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Abstract 15 

 16 

Seasonal predictions of river flow can be exploited among others to optimize 17 

hydropower energy generation, navigability of rivers and irrigation management to 18 

decrease crop yield losses. This paper is the first of two papers dealing with a physical 19 

model-based system built to produce probabilistic seasonal hydrological forecasts, 20 

applied here to Europe. This paper presents the development of the system and the 21 

evaluation of its skill. The Variable Infiltration Capacity (VIC) hydrological model is 22 

forced with bias-corrected output of ECMWF’s Seasonal Forecasting System 4. For the 23 

assessment of skill, we analysed hindcasts (1981-2010) against a reference run, in which 24 

VIC was forced by gridded meteorological observations. The reference run was also 25 

used to generate initial hydrological conditions for the hindcasts.  26 

The skill in runoff and discharge hindcasts is analysed with monthly temporal 27 

resolution, up to 7 months of lead time, for the entire annual cycle. Using the reference 28 

run output as pseudo-observations and taking the correlation coefficient as metric, hot 29 

spots of significant theoretical skill in discharge and runoff were identified in 30 

Fennoscandia (from January to October), the southern part of the Mediterranean (from 31 

June to August), Poland, northern Germany, Romania and Bulgaria (mainly from 32 

November to January), western France (from December to May) and the eastern side of 33 

Great Britain (January to April). Generally, the skill decreases with increasing lead time, 34 

except in spring in regions with snow-rich winters. In some areas some skill persists 35 

even at the longest lead times (7 months).  36 

Theoretical skill was compared to actual skill as determined with real discharge 37 

observations from 747 stations. Actual skill is generally substantially less than 38 

theoretical skill. This effect is stronger for small than for large basins. Qualitatively, the 39 

use of different skill metrics (correlation coefficient, ROC area and Ranked Probability 40 

Skill Score) leads to broadly similar spatio-temporal patterns of skill, but the level of 41 

skill decreases, and the area of skill shrinks, in the following order: correlation 42 

coefficient, ROC area below normal tercile, ROC area above normal tercile, Ranked 43 

Probability Skill Score and finally, ROC near normal tercile.  44 

 45 

 46 

  47 
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1 Introduction 48 

 49 

Society may benefit from seasonal hydrological forecasts, i.e. hydrological forecasts for 50 

future time periods from more than two weeks up to about a year (Doblas-Reyes et al., 51 

2013). Such predictions can e.g. be exploited to optimize hydropower energy generation 52 

(Hamlet et al. 2002), navigability of rivers in low flow conditions (Li, et al., 2008) and 53 

irrigation management (Ghile and Schulze 2008; Mushtaq et al. 2012) to decrease crop 54 

yield losses. In order to be of any value in decision making processes in such sectors, 55 

forecasts must be credible, i.e. be skilful in predicting anomalous system states, as well 56 

as being relevant and legitimate to the decision making process (e.g. Bruno Soares and 57 

Dessai, 2016). In this paper we will introduce WUSHP (Wageningen University 58 

Seamless Hydrological Prediction system), a dynamical, model-based system (see Yuan 59 

et al., 2015) that was built around the Variable Infiltration Capacity (VIC) hydrological 60 

model and ECMWF’s Seasonal Forecast System 4, to produce seasonal hydrological 61 

forecasts. It will be applied to Europe. The usefulness of the system depends partially 62 

on the level of its skill and the paper will therefore focus on an extensive assessment of 63 

the skill of WUSHP. The usual method of assessing skill of predictive systems is by 64 

analysing hindcasts, a strategy that will be adopted here as well. 65 

 66 

During recent years, a number of systems for making seasonal hydrological forecasts 67 

have been developed. Examples are the University of Washington’s Surface Water 68 

Monitor (SWM; Wood and Lettenmaier, 2006) and the African Drought Monitor 69 

(Sheffield et al., 2014). Seasonal hydrological forecasting systems for the entire 70 

continent of Europe are scarce (Bierkens and van Beek, 2009; Thober et al., 2015), but 71 

a few more concentrate on smaller domains such as the British Isles (Svensson et al., 72 

2015), Iberia (Trigo, 2004) or France (Céron et al., 2010; Singla et al., 2012). 73 

 74 

Thober et al. (2015) forced a mesoscale hydrological model (mHM) with meteorological 75 

hindcasts from the North American Multi-Model Ensemble (NMME) to investigate the 76 

predictability of soil moisture in continental Europe, excluding Fennoscandia. 77 

Evaluating at seasonal resolution a number of forecasting techniques that produced 78 

distinct variations in the magnitude of skill, they found that spatial patterns in skill were 79 

remarkably similar among the different techniques, as well as comparable to the spatial 80 

patterns of the autocorrelation (persistence) of reference soil moisture. High skill was 81 

found in eastern Germany and Poland, Romania, the southern Balkans and eastern 82 

Ukraine as well as north-western France. Less skill was found in the mountainous areas 83 

of the Alps and the Pyrenees, the northern Adriatic and Atlantic Iberia. Most skill was 84 

found for winter months (DJF), least for autumn (SON), this minimum shifting to 85 

summer (JJA) at long lead times (6 months). 86 

 87 

Bierkens and van Beek (2009) developed an analogue events method to select annual 88 

ERA40 meteorological forcing on the basis of annual SST anomalies in the northern 89 

Atlantic and then made hydrological forecasts with a global-scale hydrological model 90 

applied to Europe. Evaluating only winter and summer half year aggregated skill for 91 
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discharge, they found wintertime skill in large parts of Europe with maxima in eastern 92 

Spain and a zone from the southern Balkans and Romania through eastern Poland and 93 

western Russia to the Baltic states and Finland. Summertime skill was lower, generally 94 

by about 50% and even more around the Alps and the Adriatic. A climate forecast based 95 

on the North Atlantic Oscillation (NAO) added significant skill only in limited areas, 96 

such as Scandinavia, the Iberian Peninsula, the Balkans, and around the Black Sea. 97 

 98 

Svensson et al. (2015) found skilful winter river flow forecasts across the whole of the 99 

UK due to a combination of skilful winter rainfall forecasts for the north and west, and 100 

strong persistence of initial hydrological conditions in the south and east. Strong 101 

statistical correlations between the NAO index and winter precipitation in Iberia lead to 102 

skilful forecasts of JFM river flow and hydropower production (Trigo et al., 2004). 103 

Céron et al. (2010) and Singla et al. (2012) set up a high resolution river flow forecasting 104 

system (8 km) over France, for which the seasonal climate forecast improved the MAM 105 

skill over northern France, but worsened it over southern France (compared to a river 106 

flow model with proper initialisation of soil moisture, snow etc., but random 107 

atmospheric forcing). Demirel et al. (2015) found that both two physical models and 108 

one neural network over-predict runoff during low-flow periods using ensemble 109 

seasonal meteorological forcing for the Moselle basin. As a result forecasts of more 110 

extreme low flows are less reliable than forecasts of more moderate ones. 111 

 112 

It is quite common in seasonal hydrological forecasting (e.g. Shukla and Lettenmaier, 113 

2011, Singla et al., 2012, Mo and Lettenmaier, 2014, and Thober et al., 2015) but also 114 

in medium range forecasting (i.e. 14 days in Alfieri et al., 2014) to determine prediction 115 

skill by comparing the hindcasts with the output from a reference simulation. A 116 

reference simulation is a simulation made with the same hydrological model as the 117 

hindcasts, except that the forcing is taken from meteorological observations or from a 118 

gridded version of meteorological observations. The reference simulation can best be 119 

regarded as a simulation that attempts to make a best estimate of the true conditions (in 120 

terms of e.g. discharge, soil moisture and evapotranspiration), using the modelling 121 

system. We will refer to the output of such a reference simulation as “pseudo-122 

observations” (alternatively named “true discharge” in Bierkens and Van Beek, 2009; 123 

“synthetic truth” in Shukla and Lettenmaier, 2011; “reanalysis” in Singla et al., 2012; 124 

“a posteriori estimates” in Shukla et al., 2014). We prefer the term “pseudo-125 

observations” over “re-analysis” since the latter has a meteorological connotation that 126 

often implies the use of some form of (variational) data assimilation. We did not attempt 127 

any form of assimilating observed hydrological variables, such as discharge, in our 128 

reference run.  129 

 130 

Pseudo-observations have the important advantages of being complete in the spatial and 131 

the temporal domain and to be available for all model variables. Also, they are suitable 132 

for the quantification of small sensitivities, e.g. to bias correction of the meteorological 133 

forcing, which would be hard to detect with real observations. Finally, assessment of 134 

skill based on pseudo-observations reduces model errors from the analysis to a 135 
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minimum, which is especially useful when addressing various sources of skill (Wood et 136 

al., 2016), something we will do in the companion paper (Greuell et al., 2016, in 137 

revision). 138 

 139 

The downside of pseudo-observations is, of course, that they are not equal to real 140 

observations. In this paper we will determine the performance of the prediction system 141 

not only with pseudo-observations, but also with real observations of discharge (like 142 

e.g. Koster et al., 2010, and Yuan et al., 2013) and compare the skill found with the two 143 

different approaches (“theoretical and actual skill”, according to Van Dijk et al., 2013). 144 

Such a comparison was previously made by Bierkens and Van Beek (2009) and Van 145 

Dijk et al. (2013) and they found that theoretical skill generally exceeds actual skill. 146 

This is in line with the fact that the pseudo-observations are obtained with the same 147 

model as the hindcasts, which should logically lead to an overestimation of the skill 148 

when the pseudo-observations are used for verification. We thus hypothesise that 149 

theoretical skill exceeds actual skill. In this paper we will not only analyse the difference 150 

between the skills obtained with the two different types of data but also discuss in some 151 

detail conceptual differences between using pseudo- and real observations for 152 

verification.  153 

  154 

This paper aims to analyse to what extent WUSHP is able to predict runoff and discharge 155 

in Europe over the full annual cycle and for lead times up to 7 months. We aim to assess 156 

skill at monthly resolution instead of seasonal or semi-annual aggregates. Where many 157 

studies use correlation coefficient as main skill metric we will also assess skill using 158 

two probabilistic metrics, namely ROC area and RPSS (see Sect. 2.3). The second aim 159 

of the paper is to get a better understanding of the effects of using pseudo-observations, 160 

as opposed to using actual observations, for the verification of hindcasts. In the next 161 

section we describe the concept and details of our modelling (Sect. 2.1) and analysis 162 

approach (Sect. 2.2 and 2.3). We will start the result section by assessing theoretical 163 

skill of the runoff hindcasts (Sect. 3.1) and then proceed to theoretical skill of the 164 

discharge hindcasts and a comparison between theoretical skill of discharge and runoff 165 

in Sect. 3.2. Differences between theoretical and actual skill of discharge will be 166 

presented (Sect. 3.3) followed by an analysis of differences in skill determined with 167 

various metrics in Sect. 3.4. The discussion starts with a conceptual analysis of reasons 168 

for differences in actual and theoretical skill (Sect. 4.1), followed by a discussion of 169 

uncertainties (Sect. 4.2) and implications (Sect. 4.3).  170 

 171 

In a companion paper (Greuell et al., 2016) we analyse the reasons for the presence or 172 

lack of skill discussed in the present paper, using two different methods. Firstly, skill in 173 

the forcing and other directly related hydrological variables, like evapotranspiration, are 174 

analysed. Secondly, a number of experiments similar to the conventional Ensemble 175 

Streamflow Prediction (ESP) and reverse-ESP experiments, which isolate different 176 

causes of predictability, are discussed. In the results and discussion sections of the 177 

present paper we will occasionally look forward to the identified causes of skill. 178 

 179 
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 180 

 181 

2 System, models, data and methods of analysis 182 

 183 

In the following subsections we will describe the various components of WUSHP (2.1), 184 

the  real discharge observations (2.2) and the methods of analysis (2.3). Fig. 1 provides 185 

an outline of the system, which consists of the hindcasts themselves (middle box in the 186 

figure) and a model reference run (lower box). The hindcasts will be verified by means 187 

of the pseudo-observations, which are generated by the reference simulations, and by 188 

real discharge observations, which are “generated” in the real world (upper box). 189 

Differences between these two types of verifications will be discussed in Sect. 4.1. 190 

 191 

 192 

 193 

 194 

Figure 1: Setup of the present study. The lower two dashed boxes summarise the setup 195 

of the forecast system itself. The upper dashed box represents the real world. 196 

The filled arrows on the right hand side represent verification of hindcasts 197 

(in the middle) with pseudo-observations (bottom) and with observations of 198 

real discharge (top). In each box the flow at the upper left represents the 199 

creation of initial conditions while the flow below that (a single arrow) 200 

represents the meteorological forcing.   201 

 202 

 203 

2.1 The model, workflow and forcing data for the hindcasts and the reference 204 

simulation 205 

 206 

WUSHP consists of two simulation branches: a single reference simulation (lower box 207 

in Fig. 1) and the hindcasts themselves (middle box in same figure). In both branches, 208 

terrestrial hydrology is simulated with the Variable Infiltration Capacity model (VIC, 209 

see Liang et al., 1994), which runs on a domain extending from 25˚ W to 40˚ E and from 210 
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35˚ to 72˚ N, including 5200 land based cells of 0.5˚ x 0.5˚ (see maps in e.g. Fig. 2). 211 

VIC is forced by a gridded data set of daily meteorological data (7 variables: 212 

precipitation, minimum and maximum temperature, atmospheric humidity, wind speed 213 

and incoming short- and long wave radiation).  214 

 215 

In the reference simulation VIC is forced by the WATCH Forcing Data Era-Interim 216 

(WFDEI; Weedon et al., 2014) for the period of 1979-2010, of which the first two years 217 

were used to spin up the states of snow, soil moisture and discharge, and were not used 218 

in further analysis. The reference simulation has the dual aim to create the pseudo-219 

observations for verification purposes (lower box in Fig. 1) and to create a best estimate 220 

of the temporally varying model state, which is then used for the initialisation of the 221 

hindcasts (flow from the upper left in de middle box of Fig. 1).  222 

 223 

The second branch, the hindcasts, consists of three steps. Seasonal predictions of the 224 

same set of 7 meteorological variables (see above) are taken from ECMWF’s Seasonal 225 

Forecast System 4 (S4 hereafter) at daily resolution. These are then bias-corrected using 226 

WFDEI as the reference data set. Finally, VIC is run with the bias-corrected S4 hindcasts 227 

as forcing, taking initial states from the reference simulation. 228 

 229 

The S4 hindcasts used in the present study include 15 members, cover the period from 230 

1981 to 2010 and consist of simulations with a duration of 7 months, starting and 231 

initialised on the first day of every month (see Molteni et al., 2011 and the ECMWF 232 

Seasonal Forecast User Guide, online). The S4 ensemble is constructed by combining a 233 

5-member ensemble analysis of the ocean initial state with SST perturbations of that 234 

state and with activation of stochastic physics.  235 

 236 

All seven meteorological forcing variables were regridded with bi-linear interpolation 237 

from the 0.75 x 0.75˚ lat-lon grid of the S4 hindcasts to a 0.5˚ x 0.5˚ grid. Since bias 238 

correction generally improves forecasting skill, the quantile mapping method of 239 

Themeßl et al. (2011) was applied to bias-correct the forcing variables, taking the 240 

WFDEI as reference. For each variable and grid cell, 84 correction functions were 241 

established and applied by separating the data according to target month (12) and lead 242 

month (7). Such empirical distribution mapping of daily values has been successful in 243 

improving especially forecast reliability (rather than sharpness and accuracy; 244 

Crochemore et al., 2016). 245 

 246 

VIC was run for the period of the S4 hindcasts (1981 – 2010). Additionally, for the 247 

reference simulation two extra years (1979 – 1980) were simulated to spin up the states 248 

of snow, soil moisture and discharge. The hindcast simulations were initialised with 249 

states of soil moisture and snow from the reference simulation, so for these variables 250 

spin up was not needed. However, due to the set-up of the routing module of VIC, the 251 

state of discharge could not be saved and loaded. Hence to spin up discharge, each 7-252 

month hindcast simulation was preceded by one month simulation with WFDEI forcing. 253 
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Since the hindcasts cover 30 years with 12 initialisation dates each and consist of 15 254 

members, a total of 5400 hindcast simulations was carried out.  255 

 256 

VIC is run in so-called ‘energy balance mode’ which requires resolving the diurnal 257 

cycle. Therefore, internally the model temporally disaggregates the daily input to 3-258 

hourly data and runs with a time step of 3 hours. The output of all variables is again at 259 

a daily resolution. Because snow may contribute significantly to the seasonal 260 

predictability of other hydrological variables, VIC was run with the option of subgrid 261 

elevation bands. This means that for each grid cell calculations were carried out at up to 262 

16 different elevations, with the aim of simulating the elevation gradient of snow. VIC 263 

was run in naturalised flow mode, i.e. river regulation, irrigation and other 264 

anthropogenic influences were not considered. 265 

 266 

Simulations of historic discharge made with VIC (and four other hydrological models) 267 

were validated with observations from large European rivers by Greuell et al. (2015) 268 

and Roudier et al. (2016). VIC exhibits a fairly small average bias (across 46 stations) 269 

of +23 mm/yr (= 7%) and overall differentiates well between low and high specific 270 

discharge basins with a spatial correlation coefficient of 0.955. However, specific 271 

discharge is overestimated in the Mediterranean and underestimated in northern 272 

Fennoscandia. Annual cycles are fairly well reproduced across Europe, though VIC 273 

somewhat overestimates their amplitude. In northern Fennoscandia the spring peak is 274 

too late and lasts too long. Annual cycles are best reproduced for rain-fed rivers in 275 

central Europe while those for rivers with significant snow dynamics are good (Alps). 276 

However, the annual cycle is more poorly reproduced in basins with strong soil freezing 277 

dynamics (northern Fennoscandia) or strong damping of discharge amplitudes by large 278 

lakes (southern Finland).  279 

 280 

Perhaps more relevant in the present context is the model‘s capability to reproduce inter-281 

annual variations in discharge. On average across 22 discharge stations, the standard 282 

deviation of simulated annual discharge was 9% higher than observed and the spatial 283 

correlation coefficient between the two 0.94. Like most models, VIC is better in 284 

simulating high flows (95 percentile: Q95) than low flows (Q5); the first is slightly 285 

overestimated, the second more seriously underestimated. The inter-annual variation in 286 

Q5 is overestimated in central Europe and the Alps, but underestimated in Fennoscandia 287 

(overall spatial correlation coefficient across Europe 0.40). The inter-annual variation 288 

in Q95 shows no clear spatial pattern and the overall spatial correlation coefficient is 289 

0.70.  290 

 291 

All validation results discussed in these two paragraphs are for the VIC model forced 292 

by E-OBS (v9, Haylock et al. 2008). Our forcing, WFDEI, shows higher precipitation 293 

(+104 mm/yr) across most of Europe, except for the Alps, Scotland and westernmost 294 

Norway. According to Greuell et al. (2015) this leads to higher mean discharge, higher 295 

inter annual variability and higher Q95 (but not Q5) of simulated discharge for almost 296 

all stations. 297 
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 298 

 299 

2.2 Discharge observations 300 

 301 

For the assessment of skill with real discharge observations, two data sets with daily 302 

resolution were acquired from the Global Runoff Data Centre, 56068 Koblenz, Germany 303 

(GRDC): the GRDC data set and the European Water Archive (EWA) data set. We 304 

mapped these two station data sets onto the VIC grid with its resolution of 0.5˚ x 0.5˚ 305 

and aggregated the daily data at a time step of a month. To enable the investigation of 306 

the effect of basin size on some of our results, we made two sub-classes of observations. 307 

The first comprised observations for basins larger than 9900 km2 (“large basins”), the 308 

second contained basins smaller than the area of the grid cells, i.e. smaller than about 309 

2530 km2 in southern Europe (at 35o N) and 1050 km2 at 70o N (“small basins”). 310 

 311 

Initially, in many cases the location of observation stations did not match with the 312 

corresponding river in the digital river network used in the routing calculations 313 

(DDM30, see Döll and Lehner, 2002). We corrected for this issue by matching the 314 

observations with the simulations by means of basin size. The size of the model basins 315 

(“model basin area”) was determined by the DDM30 network. The size of the basins 316 

upstream of the observation stations (“station basin area”) was taken from the meta data 317 

of the observations. First the station basin area was compared to the model basin area of 318 

the cell that is nearest to the station (“nearest model cell basin area”). After this first step 319 

the mapping procedure for each observation differed between the two classes of basins. 320 

 321 

For large basins we proceeded as follows: 322 

- If the station and the nearest model cell basin area differed by less than 15%, the 323 

observations were matched with the model calculations for the nearest model cell. 324 

- Otherwise, the station basin area was compared with the model basin area of the 325 

eight cells surrounding the nearest model cell. 326 

- The minimum of the eight differences was determined. 327 

- If that minimum was less than 15%, the simulations for the corresponding cell were 328 

matched with the observations. 329 

- Otherwise, the station was discarded.  330 

 331 

For small basins we proceeded as follows: 332 

- If the nearest model cell did not have an influx from any of the neighbouring cells, 333 

its simulations were matched with the observations. 334 

- Otherwise, all of the eight neighbouring cells without influx were selected. 335 

- Their simulations were averaged and matched with the observations.  336 

 337 

We further discarded all observations with less than 21 years of data within the 338 

simulation period (1981-2010) for any of the months of the year. The final data set 339 

within our European domain contained 111 cells with observations for large basins and 340 

636 cells with observations for basins smaller than a model grid cell.  341 
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 342 

These data sets do not include any variable or parameter characterising the level of 343 

human impact. To enable analysis of the effect of anthropogenic flow modifications on 344 

predictive skill, we quantified the human impact by performing two model simulations 345 

with the Lund-Potsdam-Jena managed Land (LPJmL) model (Rost et al., 2008; 346 

Schaphoff et al., 2013). This model was operated at the same spatial resolution (0.5˚ x 347 

0.5˚) and with the same river network (DDM30) as VIC, but LPJmL does include dams 348 

(GRanD database; Lehner et al;. 2011) and associated reservoir management. From the 349 

discharge output of a naturalized LPJmL run and an LPJmL run with reservoir operation 350 

and irrigation, the human impact at cell level was quantified by computing the so-called 351 

Amended Annual Proportional Flow Deviator (AAPFD; see Marchant and Hehir, 2002). 352 

For the analysis in Sect. 3.3, we selected all discharge observations for large basins with 353 

an AAPFD < 0.3, i.e. basins with a relatively small degree of human impact (about half 354 

of all 111 basins). 355 

 356 

 357 

2.3 Methods of analysis 358 

 359 

From the model output, consisting of daily means, monthly mean values were computed, 360 

which were then used for the analysis. The analysis is restricted to runoff, defined here 361 

as the amount of water leaving the model soil either along the surface or at the bottom, 362 

and discharge, defined here as the flow of water through the largest river in each grid 363 

cell. Discharge accumulates all runoff from cells that are upstream in the model river 364 

network, with delays due to transport inside cells and through the river network. Hence, 365 

whereas runoff represents only local hydrological processes, discharge aggregates 366 

hydrological processes occurring in the entire basin upstream of a particular cell. 367 

 368 

Instead of analysing skill per target season and/or for a number of consecutive lead 369 

months, we analysed skill for every combination of the 12 target and the 7 lead months. 370 

The thus achieved higher temporal resolution of the skill metrics enables a more 371 

accurate determination of the beginning and end of periods of skill. Moreover, skill at a 372 

monthly resolution provides the possibility to determine the consistency of the skill 373 

where we define consistent skill as skill that persists during at least two consecutive 374 

target or lead months. In accordance with Hagedorn et al. (2005) we designated the first 375 

month of the hindcasts as lead month zero, so target month number is equal to the 376 

number of the month of initialisation plus the lead month number.  377 

 378 

Three skill metrics (see Mason and Stephensen, 2008, for a good discussion of the why 379 

and how of these) were computed for each target and lead month separately: i) the 380 

correlation coefficient between the observations and the median values of the hindcasts 381 

(referred to as “correlation coefficient” or R), ii) the area beneath the Relative Operating 382 

Characteristics (ROC) curve (shortly “ROC area”) and iii) the Ranked Probability Skill 383 

Score (RPSS). The ROC area is computed for three categories of the observations and 384 

hindcasts with an equal number of values, namely the categories containing the one third 385 
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highest, lowest and the remaining values (upper, lower and middle tercile, resp.; above, 386 

below and near-normal, AN, BN and NN categories). The same subdivision of 387 

observations and hindcasts in terciles was made to compute the RPSS. Since none of 388 

these metrics is sensitive to systematic biases in the forecasting system, no attempt was 389 

made to correct simulated runoff or discharge for any such errors prior to computing the 390 

skill metrics. So we focus our evaluation on the models capability to predict river flow 391 

anomalies rather than absolute river flows. 392 

 393 

All three skill metrics quantify, though in different ways, how well the ranking of the 394 

hindcasts matches the ranking of the observations. The correlation coefficient is a 395 

measure of the association between (pseudo-) observation and forecast ensemble 396 

median; we used the Pearson correlation coefficient. The ROC area is a measure of 397 

resolution or discrimination and indicates whether the forecast probability of an event 398 

(i.e. value falling in the considered tercile) is higher when such an event occurs 399 

compared to when not. The RPSS is a measure of accuracy and summarizes in a single 400 

number the skill of a forecast system to make forecasts with the correct percentage of 401 

ensemble members falling in any of the defined terciles. Perfect forecasts have values 402 

of 1 for all three skill metrics. Climatological forecasts (probabilistic forecasts that in 403 

our case each year predict a 1/3 chance of a high or low anomaly occurring) lead to 404 

values of 0 for R, 0.5 for the ROC area and 0 for the RPSS. In the computation of 405 

significance of the RPSS, sampling errors, i.e. the limited number of ensemble members, 406 

constitute a problem. They cause a bias in the RPSS when climatology is used as 407 

reference (Mason and Stephenson, 2008). Therefore, the reference for the calculation of 408 

the RPSS was generated by sampling randomly from the multinomial distribution with 409 

p = (1/3, 1/3, 1/3) and N = 15 (the number of ensemble members). In the present paper 410 

each metric is designated as significant for p-values less than 0.05. For a data set of 30 411 

years, this implies R is significant for values > 0.31, ROC area for values > 0.69 and 412 

RPSS for values that vary depending on the outcome of the random draw for the 413 

reference. We checked these procedures to determine significance by analysing 414 

hindcasts that have no skill. Such hindcasts indeed produced for all metrics a fraction of 415 

cells with significant skill near the expected value of 0.05 (the p-value), indicating that 416 

the procedures are correct. 417 

 418 

To a large extent, we found that our results and conclusions, in terms of spatio temporal 419 

patterns of skill, are independent of the chosen metric. Hence, and because among the 420 

three metrics the correlation coefficient is the easiest to understand, we will discuss 421 

results mostly in terms of the correlation coefficient, which is in line with Doblas-Reyes 422 

et al. (2013). The sensitivity to the chosen metric and significant differences between 423 

these metrics will be discussed in Sect. 4.2. 424 

 425 

All metrics were computed using the low and high level R packages “SpecsVerification” 426 

(Siegert et al., 2014) and “easyVerification” (Bhend et al., 2016), respectively. Metrics 427 

cannot be computed (because they become ill-defined) if observations or hindcasts 428 

within the entire 30 year period consist for more than one third of zeros or one sixth of 429 
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ties (i.e. equal values). Such skill gaps (i.e. the white terrestrial cells in Fig. 2 and 3) 430 

mainly occur in the far North due to rivers that are frozen for at least a month in winter. 431 

 432 

 433 

3 Results 434 

 435 

 3.1 Spatiotemporal variation of skill in runoff forecasts 436 

 437 

Eighty-four maps of the skill of the runoff hindcasts were produced for all 12 438 

initialisation months and all 7 lead months (all are presented in supplementary material 439 

Fig. S1). Two cross-cuts through that collection are shown in Fig. 2 (for a single 440 

initialisation month) and 3 (for a single lead month). The seven panels of Fig. 2 show 441 

the skill of the hindcasts initialised on April 1 as a function of lead time. Cells with an 442 

insignificant amount of skill are tinted yellow; cells where no metric could be computed 443 

remain white. In lead month 0, significant skill is found across almost the entire domain 444 

(99% of the cells). After the first lead month, the fraction of cells with significant skill 445 

gradually decreases to reach 16% at the longest lead time (lead month 6). This is more 446 

than expected for the case of completely unskilful simulations (5% of the cells), so at 447 

the end of the hindcast simulations significant skill that does not occur due to chance is 448 

still present in some regions. The general impression is that the pattern of skill does not 449 

move in space but that skill is fading, i.e. for individual grid cells R is mostly decreasing 450 

with increasing lead time. The same holds for initialisation in other months (see Fig. S1 451 

in the supplementary material), with important exceptions better identified with Fig. 5  452 

and discussed there. 453 
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 454 

 455 

Figure 2:  The skill of the runoff hindcasts initialised on April 1 for all seven lead 456 

months. The skill is measured in terms of the Pearson correlation coefficient 457 

between the median of the hindcasts and the observations (R). The threshold 458 

of significant skill lies at 0.31, so yellow cells have insignificant skill while 459 

darker cells have significant skill. White, terrestrial cells correspond to cells 460 

where observations or hindcasts consist for more than one third of zeros or 461 

one sixth of ties. The legend provides the fraction of cells with significant 462 

values of R (at the 5% level) and the domain-averaged value of R. 463 

 464 

 465 



 

14 
 

 466 

 467 

Figure 3: Annual cycle of skill (R) of runoff hindcasts for 12 target months, initialised 468 

at the beginning of the second month before (lead month 2). More 469 

explanation is given in the caption of Fig. 2. 470 

 471 

 472 

The twelve panels of  Fig. 3 show the annual cycle of the skill of the hindcasts for lead 473 

month 2, which is selected (also in Figures 6, 7 and 9) because at that lead time 474 

approximately 50% of the cells have significant skill. Consistent skill (persistent during 475 

at least 2 consecutive target months) is found in (causes of skill are reproduced here 476 

from the companion paper, Greuell et al., 2016): 477 

- Fennoscandia. Much skill is present during the entire year, except for target months 478 

November and December, and there is a dip in the skill in April. Most of the skill 479 

is due to initial conditions of soil moisture. On average across the entire region, the 480 

skill reaches a maximum in May and June, i.e. at the end of the melting season, 481 

which is, as shown in the companion paper, largely due to initialising snow. 482 

Compared to the rest of the peninsula, there is generally less skill along the 483 
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Scandinavian Mountain range. The companion paper shows some evidence that this 484 

may be due to high variability of orographic rain, ill-represented in the S4 hindcasts. 485 

- Poland and northern Germany. The core period lasts from November to January, 486 

but it is extended with periods of less skill into October and the months from 487 

February to May. Here the initialisation of soil moisture is the dominant cause of 488 

skill. Snow initialisation contributes in April and May. 489 

- Western France, more or less from Paris to Brittany and roughly from December to 490 

May. Skill derives from the initialisation of soil moisture. 491 

- The eastern side of Great Britain from January to April. Also here the skill derives 492 

from soil moisture initialisation. 493 

- Romania and Bulgaria. The core as well as the whole period are the same as that 494 

for Poland and northern Germany.  495 

- The southern part of the Mediterranean region from June to August. The high 496 

amounts of skill are limited to the coastal parts of northern Africa, Sicily, southern 497 

Greece, Turkey, Syria and Lebanon. This skill is due to initialisation of soil 498 

moisture. 499 

-  The Iberian peninsula in March and August with smaller amounts of skill in months 500 

in between. The skill derives mainly from soil moisture in the initialisation. In 501 

March there is a minor contribution from skill in the forecasts of precipitation. 502 

 503 

From Fig. S1 we broadly conclude that regions with skill for lead month 2 retain their 504 

skill for other (longer) lead times, but that the magnitude of skill decreases with 505 

increasing lead time as demonstrated in Fig. 2 (keep in mind that a change in lead time 506 

corresponds to a change in target time by the same amount). To give an example: for 507 

lead month 3 patterns in the skill maps look similar to those provided in Fig. 3 but 508 

colours are fainter and target months shift by one month ahead. There are many 509 

exceptions to this general rule, e.g. skill due to snow melt that suddenly appears at the 510 

end of the melt season at longer lead times while it was not present during the lead 511 

months before (see Fig. 5 and the companion paper). A more detailed regional analysis 512 

of some of these features is left for future case studies. 513 

 514 
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 515 

 516 

 517 

Figure 4: Number of months in a year with significant skill (R) in the runoff 518 

forecasts of lead months 1-6. 519 

 520 

 521 

Figure 4 displays a synthesis in the form of a six maps with the number of the 12 months 522 

of the year with significant skill for lead months from 1 to 6. In accordance with what 523 

was also illustrated by Fig. 2, the amount of significant skill degrades with increasing 524 

lead time. There is generally more skill all over the year towards the north and the 525 

northeast. Many of the regions with very little or no skill are coastal regions (e.g. 526 

northern coast of Spain), especially coastal regions on the western side of land masses 527 

(e.g. western coasts of Denmark, southern Norway, Italy, Croatia and the British Isles), 528 

and mountain regions (e.g. the Alps except for its southern fringe, mountains in northern 529 

Norway and Sweden and the Tatra on the border of Poland and Slovakia). The British 530 

Isles exhibit little skill, except for the eastern coast of Great Britain in late winter and 531 

early spring (JFMA). Many of the regions that were listed before as having consistent 532 

skill for lead month 2 also appear as foci of skill during the whole year, namely 533 

Fennoscandia, northeast Germany and northwest Poland, Romania and Bulgaria, 534 

Western France and the eastern side of Great Britain. The companion paper shows that 535 

for regions with skill during a large part of the year, this skill is due to initial conditions 536 

of snow and/or soil moisture. 537 

 538 

These pan-European results can be compared to those of Bierkens and Van Beek (2009). 539 

They found maxima in predictability of winter discharge in Northern Sweden, Finland, 540 

the region between Moscow and the Baltic Sea, Romania and Bulgaria, and Eastern 541 

Spain. For the winter there is crude agreement with the current study about Northern 542 

Sweden, Romania and Bulgaria, but not about the other regions. For the summer, 543 

Bierkens and Van Beek (2009) compute maxima in skill for Southern Spain, Sardinia, 544 

Western Turkey and South-western Finland, a pattern that broadly agrees with the 545 
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locations of the summertime maxima in skill we find (most of Fennoscandia and 546 

southern part of the Mediterranean region).  547 

 548 

Singla et al. (2012) found considerable skill in the Seine basin for low flows from June 549 

– September, a bit more eastern from the region where we found skill. Trigo et al. (2004) 550 

using a statistical model based on December NAO indices found skill for JFM discharge 551 

(and hydropower production) for the Douro, Tejo and Guadiana basins covering most 552 

of central and western Iberia. We confirm this skill for March in these regions, but not 553 

for January and February while we find some skill for later months (March until 554 

August). Svensson et al. (2015) using a statistical model, based on NAO indices and 555 

river flow persistence, found good skill for winter river flows on the eastern side of the 556 

British Isles, consistent with our findings, and low but just significant skill along its 557 

western coast, which we do not reproduce. 558 

 559 

 560 

Figure 5: a) Fraction of cells with significant skill (in terms of R), and b) domain 561 

average correlation in the runoff hindcasts, as a function of initialisation 562 

month and lead time. Each coloured curve corresponds to the hindcasts 563 

initialised in a single month. For better visualisation, parts of the curves that 564 

end in the next year are shown twice, namely at the left-hand and the right-565 

hand side of the graph. Black lines (dashed, dotted and dashed-dotted) 566 

connect the results for identical lead times. The horizontal line in a) shows 567 

the expected fraction of cells with significant skill, in the case that the 568 

hindcasts have no skill at all (5%), and in b) the minimal magnitude of the 569 

correlation of a single cell for it to be statistically significant. 570 

 571 

 572 

Fig. 5a summarizes skill across the domain in terms of the fraction of cells with 573 

significant R for all initialisation and lead months. Overall there is a considerable 574 

amount of significant skill, with a minimum roughly from August to November and a 575 

maximum in May. For lead month 2 the fraction of cells with significant skill varies 576 

between 36% (September) and 76% (May). In all of the 84 combinations of initialisation 577 

and lead month, the theoretical value of no skill at all (5%) is exceeded, implying that 578 
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there are (small) pockets of skill even at lead month six. Individual curves show that 579 

skill is lost with increasing lead time. The exception is formed by hindcasts starting in 580 

November, December and January which gain skill when they progress from April to 581 

May, a phenomenon caused by initial conditions of snow that takes longer or shorter to 582 

completely melt in (late) spring. For details, see the companion paper. Fig. 5b shows 583 

decay and gain trends of the domain-averaged R. It shows that a forecast initialised in 584 

February exhibits higher domain average skill into June (5 lead months) than one 585 

starting in July into September (2 lead months). Similar summary plots for the other 586 

skill metrics are presented in the Fig. S2 and discussed in Sect. 3.4. 587 

 588 

  589 

 590 

Figure 6: Comparison of the performance of the hindcasts of discharge and runoff 591 

using the pseudo-observations for verification. The two maps display R for 592 

runoff (a) and discharge (b) for hindcasts initialised on May 1 and target 593 

month July (see further explanation in Fig. 1). Panel c depicts the annual 594 

cycle of the domain-averaged R for runoff (red) and discharge (blue) for 595 

lead months 0 to 4. The horizontal line at 0.31 is the threshold of significance 596 

for a single cell. Panel d is a box plot of the difference between R for 597 

discharge and runoff as a function of the basin size. Each bin i contains the 598 

results for all basins with a maximum of 2i cells and more than 2(i-1) cells, 599 

e.g. bin 4 is for all basins with a size from 10 to 16 cells. Boxes represent 600 

the interquartile range and the median; whiskers extend to minimum and 601 

maximum values found in the bin. All values are average differences over 602 

the twelve months of the year and results are shown for three different lead 603 

times. The values above the abscissa give the number of cells in each bin. 604 
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 605 

 606 

3.2 Spatiotemporal variation of skill in discharge forecasts 607 

This sub-section compares the skill for discharge with the skill for runoff. The two maps 608 

of Fig. 6, which depict the skill in runoff and discharge hindcasts for July as lead month 609 

2, show a high degree of similarity in terms of the patterns and the magnitude of the 610 

skill. The same holds for other target months and lead times (not shown). There are, 611 

however, subtle differences because rivers aggregate the skill, or lack of skill, from the 612 

whole upstream part of their basin. As a result, cells containing rivers with large basins 613 

may contrast against adjacent cells if these contain rivers with a small, local basin. 614 

Indeed, some downstream parts of large rivers stick out in the skill map for discharge, 615 

but not in the skill map for runoff. An example in Fig. 6b are the reaches of the Danube 616 

along the Romanian-Bulgarian border, which show more skill than local small rivers in 617 

adjacent cells, because some upstream parts of the Danube have more skill than the 618 

region around the Romanian-Bulgarian border. An example that demonstrates the 619 

opposite is the downstream part of the Loire showing less skill than local small rivers, 620 

because upstream parts of the Loire have less skill than small, local rivers in the 621 

downstream part. 622 

 623 

Domain summary statistics of skill also differ slightly between runoff and discharge. 624 

Figure 6c compares the annual cycle of the skill in discharge with the skill in runoff at 625 

five different lead times. Here we show the difference in the domain-averaged R instead 626 

of the fraction of cells with a significant R because in lead month 0 that fraction is close 627 

to one for both variables. In terms of the domain-averaged R, predictability is higher for 628 

discharge than for runoff for the first lead month. On average over the 12 months of the 629 

year, the difference is 0.049. We ascribe this result to the combined effect of the delay 630 

between runoff and discharge, with variations in discharge being later in time than the 631 

corresponding variations in runoff, and the general tendency of decreasing skill with 632 

lead time. The curves for the different lead times in Fig. 6c show that the difference in 633 

skill between the two variables gradually disappears with increasing lead time (an 634 

annual average of 0.020 and 0.012 for lead months 1 and 2, respectively). This is 635 

compatible with the given explanation for the difference and the fact that the rate with 636 

which skill is lost gradually decreases with increasing lead time. 637 

 638 

We finally analysed whether the difference in skill between discharge and runoff was a 639 

function of the size of the basin (Fig. 6d). For the first lead month, when on average 640 

there is more skill in discharge than in runoff, the difference increases with the size of 641 

the basin. Again, this can be explained by the combination of the skill decaying with 642 

time and the delay between runoff and discharge, with the delay increasing with the size 643 

of the basin. For longer lead times (from lead month 1 on), when the domain-averaged 644 

difference in skill has become very small, the figure shows no effect of the basin size. 645 

Referring to the comparison between runoff and discharge in panels Fig. 6a and 6b for 646 
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lead month 2, cases like the Danube (more skill than local rivers) and the Loire (less 647 

skill than local rivers) tend to cancel when the entire domain and year are considered. 648 

 649 

 650 

3.3 Verification of discharge with pseudo- and real observations  651 

 652 

So far, all skill was determined by using the discharge generated with the reference 653 

simulation. i.e. with pseudo-observations. In this section, this “theoretical skill” will be 654 

compared with the skill determined with real discharge as observed at gauging stations 655 

(“actual skill”) from the GRDC and EWA databases. Fig. 7 compares the theoretical 656 

skill (Fig. 7b and 7d for large and small basins, respectively) with actual skill (Fig. 7c 657 

and 7e for large and small basins, respectively) for a single combination of a target 658 

month (May) with a lead month (2). Small basins are defined as smaller than one 0.5o x  659 

0.5o grid cell, large basins are larger than 9900 km2 (see Sect. 2.2). 660 

 661 

 662 

 663 

Figure 7: Skill (R) of the discharge hindcasts for May as lead month 2 (initialisation 664 

on March 1). In sequence: a) discharge verified with pseudo-observations, 665 

b) as a) but for cells with real observations representing large basins only, 666 
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c) discharge verified with real observations for large basins. Panels d) and 667 

e) are identical to b) and c), respectively, but for cells with real observations 668 

representing small basins. More explanation is given in the caption of Fig. 669 

1 but in panels d) and e) cells with insignificant skill are coloured blue 670 

instead of yellow for better contrast. 671 

 672 

 673 

For this combination of May forecasts initialised in March, a substantial degradation in 674 

skill is found when the pseudo-observations are replaced by real observations. In terms 675 

of the fraction of cells with significant skill, the reduction is from 73 to 56 % for large 676 

basins and from 52 to 27 % for small basins and the domain-averaged R decreases from 677 

0.48 to 0.33 for large basins and from 0.37 to 0.18 for small basins. Especially the basins 678 

in northern Fennoscandia lose much of their skill when using actual instead of pseudo-679 

observations. In this region VIC also performed poorly in reproducing historic flows. 680 

Specific discharge was underestimated and the annual cycle was poorly reproduced; 681 

especially the spring peak occurred too late and lasted too long (Greuell et al., 2015). In 682 

central Europe useful skill remains when using real observations, both for small and 683 

large basins. This is a region where VIC reproduced well annual cycles, though 684 

interannual variations in low flows were overestimated. For a few stations in Northwest 685 

France and Southeast England actual skill is larger than theoretical skill.   686 

 687 

Fig. 8 compares actual with theoretical skill for all target months and two lead times by 688 

considering the domain-mean R. Similar figures for the other skill metrics are presented 689 

in Fig. S4 and discussed in the next section. The reduction of actual relative to theoretical 690 

skill occurs for all combinations of target and lead months and does not exhibit a clear 691 

annual cycle. On average across all target months and for lead month 2, the ratio of 692 

actual to theoretical skill is 0.667 (0.258 divided by 0.387) for large basins and 0.538 693 

(0.156 divided by 0.290) for small basins. This is comparable to Van Dijk et al. (2013), 694 

who found a ratio of actual to theoretical skill of 0.54 for 6192 basins worldwide in 695 

terms of the ranked correlation coefficient.  696 

 697 

 698 

 699 
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Figure 8: Comparison between verification of discharge with pseudo- (red) and real 700 

(blue) observations in terms of the annual cycle of the domain mean R. The 701 

horizontal line at 0.31 is the threshold of significance for a single cell. 702 

Results are shown for cells representing large basins (left) and cells 703 

representing small basins (right). Both panels depict cycles for lead months 704 

0 and 2 only.  705 

 706 

 707 

Comparing skill for small basins with skill for large basins in Fig. 8, we notice two 708 

differences. Firstly, in terms of the domain mean R, theoretical skill is higher for large 709 

basins than for small basins (0.39 and 0.29, respectively, for the annual mean and lead 710 

month 2). However, this result holds for the cells with observations. If all cells of the 711 

domain are considered, this difference becomes insignificantly small. So, the apparent 712 

difference in theoretical skill between large and small basins can be attributed almost 713 

entirely to the geographical distribution of the discharge monitoring stations, with 714 

stations on small basins being relatively more often located in regions with relatively 715 

little skill like Germany, France and the British Isles than large basin stations. 716 

 717 

The second effect of the size of basins is that the ratio between theoretical and actual 718 

skill is larger for small basins than for large basins, at least for lead month 0. This is 719 

perhaps even more clear from Fig. S3 in the supplementary material. We speculate that 720 

this is due to a combination of two effects. Firstly, there is more skill in simulations of 721 

historic streamflow in large basins than in small basins (Van Dijk and Warren, 2010, 722 

confirmed for VIC in Europe by Greuell et al. 2015). Secondly, as Van Dijk et al. (2013) 723 

demonstrated, the ratio of actual to theoretical skill in the hindcasts is almost linearly 724 

related to the skill of simulating historic streamflow. Combining these two relationships 725 

confirms the relationship that we found, namely an increase in the ratio of actual to 726 

theoretical skill with basin size.  727 

 728 

Finally, we investigated to what extent these results are affected by human interference, 729 

keeping in mind that the simulations are naturalized, while the observations include 730 

human impacts to a variable but unknown degree. Human interference is expected to 731 

have a negative effect on actual skill and hence on the ratio of actual to theoretical skill. 732 

For relatively natural "large basins" (AAPFD < 0.3; see end of Sect. 2.2), the ratio of 733 

actual to theoretical skill was computed in terms of the domain mean R, averaged across 734 

all target months and for lead month 2. We found a ratio of 0.686, which should be 735 

compared to a ratio of 0.667 for the entire set of large basins (see above). So, as expected 736 

the ratio is larger for basins with less impact. However, since the difference between the 737 

two ratios is small we conclude that the effect of evaluating naturalised runs against 738 

observations that are obviously affected by human interference, contributes only little 739 

to the difference between actual and theoretical skill. A similar analysis was not applied 740 

to the collection of small basins with observations, since these are smaller than the 741 

spatial resolution of the simulations. 742 

 743 
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 744 

3.4 Results for other skill metrics 745 

 746 

So far, skill was measured in terms of the correlation coefficient between the median of 747 

the hindcasts and the observations (R) only. This section compares those results, for 748 

runoff, with results in terms of other skill metrics. Fig. 9 gives an example for one 749 

particular target month and lead month, i.e. target May initialised in March (lead 2). Fig. 750 

9a, 9b and 9c show the skill patterns for R, for the ROC area for Below Normal (BN) 751 

years and for the RPSS. The three patterns are spatially similar to a large degree, though 752 

the magnitudes and number of significant cells do differ. The pattern of the map of the 753 

ROC area for Above Normal (AN) years (see Fig. S1) is also similar to the patterns of 754 

the three maps shown. On average across all lead and target months, among cells that 755 

have significant R, 89% and 84% also have a significant ROC score for the BN tercile 756 

and the AN tercile, respectively, and 65% also have significant RPSS scores. The 757 

fraction of cells with no significant R, but with significant ROC or RPSS remains below 758 

the 5% level across all target and lead months.  759 

 760 

The agreement that we find between the patterns of the different metrics is in accordance 761 

with a result mentioned in a global analysis of seasonal streamflow predictions by Van 762 

Dijk et al. (2013) who found high spatial correlation between the different skill metrics 763 

they used (among which R, the RPSS and the ranked correlation coefficient). 764 

 765 

 766 

 767 
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Figure 9: Maps of different skill metrics for one combination of a target month (May) 768 

and a lead month (2) of the runoff hindcasts. Panels show a) R, b) the ROC 769 

area for the below normal tercile, c) the Ranked Probability Skill Score 770 

(RPSS) and d) the difference in ROC area between the BN and AN terciles. 771 

In panels a), b) and c) skill is not significant in cells with a yellow colour. 772 

Legends provide the fraction of cells with significant values of the metric 773 

and the domain-averaged value of the metric. 774 

 775 

 776 

Although the different nature of the different metrics makes the interpretation of 777 

quantitative differences between them difficult, this is not true for the ROC areas for the 778 

different terciles. For the particular combination of May as target month and lead month 779 

2 shown in Fig. 9, the domain-mean ROC area is largest for the BN tercile (0.75), 780 

slightly smaller for the AN tercile (0.73) and much lower for the near-normal (NN) 781 

tercile (0.58, see Fig. S2c and d). A similar tendency is found in the fraction of cells 782 

with a significant ROC area (69%, 63% and 21%, respectively). In fact, in all 783 

combinations of lead and target month the fraction of significant cells is larger for the 784 

BN than for the AN tercile, as shown in Fig. 10. However, the AN and BN fractions of 785 

cells tend to become equal (i) when they approach 1.0, (ii) when they approach the limit 786 

of no skill (5%) and (iii) during target months from October to January. Finally, Fig. 9d 787 

presents a map of the difference between the BN and the AN ROC area for May as lead 788 

month 2. There is some organisation in the pattern but regions with a positive or a 789 

negative difference between the two tend to be smaller than the regions with significant 790 

skill in the maps of e.g. Figs. 2 and 3. Also, we did not detect much consistency, in the 791 

sense of persistence during at least two consecutive target or lead months, in the patterns 792 

of the difference between ROC AN and ROC BN.  793 

In Fig. 9c the fraction of cells with a significant value of the RPSS is 47%, which is 794 

somewhere between the fractions for ROC areas of the three terciles because the RPSS 795 

represents the skill across all terciles.  796 

 797 

For other combinations of target and lead months the results of this analysis are 798 

qualitatively similar, see supplementary figures. All metrics show a minimum value in 799 

the annual cycles in either September or in October, irrespective of lead time; maxima 800 

are attained in February for lead month 0 shifting to May at longer lead times (Fig. S2). 801 

We would finally like to note that, while in this sub-section we discussed runoff, we 802 

made similar figures and calculations for discharge. Results for these two variables are 803 

almost identical.   804 

 805 
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 806 

 807 

Figure 10: Skill of the runoff hindcasts in the Below Normal (BN) compared to the skill 808 

of the runoff hindcasts in the Above Normal (AN) tercile. The plot depicts 809 

annual cycles of the fraction of cells with a significant ROC area for the two 810 

terciles and for four lead months.  811 

 812 

 813 

4 Discussion 814 

 815 

4.1  Theoretical versus actual skill 816 

 817 

In the analysis of the differences between theoretical and actual skill, two essential 818 

questions are: a) What are the conceptual differences between the physical systems that 819 

generate the pseudo- and the real discharge observations, i.e. between the model 820 

reference run and the real world. To answer this question, the components in the upper 821 

and the lower box of the diagram in Fig. 1 need to be compared. b) What are the expected 822 

effects of these differences on skill, i.e. on the comparison with the hindcasts. To answer 823 

this question, the components that differ between the real world and the model reference 824 

run need to be compared with the model hindcasts. The rule then is that skill decreases 825 

with increasing disagreement between a component of the hindcast system and the 826 

corresponding component of one of the other systems. The following components differ 827 

between the real world and the model reference simulation: 828 

1. Real meteorology differs from the meteorology assumed in the reference 829 

simulation (WFDEI), both during the spin up period and during the hindcast 830 

period. During spin up, model reference run and hindcasts have identical 831 

meteorological forcing (WFDEI), which differs from real meteorology. 832 

Therefore, this difference is expected to lead to more theoretical than actual skill. 833 

During the hindcast period, all three systems have different meteorological 834 

forcing. We do not have a well-founded expectation about any biases between 835 

these three forcings and, hence, we have no expectation about its effect on the 836 

difference between theoretical and actual skill. However, in Europe and beyond 837 

the first lead month almost all skill in the seasonal forecasts is due to the initial 838 

conditions (see the companion paper). Therefore, beyond the first lead month 839 

and in Europe differences in forcing during the hindcast period have a negligible 840 

effect on skill.  841 
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2. Models are imperfect, in terms of physics and in terms of spatial and temporal 842 

discretisation, so model hydrology differs from real world hydrology. Hindcasts 843 

and the pseudo-observations are produced with the same model, so 844 

imperfections in model hydrology are expected to lead to more theoretical than 845 

actual skill. One assumption implicitly made in the diagram is that the basin of 846 

the observation station and the model basin are identical. This is not the case 847 

(see Sect. 2.2), so differences between observation and model basin form an 848 

additional cause of disagreements between theoretical and actual skill. Again, 849 

this will favour theoretical skill with respect to actual skill since basins are 850 

identical in the hindcasts and the reference simulation. In particular, differences 851 

in meteorological forcing between the basin of the observation station and the 852 

model basin might reduce actual skill. Van Dijk et al. (2013) investigated this 853 

aspect by making simulations for Australia at different spatial resolutions and 854 

verifying with networks of observations with different spatial densities. They 855 

found that the resolution and perhaps the quality of the forcing data contributed 856 

at least half to the difference between theoretical and actual skill. 857 

3. In the real world discharge observations are subject to measurement errors. 858 

Measurement errors of discharge are not constant over time (due to varying cross 859 

sectional areas, following erosion and sedimentation) and therefore add noise to 860 

the data; noise always reduces skill. There is no equivalent of this error in the 861 

model environment. Hence, as for differences 1) and 2) this difference is 862 

expected to lead to more theoretical than to actual skill. 863 

4. Initial conditions are absent in this list of differences since they are not 864 

independent components but entirely determined by two components of the 865 

system listed above, namely meteorology and hydrology. Alternatively, initial 866 

hydrological conditions could be taken from observations or by assimilation of 867 

observations into model calculations. In that case, initial conditions would 868 

become an independent or semi-dependent component of the system. However, 869 

while model initial conditions would, of course, differ from real initial 870 

conditions, the two model systems had identical initial conditions. Hence, this 871 

difference would again be expected to lead to more theoretical than to actual 872 

skill. 873 

  874 

In summary, all of the conceptual differences between the generation of pseudo- and 875 

real observations are expected to lead to more theoretical skill than actual skill, except 876 

for the difference in meteorology during the hindcast period, which has, in the case of 877 

Europe beyond the first lead month, a neutral effect, and otherwise an unknown effect.  878 

  879 

Our data analysis, Sect. 3.3, broadly confirms that theoretical skill exceeds actual skill. 880 

We also found cases where actual skill exceeds theoretical skill beyond lead month 0, 881 

like for a few stations in Northwest France and Southeast England in Fig. 7. We ascribe 882 

such cases to chance.   883 

 884 
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It is interesting to discuss what would happen in the utopian case that the system of the 885 

model reference run would converge with the real world, i.e. if model meteorological 886 

forcing and hydrology would approach perfection and if measurement errors would 887 

approach zero. Equality of the two systems would, according to the analysis above, lead 888 

to equality of theoretical and actual skill. However, we like to note that at the same time 889 

optimisation of the model system can lead to a degradation of the theoretical skill due 890 

to unrealistic memory time scales in the storage compartments of the hydrological 891 

model before optimisation. If this memory, from stored water in either snow, soil or 892 

aquifer is too strong, then skill will reduce with calibrating the model towards more 893 

realistic storage accumulation. However, if this memory is too small before improving 894 

the model, then, of course, the reverse would happen and skill increases with 895 

optimisation. 896 

An example proving this statement is a model that accumulates too much snow. The 897 

model will do so both in the initial state of the reference simulation and the initial state 898 

of the hindcasts and since more snow leads, at some stage of the melting season, to more 899 

predictive skill, theoretical skill will be overestimated. A perfect model, accumulating 900 

less but more realistic amounts of snow, would exhibit less skill. Another example is 901 

predictive skill caused by interannual variations in the initial amount of soil moisture 902 

and/or groundwater. A model that is imperfect because it overestimates the transport 903 

speed of water through the soil and the groundwater reservoirs will do so both in the 904 

reference simulation and the hindcasts. Predictive skill due to soil moisture initial 905 

conditions will then occur too early. Compared to the model that overestimates transport 906 

speed, a perfect model with smaller, realistic transport speed would yield less theoretical 907 

skill at the early lead times.  908 

Hence, theoretical skill is not equal to the maximum that could be accomplished if 909 

hydrological model and meteorological forcing during the reference simulation were 910 

perfect. 911 

The version of VIC used in this study was calibrated by Nijssen et al. (2001) in a crude 912 

way, in the sense that they assumed no spatial variation of the parameters set by 913 

calibration within almost the entire European continent. Improving the calibration of 914 

VIC would be an obvious candidate for trying to improve the seasonal predictions 915 

discussed in this paper. This should lead to higher actual skill. However, the two 916 

examples discussed above show that theoretical skill may actually, for certain locations, 917 

months of initialisation and lead months, decline due to the recalibration.  918 

 919 

 920 

4.2  Results and uncertainties 921 

 922 

There seems to be a broad correspondence between the probabilistic forecast 923 

verification presented here and the model validation presented in Greuell et al. (2015) 924 

and Roudier et al. (2016). These studies found that average discharge and inter-annual 925 

variations therein are well reproduced against observations, consistent with our result 926 
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that in the first lead month all skill scores, also against real observations (see Fig. S4 for 927 

the lead 0 results), are good for large parts of Europe.  928 

 929 

However, the relation between a model’s ability to simulate historic streamflow and its 930 

ability to generate skill in seasonal forecasts is complex. There is, for instance, no reason 931 

to expect that regions with more theoretical skill than other regions would generally 932 

correspond to regions with better historic streamflow simulations. Large model stores 933 

of soil moisture and snow tend to lead to more theoretical skill, whether these stores are 934 

realistic or not. If they are not realistic, simulations of historic streamflow will be poor, 935 

despite the forecast skill. Another example of the problematic relation between 936 

validation and verification is that, even in perfect models, regions with small model 937 

stores of soil moisture and snow and regions with large interannual variation in 938 

precipitation will exhibit small amounts of theoretical and actual skill. So, regions with 939 

high quality historic streamflow simulations may for good reasons have little skill in the 940 

forecasts. 941 

 942 

However, what we would expect is that regions of poor model performance have little 943 

actual skill (not necessarily little theoretical skill) in the forecasts. In our work, this 944 

statement is broadly confirmed by the basins in northern Fennoscandia, which lose much 945 

of their skill when using actual instead of pseudo-observations (Fig. 7). In this region 946 

VIC indeed performed poorly in reproducing historic flows. Good model performance 947 

probably is a necessary (but not sufficient) condition for the generation of actual skill in 948 

seasonal forecasts. This is exemplified by some regions with considerable amounts of 949 

actual skill in central Europe (e.g. northern part of the Balkans and the Elbe basin in Fig. 950 

7), where VIC’s simulations of historic streamflow are much better than in northern 951 

Fennoscandia.  952 

 953 

In a future extension of our work, an objective method like cluster analysis could reveal 954 

regions where skill has a similar signature. This could lead to an improved assessment 955 

of the physical and climatological factors that are responsible for the spatial variations 956 

in skill found in this and its companion paper.  957 

 958 

There also seems to be a broad correspondence between the regions and seasons with 959 

skill identified in the present work and those identified in more spatially or temporally 960 

confined studies based on entirely different physical or even statistical models. Without 961 

repeating the more detailed description in the Introduction and the closer comparison in 962 

Sect. 3.1, we restate here that the results of Bierkens and van Beek, (2009) and Thober 963 

et al. (2015) were similar at the European domain. These pan-European studies, like 964 

ours, confirm more regional studies such as for the British Isles (Svensson et al., 2015) 965 

or France (Céron et al., 2010; Singla et al., 2012). Though a high resolution study like 966 

the latter may add much spatial detail, this does not change the region and season of 967 

skill. 968 

 969 
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Our results are based on a forcing with the 15 member, monthly initialized, 7 month 970 

forecast version of ECMWF System 4, basically because at the start of this work that 971 

hindcast was the only one accessible to us, but also because it allows verification at the 972 

monthly resolution. Alternatively, we could have used the 51 member seasonally 973 

initialised (4 times per year), 7 month forecast version of the same model. That would 974 

have provided us with better constrained, more precise statistics (larger sample size), or 975 

would have allowed assessment of more percentiles (e.g. quintiles instead of terciles) at 976 

similar precision. However, the variation of skill over a year would not have been 977 

resolved with such detail as in the present work. Finally, a 15 member, seasonally 978 

initialized, 12 month forecast version of System 4 is available. Our results show that for 979 

some regions at lead month 6 still a few, small pockets of consistent skill remain, 980 

suggesting that extending the forecast for our domain might be worth exploring.  981 

 982 

Other seasonal forecasting systems, based on different coupled ocean-climate models, 983 

could have been used as meteorological forcing, such as CFSv2 (Saha et al., 2014) and 984 

Glosea5 (MacLachlan et al., 2014). Given that, at least at large scales, multi model 985 

ensembles exhibit better climate forecast skill than single models, it is interesting to 986 

investigate if that additional skill also propagates into river flow forecasts. While this 987 

seems to be true for the Eastern United States (Luo & Wood, 2008) it is not known if 988 

similar conclusions could be drawn for Europe. A similar reasoning can also be extended 989 

to the hydrological models: using a multi climate model ensemble to force a multi 990 

hydrological model ensemble might also provide improved skill, as the latter models 991 

may be complementary in the regions and seasons of best model performance. Bohn et 992 

al. (2010) showed some advantage of using an ensemble of three hydrological models 993 

(but with a single forcing), over using only the best of the three, but only after bias 994 

correcting the hydrological output and making a linear combination of them with 995 

monthly varying weights. 996 

 997 

 998 

4.3  Implications and recommendations 999 

 1000 

Many conclusions drawn from this work are valid at the scale of our domain and not 1001 

necessarily at the scale of river basins. Only in some parts of our analysis, especially 1002 

where we focused on the annual cycle of the skill (Fig. 3), regional patterns at a scale 1003 

smaller than that of the domain were discussed. This was done in a qualitative way.  1004 

 1005 

For applications of these seasonal forecasts in decision making processes at (sub) basin 1006 

level, a more detailed skill analysis is recommended for that specific (sub) basin, 1007 

preferably after a better model calibration for that same basin. The facts presented in 1008 

this study that anomaly correlations and ROC scores for the AN and BN terciles are 1009 

significant for large parts of the domain for lead times up to several months, supported 1010 

by (fairly) positive validation results for VIC (Greuell et al., 2015; Roudier et al. 2016), 1011 

suggest these anomaly forecasts are good enough to be used as such. However, areas of 1012 

significant RPSS are much smaller and remain significant for shorter lead times. 1013 
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Spatially distributed calibration of VIC model parameters, or distribution based 1014 

calibration of modelled discharge to observations, or both, might also increase the 1015 

RPSS. This might then allow forecasting of absolute discharge magnitudes and thus 1016 

inform decision making processes that involve certain absolute discharge thresholds. 1017 

 1018 

In Sect. 3 (Results) we already discussed the probable reasons for skill, which are much 1019 

elaborated on in the companion paper. In general that paper shows that for most areas 1020 

skill in runoff is caused by initialising snow and /or soil moisture properly, only in few 1021 

areas and seasons skill in precipitation or skill in temperature and evapotranspiration 1022 

adds to that beyond the first lead month. This has two implications: one is that, if ever 1023 

the skill of seasonal climate forecasts improves for Europe, this may well translate to 1024 

improved seasonal river flow forecast too. The second is that better initial conditions of 1025 

snow water equivalent and soil moisture from observations may do the same, but the 1026 

latter only if the spatial distribution of the soil moisture storage capacity is more realistic 1027 

too (see Sect. 4.1). 1028 

 1029 

Overall the present analysis shows that especially in winter, spring and early summer, 1030 

there is potentially good skill to forecast runoff and discharge in large parts of Europe, 1031 

with considerable lead time. While this broadly confirms previously published work, 1032 

the present study (while being specific to our model setup) gives much more spatial and 1033 

temporal (season and lead time) details. As such it provides a good basis to support 1034 

operational forecasts and to add information about skill to seasonal forecasts, which is 1035 

very important for proper value assessment and decision making.  1036 

 1037 

 1038 

5 Conclusions 1039 

 1040 

This paper is the first of two papers dealing with a model-based system built to produce 1041 

seasonal hydrological forecasts (WUSHP: Wageningen University Seamless 1042 

Hydrological Predictions). The present paper presents the development and the skill 1043 

evaluation of the system for Europe, the companion paper provides an explanation of 1044 

the skill or the lack thereof. 1045 

 1046 

First, “theoretical skill” of the runoff hindcasts was determined using the output of the 1047 

reference simulation as “pseudo-observations”. Using the correlation coefficient (R) as 1048 

metric, hot spots of significant skill were found in Fennoscandia (from January to 1049 

October), the southern part of the Mediterranean (from June to August), Poland, 1050 

northern Germany, Romania and Bulgaria (mainly from November to January) and 1051 

western France (from December to May). There is very little or no significant skill all 1052 

over the year in some coastal and mountainous regions. The entire British Isles exhibit 1053 

very little skill, except for the eastern coast of Great Britain. If the entire domain is 1054 

considered, the annual cycle of skill has a minimum roughly from August to November 1055 

and a maximum in May. 1056 

 1057 
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Runoff and discharge show a high degree of similarity in terms of the spatial patterns 1058 

and the magnitude of the skill. However, when averaged over the domain and the year, 1059 

predictability is slightly higher for discharge than for runoff for the first lead month (by 1060 

0.049 in terms of R), but the difference decreases with increasing lead time. We also 1061 

found that for lead month 0 the difference between discharge and runoff skill increases 1062 

with the size of the basin.  1063 

 1064 

Theoretical skill as determined with the pseudo-observations was compared to actual 1065 

skill as determined with real discharge observations. On average across all target months 1066 

and for lead month 2, skill reduction due to replacing pseudo- by real observations is 1067 

larger for small basins than for large basins.  1068 

 1069 

Spatio-temporal patterns for the different skill metrics considered in this study 1070 

(correlation coefficient, ROC area and Ranked Probability Skill Score) are similar to a 1071 

large degree. ROC areas tend to be slightly larger for the below normal than for the 1072 

above normal tercile but not during target months from October to January. 1073 

 1074 
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