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Abstract. Accurate high-resolution estimates of precipitation are vital to improve the understanding on basin-9 

scale hydrology in mountainous areas. The traditional interpolation methods or satellite-based remote sensing 10 

products are known to have limitations in capturing spatial variability of precipitation in mountainous areas. In 11 

this study, we develop a fusion framework to improve the annual precipitation estimation in mountainous areas 12 

by jointly utilizing the satellite-based precipitation, gauge measured precipitation and vegetation index. The 13 

development consists of vegetation data merging, vegetation response establishment, and precipitation remapping. 14 

The framework is then applied to the mountainous area of Nu River basin for precipitation estimation. The results 15 

demonstrate the reliability of the framework in reproducing the high-resolution precipitation regime and capturing 16 

its high spatial variability in the Nu River basin. In addition, the framework can significantly reduce the errors in 17 

precipitation estimates as compared with the inverse distance weighted (IDW) method and TRMM (Tropical 18 

Rainfall Measuring Mission) precipitation product.  19 

 20 

1 Introduction 21 

Precipitation plays an important role in hydrological process, land-atmospheric processes, and ecological 22 

dynamics. Accurate high-resolution precipitation is crucial for streamflow prediction, flood control, and water 23 

resources management in data-sparse regions such as mountainous areas (Song et al., 2015). However, it is of 24 

great challenge to obtain accurate precipitation in mountainous areas due to the sparse gauge network and the 25 

remarkable spatiotemporal variability of precipitation. Conventional gauge networks can provide accurate rainfall 26 

measurements at point scales, which can be interpolated within the region of interest to give estimates of 27 
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precipitation in ungauged areas. However, such interpolated estimates might not be reliable in mountainous areas 28 

considering the very limited gauges there (Phillips et al., 1992; Mair and Fares, 2011; Jacquin and Soto-Sandoval, 29 

2013; Wang et al., 2014; Borges et al., 2016).  30 

 31 

Recently, remote-sensing-based precipitation (RSBP) products, such as the Global Precipitation Climatology 32 

Project (GPCP) (Schamm et al., 2014), the Tropical Rainfall Measuring Mission (TRMM) (Council, 2005), and 33 

the Climate Prediction Center Morphing Method (CMORPH) (Joyce et al., 2004), have been extensively used in 34 

ungauged or sparsely-gauged areas to bridge the gap between the need for precipitation estimate and the scarcity 35 

in gauge observations (Akbari et al., 2012; Kneis et al., 2014;  Li et al., 2015; Worqlul et al., 2015; Mourre et al., 36 

2016; Wong et al., 2016). Also, data fusion across satellite and gauge observations is being conducted to further 37 

the application of RSBPs ( Rozante et al., 2010; Woldemeskel et al., 2013; Arias-Hidalgo et al., 2013; Chen et al., 38 

2016; Zhou et al., 2016). However, due to the relatively coarse spatial resolution (e.g., 0.25°–5°) and uncertainties 39 

of RSBPs, their applications in mountainous basins, where the precipitation shows large spatial variability, are 40 

still very limited ( Krakauer et al., 2013; Chen and Li, 2016). 41 

 42 

Precipitation estimates can be influenced by a variety of ambient factors (e.g., topography, vegetation, etc.). In 43 

order to correct effects of topography in precipitation estimate, Digital Elevation Model (DEM) has been widely 44 

used in spatial interpolation of precipitation over mountainous areas (Marquı́nez et al., 2003; Lloyd, 2005). 45 

However, the relationship between elevation and precipitation is not clear. Meanwhile, strong correlations 46 

between NDVI and precipitation are found by several studies (Li et al., 2002; Kariyeva and Van Leeuwen, 2011; 47 

Li and Guo, 2012; Sun et al., 2013; Campo-Bescós et al., 2013). As such, establishing statistical models between 48 

normalized difference vegetation index (NDVI) and precipitation so as to improve the spatial resolution of TRMM 49 

products in mountainous areas is becoming popular (Immerzeel et al., 2009; Jia et al., 2011; Duan and 50 

Bastiaanssen, 2013; Chen et al., 2014; Xu et al., 2015; Mahmud et al., 2015;  Jing et al., 2016). For instance, 51 

Immerzeel et al. (2009) downscaled TRMM-3B43 to 1 km based on an exponential relationship between NDVI 52 

and TRMM precipitation in Iberian Peninsula of Europe. Jia et al. (2011) established four multivariable linear 53 

regression models between TRMM-3B43 precipitation and two other factors (i.e., DEM and NDVI) of different 54 

resolutions (0.25º, 0.5º, 0.75º, 0.1º) to get 1 km estimates of precipitation in the Qaidam Basin of China. Duan and 55 

Bastiaanssen (2013) used nonlinear relationship between TRMM-3B43 and NDVI to downscale precipitation to 56 
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1 km in a humid area and a semi-arid area. Chen et al. (2014) established spatially varying relationship among 57 

TRMM, NDVI, and DEM by using a local regression analysis approach known as geographically weighted 58 

regression (GWR) in South Korea. Xu et al. (2015) also used the GWR method to explore the spatial heterogeneity 59 

of the RSBP-NDVI and RSBP-DEM relationships over two mountainous area in western China.  60 

 61 

However, the present RSBP-NDVI-based schemes have several limitations: 1) significant errors can be introduced 62 

during the downscaling given the nonlinear relationship between RSBP and NDVI; 2) large uncertainties exist in 63 

the RSBP for mountainous areas, and 3) inter-comparison of existing NDVI datasets are missing in deriving the 64 

RSBP-NDVI relationships. In this study, we develop a fusion framework to obtain more accurate high-resolution 65 

estimates of precipitation in mountainous areas based on the relationship between precipitation and vegetation 66 

response. More specifically, in addition to RSBP, gauge measurements and different vegetation datasets will be 67 

used in this study to overcome the aforementioned limitations in current RSBP-NDVI-based schemes. The paper 68 

is organized as follows: section 2 describes the development of the fusion framework; section 3 documents the 69 

study area and related datasets; section 4 presents the results of the fusion framework and discusses impacts of 70 

different determinants on the performance of fusion framework; and section 5 summarizes this work. 71 

 72 

2 Framework development 73 

The satellite-gauge-vegetation fusion framework (Fig. 1) involves three stages of development: 1) vegetation data 74 

merging, 2) precipitation-vegetation regression, and 3) RSBP product remapping, whose details are described in 75 

the following subsections. 76 

 77 

2.1 vegetation data merging 78 

Vegetation closely interacts with soil moisture and is recognized as a good proxy of precipitation. The remote 79 

sensing technique provides us with various high-resolution vegetation products such as NDVI, EVI (enhanced 80 

vegetation index), LAI (leaf area index), etc. Among the vegetation indices, NDVI, an indicator of plant density 81 

and growth, is chosen as the proxy of precipitation in this study due to its wide availability. Considering the crucial 82 

role of NDVI in deriving precipitation estimates under our framework, we conduct an inter-comparison in data 83 
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accuracy between two NDVI datasets (termed as datasets A and B hereinafter) to reduce the error. First, the 84 

systematic errors of both datasets are eliminated by multiplying reduction factor or using simple regression model. 85 

After the correction, the final dataset is then obtained by selecting better element between A and B if the quality 86 

criteria is satisfied otherwise filling an anomaly value. 87 

 88 

It should be noted that since the vegetation growth is suppressed or promoted on some land covers (e.g. rivers, 89 

lakes, snow and ice, and urban areas), the vegetation data of these land covers are excluded by filling anomaly 90 

values. Besides, due to the strong influence of farming activities (e.g. irrigation, fertilization, and harvest) on the 91 

crop growth, vegetation data of farmland are excluded as well. We note that although Moran's Index (Li et al., 92 

2007) is widely employed to detect anomalies in vegetation data (Jia et al., 2011; Duan et al., 2013), it is not used 93 

in this study for its inapplicability in large areas with continuous anomaly pixels (e.g. farmland). As such, we 94 

identify anomaly pixels simply by landuse type: pixels categorized as water, wetland, urban, cropland, snow/ice, 95 

and barren will be identified as anomalies. The detected anomaly pixels are excluded from the original NDVI 96 

dataset and then filled with interpolated values using IDW method so as to generate an optimized NDVI dataset. 97 

 98 

Based on the optimized NDVI dataset, the NDVI data at the gauge locations are retrieved with neighbor-average 99 

method (i.e. the value of a certain grid is determined as the average of all its eight neighboring grids) and will be 100 

used for the precipitation-vegetation regression.  101 

 102 

2.2 precipitation-vegetation regression 103 

As far as we know, there is no widely accepted form for the precipitation-vegetation relationship. Therefore, the 104 

final regression form will be determined from several candidate relationships, including polynomial, exponential, 105 

logarithmic and linear forms, according to the five metrics: correlation coefficient (R), coefficient of determination 106 

(R2), root-mean-square error (ERMS), mean relative error (EMR) and mean absolute relative error (EMAR), which are 107 

given as follows: 108 

𝑅 =
∑ (𝑃𝑖 − �̅�)(𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑃𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑂𝑖 − �̅�)2𝑛

𝑖=1
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where 𝑂 is the mean annual precipitation of all gauges, Oi the mean annual precipitation of gauge i, Pi the 109 

estimated precipitation at gauge i, and n the total number of gauges. 110 

 111 

Also, considering the annual variability of precipitation, the regression model is further determined for two 112 

temporal scales: 1) entire period covering all the study years and 2) individual year of the entire study period. The 113 

Regression Models for Entire study period and for Individual years are thus termed as RME and RMI, 114 

respectively. RME can utilize the full knowledge of precipitation characteristics of the entire study period, whereas 115 

RMI implies the inter-annual variability. Besides, RME can reasonably reconstruct the precipitation series of the 116 

years when data gaps exist. 117 

 118 

The calibration-validation procedure for each candidate model is conducted under three scenarios with different 119 

numbers of gauge and/or years: 120 

a) Fully random: random number of gauges and random number of years are independently used for 121 

calibration and validation; 122 

b) All gauges, partial period: all the gauges will be involved in both procedures, but only 2/3 of years will 123 

be randomly chosen for calibration and the other years for validation; 124 

c) Partial gauges, entire period: all years will be used, but only 1/3 of gauges will be randomly chosen for 125 

calibration and other gauges for validation.  126 

For each scenario, the calibration-validation procedure will be performed for one hundred samples determined 127 

based on the above criteria and the six evaluation metrics (i.e. R, R2, ERMS, EMA and EMAR) will be calculated for 128 

each sample accordingly. The best model is then determined based the metrics.  129 
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  130 

2.3 RSBP product remapping 131 

With the optimized vegetation dataset and precipitation-vegetation regression model, the RSBP product is then 132 

remapped over the study region. Thanks to the finer resolution of NDVI dataset than RSBP product and the 133 

accurate estimate of precipitation by gauges, the remapped RSBP product is expected to provide more detailed 134 

spatial characteristics of precipitation over mountainous areas. 135 

3 Study area and datasets for framework application 136 

3.1 Study area 137 

The Nu-Salween basin (Fig. 2a), where 6 million people are living, is one of the largest river basins in South Asia 138 

and spreads across three countries with an area of 324,000 km2. This study focuses on the Chinese part of the Nu-139 

Salween basin (termed as the Nu river basin hereafter), where the elevation ranges from 446 m to 6134 m and the 140 

narrowest part is only 24 km. The annual precipitation of the Nu river basin ranges from 400 mm to 2000 mm 141 

with an average of 900 mm and the mean annual runoff is 69 km3. The precipitation of the Nu river basin generally 142 

decreases from southwest to northeast and demonstrates high variability due to mountain weather systems (e.g. 143 

the difference in annual precipitation between the mountaintop and valley of Gongshan is larger than 1000 mm). 144 

Annual rainfall varies significantly across this region. Fig. 2b shows the annual rainfall distributions of 7 stations 145 

located in upstream, middle and downstream of the Nu River basin. The upstream and downstream have similar 146 

rainfall distributions with larger rainfall occurs in summer compared to winter while the middle part observes 147 

relatively large rainfall in winter and spring. Thanks to the adequate rainfall and minimal human perturbation, the 148 

Nu river basin has an extensive vegetation coverage with the dominant type as grassland in the Qinghai-Tibetan 149 

Plateau (upper basin) and mixed forest in Yunnan province (lower basin). However, the dense vegetation cover 150 

increases the difficulty in conducting precipitation observations and only 13 gauges are very unevenly distributed 151 

over the whole basin of 142,479 km2, which makes it highly challenging to obtain the accurate spatial precipitation 152 

characteristics with traditional interpolation approaches. Although the RSBP products are available for this area, 153 

they are too course (usually with a spatial resolution of ~50 km) to capture the high spatial variability of 154 

precipitation. 155 

 156 
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Considering the limited number of gauges (i.e. 13) in the Nu river basin, an enlarged area covering 23°N–33°N 157 

and 91°E–101°E is chosen for the application of the fusion framework, where 59 gauges are available and the 158 

climatic and topographic conditions are similar: both regions are characterized as mountainous areas under the 159 

subtropical climate influenced by southeast and southwest monsoons. Besides, given no rain gauges are available 160 

outside of China in this study region, the non-Chinese region is excluded from the study area.  161 

 162 

3.2 Datasets 163 

3.2.1 Vegetation data 164 

In this study, we use two MODIS (moderate resolution imaging spectoradiometer) vegetation products, 165 

MOD13A3 (termed MOD hereafter) and MYD13A3 (termed MYD hereafter), in the application of the fusion 166 

framework. Both the MOD and MYD datasets contain 10 sub-datasets consisting of NDVI, EVI and pixel 167 

reliability. The temporal and spatial resolutions of the MOD13A3 and MYD13A3 products are 1 month and 1 km, 168 

respectively. The pixel reliability is an accuracy metric of the data quality pixel and has four valid values: 0 for 169 

good accuracy, 1 for marginal accuracy, 2 for snow/ice, and 3 for cloud. Based on the pixel reliability information, 170 

the NDVI values are either selected for corresponding pixel reliability levels being 0 and 1 or discarded as 171 

anomalies otherwise. 172 

 173 

The MOD dataset is used as benchmark while MYD is taken as the alternative for occasions when MOD data are 174 

missing or have large uncertainties. Since both the MOD and MYD datasets are extracted from different satellites 175 

at different transit times, systematic errors may exist in the difference between the two datasets. As such, we 176 

construct two regressions to remove their systematic errors: one is based on a subset with both MOD and MYD 177 

of good reliability (= 0), and the other on a subset with MOD of marginal reliability (= 1) and MOD of good 178 

reliability (= 0). After the removal of systematic errors, a merged dataset of MOD and MYD (termed MMD 179 

hereafter) is generated under the criteria given as follows: 180 

𝑀𝑀𝐷 = {

𝑀𝑂𝐷                                (𝑀𝑂𝐷 == 0)                      

𝑀𝑌𝐷                   (𝑀𝑂𝐷 > 1  & 𝑀𝑌𝐷 == 0)          

𝑀𝑂𝐷                  (𝑀𝑂𝐷 == 1  & 𝑀𝑌𝐷 == 1)       

𝑁𝑈𝐿𝐿                    (𝑀𝑂𝐷 > 1  &𝑀𝑌𝐷 > 0)            

 (6) 

The annual MMD dataset is then calculated by averaging the 12 monthly images.  181 

 182 
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3.2.2 Landuse data 183 

The landuse dataset MCD12Q1 Version 51 (MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN 184 

Grid V051) in period of 2001-2013 is used to identify the outliers of MMD, while the IGBP (International 185 

Geosphere Biosphere Programme) classification is adopted for its wide applications. Due to mismatch in spatial 186 

resolutions between MMD and MCD12Q1 datasets, the MCD12Q1 dataset is upscaled to 1km as MMD for outlier 187 

identification. It should be noted that for any of the four 500 m pixels in MCD12Q1 classified as water, urban, 188 

snow or ice and cropland, the upscaled 1 km pixel will be assigned with a missing value (i.e. -9999) and the 189 

corresponding NDVI pixel will be identified as an outlier. 190 

 191 

3.2.3 Weather data 192 

Datasets consisting of daily precipitation and air temperature collected at the 59 gauges in the study area are 193 

obtained via the China Meteorological Data Sharing Service system 194 

(http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0/keywords/v3.0.html ). 195 

The air temperature measurements will be used for dependence analysis later in Section 4.5. The streamflow data 196 

provided by Yunnan University will be used for calculating sub-basin scale precipitation based on water balance. 197 

The 5 hydrological stations are Gongshan, Liuku, Jiucheng, Gulaohe and Dawanjiang with the drainage area of 198 

101146, 106681, 6308, 4185 and 7986 km2, respectively. MODIS evapotranspiration (ET) product MOD16 199 

(http://www.ntsg.umt.edu/project/mod16) with the spatiotemporal resolution of 1 km/1 weekly will also be 200 

used in calculating precipitation based on water balance. 201 

 202 

4 Results and discussion 203 

4.1 Model calibration and validation 204 

Based on the results of six evaluation metrics for different regression form candidates (Fig. 3a), the 2nd-order 205 

polynomial is chosen as the regression model form in this study: 206 

𝑝 = 𝑎 𝑁𝐷𝑉𝐼2 + 𝑏 𝑁𝐷𝑉𝐼 + 𝑐 (7) 

where p denotes precipitation amount in mm, and a, b and c are regression coefficients. The results of regression 207 

coefficients and evaluation metrics are given in Table 1, and the NDVI-precipitation relationships for the study 208 

http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0/keywords/v3.0.html
http://www.ntsg.umt.edu/project/mod16
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period are demonstrated in Fig. 3b. 209 

 210 

The best performance of the regression model is found within 0.2 < NDVI < 0.7 and 400 mm year-1 < p < 1500 211 

mm year-1. Larger errors are found at pixels with NDVI larger than 0.7 or annual rainfall larger than 1500 mm, 212 

implying the water supply is no longer a determinant of vegetation growth as annual rainfall exceeds a certain 213 

threshold. 214 

 215 

In general, the RMIs demonstrate better performance than RME, which can be attributable to the less variability 216 

of precipitation in a single year than the whole study period. It is also noted that the R2 values of RMIs for drier 217 

years (2003, 2009 and 2011) are less than wetter years, indicating the weaker coupling effect between vegetation 218 

growth and precipitation.  219 

 220 

The performance of regression models is assessed under three scenarios as described in Section 2.2. A total of 300 221 

tests are conducted and performance metrics (i.e., R, R2, ERMS, and EMAR) are calculated accordingly (Fig. 4 and 222 

Table 2). The high R values (> 0.85) indicate a strong correlation between NDVI and precipitation independent 223 

of sampling method. Also, the regression models demonstrate good performance with R2 larger than 0.75 and 224 

EMAR less than 20%. In addition, the metrics of regression models fluctuate around that of the RME with narrow 225 

inter-quartile ranges, indicating the regression models have remarkable consistency with the RME model. 226 

 227 

Scenario a is designed to examine inter-annual stability in the performance of regression models, where the good 228 

performance indicates the acceptable ability of the RME model in estimating precipitation during periods when 229 

precipitation measurements are not available. Scenarios b and c investigate the impacts of spatial and temporal 230 

coverages of measurements, respectively. It is noteworthy that under scenario b better performance in regression 231 

models is observed as compared with scenario c, implying greater importance of spatial coverage of measurements 232 

in conducting the regressions. In addition, the results of calibration is better than validation as revealed by all 233 

metrics criterions as expected. However, the differences between calibration and validation are not significant, 234 

implying the consistent performance of regression models under various scenarios.  235 

 236 

The performance of RME is further assessed by comparing the estimates against observations (Fig. 5), and good 237 
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agreement between estimates and observations is observed. It should be noted the RME shows difficulty in 238 

estimating precipitation larger 2000 mm ( cf. the dashed line in Fig. 5), implying the limitation of the fusion 239 

framework inherited from the oversaturation effect of vegetation index. 240 

 241 

Elevation effect on the relationship between precipitation and NDVI is a concern to appreciate. An overall 242 

negative relationship is found between precipitation and elevation for the whole elevation range (i.e., 0–5000 m) 243 

with the R2 value of 0.62 (Fig. 6a), whereas there is only unapparent/weak relationship at different elevation bands 244 

(Fig. 6b-f). Given the spatial heterogeneity of orographic effects on precipitation (Brunsdon et al., 2001; Daly et 245 

al., 2008) and insufficient data of this study, a more thorough investigation of the relationship between 246 

precipitation and elevation needs to be conducted with more information that might be available in the future. 247 

Positive precipitation-NDVI relationships are found at different elevation bands (Fig. 7) with the best and worst 248 

fitness observed at elevation band 2000–3500 m with the R2 value of 0.94 and at elevation band 0–2000 m with 249 

the R2 value of 0.62, respectively. By comparing the three regressions at different bands with the global regression, 250 

we notice that more significant overestimates of precipitation are observed with the range of lower NDVI values 251 

(<0.4) at band 0–2000 m than other three regressions, whereas regression at band >3500 m has an significant 252 

overestimation of precipitation than other three regressions for higher NDVI values (>0.5). 253 

 254 

4.2 Spatial characteristics of precipitation 255 

The spatial characteristics of precipitation of the study area are investigated with RME for the whole study period 256 

(Fig. 8). Annual precipitation in Nu River is observed to decrease from south to north and from west to east with 257 

prominent spatial variability. Two "hot-spot" regions, whose annual precipitation exceeds 1500 mm, can be 258 

identified in the study areas: one near south border and the other close to southwestern mountain border. The east 259 

part of the Nu river basin featuring a dry and warm climate receives an average annual precipitation of 800 mm 260 

with large inter-annual variability. A precipitation product (DEMP) based on precipitation-elevation relationship 261 

is used to compare with RME. There is no obvious distribution pattern of precipitation (Fig.9a) and a smaller 262 

spatial variability compared to RME in the DEMP product, indicating the advantage of RME in representing the 263 

spatial variability of annual precipitation. And the overall underestimation of precipitation is observed in the 264 

DEMP product across the whole study area (Fig.9b). In addition, the pixels in Fig.8 with a value out of the valid 265 

range (i.e., 400 mm yr-1 < P< 1500 mm yr-1) may have relatively large error as discussed in section 4.1. As there 266 
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is no justifiable methods for such correction and given the limited fraction of invalid pixels (10% in the whole 267 

study area and 7% in the Nu River basin), the figure can be used to demonstrate a full picture of the spatial 268 

precipitation pattern in the study area, but we note those pixels are of large uncertainties and should be interpreted 269 

with caution. 270 

 271 

4.3 Model performance comparison  272 

The performance between IDW approach, TRMM product and the fusion framework is compared in this section. 273 

IDW is one of the most popular methods for spatial interpolation of rainfall due to its easy implementation and 274 

flexibility in incorporating other auxiliary information (e.g., elevation). In general, the IDW approach is unable to 275 

demonstrate the high spatial variability though it can capture the general spatial distribution of whole basin (Fig. 276 

10a) as TRMM (Fig. 10b). Due to the coarse spatial resolution, TRMM cannot capture the high variability in the 277 

river valley where the elevation varies significantly. Although large rainfall (>1800mm) is observed in both our 278 

and TRMM products in the southwest of the study area region, our product gives lower rainfall compared to 279 

TRMM. As discussed above, the regression model tends to underestimate rainfall as the annual rainfall exceeds a 280 

certain threshold because the water supply is no longer a determinant of vegetation growth.  281 

 282 

To demonstrate the advantage of the fusion framework, a cross-validation is conducted against the randomly 283 

sampled gauge observations by varying the number of samples (1 - 40). The cross-validation shows higher ERMS 284 

for the IDW approach, followed by TMMM and RME (Fig. 11a). A higher mean EMR of 15% is observed for 285 

TRMM than IDW (8%) and RME (5%) while the difference in EMAR are minimal between TRMM and IDW. The 286 

results indicate an overestimated precipitation by TRMM as compared to gauge observations. Table 3 summarizes 287 

the maximum, minimum and mean values of each method and shows the relative difference between RME and 288 

other two methods. On average, ERMS of RME is smaller than that of IDW and TRMM by 20.4% and 17.4%, 289 

respectively. In general, the fusion framework demonstrates better performance than the other approaches.  290 

 291 

To further evaluate the performance of RME, the annual averages of precipitation of five hydrological stations 292 

(Fig. 12a) and whole basin estimated by the three approaches (IDW, RME and TRMM) are compared. At the 293 

whole basin scale, the estimate by RME is 5.2% higher than that of IDW while 7.9% lower than TRMM. Although 294 

the difference between the three approaches is minimal at the basin scale, the difference at the sub-basin scale is 295 
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remarkable. In the upstream region (i.e., Gongshan sub-basin) located in Tibet Plateau, TRMM overestimates 296 

precipitation by 13.2% while IDW underestimates by 7.6% as compared with RME. In the other four downstream 297 

sub-basins, estimates by RME are larger than those by IDW and TRMM. In general, in the midstream and 298 

downstream regions with large variability in terrain height, RME gives larger estimates of precipitation than IDW 299 

and TRMM. 300 

 301 

To validate the accuracy of different precipitation estimates, we utilize MODIS evapotranspiration products 302 

MOD16 to calculate water budget based precipitation (i.e. ET+R) and to compare it with 5 products including 303 

RME, BandP (rainfall based on precipitation-NDVI relationship with consideration elevation band), DEMP, 304 

TRMM, IDW (Fig.12b). Although all the 5 products underestimate the sub-basin scale precipitation, RME and 305 

BandP give the closest estimates to the water budget based precipitation, indicating the effectiveness of 306 

precipitation-NDVI relationship in precipitation remapping. 307 

 308 

We also compared our products with the Multi-Source Weighted-Ensemble Precipitation (MSWEP) product. The 309 

dataset takes the advantage of a wide range of data sources, including gauges, satellites, and atmospheric 310 

reanalysis models, to obtain the best possible precipitation estimates at the global scale with a high 3-hourly 311 

temporal and 0.25° spatial resolution (Beck et al., 2016). Comparison in the annual mean precipitation between 312 

the gauge measurements and predictions by the MSWEP and TRMM product (Fig. 13) shows acceptable 313 

performance of both MSWEP and TRMM in predicting the precipitation with an overall overestimation. The 314 

RMSE values for MSWEP, TRMM and RME are 241 mm, 196 mm, and 174 mm, respectively, indicating that 315 

RME gives the best prediction among the three products. The possible reason why MSWEP shows no superiority 316 

over TRMM in predicting annual precipitation is that very few gauges are available in this region that might limit 317 

the applicability of MSWEP methodology. However, the MSWEP methodology does provide insights into the 318 

production of high temporal resolution (3-hourly) rainfall, which we believe will be helpful to our future work. 319 

 320 

4.4 influence of different vegetation index 321 

Considering the possible degradation in model performance caused by oversaturation of NDVI in high biomass 322 

areas, another vegetation indicator, Enhanced Vegetation Index (EVI), is suggested as an alternative for estimating 323 

vegetation growth (Matsushita et al., 2007; Liao et al., 2015). As such, we also test the fusion framework with 324 

http://dict.youdao.com/search?q=Tibet&keyfrom=E2Ctranslation
http://dict.youdao.com/w/plateau/
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EVI in addition to NDVI and the results are assessed against the gauge observations. 325 

 326 

Based on the chosen metrics, EVI is found to outperform NDVI with better regression quality (Table 4): EVI-327 

based regression model gives higher R2, smaller ERMS and EMAR compared to the NDVI-based model. Also, 328 

remarkable difference is observed in the precipitation estimates based on the two vegetation indices (Fig. 14). It 329 

is noted that the curvature of EVI-based model is larger than NDVI-based model, suggesting higher sensitivity of 330 

EVI-based model in humid environment. Although the EVI-based model demonstrates better performance than 331 

the NDVI-based one, it should be noted that NDVI is the most popular vegetation index used in operational 332 

applications among the available vegetation index products. Besides, NDVI has a relative longer temporal 333 

coverage compared to other vegetation index products. For instance, the AVHRR (Advanced Very High 334 

Resolution Radiometer) NDVI data are available since 1982 with a global coverage. As such, under scenarios 335 

when EVI is unavailable, NDVI is a satisfactory index that can be used in the fusion framework. 336 

 337 

4.5 Influence of other ambient determinants   338 

One major assumption of the proposed framework is that precipitation is the only determinant of vegetation 339 

growth and thus NDVI is regarded as a proxy for precipitation. However, other ambient factors, such as soil 340 

properties, solar radiation, air temperature, elevation, etc., may significantly influence the vegetation growth as 341 

well as NDVI values. Considering the data availability of various ambient factors, air temperature and elevation, 342 

in addition to NDVI, are adopted as extra determinants to establish the regression models, which are thus termed 343 

as RME+T and RME+H for air temperature and elevation, respectively. We note that for simplicity, the extra 344 

determinants are assumed to have linear relationship with precipitation. 345 

 346 

The difference in R2, ERMS, and EMAR between the three models are minimal and the regression coefficients of the 347 

three models are very close to each other (Table 5). The negative regression coefficient of temperature in RME+T 348 

indicates inconsistent trends between precipitation and temperature. Since the temperature decreases with the 349 

increase in elevation, RME+T and RME+H essentially provides consistent estimates of precipitation which is also 350 

clearly shown in Fig. 15. It is also noted the added information by extra determinants (i.e., air temperature and 351 

elevation) is in fact minimal. Overall there is little difference between RME and other two products. As such, we 352 

consider the RME-only based vegetation index as a simple and efficient model for precipitation estimation. 353 
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 354 

5 Conclusion 355 

In this study, a satellite-gauge-vegetation fusion framework has been developed for estimating the precipitation 356 

in mountainous areas by establishing regression relationship between gauge-based precipitation observations and 357 

satellite-based vegetation dataset. The fusion framework was then applied in the Nu River basin of Southwest 358 

China for estimating precipitation between 2001 and 2012.  359 

 360 

The fusion framework for the Nu River basin adopted a second order polynomial form and demonstrated 361 

promising ability in capturing the high spatial variability of precipitation in the river valley. Six evaluation metrics, 362 

including R, R2, ERMS, EMR and EMAR, indicated good performance of the fusion framework in precipitation 363 

estimation. The performance of the fusion framework was also compared with the IDW approach and TRMM 364 

product and the comparison results indicated that the fusion framework generally outperformed other approaches 365 

in estimating precipitation in mountainous areas. On average, the ERMS of the fusion framework is 20.4%, 17.4% 366 

smaller than that of IDW and TRMM, respectively. EMR of the fusion framework is 1.2%, 71.5% smaller than that 367 

of IDW and TRMM. EMAR the fusion framework is 18.9%, 28.3% smaller than that of IDW and TRMM.  368 

 369 

The success of application of the fusion framework in the Nu River sheds light on the precipitation estimation in 370 

mountainous areas by using multi-source datasets. However, this framework does have certain limitations that are 371 

important to appreciate. First, the framework is applied only in the Nu River basin. More mountainous areas under 372 

different climates need to be examined to further test the robustness of this framework. In addition, although the 373 

RME model can utilize the full knowledge of precipitation in the entire study period compared with RMI models, 374 

the difference in the coefficients suggests apparent inter-annual variability of precipitation that should be 375 

considered when applying these models. Given the duration of study period and purpose, we suggest the RME 376 

model be used for long-term climatology identification while RMI models for inter-annual variability examination. 377 

Also, to fully verify the theoretical basis of this framework that vegetation actively interacts with precipitation in 378 

mountainous areas, future work is required to refine the spatiotemporal resolution of this study to enable better 379 

scrutiny into vegetation-precipitation interactions at sub-monthly scales across more detailed vegetation species.   380 
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 387 

Appendix: Merging of NDVI datasets 388 

The merging of NDVI datasets improves the accuracy as expected (Fig. A1), the monthly error rates (i.e., the ratio 389 

of the pixel which quality value is over 1) of MOD and MMD are generally reduced with an average of 5% and 390 

over 20% in several months. Fig.A2 shows that the accuracy of MMD is significantly improved in a ridge area 391 

covering 23°10′ N–23°40′ N and 98°30′ E–99° E. Fig. A2b shows NDVI value near right and left boundary is 392 

underestimated by MOD. Fig.A2c shows NDVI value in the middle boundary is underestimated by MYD. The 393 

underestimates in both products near the boundary of MOD and MYD are amended (Fig. A2a). Fig.A3 shows the 394 

three NDVI series for one rain gauge. Comparing with MOD series, the improved accuracy in MMD is mainly 395 

observed in the wet season (from May to October), when the NDVI values could be often underestimated due to 396 

the overcasts. 397 
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Table 1 Regression model performance and regression coefficients.  533 

Year 
Mean 

(mm) 
R2 

ERMS 

(mm) 

EMAR  

(%) 
a b c 

2001 961 0.91 138 10.6 3038.1 -345.3 359.8 

2002 887 0.90 119 10.2 1354.7 687.5 212.0 

2003 828 0.75 155 14.0 1700.2 -115.5 472.7 

2004 1018 0.89 171 12.4 3784.3 -1047.7 517.4 

2005 810 0.93 97 9.5 2465.4 -265.0 363.2 

2006 737 0.88 122 11.4 2065.2 -112.2 287.5 

2007 928 0.84 184 14.6 2306.9 53.5 286.4 

2008 960 0.91 121 9.4 2504.0 -258.1 433.5 

2009 726 0.89 119 13.2 2091.3 -168.0 294.5 

2010 937 0.94 124 9.1 4094.8 -1293.3 512.6 

2011 824 0.84 167 14.2 4697.8 -2613.7 792.7 

2012 791 0.89 114 10.6 1966.4 3.5 308.1 

RME 848 0.83 174 15.2 2670.4 -471.2 409.2 

 534 

 535 

Table 2 Statistics of regression models for validation and calibration under three scenarios. 536 

Scenario Statistics 

Calibration Validation 

R R2 
ERMS 

(mm) 

EMAR  

(%) 
R 

ERMS

（mm） 

EMAR  

(%) 

 mean 0.91 0.83 175 16.6 0.91 173.9 16.8 

a max 0.92 0.85 186.2 17.8 0.94 211.8 19.9 

 min 0.9 0.81 161.1 15.7 0.88 141 13.2 

 mean 0.92 0.84 166.6 15.8 0.91 186.1 17.8 

b max 0.94 0.89 207 19.7 0.95 229.7 23.3 

 min 0.89 0.8 126.2 12.8 0.89 148.6 12.9 

 mean 0.91 0.82 172.7 16.5 0.91 180.8 17.3 

c max 0.95 0.91 207.9 19.1 0.94 204.8 24.4 

 min 0.85 0.73 144.6 13.9 0.85 143.4 13.9 

 537 

 538 

 539 

 540 

 541 

 542 

 543 
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Table 3 Performance comparison between IDW, RME and TRMM 544 

Method Statistics ERMS (mm) EMR EMAR  

IDW 

max 273 0.1 0.26 

min 249 0.08 0.23 

mean 223 0.05 0.21 

TRMM 

max 220 0.17 0.24 

min 213 0.16 0.23 

mean 203 0.15 0.22 

RME 

max 183 0.07 0.18 

min 177 0.05 0.17 

mean 168 0.04 0.16 

RME-IDW 

(%) 

max -32.9 -33 -30.5 

min -26.3 -9.8 -21.4 

mean -20.4 -1.2 -18.9 

RME-TRMM 

(%) 

max -16.8 -59.5 -23.8 

min -16.6 -66 -25.9 

mean -17.4 -71.5 -28.3 

 545 

Table 4 Regression model performance and coefficients of regression 546 

 R2 
ERMS  

(mm) 

EMAR 

(%) 
a b c 

NDVI 0.83 174.7 14.8 2670.4 -471.2 409.2 

EVI 0.87 143.8 12.4 5129.6 702.5 254.7 

 547 

 548 

Table 5 Results of two regression models established with extra independent variables: RME+T for 549 

temperature, RME+H for elevation 550 

Model R2 
ERMS 

(mm) 

EMAR 

(%) 
a b c Extra b 

RME 0.83 174.7 15 2670.4 -471.2 409.2 -- 

RME+T 0.84 172.6 15 2728.8 -496 407.3 -0.2 

RME+H 0.84 172.6 15 2838.4 -638.7 492.9 -0.02 

 551 

 552 

 553 

 554 
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 555 

Figure 1 Flow chart of the satellite-gauge-vegetation fusion framework development. 556 

 557 

 558 

Figure 2 (a) Terrain map of the study area (the Nu-Salween basin and its adjacent areas). (b) The distribution of 559 

rainfall during the year across the Nu River. 560 

 561 

 562 
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 563 

 564 

Figure 3 (a) Different regression form between annual precipitation and NDVI; (b) The NDVI-precipitation 565 

relationships for RME and RMI 566 

 567 

 568 
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 569 

Figure 4 Box plots of R, R2, ERMS of RME model under three scenarios: a) fully random; b) all gauges, partial 570 

period; and c) partial gauges, entire period. Details of the three scenarios refer to Section 2.2. The triangle marker 571 

corresponding the value (R, R2, RMSE) of RME model. Plus sign represent the outlier of the sample used to drawn 572 

box diagram which value is out of the range from (Q1-1.5IQR) to (Q3+1.5IQR). Q1 and Q3 represent the lower 573 

and upper quartile, IQR=Q3-Q1. 574 

 575 

 576 

Figure 5 Comparison in annual precipitation between the gauged measurements and predictions by the 577 

regression model for scenario a) fully random; b) all gauges, partial period; and c) partial gauges, entire period. 578 

Details of the three scenarios refer to Section 2.2. 579 

 580 

Scenario a Scenario b Scenario c
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 581 

 582 

Figure 6 The relationship between mean annual precipitation and elevation at different elevation bands, (a) whole 583 

elevation bands; (b) elevation band :<1000 m; (c) band:1000~2000 m; (d) band: 2000~3000 m; (e) 584 

band :3000~4000 m; (f) band: >4000 m. 585 

 586 
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 587 

Figure 7 The relationship between mean annual precipitation and NDVI at different elevation bands, (a) elevation 588 

band : <200m; (b) band: 2000~3500 m; (c) band: >3500 m; (d) whole bands; (e) comparison of precipitation-589 

NDVI relationship for different bands . 590 

 591 
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 592 

Figure 8 Average annual precipitation distribution of 2003-2012 from RME. 593 

 594 

 595 

 596 

Figure 9 (a) The map of precipitation estimates of DEMP; (b) difference in precipitation estimates between 597 

RME and DEMP. 598 
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 599 

 600 

 601 

Figure 10 spatial distribution of mean annual precipitation of 2003-2012 estimated by (a) IDW and (b) TRMM. 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 
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 612 

Figure 11 Performance of ERMS, EMR and EMAR for three methods in different remove numbers. 613 

 614 

 615 

 616 

 617 
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 618 

Figure 12 (a) Sub-basins based on hydrological stations (b) Comparison between precipitations based on basin 619 

water balance (R+ET) and different annual rainfall products: DEMP (P-elevation relationship), BandP (P-NDVI 620 

relationship with consideration elevation band), RME, TRMM and IDW. GS, JC, GLH, DWJ and LK-GS are the 621 

abbreviations for Gongshan, Jiuchen, Gulaohe, Dawanjing and Liuku-Gongshan, respectively. 622 

 623 

 624 

Figure 13 Comparison in mean annual precipitation between the gauged measurements and predictions by the 625 

MSWEP, RMM and RME. 626 

 627 

 628 
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 629 

Figure 14 Regression relationship between annual precipitation and normalized NDVI/EVI 630 

 631 

 632 

 633 

 634 

Figure 15 Spatial precipitation difference between RME and (a) RME+H; (b) RME+T(b). 635 

 636 
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 637 

Figure A1 Monthly Error rate of MOD, MYD and MMD 638 

 639 

 640 

 641 

 642 

Figure A2 Comparison of three NDVI products over a ridge area on June 2006, (a) for MMD, (b) for MOD, (c) 643 

for MYD 644 

 645 
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 646 

Figure A3 Comparison of three NDVI monthly times series over one gauge  647 

 648 


