65 W SICL SIL SIL L COSL 1882 

McCracken Mesa 2140 UT Semiarid 37.45 N 109.33 W VFSL VFSL VFSL L VFSL 1621 

Milford 2129 UT Semiarid 38.35 N 113.02 W SIL SICL SICL SIL SIL 1523 

Molly Caren #1 2014 OH Humid continental 39.95 N 83.45 W SIL SIL SIL C L 323 

Mountain Home 2134 UT Mediterranean continental 40.37 N 110.60 W SCL SCL SCL CL CL 2118 

Panguitch 2157 UT Mediterranean continental 37.87 N 112.43 W L SCL SCL L L 1998 

Perdido Riv Farms 2181 AL Humid subtropical 31.12 N 87.33 W / / / / / 91 

Price 2132 UT Mediterranean continental 39.53 N 110.48 W L L CL SIL L 1721 

Sevilleta 2171 NM Semiarid 34.35 N 106.68 W / / / / / 1595 

Shagbark Hills 2068 IA Humid continental 42.43 N 95.77 W SICL SICL SICL SICL SICL 427 

Silver City 2086 MS Humid subtropical 33.08 N 90.52 W SIL SIL SIL SICL SICL 35 

Split Mountain 2154 UT Semiarid 40.38 N 109.35 W CL CL CL L L 1475 
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Spooky 2158 UT Semiarid 37.52 N 111.27 W FS FS FS FSL VFSL 1627 

Tule Valley 2163 UT Semiarid 39.23 N 113.47 W L L L SL SL 1397 

West Summit 2139 UT Mediterranean 38.02 N 109.13 W L L L L L 2135 

Willow Wells 2108 NM Semiarid 33.53 N 103.63 W FS FS FS SCL COSL 1383 

Youmans Farm 2038 SC Humid subtropical 32.67 N 81.20 W / / / / / 23 

*Abbreviations in state: AL: Alabama, IA: Iowa, KS: Kansas, MS: Mississippi, NM: New Mexico, OH: Ohio, SC: South Carolina, UT: Utah 

**Köppen climate classification 

***Abbreviations in soil texture: C: clay, CL: clay loam, COSL: coarse sandy loam, FS: fine sand, FSL: fine sandy loam, L: loam, LCOS: loamy 

coarse sand, LFS: loamy fine sand, S: sand; SCL: sandy clay loam, SIC: silty clay, SICL: silty clay loam, SIL: silt loam, VFSL: very fine sandy 

loam. 5 
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Table 2. Statistics of the performance of observation operators built by dataset of one resolution and their applications in 

datasets with other resolutions. 

Statistics 
Shagbark Hills Perdido Riv Farms Sevilleta 

RMSE R2 NSC RMSE R2 NSC RMSE R2 NSC 

Calibrated by hourly data 4.07E-3 0.995 0.995 9.30E-4 0.999 0.999 8.84E-4 0.995 0.995 

Applied in daily data 4.12E-3 0.995 0.995 1.35E-3 0.999 0.998 1.26E-3 0.991 0.990 

Applied in weekly data 6.03E-3 0.990 0.990 2.27E-3 0.995 0.995 1.57E-3 0.989 0.989 

Calibrated by daily data 3.98E-3 0.996 0.995 9.64E-4 0.999 1.000 8.11E-4 0.996 0.996 

Applied in hourly data 4.34E-3 0.995 0.995 1.32E-3 0.999 0.998 2.25E-3 0.992 0.969 

Applied in weekly data 6.09E-3 0.990 0.990 2.07E-3 0.995 0.995 1.44E-3 0.989 0.989 

Calibrated by weekly data 5.39E-3 0.992 0.992 2.00E-3 0.996 0.996 1.26E-3 0.990 0.990 

Applied in hourly data 4.91E-3 0.994 0.994 1.41E-3 0.998 0.998 1.83E-3 0.981 0.980 

Applied in daily data 5.68E-2 0.991 0.991 1.11E-3 0.999 0.999 1.16E-3 0.993 0.993 
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Figure 1. A graph shows how the cumulative distribution frequency (CDF) of surface soil moisture is adjusted into that of 

profile soil moisture by observation operators. 
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Figure 2. Surface and profile soil moisture time series at daily and weekly temporal resolutions in the sites of Shagbark Hills, 

Perdido Riv Farms and Sevilleta. 
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Figure 3. Surface and profile soil moisture time series from 2010 to 2015 in the sites of Little Red Fox, Green River and 

Blue Creek. 5 
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Figure 4. Cross correlation coefficient between surface and profile soil moisture in different single year for the sites of Little 

Red Fox, Green River and Blue Creek. 
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Figure 5. Statistics of the RMSE, R2 and NSC for data length of soil moisture time series on the performance of observation 

operators in both calibration and validation periods. The error bar represents one standard deviation. 
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Figure 6. A graph shows how the cumulative distribution frequency (CDF) of surface soil moisture is adjusted into that of 

profile soil moisture by observation operators. 5 
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Figure 7. The predicted profile soil moisture by cumulative distribution frequency (CDF) matching (Profile (CDFM)) and 

exponential filter (Profile (EF)) during calibration and validation periods for the three sites in humid continental climate. The 5 

three graphs in the left shows the CDFs of surface and measured and predicted profile soil moisture. 
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Figure 8. The predicted profile soil moisture by cumulative distribution frequency (CDF) matching (Profile (CDFM)) and 

exponential filter (Profile (EF)) during calibration and validation periods for the three sites in humid subtropical climate. The 5 

three graphs in the left shows the CDFs of surface and measured and predicted profile soil moisture. 
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Figure 9. The predicted profile soil moisture by cumulative distribution frequency (CDF) matching (Profile (CDFM)) and 

exponential filter (Profile (EF)) during calibration and validation periods for the three sites in semiarid climate. The three 5 

graphs in the left shows the CDFs of surface and measured and predicted profile soil moisture.  
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Figure 10. Statistics of the RMSE, R2 and NSC for the performance of observation operators and exponential filter methods 

in the different sites in humid continental, humid subtropical and semiarid climates. Different lowercase letters above bars 

indicate significant (P<0.05) differences between climates in either calibration or validation period. 5 
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