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Abstract. Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges 

of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict 

in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the 

brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution 15 

of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were 

built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream 

temperatures. Nine global climate models simulations for the RCP4.5 and RCP8.5 (Representative Concentration Pathway) 

scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins 

(max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models 20 

showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to 

streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature 

increases (max. 3.6°C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater 

degree. The predicted increases in water temperatures were as high as 4.0°C. Temperature and streamflow changes will 

cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. 25 

Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative 

effects of climate change by differentiating areas based on the risk level and viability of fish populations. 

1 Introduction 

Water temperatures are a primary influence on the physical, chemical and biological processes in rivers and streams (Caissie, 

2006; Webb et al., 2008) and, subsequently, the organisms that live completely or partially in the water. Temperature is a 30 



2 
 

major feature of the ecological niche of poikilothermic species (e.g., Magnuson and Destasio, 1997; Angilletta, 2009) and a 

key factor in energy balance of fish. It affects the rate of food intake, metabolic rate and growth performance (Forseth et al., 

2009; Elliott and Elliott, 2010; Elliott and Allonby, 2013). It is also involved in many other physiological functions, such as 

blood function and reproductive maturation (Jeffries et al., 2012), reproductive timing (Warren et al., 2012), gametogenesis 

(Lahnsteiner and Leitner, 2013), cardiac function (Vornanen et al., 2014), gene expression (White et al., 2012; 5 

Meshcheryakova et al., 2016), ecological relationships (Hein et al., 2013; Fey and Herren, 2014), and fish behaviour 

(Colchen et al., 2016). 

Natural patterns of water temperature and streamflow are profoundly linked with climatic variables (Caissie, 2006; Webb et 

al., 2008). Therefore, stream temperature is strongly correlated with air temperature (Mohseni and Stefan, 1999), whereas 

streamflow has a complex relationship with precipitation (McCuen, 1998; Gordon et al., 2004). In addition, atmospheric 10 

temperature influences the type of precipitation (rain or snow) that occurs and the occurrence of snowmelt; conversely, river 

discharge is also a main explanatory factor of water temperature for some river systems (Neumann et al., 2003; van Vliet et 

al., 2011). Furthermore, geology affects surface water temperatures by means of groundwater discharge (Caissie, 2006, 

Loinaz et al., 2013), influenced by the aquifer depth (shallow or deep) and the water’s residence time (Kurylyk et al., 2013, 

Snyder et al., 2015). 15 

Climate change is already affecting aquatic ecosystems by altering water temperatures and precipitation patterns. Stream 

temperature increases have been documented over the last several decades over the whole globe, such as in Europe (e.g., Orr 

et al., 2015, documented a mean increase in stream temperature of 0.03°C per year in England and Wales), Asia (e.g., Chen 

et al., 2016, documented a mean increase in stream temperature of 0.029-0.046°C per year in the Yongan River, Eastern 

China), America (e.g., Kaushal et al., 2010, documented mean increases in stream temperature of 0.009–0.077°C per year) 20 

and Australia (e.g., Chessman, 2009, documented mean increases in stream temperature of 0.12°C per year between 

macroinvertebrate sampling campaigns). Abundant information is also available regarding the impact of recent climate 

changes on streamflow regimes worldwide (e.g., Luce and Holden 2009; Leppi et al., 2012) and, more specifically, in the 

Iberian Peninsula (e.g., Ceballos-Barbancho et al., 2007; Lorenzo-Lacruz et al., 2012; Morán-Tejeda et al., 2014). However, 

detailed predictions are uncommon (e.g., Thodsen, 2007). The predictions of the Intergovernmental Panel on Climate 25 

Change (IPCC, 2013) suggest that these alterations will continue throughout the XXI century, and they will have 

consequences for the distribution of freshwater fish (e.g., Comte et al., 2013; Ruiz-Navarro et al., 2016). These changes may 

have an especially strong effect on cold-water fish, which have been shown to be very sensitive to climate warming 

(Williams et al., 2015; Santiago et al., 2016). For example, among salmonids, DeWeber and Wagner, (2015) found stream 

temperature to be the most important determinant of the probability of occurrence of brook trout, Salvelinus fontinalis 30 

(Mitchill, 1814). 

The rear edge of the distribution (sensu Hampe and Petit, 2005) of a cold-water species is especially sensitive to changes in 

water temperature, in addition to reductions in the available habitable volume (i.e., streamflow). The impact of water 

temperatures on the distribution of salmonid fish is well documented (e.g., Beer and Anderson, 2013; Eby et al., 2014); 



3 
 

however, the combined effects of rising stream temperatures and reductions in streamflow remain relatively unexamined; 

with some exceptions (e.g., Wenger et al., 2011, Muñoz-Mas et al., 2016). Jonsson and Jonsson (2009) predicted that the 

expected effects of climate change on water temperatures and streamflow will have implications for the migration, ontogeny, 

growth and life-history traits of Atlantic salmon, Salmo salar Linnaeus, 1758, and brown trout, Salmo trutta Linnaeus, 1758. 

Thus, investigation of these habitat variables in the context of several climate scenarios should help scientists to assess the 5 

magnitude of these changes on the suitable range and life history of these species.  

The objective of this study is to predict how and to what extent the availability of suitable habitat for the brown trout, a 

sensitive cold-water species, will change within its current natural distribution under the new climate scenarios through a 

study of changes in streamflow and temperature and their interactions. Specifically, in this paper, we (i) assessed the effects 

of both streamflow and geology on stream temperature; (ii) predicted the changes in streamflow and stream temperature 10 

implied by the climate change scenarios used in the 5th Assessment Report of the IPCC; and (iii) assessed the expected 

effects of these changes on trout habitat aptitude. To this end, hydrologic simulations with M5 model trees coupled with non-

linear water temperature models at the daily time step were fed with high-resolution, downscaled versions of the air 

temperature and precipitation fields predicted using the most recent climate change scenarios (IPCC, 2013). The effects of 

basin geology on the stream temperature models and on the estimated changes in thermal regimes were studied. Finally, the 15 

changes in the thermal habitat of trout were assessed by studying the violation of the tolerable temperature thresholds of the 

brown trout. 

2. Materials and methods 

The logical framework followed is summarized in Fig. 1. First, the daily global climate models output presented by the IPCC 

were downscaled to the study area. Then, the obtained local climate models output were applied to generate simulations of 20 

streamflow and water temperature. The results are daily values that can be used for the assessment of fish habitat suitability 

and availability. 

The procedure yielded results in the form of continuous time series, but they are presented for two time horizons: the year 

2050 (H-2050) and the year 2099 (H-2099). The values for these horizons correspond to the average of the values of the 

different variables for the decades 2041-2050 and 2090-2099, respectively. 25 

2.1 Study sites  

In total, 31 sites in 14 mountain rivers and streams inhabited by brown trout were chosen with the aim of encompassing a 

diverse array of geological and hydrological conditions in the centre of Spain (between the latitudes of 39°53’ N and 41°21’ 

N). Specifically, the investigated sites are located in the Tormes River and its tributaries, the Barbellido River, the Gredos 

Gorge and the Aravalle River (in the Duero basin); the Cega River and the Pirón River (the Pirón River is a tributary of the 30 

Cega River in the larger Duero basin); the Lozoya River, the Tagus River, the Gallo River, and the Cabrillas River (all four 
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of which are in the Tagus basin); the Ebrón River and the Vallanca River (the Vallanca River is a tributary of the Ebrón 

River in the Turia basin); and the Palancia River and the Villahermosa River (Fig. 2). The major geological components that 

lithologically characterize the mountain sites in the Duero and Lozoya basins are igneous rocks; the altitudinally lower sites 

in the Duero basin are underlain by Cenozoic detrital material, and the eastern basins (Tagus, Gallo, Cabrillas, Ebrón, 

Vallanca, Palancia and Villahermosa) are underlain primarily by Mesozoic carbonates. The distribution of geological 5 

materials was retrieved from the Lithological Map of Spain (IGME, 2015) (Table 1). 

 

 
Figure 1. Logical framework of the study. 

The land cover type is mainly pine forest in all of the studied basins (Pinus sylvestris, P. nigra, P. pinea and P. pinaster) 10 

(CORINE Land Cover 2006, European Environmental Agency, [2007]). Only the lower basins of the downstream sites on 

the Cega and Pirón rivers are mosaics of forest and croplands, whereas the uppermost sites within the Tormes River basin 

(Barbellido and Gredos Gorge) lie above the current tree line. Territorial planning does not consider significant changes in 

land-use at mid-century; objectively, changes are not expected after that time because a high percentage of the territory is 

protected. The studied reaches are not effectively regulated (only small weirs or natural obstacles exist). One large dam lies 15 

on the Pirón River (the Torrecaballeros Dam, which has a capacity of 0.32 hm3 and a maximum depth of  26 m and lies at an 

altitude of 1390 m a.s.l.), but it does not significantly alter the temporal pattern of streamflow (Santiago et al., 2013). In the 

Lozoya River, a large dam (the Pinilla Dam, which has a capacity of 38.1 hm3 and a maximum depth of 30 m and lies at an 

altitude of 1060 m a.s.l.) exists that separates fish populations above and below the reservoir, although it lies downstream of 

the studied reach. 20 

Hydrological data characterize the streamflow regimes as extreme winter/early spring (groups 13 and 14 in the classification 

of Haines et al., [1988]). However, the hydrographs show a west-to-east smoothing gradient (Fig. 3). This smoothing is 
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associated with the carbonate rocks, whereas greater seasonality is associated with the igneous and detrital geological 

materials. 

 

 
Figure 2. River network and location of the study sites (water temperature data loggers), with details regarding lithology. The grid 5 
depicts the actual occurrence of brown trout in Spain. 

2.2 Data collection 

At each study site, water temperatures were recorded every two hours throughout the year using 31 Hobo® Water 

Temperature Pro v2 (Onset®) and Vemco® Minilog data loggers located at several sites along the studied rivers and streams 

(Table 1). Loggers were tested for malfunctions before being deployed, and they were placed in areas not exposed to direct 10 

sunshine (Stamp et al. 2014). Meteorological data were obtained from nine thermometric and 15 pluviometric stations of the 

Spanish Meteorological Agency (AEMET) network, and data from ten gauging stations (from the official network of the 

Water Administration) were obtained to model the running flows. The AEMET-thermometric stations that lie closest to the 

stream temperature monitoring sites and have at least 30 years of data between 1955 and the present were selected. The 

selected pluviometric stations were those located within the upstream river basin or near the corresponding gauging station 15 

(Table 2). The air temperature and precipitation data from AEMET were tested to assess their reliability by applying a 

homogeneity test. This test is based on a two-sample Kolmogorov–Smirnov test, and it marks years as possibly containing 

inhomogeneous data. In the second phase, the marked years are matched against the distribution of the entire series to 

determine if they contain true inhomogeneities, searching for possible dissimilarities between the empirical distribution 

functions. Only reliable series were used. The locations of the stations did not change in the studied period. 20 

2.3 Climate change modelling and downscaling 

Data from nine global climate models associated with the 5th Coupled Model Intercomparison Project were used, namely 

BCC-CSM1-1, CanESM2, CNRM-CM5, GFDL-ESM2 M, HADGEM2-CC, MIROC-ESM-CHEM, MPI-ESM-MR, MRI-

CGCM3, and NorESM1-M (Santiago et al., 2016). These models provided daily data to simulate future climate changes 

corresponding to the Representative Concentration Pathways RCP4.5 (a stable scenario) and RCP8.5 (a scenario including a 25 
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pronounced increase in CO2 concentrations) established in Taylor et al. (2009) and used in the 5th Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC, 2013). An array of nine general climate models was used to avoid biases 

due to the particular assumptions and features of each particular model (Kurylyk et al., 2013). Historical simulations of the 

XX century were used to control the quality of the procedure and to compare the magnitudes of the predicted changes. 

 5 

 
Figure 3. River regime patterns for the different gauging stations. The flows are expressed as percentages of the mean annual flow, 
and the months are ordered from January to December. 

Pourmokhtarian et al. (2016) note the importance of the use of fine downscaling techniques. Thus, a two-step analogue 

statistical method (Ribalaygua et al., 2013) was used to downscale the daily climatic data, specifically the maximum and 10 

minimum air temperatures and the precipitation for each station and for each day. For both air temperature and precipitation, 

the procedure begins with an analogue stratification (Zorita and von Storch, 1999) in which the n days most similar to each 

problem day to be downscaled are selected using four different meteorological large-scale fields as predictors, specifically 

(1) the speed and (2) direction of the geostrophic wind at 1000 hPa, as well as (3) the speed and (4) direction of the 

geostrophic wind at 500 hPa. In a second step, the temperature determination was obtained through multiple linear 15 

regression analysis using the selected n of the most analogous days. This was performed for the maximum and minimum air 

temperatures at each station and for each problem day. The linear regression uses forward and backward stepwise selections 

of the predictors to select only the relevant predictive variables for that particular case. For precipitation, a group of m 

problem days (the whole days of a month were used) were downscaled together, and the “preliminary precipitation 

quantity,” or the average precipitation of the n most analogous days, was obtained for each problem day. Thus, the m 20 

problem days from the highest to the lowest ‘preliminary precipitation amount’ could be sorted. To assign the final amount 

of precipitation, each precipitation amount of the m × n analogous days was taken. Then, those m × n amounts of 
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precipitation were sorted, and then those amounts were clustered into m groups. Every quantity was then assigned in order to 

the m days previously sorted by the ‘preliminary precipitation amount’. Further details of the methodology are described in 

Ribalaygua et al. (2013). 

A systematic error is obtained when comparing the simulated data from the climate models with the observed data. Such 

errors are inherently associated with all downscaling methodologies and climate models, which usually introduce bias into 5 

their outputs. To eliminate this systematic error, the future climate projections were corrected according to a parametric 

quantile-quantile method (Monjo et al., 2014), which was performed by comparing the observed and simulated empirical 

cumulative distribution functions (ECDF) and linking them using ECDFs obtained from the downscaled European Centre for 

Medium-Range Weather Forecasts ERA-40 reanalysis daily data (Uppala et al., 2005). 

As a result, for each climate change scenario, the daily maximum and minimum air temperatures (which were used to infer 10 

the mean air temperature) and precipitation were obtained for each climate model, and the whole dataset were used as inputs 

to simulate the runoff and water temperatures under these climate change scenarios. 

2.4 Hydrological modelling 

The prospective prediction of the future running flows was performed with data-driven hydrological models developed using 

the M5 algorithm (Quinlan, 1992). M5 has been shown to have skill in modelling daily streamflow (Solomatine and Dulal, 15 

2003; Taghi Sattari et al., 2013), including in studies involving climate change (Muñoz-Mas et al., 2016). Mathematically, 

M5 is a kind of decision tree that, instead of assigning a single value (regression) or category (classification) to each terminal 

node (i.e., leaf), assigns a multi-linear regression model (Quinlan 1992). Consequently, the final tree becomes a piecewise 

multi-linear model, which can be seen as a committee of linear models in which each member is specialized in particular 

areas of the input space, such as peak flows or base flows, to name the extremes (Taghi Sattari et al., 2013). Based on the 20 

multi-linear models at the leaves, M5 allows extrapolation, in contrast with other machine learning techniques that have 

demonstrated little or no extrapolation ability (Hettiarachchi et al., 2005). 

The M5 hydrological models were developed in R (R Core Team, 2015) with the Cubist package (Kuhn et al., 2014). One 

single M5 model tree was optimized for each gauging station (ten models were produced in total; Fig. 3 and Table 2), 

whereas the predictions were supported by the nearest observation (i.e., neighbours=1) to avoid producing unreliable flows. 25 

Finally, M5 was allowed to determine the ultimate number of models, or areas, into which the input space is eventually 

divided (i.e., leaves). 

Following previous studies, the M5 hydrological models were trained by employing, the daily, monthly and quarterly data 

lags of historical precipitation and air temperature collected at meteorological stations within or nearby the target river basins 

as input variables (Table 2) (Solomatine and Dulal, 2003; Taghi Sattari et al., 2013; Muñoz-Mas et al., 2016). These three 30 

groups of variables were intended to reflect the causes of peak, normal and base flows. The study encompassed several rivers 

and streams that may have different hydrologic behaviours; therefore, the starting set of input variables, which was 

afterwards subset, was larger than that used in other studies (Solomatine and Dulal, 2003; Taghi Sattari et al., 2013; Muñoz-
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Mas et al., 2016). The daily variables included the precipitation and air temperature from the current day to the 15th previous 

day (16 variables in total). The monthly variables were calculated using the moving average for the 12 previous months (12 

variables in total), and the quarterly data were calculated from the moving average for the current month to the 24th previous 

month (8 variables in total). Consequently, the daily variables overlapped with the current month variable, and the first four 

quarterly variables overlapped with the monthly data. In the end, 72 variables were gathered, 36 each for air temperature and 5 

precipitation. 

The whole set of input variables may be relevant for some river systems, although it may cause M5 to overfit the data in 

others (Schoups et al. 2008). Therefore, the ultimate variable subset was optimized following the forward stepwise approach 

(Kittler, 1978). This greedy approach relies on iteratively adding input variables while the performance on the test data set 

improves and stopping (i.e., selecting a smaller subset of the input variables) as soon as the performance degrades. However, 10 

the classical forward stepwise approach may cause consideration of unrelated variable sets (i.e., disjoint precipitation and air 

temperature variable lags). To address such potential inconsistencies, the optimization began by testing the precipitation-

related variables and only tested the air temperature variables for lags coinciding with those precipitation-related variables 

that were already selected. No precautions were taken regarding correlations among inputs (Solomatine, personal 

communication), and the forward stepwise approach sought to maximize the Nash-Sutcliffe efficiency (NSE) index (which 15 

ranges from −∞ to 1; Nash and Sutcliffe [1970]) in a fivefold cross-validation (i.e., for each combination of variables, five 

M5 model trees were trained on four parts and validated with the fifth part, which was held out) (Borra and Di Ciaccio 2010, 

Bennett et al. 2013). Finally, in order to account for the uncertainty of the models (Bennett et al. 2013), the variance of the 

NSEs obtained during the cross-validation was inspected; large intervals led to alternative data partitions. Following 

previous studies (Fukuda et al., 2013; Muñoz-Mas et al., 2016), once the optimal variable set for each river basin was 20 

determined, ten M5 model trees (i.e., one per gauging station) were developed using the corresponding subset of variables, 

and they were used to perform the prospective prediction of the future running flows under the climate change scenarios. 

The daily data were analysed monthly and seasonally using the following statistics: minimum flow (Qmin), the 10th percentile 

of flow (Q10), the mean flow (Qmean), and the maximum flow (Qmax). The annual runoff and days of zero flow were also 

examined. 25 

To assess the significance of the streamflow trends throughout the century, Sen’s slope was used (as implemented in the 

Trend package of R (Pohlert, 2016); p-value ≤ 0.05) with horizons H-2050 and H-2099. 

Finally, the variation of the patterns of the monthly mean streamflow was studied by means of the Ward Hierarchical 

Clustering implemented in the cluster R package (Maechler, 2013) on the basis of the rate of change of the normalized 

monthly mean streamflows in H-2050 and H-2099 and the RCP4.5 and RCP8.5 scenarios. 30 

2.5 Stream temperature modelling 

Stream temperature (Ts) at each thermal sampling site was simulated from air temperature (Ta) by means of a modified 

version of the bounded non-linear regression model described by Mohseni et al. (1998). A previous modification (Term 1 in 
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Eq. [1]; Santiago et al. [2016]) served to improve the behaviour of the former model, permitting it to be used for daily inputs. 

In this study, the effect of instream flow (Q) effect is incorporated. Thus, this model addresses daily mean stream 

temperature (DMST; Ts in Eq. [1]) using the daily mean air temperature (DMAT, Ta in Eq. [1]), the 1-day before variation 

of the daily mean air temperature (ΔTa in eq.1), and the daily mean flow (Qmean, Q in eq.1) as predictors. DMST was used 

because it better reflects the average conditions that fish (particularly trout) will experience for an extended period of time 5 

(Santiago et al., 2016), and it averages over daily fluctuations in the radiation and heat fluxes. The model is formulated as 

follows: 

 

𝑇𝑇𝑠𝑠 = 𝜇𝜇 + 𝛼𝛼−𝜇𝜇
1+𝑒𝑒𝛾𝛾(𝛽𝛽−𝑇𝑇𝑎𝑎) + 𝜆𝜆(Δ𝑇𝑇𝑎𝑎)���������������

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 1

+ 𝜔𝜔
1+𝑒𝑒𝛿𝛿(𝜏𝜏−𝑄𝑄)�����
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 2

           Eq.  (1) 

 10 

where µ is the minimum stream temperature (°C), α is the maximum stream temperature (°C), β represents the air 

temperature at which the rate of change of the stream temperature with respect to the air temperature is a maximum (°C), γ 

(°C-1) is the value of the rate of change at β, and λ is a coefficient (dimensionless) that represents the resistance of DMST to 

change with respect to the 1-day variation in DMAT (ΔTa). In the flow component (Term 2 in Eq. [1]), ω is the maximum 

observable variation in stream temperature due to the flow difference (given in °C), τ represents the flow value at which the 15 

rate of change of the stream temperature with respect to the flow is a maximum (m3·s-1), and δ (m-3·s) is this maximum rate 

at τ. Negative values of λ are due to the resistance to stream temperature changes, and thus they must be subtracted from the 

expected temperature: the more resistant the stream is to temperature change, the closer λ will be to zero. The less resistant 

the stream is to change, the more negative λ is. The parameter µ was allowed to be less than zero in the modelling process, 

even though this is the freezing temperature. Thus, the function would truncate at the freezing point. The relationship 20 

between the thermal amplitude α-µ and the indicator of thermal stability λ was studied using the Pearson correlation.  

A blockwise non-parametric bootstrap regression (Liu and Singh, 1992) was used to estimate the parameters of both the 

modified Mohseni models (with and without streamflow), and residual normality and non-autocorrelation were checked with 

the Shapiro test and Durbin-Watson test. Moreover, the seven-day lag PACF (partial autocorrelation function) was obtained. 

These calculations were performed using R. A 95 % confidence interval was calculated for each parameter. The Bayesian 25 

information criterion (BIC) and the Akaike information criterion (AIC) were used to test the eight-parameter models (Terms 

1+2 of Eq. 1) against the five-parameter models (Term 1 of Eq. 1). 

This model can be classified as semi-physically based mode. It has some advantages over machine learning methods, such as 

classification and regression trees (De’ath and Fabricius, 2000) or random forests (Breiman, 2001), because the model 

parameters imply a mechanistic interpretation of how process drivers act, yielding a higher transferability (Wenger and 30 

Olden, 2012). These features make of this model an advantageous option for our goals.  
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2.6 Effects of geology on stream temperature 

Geology determines the residence time of deep groundwater in the aquifers underlying streams (Chilton, 1996), and 

residence times influence discharge temperatures. To explore the relationships between thermal regimes and geology, a 

stratified study of both the geology classes of the parameter values was completed by means of a t-test with the Bonferroni 

correction (p-value < 0.05). In the same sense, increments of the annual averages of the daily mean (ΔTmean), minimum 5 

(ΔTmin) and maximum (ΔTmax) stream temperatures were calculated and studied by lithological classes (Table 1) 

The variation of the patterns of the monthly mean stream temperature was studied by means of cluster analysis of the 

temperature increases corresponding to H-2050 and H-2099 for the RCP4.5 and RCP8.5 scenarios (using Ward’s 

hierarchical clustering as implemented in the cluster package of R; Maechler [2013]). 

2.7 Thermal habitat changes 10 

Several tolerance temperatures and thermal niche limits have been described for brown trout (Table 3). The realized niche 

must reflect energetic efficiency: spending long periods above that threshold makes animals less efficient competitors, and 

their performance decreases critically (Magnuson et al., 1979; Verberk et al., 2016). Thus, we focused our study on the 

realized thermal niche. The chosen threshold for this study was the occurrence of DMST values above 18.7°C for seven or 

more consecutive days, because it has proven to be the most realistic value to represent the realized thermal niche (Santiago 15 

et al., 2016). The minimum period of seven consecutive days is usually the established time for determining thermal 

tolerance (Elliott and Elliott, 2010), and when this period is exceeded, the death risk (exclusion risk in our case) increases 

substantially. The chosen threshold was originally determined in one of the streams in this study (the Cega River). 

Once DMST was modelled, the frequency of events of seven or more consecutive days above the threshold per year (Times 

Above the Threshold, TAT≥7), the total Days Above the Threshold per year (DAT), and the Maximum Consecutive Days 20 

Above the Threshold per year (MCDAT) were calculated for the whole period of 2015-2099. 

To assess the general trend in thermal habitat alterations at the middle (H-2050) and the end of the century (H-2099), the 

TAT≥7, DAT and MCDAT were calculated at each sampling site for each climate change scenario and compared with 

current conditions 

2.8 Longitudinal interpolation and extrapolation 25 

The number of sampling sites and their distribution in the Cega, Pirón and Lozoya rivers (Fig. 2, Table 1) permit the 

longitudinal interpolation and extrapolation of the predicted water temperatures to study the relationships between the annual 

average DMST and altitude (strong correlations were detected between these quantities; R2= 0.986, 0.985 and 0.881, 

respectively). A digital elevation model with a resolution of 5 m made using LIDAR and obtained from the National 

Geographic Institute of the Spanish Government (IGN) was used to perform an altitudinal interpolation of the model 30 

parameters to determine the water temperature along the stream continuum to simulate the effects of the climate change 
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scenarios and then to obtain the percentage of stream/river length that will be lost for trout. ArcGIS® 10.1 software (made by 

ESRI®) was used to manage the DEM. 

3 Results 

3.1 Climate change 

Under the climate change scenarios, all the meteorological stations will experience noticeable temperature (DMAT) 5 

increases through the century. As might be expected, this trend is steeper for the RCP8.5 scenario, especially in summer, 

though it is also noticeable in winter to a lesser extent (annual trends are shown in Fig. 4; the seasonal results are shown by 

location in Fig. S1 to S24 [Supplementary Material 1]). The air temperature variations will run parallel one another in the 

two scenarios until mid-century, when the RCP8.5 scenario predicts a similar trend and the increases decrease under the 

RCP4.5 scenario; the annual change in temperatures for RCP4.5 fluctuates between 2°C and 2.5°C at mid-century and 10 

between 2.5°C and 3.5°C at the end of the century (3-4°C at mid-century and 3.5-4.5°C at the end of the century in summer) 

The annual change for RCP8.5 is between 2°C and 3°C at mid-century and between 5°C and 7°C at the end of the century 

(3.5-4.5°C at mid-century and 7-8°C at the end of the century in summer). 

 

 15 
Figure 4. Changes in mean air temperature and total annual precipitation related to climate change for the nine general climate 
models and the two climate change scenarios for the all the studied meteorological stations. 
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The change in the annual precipitation (mm·day-1) will fluctuate around zero (Fig. 4), although seasonal values will vary 

(Fig. S1). RCP4.5 predicts a slight decrease (-7 %) by mid-century in total precipitation, which will return to current values 

by the end of the century. Conversely, RCP8.5 predicts stable precipitation up to mid-century and a slight decrease (-10 %) 

by the end of the century. The most important changes appear to occur in autumn. Daily mean air temperatures of the 

ensemble members for each meteorological station are shown in the Supplementary Material 2 (Dataset S1). 5 

 3.2 Hydrological regimes 

In general, decreases in flow will occur throughout the century, but the degree of change will vary among the sites. Stations 

located in the western (Tormes) and eastern (Ebrón) extremes of the study area will experience an increase in flow by 2099 

after decreasing in the mid-XXI century. Lozoya will suffer the most intense flow decreases, followed by Pirón and Cega-

Lastras, Tagus and Gallo, and Cabrillas. These patterns of change in flow regimes are predicted to be linked to a West-to-10 

East longitudinal gradient; climate change is expected to have less of an influence on discharge at the western stations and 

Ebrón (in the far eastern portion of the study area). 

The hydrological models performed well; all of them achieved NSE values ≥0.7 when a number of assorted combinations of 

variables were selected (Table S1 [Supplementary Material 3]). Fig. 5 shows plots of the monthly Qmean results of the 

simulations for the RCP4.5 and RCP8.5 scenarios in H-2050 and H-2099. Daily mean streamflow estimated from the climate 15 

change model ensemble is given in the Supplementary Material 4 (Dataset S2). 

3.2.1 RCP4.5 scenario 

Statistically significant (p<0.05) shifts in the flow regime will be rare in H-2050 (Table 4, Fig. 5). In H-2099, these changes 

will be less pronounced, but significant changes become more frequent (Table 4, Fig. 5). Only two gauging stations (Lozoya 

and Tagus) exhibit significant reductions in annual discharge. By the end of the century (H-2099), annual discharge is 20 

expected to be significantly lower at seven gauging stations. Tagus basin will experience the greatest changes in annual 

discharge. Maximum, mean and minimum daily discharges (Qmean and Qmin), as well as the Q10, will become much lower in 

Tagus River basin. Only Cega-Lastras and Pirón (Duero River basin) will suffer a significant increase in the number of zero-

flow days. 

3.2.2 RCP8.5 scenario 25 

According to the predictions, the most significant changes in flow regimes will occur at the gauging stations of Cega-Lastras 

and Lozoya in H-2050 (Table 4, Fig. 5). In H-2099, most sites will experience strong flow reductions, even in seasons where 

seasonal increases in flow are predicted (e.g., Ebrón and both stations in the Tormes River) (Table 4, Fig. 5). Significant 

annual runoff reductions in H-2050 will occur at five of the stations, increasing the occurrence of significant losses at nine 

out of the ten sites in H-2099 (i.e., all stations except Ebrón). The most important decreases in every variable and throughout 30 
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the century were predicted for the stations in the middle Cega basin and the Tagus basin. A significant increase in the 

number of days with no flow was predicted for Cega-Lastras, Pirón and Gallo. 

 

 
Figure 5. Predicted monthly mean specific flow in H-2050 and H-2099 for the RCP4.5 and RCP8.5 scenarios. Shaded areas 5 
indicate decadal fluctuations. Triangles show significant negative or positive trends (Sen’s slope p≤0.05); the sign of each trend is 
indicated by the directions in which the triangles point. 
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3.2.3 Geographical pattern 

The cluster analysis of gauging stations based on seasonal variations in the flow regime revealed the importance of careful 

examinations at the local level, since hydrological behaviour is a consequence of both macroclimatic and mesoclimatic 

conditions. A geographical pattern is recognizable when the actual flow regime (2006-2015) is seasonally clustered (Fig. 6). 

Analysing the deviations in this geographical pattern by scenarios and horizons, the different gauging stations can grouped 5 

according to the seasonal behaviour of the flow changes (Fig. 7a). For the RCP4.5 scenario in H-2050 (agglomerative 

coefficients, a.c.= 0.73), the stations that differed most strongly from the remainder in terms of their deviations in the flow 

regime are those located at Cega-Lastras (winter), Pirón (autumn) and Ebrón (summer). For RCP4.5 in H-2099 (a.c.= 0.56), 

they are Cega-Pajares (spring), Tormes-Hoyos (summer) and Ebrón (autumn). For RCP8.5 in H-2050 (a.c.= 0.61), they are 

Pirón (spring, summer and autumn), Lozoya and Ebrón (both in winter). For RCP8.5 in H-2099 (a.c.= 0.72), they are Cega-10 

Pajares (spring) and Ebrón (summer, autumn and winter). 

 

 
 

Figure 6. Gauging stations clustered by the current normalized seasonal streamflow regime (agglomerative coefficient, a.c.= 0.81). 15 
Stations are grouped by lithological classes.  
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Figure 7. Study sites clustered by the predicted change ratios of the seasonal mean streamflow (gauging stations) and by the 
predicted increase in the monthly mean stream temperature (°C) at the water temperature recording sites in H-2050 and H-2099 
for the RCP4.5 and RCP8.5 scenarios. Axes indicate geographic positions (UTM coordinates). The colours and numbers indicate 
the clusters. 5 
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3.3 Stream temperature 

3.3.1 Model parameter behaviour and general trends 

The inclusion of the streamflow component improves model performance at 12 out of the 28 study sites (Table 5). In the 

remaining 16 cases, either no convergence of values was observed in the regression process, or the obtained values did not 

improve the results, as the streamflow component (Term 2 of the equation) is virtually zero at the other sites. The five-5 

parameter model was used in these remaining 16 cases. The calculated parameters are shown in Table 6, and daily mean 

stream temperatures estimated by the climate change models are given in the Supplementary Material 5 (Dataset S3). 

For the entire array of sites (n= 31), the Pearson correlation between thermal amplitude (α-μ) and λ is significant (r-Pearson= 

-0.832; p<0.0001). As the thermal amplitude increases, λ becomes more negative (indicating less resistance). As the thermal 

amplitude decreases, λ approaches zero (indicating more resistance). 10 

By the end of the XXI century, the predicted average increase in the mean annual stream temperature among the sites is 

1.1°C for the RCP4.5 scenario (range 0.3-1.6°C) and 2.7°C for RCP8.5 (range 0.8-4.0°C). The average increases in 

maximum annual mean temperature are predicted to be 0.8°C for RCP4.5 (range 0.1-1.5°C) and 1.6°C for RCP8.5 (range 

0.2-3.0°C), and the average increases in minimum annual mean temperature are predicted to be 1.0°C (range 0.4-1.8°C) and 

2.7°C (range 1.1-4.5°C), respectively. The most important increases are predicted to occur in winter, with summer 15 

experiencing smaller increases. 

3.3.2 Stream temperature and geological nature 

The values of the model parameters showed different behaviours depending on the lithology found in each basin, which thus 

influences the thermal response to climate change. The thermal amplitude is greater at sites underlain by igneous bedrock 

(𝛼𝛼 − 𝜇𝜇�������= 20.38°C) than at sites underlain by carbonate bedrock (𝛼𝛼 − 𝜇𝜇�������= 13.07°C). β values are greater at sites underlain by 20 

igneous bedrock (𝛽̅𝛽= 12.71°C) than at sites underlain by carbonate bedrock (𝛽̅𝛽= 7.80°C), and λ is significantly greater (𝜆̅𝜆= -

0.140) at sites underlain by carbonate bedrock than at sites underlain by igneous bedrock (𝜆̅𝜆= -0.292) and at sites underlain 

by Quaternary detrital material (𝜆̅𝜆= -0.305) (Fig. 8). All of these differences are significant (p-values < 0.001, as determined 

using t-tests with the Bonferroni correction). 

Among the 8-parameter models (n=12), significant differences are also found among the lithological classes for ω and τ. For 25 

both ω and τ, the values were higher at sites underlain by carbonate bedrock (𝜔𝜔�= 0.96°C; 𝜏𝜏̅= 3.640 m3·s-1) than at sites 

underlain by igneous bedrock (𝜔𝜔�= -2.12°C; 𝜏𝜏̅= 0.345 m3·s-1). The differences in the δ values among the carbonate (𝛿𝛿̅= 67.06 

m-3·s) and igneous sites (𝛿𝛿̅= 67.06 m-3·s) were only marginally significant (p<0.1). 

Under the RCP4.5 scenario, ΔTmin displays significantly different behaviour at sites underlain by Quaternary detrital material 

than at sites underlain by carbonate and igneous rocks. Under the RCP8.5 scenario, this difference is solely found between 30 

the sites underlain by Quaternary detrital material and those underlain by carbonate rocks. ΔTmean exhibits significant 

differences between the sites underlain by all three lithologies in both scenarios. All of these results are common to H-2050 
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and H-2099. In terms of ΔTmax, in H-2050, significant differences are found between the sites underlain by carbonate and 

igneous rocks for both scenarios. These differences are also significant in H-2099 for RCP4.5 and RCP8.5 and between the 

sites underlain by carbonate rocks and Quaternary detrital material under the RCP8.5 scenario (Fig. 9). 

 
Figure 8. Distributions of the stream temperature model parameter values (α-μ, β, γ and λ) in relation to lithology. Differences 5 
were assessed using Student’s t test with the Bonferroni correction (p<0.05). 

The results of the cluster analysis of the monthly mean stream temperatures revealed a highly homogeneous aggregation of 

sites for the different combinations of horizons and scenarios, given that the thermal responses of the rivers and streams are 

tightly linked with lithology (Fig. 7b). The carbonate sites from the Cabrillas stream (in the east) and Pirón 3 (which is 

strongly influenced by a calcareous spring) form a group of sites that shows low thermal amplitude and in which λ is close to 10 

zero. At the other extreme, a group that is made up mainly of sites underlain by igneous material (in the Lozoya and Tormes 

basins, in addition to several sites found in the detrital basin of Cega-Pirón) shows higher thermal amplitude and lower 

values of λ than the former group. The remaining sites have intermediate values of thermal amplitude and resistance. 
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Figure 9. Distributions of ΔTmin, ΔTmean and ΔTmax in relation to lithology for the climate change scenarios RCP4.5 and 
RCP8.5 in H-2050 and H-2050. The reference period corresponds to the simulated period 2010-2019. 

3.3.3 Effect of streamflow reductions on stream temperature 

The predicted flow reductions lead to notable increases in water temperature. The effect of streamflow variation on stream 5 

temperature is analysed at the following sites: Tormes 2, Tormes 3, Pirón 1, Cega 1, Lozoya 1 to 4, Cabrillas, Ebrón 1 and 

Vallanca 1 and 2. These are the sites at which the 8-parameter model improves upon the 5-parameter model. In all cases, 

differences in stream temperature between the 5- and 8-parameter models are found, and summer flow reductions lead to 

increases in stream temperature, increasing DAT, TAT≥7 and MCDAT. Among these sites, the threshold is only surpassed 

at Lozoya and Tormes, increasing the thermal habitat loss. At Cega 1, Cabrillas and Ebrón, α is below the thermal threshold, 10 

and at Pirón 1, the stream temperature increase is not sufficient to exceed the threshold. 

For all of the sites at which the influence of streamflow on stream temperature was revealed, the 8-parameter model 

estimates higher values of maximum annual DMST than the 5-parameter model. The maximum annual DMST calculated by 

the 8-parameter model is 3.6°C higher than that calculated by the 5-parameter model at the Tormes 2 site. This difference is 

not so large at the other sites, and the minimum disagreement between the models (0.01°C) is noted at the Ebrón and 15 

Cabrillas sites. In general, the maximum differences between the two models are noted in igneous catchments, whereas 

carbonate sites yield the lowest differences.  

3.3.4 Effect of climate change on the thermal habitat of brown trout 

The length of the thermal habitat of trout will undergo important reductions due to the rises in water temperatures and the 

increase in the extent of the warm period. In the predictions for H-2050, the 18.7°C threshold (TAT≥7) will be violated at 20 
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eight sites under the RCP4.5 scenario and six sites under the RCP8.5 scenario. In H-2099, the threshold will be violated at 

eight sites under the RCP4.5 scenario and 13 sites under the RCP8.5 scenario. 

By the end of the century (H-2099), the most notable increases in TAT≥7 (Fig. 10) will be produced at Cega 6, Pirón 5 and 

Lozoya 3 under the RCP4.5 scenario and at Tormes 1, Cega 4, Cega 6, Lozoya 2, Gallo and Tagus-Poveda under the RCP8.5 

scenario. The most significant increases in MCDAT (Fig. 10) will occur at low altitude sites underlain by igneous rocks and 5 

detrital material. In general, the highest temperatures (maximum values of 24.5°C, Table 7) are predicted to occur in the 

downstream reaches of the igneous and detrital river basins. In the carbonate basins, only two sites (Tagus-Poveda and 

Gallo) will exceed the thermal threshold. At mid-century (H-2050), the main changes under the RCP8.5 scenario are similar 

to those predicted for RCP4.5 at the end of the century (H-2099). RCP4.5 predicts a slower warming from mid-century 

onwards, whereas RCP8.5 predicts an acceleration of the warming during that period. 10 

Continuous modelling of water temperature by means of the interpolation of model parameters along the Cega, Pirón and 

Lozoya rivers and the application of the model to DEM data predicts relevant losses of thermal habitat, which will affect up 

to 56 %, 11 % and 66 % of the lengths of these streams, respectively. In the Cega and Pirón rivers, the habitat loss is 

expressed relative to the proportion of total stream length where trout currently dwell (98 and 77 km in the Cega and Pirón 

streams, respectively). In the Lozoya River, the loss is predicted to occur in the reach (20 km) immediately upstream of a 15 

large reservoir (the Pinilla reservoir), which produces a total disconnection of the stream. The losses in maximum usable 

habitat will shift the current downstream limit of the trout distribution from 820 m a.s.l. up to 831 m a.s.l in the Pirón River, 

from 730 m a.s.l. up to 830 m a.s.l. in the Cega River, and from 1090 m a.s.l. up to 1276 m a.s.l. in the Lozoya River. In the 

particular case of the Cega River, a window of usable thermal habitat is also predicted to occur upstream from this altitudinal 

range (from 913 m a.s.l. up to 1050 m a.s.l.). 20 

4 Discussion 

4.1 Climate change 

Our downscaled results predict greater air temperature increments than the original IPCC (2013) results. These higher 

temperatures may lead to increased ecological impacts (Magnuson and Destasio, 1997; Angilletta, 2009) caused by the 

combination of rising water temperatures and decreasing stream flows. The results from the 5th Assessment Report of the 25 

Intergovernmental Panel on Climate Change and its annex, the Atlas of Global and Regional Climate Projections (IPCC, 

2013) suggest that droughts are unlikely to increase in the near future for the Mediterranean area. However, air temperatures 

are expected to rise, subsequently increasing evapotranspiration. As a consequence, the available water in rivers and streams 

will be reduced. Regional studies have used coarser resolutions than ours, which may be appropriate for their goals (e.g., 

Thuiller et al., 2006). However, they may be insufficient when more local predictions are needed, as does our study, which 30 

treats geographically confined, stream-dwelling trout populations. Therefore, fine downscaling techniques like those applied 

in this study must be used when high-resolution, detailed predictions are needed.  
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Figure 10. Increases in TAT≥7 (time above the threshold during seven or more consecutive days), MCDAT (maximum consecutive 
days above the threshold) and DAT (days above the threshold per annum) from the present to H-2050 and H-2099 for RCP4.5 and 
RCP8.5. 5 
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4.2 Streamflow 

This study predicts significant but diverse streamflow reductions during the present century. At the regional level, a 

reduction in water resources is expected in the Mediterranean area (IPCC, 2013). Milly et al. (2005) predicted a 10-30 % 

decrease in runoff in Southern Europe in 2050. In another global-scale study, van Vliet et al. (2013) predicted a decrease in 

the mean flows of greater than 25 % in the Iberian Peninsula area by the end of the century (2071-2100), using averages for 5 

both the SRES A2 and B1 scenarios (Nakicenovic et al., 2000). Our results predict mean flows that are similar to that value 

(-23 %, range: 0-49 %), although the emissions scenarios in this study are more severe (that is, they involve greater increases 

in atmospheric CO2) than those used in the aforementioned studies. 

More specifically, the predictions for the RCP4.5 scenario show flow reductions that range from negligibly small to 

significant (up to 17 %). Under the RCP8.5 scenario, significant reductions become more widespread, ranging up to 49 % of 10 

the annual streamflow losses. Our results also predict a relevant increase in the number of days with zero flow for some 

stations in the detrital area under this scenario (RCP8.5). The predicted streamflow changes are compatible with those 

obtained in previous studies, although these studies were performed at larger scales (as cited: Milly et al., 2005; van Vliet et 

al., 2013). The apparent differences between the streamflow reductions estimated in this study and those obtained by Milly 

et al. (2005) and van Vliet et al. (2013) (who report lower flow reductions than those given in the present study) might be 15 

caused by the regional focus of their predictions (the entire Iberian Peninsula), whereas ours are focused on mountain 

reaches. 

In terms of methods, process-based hydrological models are often preferred for climate change studies (Van Vliet et al., 

2012). However, they can be overly complicated and require excessive data inputs, which may also lead to over-fitting of the 

data (Zhuo et al., 2015). Constraining further predictions to within the training domain is a rule of thumb for machine 20 

learning studies (Fielding 1999), although extrapolation is rather common (Elith and Leathwick 2009). Therefore, taking into 

account the extrapolation that occurs towards lower flows, which are overrepresented in the training dataset, we consider the 

magnitude of the extrapolation acceptable, and we consider the values, although they are not exempt from uncertainty, to be 

reliable. 

4.3 Stream temperature 25 

The model we present in this study showed good performance. Bustillo et al. (2013) recommended the assessment of the 

impacts of climate change on river temperatures using regression-based methods like ours that rely on logistic 

approximations of equilibrium temperatures (Edinger et al., 1968), which are at least as robust as the most refined classical 

heat balance models. 

However, we also sought to identify relationships between thermal regime and other environmental variables besides air 30 

temperature and streamflow, such as geology. Bogan et al. (2003) showed that water temperatures were uniquely controlled 

by climate in only 26 % of 596 studied stream reaches. Groundwater, wastewater and reservoir releases influenced water 
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temperatures in the remaining 74 % of the cases. Loinaz et al. (2013) quantified the influence of groundwater discharge on 

temperature variations in the Silver Creek Basin (Idaho, USA), and they concluded that a 10 % reduction in groundwater 

flow can cause increases of over 0.3°C and 1.5°C in the average and maximum stream temperatures, respectively. Our 

studied reaches were not influenced by wastewater or reservoir releases (with the exception of releases from the 

Torrecaballeros Dam on the Pirón River). Kurylyk et al. (2015) showed that the temperature of shallow groundwater 5 

influences the thermal regimes of groundwater-dominated streams and rivers. Since groundwater is strongly influenced by 

geology, we can expect it to be a good indicator of the thermal response, as shown here. The models used accurately 

described the thermal performance of the study sites, and we found significant relationships among the model parameters, 

the underlying lithologies and the hydrologic responses. Thermal amplitude (α-μ) and temperature at the maximum change 

rate (β) were lower, and the resistance parameter (λ) was closer to zero, in river basins that were highly influenced by 10 

aquifers (mainly carbonate) compared to the others, particularly compared with river basins underlain by carbonate rocks. 

Since DMST is a variable that is relevant for detecting departures from thermal niche, we can conclude that it is worthwhile 

to use the more complex 8-parameter model to predict the effects of global warming, especially in igneous catchments. 

A wide range of models is described in the literature, and each such model has its strengths and weaknesses. Arismendi et al. 

(2014) concluded that regression models based on air temperature can be inadequate for projecting future stream 15 

temperatures because they are only surrogates for air temperature, whereas Piccolroaz et al. (2016) argued for the contrary 

conclusion. We show that both the Mohseni model and our modified model integrate information on other variables, such as 

geology and flow regime. On the other hand, the risk of ignoring the effect of climate warming on groundwater (subsurface 

water and deep water) must not be forgotten. The thermal sensitivity of shallow groundwater differs between short-term 

(e.g., seasonal) and long-term (e.g., multi-decadal) time horizons, and the relationship between air and water temperatures is 20 

not necessarily representative of this difference. This variability must be taken into account in order to avoid underestimating 

the effects of climate warming (Kurylyk et al., 2015). 

Regression models are substantially site specific compared to deterministic approaches (Arismendi et al., 2014). However, 

the parameters of these regression approaches are still physically meaningful, and these models require fewer variables that 

can limit the applicability of more complex models in areas where data are scarce. Consequently, the value of this type of 25 

model is its applicability to a large number of sites where the only available data describe air temperatures (and precipitation 

and streamflow to a lesser extent). On the other hand, our results show that predictions can improve when streamflow is 

included in the water temperature model, although some streams show little or no sensitivity to the introduction of 

streamflow into the model. However, the lack of sensitivity is not necessarily be due to the absence of the influence of flow 

on the water temperature but rather to its minor relevance compared to other sources of noise. Thus, when flow data are 30 

available, it may be recommended to use the more complex 8-parameter model to predict the effects of climate warming. 

This conclusion is especially applicable to lithologically sensitive basins, such as those underlain by igneous rocks. 

The predicted increase in water temperature will be substantial at most of the study sites. The annual mean rates of change 

will increase with time. Stewart et al. (2015) predict an increase of 1-2°C by mid-century in 80 % of the stream lengths in 
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Wisconsin and by 1-3°C by the latter part of the century in 99 % of the stream lengths, which corresponds to a significant 

loss in suitable areas for cold-water fish. The results of Stewart et al. (2015) do not differ from ours, except that we expect 

greater increases by the end of the studied period (up to 4°C). Our results are also compatible with those of van Vliet et al. 

(2013), who predicted a water temperature increase >2°C in the Iberian Peninsula area by the end of the century; however, 

our results are more specific and precise. In this sense, Muñoz-Mas et al. (2016) also obtained similar results for H-2050 in a 5 

river reach in central Spain by mid-century (i.e., daily mean flow reductions between 20-29 % and daily mean stream 

temperature increases up to 0.8°C). However, we predict that the minima are more sensitive to climate warming than the 

maxima. 

4.4 Effects of climate change on brown trout populations 

Brown trout are sensitive to changes in discharge patterns because high intensity floods during the incubation and emergence 10 

periods may limit recruitment (Lobón-Cerviá and Rincón, 2004; Junker et al., 2015). In the Iberian Peninsula, the trout 

distribution is mainly concentrated in mountain streams, where extreme discharges during winter are expected to increase 

(Rojas et al., 2012). These extreme discharges will likely affect trout recruitment negatively. Thus, the predicted changes in 

the hydrological regime can subject brown trout populations to more variable conditions, which may occasionally present 

some populations with insuperable bottlenecks. Trout are polytypic and display an adaptable phenology and rather high 15 

intra-population variability in their life history traits that might allow them to show resilience to variations in habitat features 

(Gortázar et al., 2007; Larios-López et al., 2015), especially in the marginal ranges (Ayllón et al., 2016). However, despite 

these strong evolutionary responses, the current combination of warming and streamflow reduction scenarios is likely to 

exceed the capacity of many populations to adapt to new conditions (Ayllón et al., 2016). Consistent with regional 

predictions (Rojas et al 2012; Garner et al., 2015), significant flow reductions are expected during summertime in most of 20 

the studied rivers and streams at the end of the century, and this may mean, in turn, the reduction in the suitable habitat (i.e., 

the available water volume) (Muñoz-Mas et al., 2016). Finally, the increase in extreme droughts, which involve absolute 

water depletion, in certain reaches of the streams may be critical for some trout populations. 

The predicted increase in winter stream temperatures can affect the sessile phases (i.e., eggs and larvae) of trout 

development. These phases are very sensitive to temperature changes because it affects their physiology, and because their 25 

development is temperature dependent (e.g., Lobón-Cerviá and Mortensen, 2005; Lahnsteiner and Leitner, 2013). Thus, 

changes in the duration of incubation and yolk sac absorption can affect emergence times and, in turn, the sensitivity of these 

phases to hydrological regime alterations (Sánchez-Hernández and Nunn, 2016). An increase in stream temperature can also 

reduce hatchling survival (Elliott and Elliott, 2010). In accordance with the results presented herein, the predicted synergy of 

streamflow reductions and water temperature increases will cause substantial losses of suitable fish habitat, especially for 30 

cold-water fish such as brown trout (Muñoz-Mas et al., 2016). 

The increases in threshold violations were important in our simulations. The duration of warm events (temperature above the 

threshold value) increased by up to three months at the end of the century in the most pessimistic scenario (RCP8.5). A 
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continuous analysis of the whole-river response should be conducted to allow spatially explicit predictions and to identify 

reaches where thermal refugia are likely to occur. However, our results suggest that trout will not survive in these reaches 

because the persistence of thermal refugia is improbable or because their extents will be insufficient. In the Cega, Pirón and 

Lozoya rivers, important losses of thermal habitat will occur that could jeopardize the viability of the trout population. 

Behavioural thermoregulatory tactics are common in fish (Reynolds and Casterlin, 1979; Goyer et al., 2014); for instance, 5 

some species perform short excursions (<60 min in experiments with brook char, S. fontinalis) that could be a common 

thermoregulatory behaviour adopted by cold freshwater fish species to sustain their body temperature below a critical 

temperature threshold, enabling them to exploit resources in an unfavourable thermal environment (Pépino et al., 2015). 

Brown trout can use pool bottoms during daylight hours to avoid the warmer and less oxygenated surface waters in thermal 

refugia (Elliott, 2000). Nevertheless, if the warm events became too long, the thermal refugia could become completely 10 

insufficient, thus compromising fish survival (Brewitt and Danner, 2014; Daigle, et al., 2014). 

4.5 The brown trout distribution 

According to our results, streamflow reductions are able to synergistically contribute to the loss of thermal habitat by 

increasing daily mean stream temperatures. This effect is especially relevant in summer in the Mediterranean area, when the 

warmest temperatures and minimum flows usually occur. The existence of thermal refugia represents a possible means of 15 

fish survival, and the probability for a water body to become a thermal refugium is highly geologically dependent. In our 

simulations, the sites that are most dependent on deep aquifers (i.e., basins underlain by Mesozoic carbonate rocks) display 

improved resistance to warming. The habitat retraction at the rear edge of the actual distribution of brown trout is deduced to 

be geologically mediated. 

The mountains of central and southeastern Spain contain the rear edge of the distribution of native brown trout (Kottelat and 20 

Freyhof, 2007). Fragmentation and disconnection of populations by newly formed thermal barriers may aggravate the 

already significant losses of thermal habitat by reducing the viability of populations and increasing the extinction risk. Thus, 

the rear edge of the trout population in the Iberian Peninsula might shift to the northern mountains to varying extents 

depending on the presence of relevant mesological features, such as geology. The calcareous mountains of northern Spain 

could be a refuge for trout because they combine favourable geology and a relatively more humid climate. Caused by this 25 

differential response, the western portion of the Iberian range (which is plutonic and less buffered) will eventually 

experience more frequent local temperature-driven extinction events, thus producing a greater shift northward, than in the 

Eastern Iberian end of this range, which is calcareous and highly buffered and will remain more resilient to these local 

extinction events. However, the predicted streamflow reductions may act synergistically, reducing the physical space, and 

this may jeopardize the less thermally exposed populations. In the Iberian Peninsula, stream temperatures will increase less 30 

in the central and northern mountains than in the central plateau, and the increases will be smaller in karstic than in granitic 

(igneous) mountains. At the same time, the side of the peninsula that faces the Mediterranean is expected to be more 

sensitive to warming and streamflow reductions than the side of the peninsula that faces the Atlantic. Thus, brown trout 
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populations in the karstic mountains of northern Spain (the Cantabrian Mountains and the calcareous parts of the Pyrenees) 

are better able to resist the climate warming than the populations farther east in the granitic portion of the Pyrenees (Santiago 

2017). Similar patterns may occur in other parts of Southern Europe. Most likely, the less pronounced thermal responses of 

rivers and streams in the karstic areas will allow for greater persistence of the brown trout population, although changes in 

streamflow regimes will likely also occur there. 5 

In a study of the major basins of Europe, Lassalle and Rochard (2009) predicted that the brown trout would “lose all its 

suitable basins in the southern part of its distribution area ([the] Black Sea, the Mediterranean, the Iberian Peninsula and the 

South of France), but [would] likely to continue being abundant in [the] northern basins”. Almodóvar et al. (2011) estimated 

that the brown trout will be eradicated over almost the entire stream length of the studied basins in North Spain, and Filipe et 

al. (2013) estimated an expected loss of 57 % of the studied reaches in the Ebro basin in northeastern Spain. Our study 10 

shows important, yet not so dramatic, reductions in the thermal habitat of Iberian brown trout populations in mountainous 

areas. The number of general climate models used, the reliability of the downscaling procedure, the resolution of the stream 

temperature and streamflow models, and the method used to study the threshold imply a substantial improvement in detail 

(Santiago et al., 2016) over previous work. It is reasonable to infer that many mountain streams appear poised to become 

refugia for cold-water biodiversity during this century (Isaak et al., 2016). 15 

5 Conclusions 

The main findings of this study are as follows. (i) Our downscaled results predict greater air temperature increments than the 

IPCC’s averages, from which our estimations were made; (ii) significant but diverse streamflow reductions are predicted to 

occur during the present century; (iii) the models presented in this study have been shown to be useful for improving 

simulations; (iv) the predicted increases in water temperature will be influenced to varying degrees by the flow and 20 

geological features of rivers and streams; (v) the thermal habitat of brown trout, a cold-water species, will decrease as a 

consequence of the synergistic effects of flow reduction and water warming; and (vi) the peaks in water temperature and the 

complete depletion of the river channels will produce local extinctions, although the ultimate magnitude of the effect will be 

governed by the geological nature of the basins.  

Our findings might be useful in planning the prevention and mitigation of the negative effects of climate change on 25 

freshwater fish species at the rear edge of their distributions. A differentiation of areas based on their risk level and viability 

is necessary to set standardized conservation goals. Our results show that trout conservation requires knowledge of both 

temperature and streamflow dynamics at fine spatial and temporal scales. Managers need easy-to-use tools to simulate the 

expected impacts and the management options to address them, and the methods and results we provide could provide key 

information in developing these tools and management options. 30 
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Appendix: uncertainty 

In science, and particularly in hydrological studies, the uncertainty is a matter which requires special attention and it has led 

us to include a synthesis of our approach to this problem in this appendix. The uncertainty analysis is a necessary step in 

assessing the risk level in the applicability of a model (Pappenberger and Beven, 2006). Our aim was to study the viability of 

the brown trout populations, and we modelled the flow and the stream temperature for this purpose. From a conceptual point 5 

of view our approaches were consistent with it. 

On data inputs to build the models, uncertainties and inconsistencies are a habitual issue (Juston et al., 2013). The 

Meteorological and Hydrological Services subject data to their own quality controls but systematic error cannot always be 

completely controlled (Beven and Westerberg, 2011; McMillan et al., 2012). For this reason, in addition, we tested the input 

data seeking inconsistencies. 10 

The modelling of the river reaches as one-dimensional elements implies a simplification of the fluvial ecosystem that is 

generally accepted at this scale (e.g., Viganò et al., 2015; Ahmed and Tsanis, 2016), especially for ecological purposes (e.g., 

Caiola et al. 2014). Nevertheless, the size of the rivers under study made little or nothing relevant the variations in width and 

depth (it was verified in the field). 

Regarding the parameterization of the models, cross-validation was used to evaluate the uncertainty in these process, and 15 

indicators such as the NSE (for hydrological models) and the deviance (for thermal models) were calculated. In the case of 

the thermal model, the functions of distribution of the parameters of the model were built by non-parametric bootstrap, and 

the mean values were chosen as the most proficient estimators. As results show, parameters tell us about the functional 

behaviour of catchments (particularly on the effects of the catchments geology on the streams temperature) and this might 

improve predictions in ungauged basins by better controlling uncertainty (Juston et al., 2013). 20 

Once the models were constructed, It was verified that the overlaps of the ranges of the model input variables and the ranges 

of the outputs were significant (p <0.05). The non-overlapping zones affected, on the one hand, infrequent events (great 

floods) and the extreme temperature zone (zone of extrapolation), being the last one the scope in which we expected to work. 

However, the weakness of the hydrological model in the flood zone should be considered for other applications and 

developments of the model. The hydrological model given us sufficient and relevant information since its possible weak 25 

points (extrapolation in the floods assessment) did not affect our goal: we focused on central trends and minimum values, 

and they were solidly represented in the samples and in the simulations. 

As said, the inherent uncertainty of the climate predictions according to the scenarios RCP4.5 and RCP8.5 was attenuated by 

means of the ensemble technique, showing the dispersion of the results by mean of the percentiles in Fig. S1 to S24 

(Supplementary Material). Beven exposed his legitimate concerns in Beven (2011) on the credibility of climate models 30 

which fail when are compared with the control period and, consequently, we used ERA-40 reanalysis to control this source 

of bias with excellent results. 
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There was a time-dependence between the errors of the model and the scope of the prediction, but these errors were only 

important in the zone of high temperature and low flow, as expected by the physical nature of the climatic variables. 

Moreover, this is the variables behaviour that was our intention to evaluate. 
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Table 1. Description of the data logger (thermograph) sites, specifying given name, UTM-coordinates (Europe WGS89), altitude 
(m above the sea level), code of the nearest temperature meteorological station with suitable time series for this study (AEMET: 
Spanish Meteorological Agency), orthogonal distance between the data logger and the meteorological station, number of recorded 
days for stream temperature and characteristic geological nature (lithology) of the data logger site (the latter was obtained from 5 
IGME [2015]). Bold letters indicate sites associated to the gauging stations. 

Sites UTM-X UTM-Y altitude  
(m a.s.l.) 

AEMET        
code 

distance to 
AEMET station 
(km) 

recording 
days lithology 

Aravalle 283623 4468847 1010 2440 76.4 1257 Igneous 

Barbellido 311759 4465519 1440 2440 52.2 881 Igneous 

Gredos Gorge 306363 4468087 1280 2440 55.7 644 Igneous 

Tormes1 308751 4469371 1270 2440 53.0 421 Igneous 

Tormes2 297543 4467191 1135 2440 64.0 537 Igneous 

Tormes3 285481 4470750 995 2440 74.1 588 Igneous 

Cega1 427627 4539806 1600 2516 84.5 544 Igneous 

Cega2 429416 4541728 1384 2516 85.8 544 Igneous 

Cega3 428892 4549370 1043 2516 83.9 544 Igneous 

Cega4 426932 4559076 943 2516 81.2 407 Quaternary detrital 

Cega5 408504 4569772 853 2516 63.4 544 Quaternary detrital 

Cega6 389014 4581160 766 2516 47.9 501 Quaternary detrital 

Pirón1 422082 4536456 1475 2516 80.1 544 Igneous 

Pirón2 420660 4537094 1348 2516 78.6 483 Igneous 

Pirón3 409935 4549473 908 2516 65.2 544 Quaternary detrital 

Pirón4 394462 4556823 826 2516 48.9 544 Quaternary detrital 

Pirón5 388615 4560166 815 2516 42.9 424 Quaternary detrital 

Lozoya1 422060 4520319 1452 3104 7.3 2151 Igneous 

Lozoya2 425445 4522314 1267 3104 4.6 1870 Igneous 

Lozoya3 425657 4527327 1142 3104 0.7 1776 Igneous 

Lozoya4 430740 4530050 1090 3104 6.4 2187 Igneous 

Tagus-Peralejos 590887 4494165 1149 3013 27.9 964 Carbonate 

Tagus-Poveda 582900 4502160 1028 3013 22.8 669 Carbonate 

Gallo 583771 4519743 998 3013 10.9 1019 Carbonate 

Cabrillas 585619 4502986 1075 3013 20.8 1070 Carbonate 

Ebrón 643551 4445027 879 8381B 9.5 592 Carbonate 

Vallanca1 644966 4435479 745 8381B 1.8 836 Carbonate 

Vallanca2 645936 4435715 718 8381B 0.8 836 Carbonate 

Palancia1 694348 4421176 760 8434A 10.4 334 Carbonate 

Palancia2 697451 4419477 660 8434A 7.8 334 Carbonate 

Villahermosa 722594 4449436 592 8478 13.5 334 Carbonate 
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Table 2. Official stations used (meteorological and hydrological), variables, length of time series used and geographical position. 
AEMET: Spanish Meteorological Agency; CHD: Water Administration of Duero Basin; CHT: Water Administration of Tagus 
Basin; and CHJ: Water Administration of Júcar Basin. 

Institution code name variable used series length UTM-X UTM-Y altitude 

AEMET 2180 Matabuena pluviometry 1955- 2013 436266 4549752 1154 

AEMET 2186 Turégano pluviometry 1955- 2013 415346 4556596 935 

AEMET 2196 Torreiglesias pluviometry 1970- 2013 413294 4550606 1053 

AEMET 2199 Cantimpalos pluviometry 1955- 2013 402524 4547811 906 

AEMET 2440 Aldea del Rey Niño temperature 1955- 2012 356059 4493201 1160 

AEMET 2462 Puerto de Navacerrada temperature and pluviometry 1967- 2012 414745 4516276 1894 

AEMET 2516 Ataquines temperature 1970- 2013 345716 4560666 802 

AEMET 2813 Navacepeda de Tormes pluviometry 1965- 2012 308892 4470347 1340 

AEMET 2828 El Barco de Ávila temperature and pluviometry 1955- 1983 285643 4470512 1007 

AEMET 3009E Orihuela del Tremedal pluviometry 1986- 2000 614383 4489759 1450 

AEMET 3010 Ródenas pluviometry 1968- 2006 625505 4499963 1370 

AEMET 3013 Molina de Aragón temperature and pluviometry 1951- 2010 594513 4521786 1056 

AEMET 3015 Corduente pluviometry 1961- 2000 584125 4523281 1120 

AEMET 3018E Aragoncillo pluviometry 1968- 2010 580519 4531876 1263 

AEMET 3104 Rascafría-El Paular temperature and pluviometry 1967- 2012 425165 4526895 1159 

AEMET 8376B Jabaloyas pluviometry 1993- 2006 635600 4456215 1430 

AEMET 8381B Ademuz-Agro temperature and pluviometry 1989- 2010 646722 4436034 740 

AEMET 8434A Viver temperature 1971- 2006 704704 4422256 562 

AEMET 8478 Arañuel temperature 1971- 2006 714943 4438277 406 

CHD 2006 Tormes-Hoyos del Espino flow 1955- 2012 314676 4467908 1377 

CHD 2016 Cega-Pajares de Pedraza flow 1955- 2013 428296 4557678 938 

CHD 2057 Pirón-Villovela de Pirón flow 1972- 2013 405596 4551929 869 

CHD 2085 Tormes-El Barco de Ávila flow 1955- 2012 285173 4470362 992 

CHD 2714 Cega-Lastras de Cuéllar flow 2004- 2013 403509 4571682 838 

CHT 3001 Tagus-Peralejos de las Truchas flow 1946- 2010 590474 4494474 1143 

CHT 3002 Lozoya-Rascafría (El Paular) flow 1967- 2013 425321 4522069 1270 

CHT 3030 Gallo-Ventosa flow 1946- 2010 587349 4520522 1016 

CHT 3268 Cabrillas-Taravilla flow 1982- 2010 587480 4503395 1107 

CHJ 8104 Ebrón-Los Santos flow 1989- 2010 645963 4441366 750 
 

5 



40 
 

Table 3. Different classes of thermal thresholds for emerged trout classes found in literature. The type of experiment differentiates 
the experiments with controlled (laboratory) and uncontrolled (wild) temperature. Latitude of the experiments’ location is showed. 

variable temperature 
(°C) 

type of 
experiment latitude reference 

maximum growth 13.1 laboratory 54ºN Elliott et al. 1995 

maximum growth 16 laboratory 61ºN Forseth and Jonsson 1994 

maximum growth 16.9 laboratory 43ºN Ojanguren et al. 2001 

maximum growth 13.2 wild 43ºN Lobón-Cerviá and Rincón 1998 

maximum growth 13 wild 41ºS Allen 1985 

maximum growth 15.4-19.1 laboratory 59ºN Forseth et al. 2009 

thermal optimum 14.2 wild 47ºN Hari et al. 2006 

upper growth limit 19.5 wild 41ºS Allen 1985 

upper thermal niche 20 wild 47ºN Hari et al. 2006 

upper thermal niche* 18.1 wild 41ºN Santiago et al. 2016 

upper thermal niche* 18.7 wild 41ºN Santiago et al. 2016 

critical feeding temperature 19.4 laboratory 54ºN Elliott et al. 1995 

critical feeding temperature ≥23 laboratory 59ºN Forseth et al. 2009 

incipient lethal temperature* 24.7 laboratory 54ºN Elliott 1981 

ultimate 27.8 laboratory Norway Grande and Andersen 1991 

ultimate** 29.7 laboratory 54ºN Elliott 2000 

*: seven days; **: 10 min.         
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Table 5. Bayesian (BIC) and Akaike (AIC) information criteria values for the stream-temperature models with five and eight 

parameters. 

Site BIC 5 BIC 8 AIC 5 AIC 8 

Tormes2 2075.7 1911.8 2108.5 1837.9 

Tormes3 2346.7 2274.2 2346.7 2234.8 

Cega1 1814.8 1731.9 1789.1 1693.4 

Pirón1 1725.9 1530.5 1700.2 1492.0 

Lozoya1 5097.3 4924.6 5065.2 4876.4 

Lozoya2 3979.3 3927.9 3948.6 3881.9 

Lozoya3 3841.6 3673.6 3811.5 3628.5 

Lozoya4 5076.6 4735.3 5044.8 4687.5 

Cabrillas 2552.9 2172.2 2523.1 2127.4 

Ebrón 624.8 169.8 598.5 130.3 

Vallanca1 1438.9 1359.9 1410.6 1317.3 

Vallanca2 1322.1 1279.7 1293.7 1237.1 

 5 
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Table 6. Parameter values of the stream temperature models for every thermograph site (λ is a dimensionless parameter). 

site 
μ  

(ºC) 

α  

(ºC) 

α-μ 

(ºC) 

γ 

(ºC-1) 

β 

(ºC) 

λ 

 

ω 

(ºC) 

δ 

(m-3s) 

τ 

(m3s-1) 

Aravalle 0.1 23.3 23.2 0.14 10.79 -0.31 

   Barbellido 1.1 19.2 18.1 0.23 12.19 -0.30 

   Gredos Gorge 2.4 19.0 16.6 0.18 14.06 -0.29 

   Tormes1 -1.1 20.8 21.9 0.16 11.00 -0.35 

   Tormes2 3.4 24.6 21.3 0.14 11.82 -0.31 -3.98 61.43 0.37 

Tormes3 -0.1 30.5 30.6 0.12 12.61 -0.39 -2.85 223.69 0.22 

Pirón1 -1.4 19.1 20.5 0.09 14.33 -0.18 -2.08 72.82 0.15 

Pirón2 0.6 15.5 14.9 0.22 12.11 -0.23 

   Pirón3 7.2 14.0 6.8 0.29 10.17 -0.10 

   Pirón4 -0.6 18.3 18.9 0.15 8.20 -0.29 

   Pirón5 -4.6 21.7 26.3 0.13 8.92 -0.40 

   Cega1 1.4 15.6 14.2 0.19 15.92 -0.22 -1.53 112.98 0.27 

Cega2 -0.6 18.0 18.6 0.17 16.03 -0.31 

   Cega3 -2.0 24.7 26.6 0.14 15.35 -0.41 

   Cega4 -0.3 19.9 20.2 0.16 12.21 -0.35 

   Cega5 -2.4 18.1 20.5 0.13 7.85 -0.31 

   Cega6 0.7 22.4 21.7 0.13 13.84 -0.38 

   Lozoya1 0.4 19.5 19.1 0.18 11.90 -0.24 -1.33 11.93 0.41 

Lozoya2 0.3 20.2 20.0 0.19 11.63 -0.28 -1.27 13.16 0.38 

Lozoya3 1.1 21.0 19.9 0.19 10.62 -0.29 -1.74 23.44 0.49 

Lozoya4 1.7 22.0 20.2 0.17 10.29 -0.27 -2.19 17.04 0.48 

Tagus-Peralejos 1.1 21.0 19.9 0.11 11.01 -0.17 

   Tagus-Poveda 1.3 20.4 19.2 0.15 9.95 -0.38 

   Gallo 0.4 20.2 19.8 0.13 7.76 -0.18 

   Cabrillas 8.3 15.3 7.0 0.21 9.23 -0.04 -1.38 13.56 1.25 

Ebrón 5.5 17.0 11.4 0.07 6.58 -0.06 1.73 -1.78 3.16 

Vallanca1 -0.5 16.9 17.4 0.09 4.70 -0.12 1.95 -5.21 4.85 

Vallanca2 1.4 16.8 15.4 0.10 5.36 -0.11 1.54 -11.29 5.29 

Palancia1 11.7 15.3 3.6 0.19 13.92 -0.03 

   Palancia2 9.3 16.1 6.8 0.27 12.73 -0.11 

   Villahermosa 7.8 18.0 10.2 0.27 16.46 -0.20       
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Table 7. Maximum daily mean stream temperature (°C) in each site in the year 2015 and the horizons H-2050 and H-2099. Both 
scenarios (RCP4.5 and RCP8.5) are showed. Bold numbers: values > 18.7°C. 

 Maximum daily mean stream temperature (ºC) 

 RCP4.5 RCP8.5 
site 2015 H-2050 H-2099 2015 H-2050 H-2099 

Aravalle 19.8 20.4 21.0 19.8 20.7 22.0 
Barbellido 17.9 18.4 18.7 17.9 18.6 19.3 
Gredos Gorge 16.5 17.1 17.6 16.5 17.4 18.5 
Tormes1 18.1 18.6 19.1 18.0 18.9 20.1 
Tormes2 20.5 21.2 21.4 20.7 21.1 22.1 
Tormes3 21.8 22.7 23.1 22.4 22.4 24.5 
Cega1 12.4 13.1 13.6 12.5 13.3 14.0 
Cega2 15.2 15.9 16.3 15.2 16.1 17.3 
Cega3 19.8 20.7 21.4 19.8 21.0 22.8 
Cega4 18.1 18.5 18.9 18.1 18.7 19.7 
Cega5 16.6 16.9 17.3 16.6 17.1 17.8 
Cega6 18.7 19.5 19.9 18.8 19.6 21.0 
Pirón1 12.9 13.8 14.2 13.2 13.9 15.6 
Pirón2 14.9 15.1 15.4 14.9 15.3 15.7 
Pirón3 14.1 14.1 14.2 14.0 14.2 14.3 
Pirón4 17.2 17.5 17.8 17.2 17.7 18.3 
Pirón5 19.3 19.8 20.2 19.3 20.0 21.1 
Lozoya1 16.8 17.4 17.8 16.8 17.6 18.8 
Lozoya2 17.6 18.1 18.6 17.5 18.4 19.6 
Lozoya3 19.0 19.5 19.9 18.9 19.7 20.8 
Lozoya4 19.5 20.0 20.5 19.5 20.3 21.4 
Tagus-Peralejos 16.7 17.2 17.6 16.6 17.4 18.6 
Tagus-Poveda 18.1 18.6 19.0 18.1 18.8 19.9 
Gallo 17.9 18.3 18.6 17.9 18.4 19.3 
Cabrillas 14.9 15.0 15.1 14.9 15.1 15.2 
Ebrón 16.2 16.5 16.5 16.2 16.5 17.0 
Vallanca1 16.8 17.1 17.3 16.8 17.2 17.9 
Vallanca2 16.5 16.8 17.0 16.5 16.9 17.5 
Palancia1 15.0 15.1 15.1 15.0 15.1 15.3 
Palancia2 16.0 16.1 16.1 16.0 16.1 16.4 
Vistahermosa 16.0 16.1 16.1 16.0 16.1 16.5 
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