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Abstract. The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model 

grid scale over a heterogeneous land surface plays a significant role in developing and improving the 

parameterization schemes of the remote-sensing based ET estimation models and general 

hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research 

(HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for 15 

area-averaged fluxes. On the basis of HiWATER flux matrix dataset and high-resolution land-cover map, 

this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint 

analysis and multivariate regression. The procedure is as follows: Firstly, quality-control and 

uncertainty-estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and 4 

paths of large aperture scintillometer (LAS), were carefully done. Secondly, the representativeness of 20 

each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. 

Thirdly, based on the high resolution land-cover map derived from aircraft remote sensing, a flux 

aggregation method was established combining footprint analysis and multiple-linear regression. Then, 

the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS 

measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was 25 
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estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic 

average and area-weighted methods etc., present scheme is not only with a much better database but 

also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a 

heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel 

scale, can be used for the validation of relevant remote sensing models and land surface process models. 5 

Furthermore, this work will be extended to the water balance study of the whole Heihe River basin. 

1 Introduction 

Land surface evapotranspiration (ET) is not only a key component in the regional water circulation, 

but also essential in the surface energy balances and land surface process. Under the condition of 

increasing shortage of water resources, high precision estimation of ET at regional scale is essential for 10 

such applications, as the management of river basin water resources, regional planning and the 

sustainable development of agriculture etc. (Wang et al., 2003). Currently, the commonly used methods 

for acquisition of regional ET are ground-based observation, remote sensing based estimation and 

model simulation, respectively. 

The Earth’s surface is always characterized by spatial heterogeneity. Large land surface 15 

heterogeneity affects greatly the exchanges of momentum, heat, and water between the land surface and 

atmosphere (Mengelkamp et al., 2006). Indeed, the surface heterogeneity caused either by the contrast 

in soil moisture or vegetation type generates a large spatial variability of fluxes, which limit the use of 

the eddy-covariance (EC) system, unless one deploys a network of EC devices (Ezzahar et al., 2009b). 

Flux tower group can quantify the turbulent exchange of energy and mass between the atmosphere and a 20 

variety of surface types (Sellers et al., 1995), and these local point measurements need to be aggregated 

to provide a meaningful area averaged fluxes (André et al., 1986). If special aggregation rules for local 

flux measurements are applied, measurements can provide averaged fluxes at model grid scale (Beyrich 

et al., 2006;Mahrt et al., 2001). But given the EC network’s high price and the requirement for their 
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continuous maintenance, the large aperture scintillometer (LAS) is a useful alternative method for 

directly measurements of area-averaged sensible heat fluxes in the scale of 1 – 5 km (Ezzahar et al., 

2009b;Ezzahar and Chehbouni, 2009).  

Satellite has been considered as a promising data source for deriving regional ET with the 

development of remote sensing technique (Ezzahar et al., 2009a). In response to increasing demand for 5 

spatially distributed hydrologic information, many satellite-based approaches have been developed for 

routine monitoring of ET at a regional scale (Anderson et al., 2012). Nevertheless, the effectiveness of 

the remote sensing based methods for estimating ET must be fully assessed by ground-based 

area-averaged flux measurements, due to the uncertainties of model inputs and parameterization 

schemes etc. (Wang et al., 2003). Furthermore, there may be a bias in directly comparing a 10 

remote-sensing-based ET estimation with in-situ measurements, because of their spatial-scale mismatch 

and spatial heterogeneity at the sub-pixel scale (Jia et al., 2012). 

General atmospheric-hydrological models (e.g., Numerical Weather Prediction) can adequately 

describe the interaction between the atmosphere and the underlying surface using complex 

parameterization schemes. The development and validation of these models are usually based on 15 

measurements performed over homogeneous land surfaces. While the assumption of homogeneity might 

be justified at the local scale (10 m – 10
3
 m), it is often violated at the scale of the grid resolution of 

current regional atmospheric models (about 10
4
 m) (Beyrich et al., 2006;Beyrich and Mengelkamp, 

2006). Therefore, it is significantly important to determine the area-averaged surface fluxes at the 

satellite pixel scale/model grid scale (10
3
 m – 10

4
 m) for the evaluation of general hydro-meteorological 20 

models and relevant remote sensing models. 

A number of international field experiments have been performed over heterogeneous land 

surfaces in different geographical and climate regions of the earth in recent decades (Mengelkamp et al., 

2006;Beyrich et al., 2006;Wang, 1999), such as HAPEX–MOBILHY (André et al., 1986), FIFE (Sellers 

et al., 1988), HAPEX-SAHEL (Goutorbe et al., 1994), BOREAS (Sellers et al., 1995), NOPEX (Halldin 25 
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et al., 1998), LITFASS-2003 (Mengelkamp et al., 2006), etc. In these experiments, based on multi-point 

flux observations, surface fluxes at the model grid scale were obtained using various flux aggregation 

techniques. The aggregated fluxes were also compared with those obtained from LAS systems and 

remote-sensing estimation methods. The simple flux aggregation methods most commonly used in 

former studies mainly include: arithmetic average method, the area-weighted method and the 5 

footprint-weighted method (Liu et al., 2016). These studies revealed, under careful data-processing and 

quality-control (Charuchittipan et al., 2014) as well as analysis of the energy balance closure for flux 

data (Foken et al., 2006;Foken et al., 2010), the combination of area-averaged fluxes from 

scintillometers and aircraft observations etc. and the multi-site EC flux measurements with simple flux 

aggregation schemes can provide reasonable estimates over a heterogeneous land surface (Mahrt et al., 10 

2001;Beyrich et al., 2006;Liu et al., 2016). 

However, the integration schemes of aforementioned methods are applicable for relative uniform 

sites, of which the local flux measurements are representative of the individual surface types. For the 

interpretation of tower flux measurements over a heterogeneous land surface, operational footprint 

analysis is an essential approach (Schmid, 2002). The development of footprint models provides 15 

diagnostic tools to quantify the representativeness of tower flux measurements for selected sites (Horst 

and Weil, 1992;Kim et al., 2006). Besides, it had been demonstrated that the footprint climatology can 

be combined with information on the spatial variability of vegetation types provided by satellite image 

(Kim et al., 2006;Chen et al., 2008). Land cover reflects the combined effects of vegetation, climate, 

soil and topography, some relationship should be expected between land cover and measured surface 20 

fluxes (Ogunjemiyo et al., 2003). Ran et al. (2016) proposed four indicators with footprint analysis and 

land-cover map to improve the representativity of EC towers and correct the EC flux measurements. 

But this method did not obtain the surface fluxes of individual land cover types but just corrected the 

EC observations with some prior coefficients. Some previous studies have successfully related the 

aircraft observed fluxes to surface cover types with the integration of footprint models and land-cover 25 
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map derived from satellite remote sensing (Ogunjemiyo et al., 2003;Kirby et al., 2008;Hutjes et al., 

2010). Among these works, a flux dis-aggregation method (Hutjes et al., 2010), developed from former 

study presented by Ogunjemiyo et al. (2003), would be a promising method for integrate multiple 

tower-based flux measurements to satellite pixel or grid scale on account of its theoretical framework. 

The application of this method in attributing heterogeneous EC flux measurements to separate land over 5 

classes will be a hopeful way to have insight into the component fluxes from various land cover types 

and to develop a flux aggregation scheme, exploring for the extension of multiple EC flux observations 

to satellite pixel/gird scale.  

A multi-scale observation experiment on evapotranspiration over a heterogeneous land surface was 

conducted in the middle reaches of Heihe River Basin during the Project of HiWATER (Heihe 10 

Watershed Allied Telemetry Experimental Research) in 2012 (Li et al., 2013;Liu et al., 2016). A 

comprehensive flux matrix, consisted of 17 EC sites and 4 groups of LAS systems within a 5 × 5 km
2
 

area, was specifically designed to capture the multi-scale characteristics of ET over a heterogeneous 

landscape during the experiment. HiWATER flux matrix, with an abundant of multi-scale flux 

measurements, provided a unique opportunity to build an aggregation scheme for area-averaged fluxes 15 

over a heterogeneous land surface. The objective of this study is to integrate multi-point EC flux 

measurements to area-averaged fluxes over a heterogeneous land surface with high resolution 

land-cover data and footprint analysis. The main issues were as followed: (1) the representativeness of 

EC flux matrix was quantitatively evaluated; (2) a flux aggregation scheme was established to estimate 

the area-averaged sensible heat fluxes, taking LAS measurements as reference to check the integration 20 

algorithm; (3) the developed flux aggregation method was applied to EC flux matrix to determine the 

area-averaged evapotranspiration. 

2 Study sites and data 

2.1 Site description 
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This study was based on ground-based observation datasets, collected from the multi-scale flux 

matrix of HiWATER from May to September 2012. The kernel experimental area (5 × 5 km
2
) of the 

multi-scale observation experiment was located in the Yingke and Daman irrigation district within 

Zhangye oasis. The land-cover types were dominated by maize (72 %), vegetables (5 %), orchard and 

shelterbelt (8 %) and residential area and roads (15 %). As shown by the numbers 1 – 17 in the 5 

following Fig. 1, 17 sites were installed according to the distribution of crop planting structure and land 

cover. Each of them was equipped with an eddy covariance system (with two layers in site 15) and an 

automatic weather station (AWS), to capture the exchange process of surface water and energy budget 

at the local scale and micrometeorological elements near the surface layer. Spatial distribution of 

EC/AWS systems is shown in Fig. 1, with site 1 of vegetable (pepper) field, site 4 of residential area, 10 

site 17 of apple orchard, and the others are in maize fields. Key micrometeorological observations at 

each AWS included four-component radiation, one or two levels wind / temperature / relative humidity, 

soil temperature / moisture and soil heat flux, etc. Among these sites, site 15 was a superstation 

equipped with two levels of EC system, and seven-level wind speed/direction, air temperature/humidity 

profiles. 4 paths of large aperture scintillometers were installed crossed over the experimental district to 15 

obtain area-averaged sensible heat fluxes (see Fig. 1). Details of the EC and LAS systems in the flux 

matrix were given in Table 1 and Table 2, respectively. 

2.2 Data collection, processing and quality control 

2.2.1 Flux data processing and quality control  

Data in typical clear days of 29 to 30 June 2012 were selected for the following analysis, including 20 

EC data from 16 towers (except site 3 and the highest level (34 m) of site 15) and 4 paths of LAS data 

as well as multi-point micrometeorological data list above. The last round of irrigation in each plot was 

done before 26 June. During the two days, there was almost no irrigation in the flux matrix. Firstly, 

AWS data sampled at 10 min were averaged to 30 min period. Careful data processing and quality 
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control for EC and LAS raw data were then performed so as to insure a high quality flux dataset. 

The EddyPro software developed by LI-COR (Lincoln, Nebraska USA, www.licor.com/eddypro) 

was used to process the 10 Hz raw EC data into a half-hourly averaged flux data, by procedures 

including spike removal, angle of attack correction (for Gill), time lag correction, coordinate rotation 

(2-D rotation), frequency response correction, sonic virtual temperature correction, and corrections for 5 

density fluctuation (Webb-Pearman-Leuning, WPL) etc. Data quality assessment was performed for the 

turbulent flux in each 30 min using the flagging system with 3 different flags (0, 1 and 2) (Mauder and 

Foken, 2015). Detailed information on the processing steps can be found in Wang et al. (2015) and Xu 

et al. (2013). For this study, only the flux data of flag 0 (the best) were used. Flux data of flag 2, as well 

as the data at night when the friction velocity was below 0.1 m s
-1

 were discarded (Blanken, 1998; Liu 10 

et al., 2011). To obtain daily ET, at first, a gap-filling method, based on the nonlinear regression 

(establishing the relationship between the latent heat flux and net radiation), for the 30-min latent heat 

fluxes (LE) was used. Then, the daily ET was calculated by summing the half-hourly gap-filled ET to 

24 h totals. 

For the EC systems used in the data analysis, we have tried to reduce the systematic errors to a 15 

minimum with a pre-observation inter-comparison, and careful maintenances during the observation 

period (Xu et al., 2013). The random errors were also analyzed by a separate research, which can be 

minimized in an ensemble average (Wang et al., 2015). The energy balance closure ratio (EBR) for the 

EC data of the flux matrix was also carefully assessed. Generally, the EBR during the 3 and half months 

was good. For the 17 EC stations in the intensive observation area, the average EBR was about 0.92. 20 

Except the lowest EBR (0.78) in orchard site, values in other sites were scattered without clear relation 

to the surface status. For site 15 with two heights of EC system, the relevant EBR were 0.89 (at 4.5 m) 

and 1.03 (for 34 m), respectively (Xu et al., 2017). 

The LAS system provided a measurement of the structure parameter for the refractive index of air 

(𝐶𝑛
2) with an output period of 1 min. The raw data were firstly checked, mainly reject the saturated cases 25 
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8 
 

when 𝐶𝑛
2 < 0.193𝑅8 3⁄ 𝜆1 3⁄ 𝐷5 3⁄  (where R is the path length, D the optical aperture, and λ  the 

wavelength) (Ochs and Wilson, 1993). Then, the data were averaged to 30 min, and the path-average 

sensible heat fluxes were iteratively calculated based on Moninin-Obukhov Similarity Theory (MOST) 

(Andreas, 1988). The parameters used in this calculation, like the roughness height and zero-plane 

displacement were obtained following Martano (2000); other parameters, including wind speed, air 5 

pressure and temperature, Obukhov length, and Bowen ratio, were directly obtained from relevant EC 

measurements. Only sensible heat fluxes from LAS measurements at daytime (8:30 am – 15:30 pm, 

Beijing Standard Time, BST; the time difference between Local time and BST is approximately +1 h 18 

min) were selected in this study. 

As for the eddy-covariance systems, flux data from the 4 paths of LAS were also quality controlled. 10 

The systematic errors from data processing, e.g. the larger effects of Bowen-ratio correction in this oasis 

area, were carefully minimized. We checked the sensible heat fluxes (H) from the 4 paths of LAS with 

that from the nearer ECs. Except LAS 3, under its path there were clearly some village buildings so the 

H_las is higher, others agreed very well with that of ECs. 

2.2.2 Collection and processing of remote-sensing products 15 

Based on the airborne hyper-spectral images acquired by the Compact Airborne Spectrographic 

Imager (CASI) on 29 June 2012 and the Canopy Height Model (CHM) data from the LiDAR data 

collected on 9 July 2012, a land cover classification map with 1-m spatial resolution was derived using 

an object-based classification method. This was done mainly for the kernel experimental area. The 

classification accuracy of the 1-m land cover map is up to 90 %, and Kappa coefficient is approximately 20 

0.9. The detailed classification process of the map can be found in Liu and Bo (2015). 

Land cover misclassification was still occurred in this map because of spectral similarity, 

especially in the edges of different surface cover types. To obtain a more accurate land cover map, the 

misclassified patches of the land cover were visually and manually revised according to the high 
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resolution CCD images (acquired on 26 July) and the Google Earth imagery (on 3 September 2012). 

Finally, for the aim of this study, the refined 12 kinds of land classification types in the study area, of 

which most were different vegetables of small areas, were merged into 4 kinds (maize, vegetables, 

woods and non-vegetation types) in accordance with crop species and surface types, as shown in Fig. 1. 

Among the four land cover types, the non-vegetation types mainly contain two types of land surface 5 

cover, namely buildings and road; while the woods type consists of orchard and shelterbelt. 

3 Methodology  

3.1 Aggregation method combining footprint analysis and multivariate regression 

It is generally accepted that an average flux equals the area-weighted sum of the component fluxes 

emanating from individual land cover classes (Hutjes et al., 2010).  10 





n

k

kk FAF
1

                                                  (1) 

Where F is the total flux of any scalar (e.g. the sensible and latent heat flux in the case) for a specified 

area, Ak is the fractional coverage of an individual land cover class k within that area, Fk is the flux 

emanating from the individual land cover class k; n is the number of land cover classes that is 

distinguished in the specified area. 15 

The observed flux (Fobs) at height zm can be closely related to the true surface flux from upwind 

measurement point through the footprint function, in continuous form (Leclerc and Foken, 2014): 
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Here xobs , yobs are the site coordinates, zm is the effective observation height, defined as zm = z − d 

(where z is the sensor height, d the zero-plane displacement). The footprint function w(x, y, zm) 20 

describes the flux portion seen at (xobs, yobs, 𝑧𝑚). Equation (2) can be discretized for a uniform grid 

over a landscape, as in a land cover classification map based on satellite image, leaving out the height 
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dependence for simplification. Equation (2) becomes: 
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Where each pixel ∆x∆y of the map is assumed to be homogeneous, which is uniquely classified as 

belonging to class k. The fraction of the k-th land cover type in the footprint (fp) is then defined as: 


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,                                           (4) 5 

Combing Eq. (3) and Eq. (4), the multi-linear model for the flux becomes: 

kfp

n

k

kobs XFF ,

1


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                                               (5) 

A critical assumption under the flux aggregation method is that each land cover k (area Ak) is with a 

constant source strength (Fk). Thus, as Eq. (1), flux (F) for a specific area is a weighted aggregation of 

its various land cover classes. Base on multi-point tower flux measurements (Fobs), multiple linear 10 

regression equations can be formulated by overlaying flux footprint with land-cover map (Xfp,k) as 

follows Eq. (5). In this study, the multiple-linear regression method (using the ‘regress’ algorithm from 

the Matlab® statistical toolbox) determined the regression coefficients (estimates of the specific flux for 

each land cover class in the case, Fk) by minimizing the squared residuals. For each LAS path, the 

measured flux (e.g. sensible heat flux) can also be dis-aggregated into component flux by relevant 15 

footprint function as Eq. (5). This can be taken as a validation of the former step. 

The accuracy of this method is highly dependent on four aspects: (1) better flux data for all EC 

sites; (2) better land cover classification map; (3) more precise flux footprint analysis; (4) good flux and 

footprint data for LAS. So properly processed flux data, accurate high-resolution land cover map and 

appropriate footprint models are the foundation of formulating a better multiple linear regression. 20 

Sometimes, the established multi-linear regression equations may not be solvable. When suffered this 

problem, the classification accuracy of the used land cover map should be carefully checked, and the 
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selected footprint model should be verified whether it’s applicable. 

3.2 Footprint models 

The Eulerian analytical footprint model, which developed by Kormann and Meixner (2001), was 

used for estimating the single time flux footprint of EC measurements, due to its ease of use and wide 

range of stability as well as its numerical stability (Leclerc and Foken, 2014). Besides, as we have 5 

checked, its footprint estimates were in good agreement with the calculations of more sophisticated 

backward Lagrangian footprint models, such as the Kljun scheme (Kljun et al., 2002;Kljun et al., 2015). 

The footprint function w(x, y, z) can be expressed in terms of a crosswind integrated flux footprint 

function, f𝑦(x, z), and a Gaussian crosswind distribution function, 𝐷𝑦(x, y). The analytic solution of 

Kormann and Meixner (2001) is followed by Eq. (6). More details on the derivation of f𝑦(x, z) and 10 

𝐷𝑦(x, y) as well as the relevant parameters can be seen in Kormann and Meixner (2001). 
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The flux contribution source area of LAS measurements was estimated by combining the footprint 

function w(x, y, z)  for point flux measurement with the path-weighting function  W(𝑥)  of LAS 

(Meijninger et al., 2002). For equal sized transmitter and receiver apertures, this path-weighting 15 

function is symmetrical bell-shaped having a center maximum and tapering to zero at the transmitter 

and receiver end. For the LAS footprint calculation, the approach of Korman and Meixner (2001) was 

still used for the single-point footprint estimation. The equation of the LAS footprint function is that: 

dxzyyxxwxWf
x

x
LASLAS  

1

2

),,()(                                 (7) 

Where 𝑥1 , 𝑥2 are the positions of LAS receiver and transmitter, respectively. 𝑥 , 𝑦 represent the 20 

locations of points along the path of LAS. 𝑥′ , y′ are the coordinates of each of upwind points. 𝑧𝐿𝐴𝑆 is 

the effective height of LAS measurements. 

To obtain averaged flux footprint of EC measurements (e.g. daily, monthly etc.), the flux-weighted 

file:///F:/Analysis_HeiheZY/Footprint_Analysis/A%20paper/Paper_SCI_V1_0927.docx%23_ENREF_18
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footprint climatology method was applied for each pixel (Liu et al., 2016). The expression of the 

weighted footprint climatology is shown in Eq. (8). 

 
N

i

N

i

ic iFluxiFluxzyxwzyxw )()(),,(),,(                                 (8) 

Here 𝑖 denotes the timestep (e.g. 30 min), N is the total number of 30-min periods within the selected 

time frame (such as, daily scale),    𝑥(𝑖) is the EC observed flux at 𝑖 time-step (30-min ET in this 5 

case), w𝑖(x, y, z) represents every half-hourly footprint estimate calculated via Eq. (6). 

The inputs of the analytical footprint model mainly include the measurement height, wind direction, 

wind speed and the Obukhov length. The values of these parameters can be easily derived from flux 

tower measurements. The daily-averaged flux footprint of the EC observations was calculated by Eq. 

(8). Every half-hour flux contribution source area of LAS measurements was estimated via Eq. (7). The 10 

flux contribution of the total source area was set to 90 % for both EC and LAS measurements. The 

normalized daily-averaged footprint of ECs and half-hourly footprint estimates of LASs were separately 

overlaid with 1-m land cover map to determine the footprint-weighted contribution of each land cover 

classes to the measured flux from EC and LAS systems. 

3.3 Data processing flow of the determination of area-averaged fluxes  15 

The overall data processing flow for determining the area-averaged evapotranspiration over a 

heterogeneous land surface mainly includes three aspects (Fig. 2). 

Firstly, the spatial representativeness of 16 EC sites within the 5 × 5 km
2
 experimental area was 

quantitatively assessed by overlaying in-site flux footprint climatology with 1-m land cover map. 

Detailed analyses on this aspect are going to be presented in the following section. 20 

The second aspect was to evaluate the reliability of the established flux aggregation scheme 

through the area-averaged flux measured by LAS systems. Specifically speaking, based on footprint 

analysis and high-resolution land-cover map, the land cover specific flux was firstly dis-aggregated 
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from multiple EC flux measurements by performing a multiple linear regression analysis (Eq. 5). To 

obtain area-averaged fluxes representative for LAS source area, the EC dis-aggregated fluxes for all 

land cover classes were aggregated again according to the fractional weight of each land cover class in 

the LAS footprint (Eq. 4). Finally, the EC-aggregated fluxes were compared with LAS observations. 

At last, the area-averaged evapotranspiration over a heterogeneous land surface was estimated 5 

from multi-point EC flux measurements with the flux integration scheme that was developed and 

verified, as Eq. (1). 

4 Results and Discussion 

4.1 The characteristics of the surface heat and water vapor fluxes 

Figure 3 depicts the diurnal cycle of the sensible (Fig. 3a) and latent (Fig. 3b) heat fluxes at 10 

different sites on two clear days. Both of the two figures not only reveal the energy exchange of 

different sites but also the significant differences in the magnitude of the sensible- and latent heat fluxes 

between different surface types during the growing season. 

The sensible heat flux over residential area reached a maximum of about 150 W m
-2

 at afternoon 

and was higher than over the vegetated surfaces (H_ec4, Fig. 3a), while the latent heat flux was smaller 15 

compared with other sites, with maximum value of less than 300 W m
-2

 due to a certain fraction of 

sealed land surfaces (LE_ec4, Fig. 3b). 

Over the vegetated surfaces (orchard, vegetable, maize), the sensible heat flux was nearly less than 

100 W m
-2

 because of sufficient irrigation (Fig. 3a). The sensible heat flux over the three types of 

vegetation was also significantly different (Fig. 4a). There was also a difference in sensible heat fluxes 20 

among maize sites.  

Deviations in latent heat fluxes over different vegetation types were also found (Fig. 3b, Fig. 4b). 

The maize fields performed highly latent heat fluxes and lower sensible heat fluxes than the other two 

vegetated surfaces. One of the possible reasons is that both of the orchard area and the vegetable field 
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are rather sparse compared with the maize cropland during the crop growing period. The sensible heat 

flux for maize field sites was relatively small and even negative (e.g. site 10) in the midafternoon (Fig. 

3a) when the sensible heat was transported downward (known as the ‘oasis effect’). And the latent heat 

flux over maize cropland was quite large, with maximum value of up to 600 W m
-2

 (Fig. 3b). 

The values of the standard deviation (SD) of LE and H for 13 maize sites were about 43.3 W m
-2

 5 

and 8.4 W m
-2

, respectively. The result showed that the latent heat flux over maize cropland exhibited 

larger SD than the sensible heat flux, and it also indicated the LE differed between sites for same 

underlying surface (Fig. 4). This can be partly explained by the discrepancy in plant physiology and 

vegetation growing stage. 

The preliminary results indicated that the variability and difference in the surface energy fluxes 10 

between the HiWATER tower flux sites were really significant during the crop growth period. The 

differences in sensible and latent heat fluxes between maize field sites could be also noticed.  

4.2 Analysis of the representativeness of the multi-point EC flux measurements 

To further understand the variability of surface energy fluxes between different sites in a 

heterogeneous landscape, the footprint analyses for representativeness of EC sites were performed by 15 

superimposing flux footprint with high resolution land-cover map (Fig. 1). The fraction of land cover 

classes present in the daily-averaged footprint of each EC measurements is given in Fig. 5. Given the 

source area (90 % flux contribution) of the 4 ECs (sites 5, 8, 13 and 16) on 30 June 2012 exceeded the 

extent of land cover map, the spatial representativeness of the 4 EC sites was not shown in Fig. 5b. 

Due to the variations in the observation height, atmospheric stability, wind direction and wind 20 

speed, the exact shape and size of the EC source area were distinctly different (Fig. 1). For each EC flux 

measurements, there was more than one type of land cover in its footprint. The contribution of each land 

cover classes to the total measured flux was changed with the varying source area (Fig. 5). 

The dominated surface types in the source area were vegetable and orchard at sites 1 and 17, 
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respectively. For site 4, however, there were mainly three types of land cover within its source area, 

namely non-vegetation, maize and woods type. The fractional weight of the non-vegetation type and 

maize field in the footprint greatly varied, while the proportion of woods was almost changeless. 

At maize field sites, the relative contribution of maize field to the EC measured flux was 

approximately more than 0.9, except for sites 2, 9 and 10. At site 2, the percentage of non-vegetation 5 

type in the footprint was almost 0.18. For site 9, the rate of maize and non-vegetation type present in 

footprint significantly varied. The contribution of vegetable type to the flux measurements at site 10 

ranged from 0.15 to 0.1.  

The above analysis shows that the tower flux measurements at the field scale are generally 

representative of multiple surface types. The result indicates that the latent and sensible heat fluxes 10 

measured by EC systems are representative of the averaged fluxes, which are determined by weighting 

the upwind surface flux emanating from individual land cover classes with flux footprint. In general, it 

may be problematic to validate the model estimated fluxes by direct comparison with point flux 

measurements over a heterogeneous land surface. Thus, the extension of multiple tower-based flux 

observations to pixel/grid scale is urgently needed for the validation of model estimates of surface flux. 15 

4.3 Evaluation of the EC aggregated fluxes 

The determination of area-averaged fluxes from point measurements is usually not straightforward, 

especially for heterogeneous land surfaces. Based on multi-point EC flux measurements and accurate 

1-m land cover map, a flux aggregation method for obtaining area averaging of fluxes was established 

with footprint analysis and multivariate regression. Fig. 1 shows that all types of land covers present in 20 

the LAS source area, therefore the LAS measurements can be taken as reference to assess the feasibility 

of the developed integration scheme. 

The first step was to dis-aggregate the specific flux for all land cover classes from EC flux 

observations via the flux integration scheme. The diurnal cycle of the EC dis-aggregated sensible heat 
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fluxes for each land cover types is highly significant (Fig. 6). Then, the EC dis-aggregated fluxes for 

four land-cover classes were aggregated again to obtain area-averaged fluxes. Fig. 7 illustrates a 

scatterplot of 30-min averaged sensible heat fluxes estimated from EC flux matrix (hereafter referred as 

H_ECagg) versus LAS measurements (H_LAS), as well as the linear regression parameters (including 

equations and R
2
). The different statistics between H_ECagg and H_LAS are listed in Table 3. 5 

For LAS 1 (see Fig. 7a and Table 3), a good agreement is found between EC aggregated fluxes and 

LAS measurements, with high correlation coefficient and low RMSE value (R
2
= 0.79, RMSE= 0.96 W 

m
-2

). The scatter points in the graph are nearly close to the 1:1 line. The MBE and MAPE values were 

4.25 W m
-2

 and 9.93 %, respectively. 

Compared with LAS 1, there was a little scatter between LAS measured fluxes and estimates from 10 

multiple EC flux observations for LAS 2, but yielding a small mean bias error (MBE = 2.31 W m
-2

) (Fig. 

7b, Table 3). RMSE and MAPE values of LAS 2 were little higher than of LAS 1, with values of 6.91 

W m
-2

 and 16.39 %, respectively. Slight part of urban areas distributed in the path of LAS 2 (Fig. 1). 

For LAS 3 (Fig. 7c, Table 3), there was a slightly weak relationship between sensible heat fluxes 

derived from LAS and multi-point EC flux observations, with correlation coefficient (R
2
) of 0.57 and 15 

RMSE, MAPE as well as MBE values of 17.63 W m
-2

, 31.7 % and -18.01 W m
-2

, respectively. The 

negative value of MBE indicates that the 30-min area-averaged sensible heat fluxes aggregated from 

EC flux measurements were quite underestimated against the H of LAS 2. As shown in Fig. 7c, the 

scatter points were overall below the 1:1 line. There is more large area of residential areas randomly 

distributing in the central path of LAS 3 than other three LAS systems (Fig. 1). 20 

In Fig. 7d, the area-averaged sensible heat fluxes obtained using the flux aggregation method were 

consistent with LAS measurements, with R
2
 of 0.57 for LAS 4. In contrast with LAS 3, the scatter 

points in this graph were almost above the 1:1 line (overestimate of EC estimated H, MBE > 10 W m
-2

). 

RMSE value of LAS 4 relatively decreased by 4.88 W m
-2

, but MAPE value was up to 33.7 % (Table 3). 

Large proportion of area in the LAS 4 source area was occupied by woods and vegetable types as well 25 
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as urban area (Fig. 1), which to a large extent ranged with the variation of wind direction. 

The above findings show, above the more homogeneous areas, there is a good agreement between 

EC aggregated fluxes and LAS measurements, while great discrepancy between them occurred in the 

more urban areas. For the maize dominated areas, the unclosure of the energy balance is surely low, but 

this is not the case for the more urban area and the orchard site. The EBR for site 4 and site 17 over 5 

heterogeneous areas exhibited low values. This may be the one factor attributing to the bias.  

The energy balance closure of the HiWATER flux dataset was influenced by surface heterogeneity, 

which may result in large eddies or organized circulation structures (Xu et al., 2017). The energy flux 

from large eddies or secondary circulations cannot be captured by single-point EC measurements but be 

measured via LAS system (Foken, 2008;Foken et al., 2010). Thus, the LAS observations might be able 10 

to close to the surface energy balance better than the EC method (Foken et al. 2010). 

In the study, only three stations had another dominant land cover (site 1, 4 and 17). Especially for 

urban area that occupied much more part of the area, the sensible heat flux for non-vegetation type 

disaggregated from site 4 might be insufficient representative for the flux from sealed buildings and 

roads that are part of non-vegetation type. The divergence between modeled and measured flux may 15 

partly be attributed to this deficit. 

Overall, the above results demonstrate that, compared with the area-averaged fluxes measured by 

LAS systems, the area-averaged fluxes that are aggregated from multiple EC flux measurements using 

the established flux aggregation method are reliable. Therefore, the developed flux integration schemes 

in this study can be an effective way to estimate the area averaging of fluxes. 20 

4.4 Estimation of area-averaged evapotranspiration 

The flux aggregation scheme, which was established and evaluated in Sect. 4.3, was adopted to 

determine the area-averaged ET over the study area with multi-point EC flux measurements and high 

resolution land-cover map. The EC dis-aggregated daily ET for all land cover types over two clear days 
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was shown in Fig. 8. As can be seen, the daily ET values for maize field were highest (7 mm – 8 mm) 

during the crop growing season. The value of daily ET was 6.4 mm for woods type, and it ranged from 

6 mm to 7 mm for vegetable field. On the contrary, the daily ET for non-vegetation type varied largely, 

with values of 2.8 mm on 29 June and 1.5 mm on 30 June, respectively.  

The daily ET maps at 1-m resolution were produced through the dis-aggregated daily ET for all 5 

land cover classes, combined with the 1-m land classification map. Fig. 9 depicts the spatial pattern of 

daily ET on 29 and 30 June 2012. It can be seen from the legend in figure, the daily ET ranged from 

1.56 to 7.95 mm during the two days, with higher values on 29 June (Fig. 9a) than on 30 June (Fig. 9b).  

Table 4 lists the total ET for different land cover classes and their proportion of the total area ET. 

The total ET for our study area was almost 169620 m
3
 per day on 29 June, while it was about 152940 10 

m
3
 per day on 30 June. The results demonstrated that the ratio of ET for maize field to the total area ET 

was in excess of 80 %. In addition, the total rate of ET for both woods and vegetables types was 

approximately 13 %, and the ET value for non-vegetation type accounted for 4.83 % of daily totals on 

the average. 

Finally, the area-averaged ET over the kernel experimental area of HiWATER was estimated, with 15 

values of approximately 7.01 mm day
-1

 on 29 June and 6.32 mm day
-1

 on 30 June 2012.  

5 Summary and conclusions 

On the basis of 1-m accurate land cover map and multi-point ground-based flux measurements 

from 16 EC systems and 4 groups of LAS systems during the intensive observation period of HiWATER 

program, the area-averaged surface fluxes over a heterogeneous surface were determined using a flux 20 

aggregation method, which was established through the integration of footprint analysis and multiple 

linear regression, and compared with the LAS measurements to assess the reliability of the flux 

integration method. Ultimately, the integration method was applied to estimate area-averaged ET over 

the study area. 
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Robust quality-control and uncertainty-estimation for the EC and LAS data, done through careful 

data-processing and inter-comparison as well as assessment of the energy balance closure, make sure 

the accuracy of the flux dataset used in data analysis. Moreover, the combination of footprint analyses 

for the representativeness of EC flux measurements and high-resolution land cover map can be a 

practical way for the deep interpretation of the surface fluxes over different land surfaces, and it is also 5 

the foundation for the establishment of the flux aggregation algorithm. 

With high-quality flux dataset (EC & LAS), precise flux footprint estimates and accurate land 

cover classification map, a flux aggregation method can be successfully established by multivariate 

regression, and it achieves the goal of determining the area-averaged fluxes over heterogeneous areas 

from the EC flux matrix, according to the LAS measured fluxes. However, the agreement between the 10 

results of the flux integration method and the measurements of LAS systems partly relates to the 

heterogeneity of land surface resulting in the energy imbalance in EC measurements and may partly 

attribute to the insufficient distribution of flux stations under urban areas. 

In spite of the limitations mentioned above, the current flux integration scheme provides a unique 

opportunity to disentangle the heterogeneous land surface fluxes in their single components, and the 15 

dis-aggregation process has the potential to scale up multiple EC measurements to an oasis landscape, 

even to a whole river basin. Besides, compared with the formerly used and rather simple approaches 

(e.g. the arithmetic average and area-weighted methods), present scheme is not only with a much better 

database but also has a solid grounding in physics and mathematics in the integration of area-averaged 

fluxes over a heterogeneous surface. Results from this study, such as daily ET at the satellite pixel scale, 20 

can be applied for the validation of flux estimates of meso-γ scale (1 ~ 20 km) models. Furthermore, 

this work will be extended to the water balance study of the whole Heihe River basin, which is quite 

interested for hydrological modeling and basin water resource management. 
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Table 1 Details of the eddy covariance systems in the HiWATER flux matrix 

Site No. Longitude (°) Latitude (°) Elevation (m) Turbulence sensors Sensor height (m) Surface type 

1 100.3582 38.8932 1552.75 Gill/Li7500A 3.8 Vegetables 

2 100.35406 38.88695 1559.09 CSAT3/Li7500 3.7 Maize 

3 100.37634 38.89053 1543.05 Gill/Li7500A 3.8 Maize 

4 100.35753 38.87752 1561.87 CSAT3/Li7500A 4.2/ 6.2 after 19 Aug. Residential area 

5 100.35068 38.87574 1567.65 CSAT3/Li7500 3.0 Maize 

6 100.3597 38.87116 1562.97 CSAT3/Li7500A 4.6 Maize 

7 100.36521 38.87676 1556.39 CSAT3/Li7500A 3.8 Maize 

8 100.37649 38.87254 1550.06 CSAT3/Li7500 3.2 Maize 

9 100.38546 38.87239 1543.34 Gill/Li7500A 3.9 Maize 

10 100.39572 38.87567 1534.73 CSAT3/Li7500 4.8 Maize 

11 100.34197 38.86991 1575.65 CSAT3/Li7500 3.5 Maize 

12 100.36631 38.86515 1559.25 CSAT3/Li7500 3.5 Maize 

13 100.37841 38.86076 1550.73 CSAT3/Li7500A 5.0 Maize 

14 100.3531 38.85867 1570.23 CSAT3/Li7500 4.6 Maize 

15 100.37223 38.85555 1556.06 CSAT3/Li7500A 4.5/ 34  Maize 

16 100.36411 38.84931 1564.31 Gill/Li7500 4.9 Maize 

17 100.36972 38.8451 1559.63 CSAT3/EC150 7.0 Orchard 
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Table 2 Details of the Large Aperture Scintillometers in the HiWATER flux matrix 

Site Longitude (°) Latitude (°) LAS type, Manufactures Path length(m) Effective height (m) 

LAS 1 
North 100.35090 38.88413 BLS900, Scintec, Germany 3256 33.45 

South 100.35285 38.85470 RR9340, Rainroot, China 3256 33.45 

LAS 2 
North 100.36236 38.88256 BLS900, Scintec, Germany 2841 33.45 

South 100.36171 38.85717 BLS450, Scintec, Germany 2841 33.45 

LAS 3 
North 100.37319 38.88338 BLS900, Scintec, Germany 3111 33.45 

South 100.37223 38.85555 LAS, Kipp&zonen, Netherland 3111 33.45 

LAS 4 

North 100.37841 38.86076 BLS450, Scintec, Germany 1854 22.45 

South 100.36840 38.84682 RR9340, Rainroot, China 1854 22.45 
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Table 3 Different statistics between LAS observed flux and EC aggregated flux at LAS sites 

LAS sites RMSE [W m
-2

] MBE [W m
-2

] MAPE [%] 

LAS1 0.96  4.25  9.93  

LAS2 6.91  2.31  16.39  

LAS3 17.63  -18.01  31.70  

LAS4 12.75  10.66  33.70  
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/ , Pi is EC aggregated value，Oi is LAS observed value， O  is the 

mean measured value, n is the number of samples. RMSE is root mean square error, MAPE is mean absolute percentage error, MBE is the 

mean bias error.   
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Table 4 ET for each land cover classes and their proportion of the kernel experimental area ET 

Land cover class 
Area 

[km
2
] 

2012/06/29 2012/06/30 

ET [×10
3
 m

3 
d

-1
] 

ET proportion  

of total ET [%] 
ET [×10

3
 m

3
 d

-1
] 

ET proportion  

of total ET [%] 

Maize 17.42 138.43 81.61  127.24  83.20  

Woods 1.96 12.78  7.53  12.59  8.23  

Vegetables 1.20 8.27  4.88  7.48  4.89  

Non-vegetation 3.62 10.14  5.98  5.63 3.68  
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Fig. 1 The land cover map of the kernel experiment area of HiWATER 2012. The small red circles represent the 90 % flux 

contribution source area of EC sites, and the large blue circles covering different land cover classes indicate the source area 

of LAS sites on 29 June 2012 
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EC matrix flux: 

Fobs 

Overlay with 1-m  land cover 

map 
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Fig. 2 Schematic illustration of data processing steps; LC = land cover class; SA = source area; H = sensible heat flux; LE = 

latent heat flux; ET = evapotranspiration 
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Fig. 3 Diurnal cycle of the sensible heat fluxes (a) and latent heat fluxes (b) between different sites on 29 and 30 June 2012 
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Fig. 4 Diurnal cycle of the mean sensible (a) and latent (b) heat fluxes for 13 maize field sites and different types of 

vegetation, the errors bars are the standard deviation  
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Fig. 5 The fractional weight of each land cover classes in the daily averaged flux footprint of each EC flux measurements on 

29 and 30 June 2012 
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Fig. 6 The diurnal cycle of the sensible heat flux for each land cover classes on 29 and 30 June 2012 
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Fig. 7 The comparison between LAS observed fluxes (X axis) and EC aggregated fluxes (Y axis)  
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Fig. 8 The dis-aggregated daily ET of each land covers in the kernel experimental area of HiWATER on 29 and 30 June 2012 
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Fig. 9 Spatial distribution of averaged daily ET in the kernel experimental area of HiWATER 


