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We would like to thank the referee for the helpful comments. Below we provide our response to the 

reviewer’s comments and describe the modifications made to address them. In black font we include the 

reviewer’s comments, and in blue is our response. 

 

Manuscript entitled "Comparing Intensity–Duration–Frequency (IDF) curves derived from CMORPH 

and radar rainfall estimates over the Eastern Mediterranean" has been reviewed. In the paper, the authors 

compared IDF curves from radar and CMORPH in different climatic regions. They found that radar 

shows thicker tail distributions than CMORPH across the Eastern Mediterranean. The authors do not 

present a new tool. However, the manuscript is well organized. I divided my review into general 

comments and specific ones. 

We would like to thank the referee for the detailed review. 

This paper aims at advancing knowledge on the use of remote sensed data for rainfall frequency analysis 

in the form of IDF curves. The intent of this study is not to present a new “tool” for IDF estimation, but 

explore the use of remotely sensed precipitation from high-resolution satellite precipitation products vs. 

the more standard gauge-adjusted ground radar-rainfall fields. The use of standard tools for IDF 

estimation is crucial to avoid methodological issues masking out the results. To our knowledge this is 

the first study in which at-site IDF curves derived from different gridded datasets (from completely 

different sensors; with and without gauge-based adjustment) are compared. This approach strongly 

reduces the (spatial) scale issues related to the comparison of point and areal estimates, that hampered 

the research so far and potentially opens the way to apply remote sensing for deriving IDFs in data poor 

areas. 

In order to make this aspect clearer, we modified the title of the manuscript to: “Intensity–Duration–

Frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over 

the Eastern Mediterranean” and revised introduction as follows: “Since quantitatively accurate 

information is essential for design applications and the derivation of IDF curves based on historical 

records does not require short latency in the data, these studies made use of gauge-adjusted products 

and assessed the accuracy of the IDF curves derived from remote sensing datasets using rain gauge 

curves as a reference. However, this approach neglected two important aspects. First, early warning 

systems, e.g. for flash floods (Borga et al., 2011; Villarini et al., 2010; Borga et al., 2014), 

landslides/debris flows (Tiranti et al. 2014; Borga et al., 2014; Segoni et al., 2015) or heavy rain 

(Panziera et al. 2016), need to operate in real-time and rely on short-latency remote sensed 

measurements. In these situations, calculating the frequency of near real-time estimates using IDF curves 

derived from gauge-adjusted data could provide misleading results. It is therefore useful to analyse the 

characteristics of IDF curves derived from non-adjusted rainfall data, which are expected to represent 

the frequencies of near real time estimates. Second, areal IDFs provided by remote sensing instruments 

are expected to differ from point IDFs (Peleg et al., 2016a), and the use of different records (i.e. different 

samples of the climate) introduces further differences. No exact match between remote sensing and rain 

gauge IDFs should be expected a priori […] To the authors’ knowledge this is the first study in which 

at-site IDF curves derived from different gridded remote sensing datasets are compared”. [this will be 

recalled in the answer to reviewer’s second comment]. 

 

General comments: 

 

1) The Koppen-Geiger classification used are not mentioned or described in section 2.1. 

Thank you for pointing this out. We introduced the classification in section 2.1 as: “Three climatic 

regions, Mediterranean, semiarid and arid, can be identified in the area, corresponding to the Csa, BSh 



and BWh Koppen-Geiger definitions, respectively (Peel et al., 2007). The criteria used to define the 

classes are reported in Table 1. In this study, we follow the classification by Srebro et al. (2011).”  

 

2) The lack of precision on the applied data leads to misunderstand some results: if the authors are using 

adjusted CMORPH gauge, what’s the reason for analysis the unadjusted CMORPH data (in the same 

spatiotemporal resolution). I think there is something missing to clarify the methodology. 

Thank you for raising this important issue – also shared by reviewer 2. As underlined in the general 

response, our introduction failed to emphasize the importance of using both the gauge-adjusted and un-

adjusted versions of the satellite product (CMORPH, is this case). The gauge adjustment is expected to 

improve satellite estimates on average at the cost of having this improved product with several days of 

latency, which does not allow the use in real time applications. Furthermore, we would like to mention 

that there are regions on earth where there are no ground based sensors to adjust the satellite precipitation 

datasets. Hence, the natural question by the reviewers: ‘why are you using the non-adjusted product in 

an application that is based on historical data rather than real time estimates?’ The answer lies in the 

different requirements of the applications that make use of IDF curves: hydrologic design needs optimal 

quantitative accuracy, so evaluating unadjusted data is important for demonstrating uses of satellite 

precipitation in ungauged areas; early warning systems need to correctly identify the frequency of near 

real-time estimates. We updated text in the introduction to better motivate our study as mentioned above 

in the general response to the reviewer, and we recalled the concept in the conclusions, adding a new 

point: “Comparison of HRC-IDF and CHRC-IDF against radar-IDF show consistent patterns of 

correlation and dispersion, and different biases. This means that gauge-adjustment influences the 

magnitude rather than the space-time organization of annual extremes and suggests that HRC-IDF can 

potentially be used to estimate the frequencies of CMORPH estimates in near real time early warning 

systems.” 

In addition to this, it is interesting to note that the performance of gauge-adjustment on extremes is 

affected by the different measurement scales of remote sensing instruments and rain gauges. Moreover, 

the impact of gauge-adjustment over ungauged areas is rarely quantified, especially for extremes and 

potentially introduces non homogeneity in space due to different gauge density data. 

 

[We group here two comments dealing with the same topic]. 

3) How is spatial (upscaled) data thought to affect precipitation (mainly IDF for return periods)? It is not 

clear to the readers without background knowledge of the appropriate upscaling method over the study 

area. Does an adopted upscaling approach perform better than some other techniques (this may not be 

necessary, but it should be discussed at least)? 

7) Is there any physical link that could impacts on estimations due to different spatial resolution?  

Thank you for raising these questions. The relation between point and areal extreme rainfall is the subject 

of research for a long time. As explained in the introduction, the reason for this interest is that the classic 

approach derives IDF curves from point data (gauges) while for many applications the areal information 

(e.g. in a catchment scale) is required. The classic tool for converting point to areal information is the 

Areal Reduction Factor (ARF) method, already mentioned in the manuscript. We think that discussion 

on ARF methods is beyond the scope of this paper since it focuses on areal gridded information from 

remote sensing datasets: no upscaling method is used, no ARF is provided. However, we added text in 

the introduction to improve this aspect, also providing a useful reference: “In principle, areal reduction 

factors may depend on a number of factors, such as geographic location, characteristics of the examined 

catchment, analysed duration and period, season, meteorological conditions, and others (Svensson and 

Jones, 2010). Their derivation is thus hampered by many sources of uncertainty.” 

 



4) Any thoughts on the reason why upscaling data is only found significant on the shape parameter 

(Section 4.1.1)? Maybe I am missing something in this part, but that is my understanding 

Upscaling data significantly affects the location and scale parameters (“The location and scale 

parameters, as expected, consistently decrease as the spatial and temporal aggregation scales are 

increased and are not reported here”). The impact of spatial aggregation on mean and dispersion of the 

GEV distribution is related to the spatial smoothing of the extreme rainfall fields. This causes a decrease 

of the location and scale parameters. As in the case of ARFs, this decrease depends on a number of 

factors, which are difficult to isolate, and whose investigation falls out of the scope of this study. 

Conversely, the impact of spatial aggregation on the shape parameter can be easily assessed with the data 

in our possession and provides useful insights to the community. We revised the sentence to make it 

clearer: “The location and scale parameters consistently decreased as the spatial and temporal 

aggregation scales increased. This is an expected effect, caused by the smoothing of rainfall fields 

operated by the spatial averaging, therefore results are not reported in this paper. Conversely, it is 

interesting to analyse the shape parameter.”. 

In general, we believe that improving our knowledge on the interpretation of areal precipitation 

information is key for the future research in the field.  

 

5) On the same subject, what is the CMORPH spatial upscaling (downscaling) impacts on precipitation? 

We thank the reviewer for the question. The rationale for using weather radar data, rather than CMORPH 

data, for this analysis is twofold: (a) CMORPH estimates, even if provided at ~8 km resolution, are 

derived from coarser resolution PMW retrievals, so the relatively-small scale spatial structures are 

difficult to be captured with this product; (b) radar data allows to explore a broader range of scales. 

Following the suggestion by the reviewer, we repeated the same analyses (starting from 8 km gridsize) 

using the CHRC data. The decrease of shape parameters with gridsize is less marked, but confirmed. 

Conversely, shape parameters slightly increased with duration: they are almost uniform for 8 km gridsize 

(between 0.14-0.16) and increase from ~0.02 (1h) to ~0.14-0.15 (12h-24h) for 64 km. The variations are 

less marked than in the radar case, since the shape parameters from CMORPH are already low. We 

however think that CHRC provides less accurate information, due to the point (a) above. 

 

6) Why overload figures with features with the insufficient discussion in the text (e.g., Lack of enough 

discussion for location and scale parameters or for a different time interval in Fig 4)? 

We thank the reviewer for this comment. We revised Fig. 2 showing the distribution of the scale 

parameters normalized over the corresponding location parameters (dispersion normalized over the 

mean). The text in section 4.1 is subsequently revised as follows: “Location parameters from HRC 

(CHRC) estimates are smaller (larger) than the ones from radar over Mediterranean climate and over 

the sea, meaning that extreme values from HRC (CHRC) are in general lower (higher) than radar 

extreme values while in semiarid and arid climates HRC and CHRC generally identify higher parameters 

than the radar (i.e. higher extreme values). Differences in the location parameters can be associated to 

the bias between extreme values in the datasets. The scale parameters are normalized over the 

corresponding location parameters to appreciate the relative differences. Normalized scale parameters 

from HRC and CHRC are similar and lower than the ones derived from radar. Normalized scale 

parameters, together with their variability, tend to increase when moving from sea to Mediterranean, 

semiarid and arid climates. The drier climate, the larger the dispersion of the GEV distribution. A slight 

increase of the normalized scale parameters with duration can be noticed in the HRC/CHRC data”. 

 

6b) The figures axis could be improved if the authors want to make it clear to the reader. Also, I suggest 

the same size intervals in Y-axis (e.g., Fig 2&4). 



[We moved here one of the specific comments of the reviewer that concerned the same issue:  It is also 

suggested to present the parameter variation against the time by a linear representation that could help 

the readers to grasp the message from the figures.] 

Thanks for the suggestion. The figure was revised. A linear scale on the duration axis is not recommended 

due to the almost logarithmically equi-spaced differences between the examined durations. Instead we 

used a logarithmic scale in the duration axis in order to improve the information provided by the figure 

and included the x-axis labels in all panels. Caption was then updated accordingly: “The parameters for 

different products are represented around the corresponding duration so the logarithmic scale in x-axes 

should be interpreted accordingly” 

 

7) [Moved above]. We kindly refer to the reply to comment 3. 

 

8) Some unnecessary materials: in my opinion, it is completely unnecessary to have Figure 9, when it is 

already well-known that the uncertainties increase for longer return period. 

[We move here one of the specific comments of the reviewer that concerned the same issue: - Why Fig 

9 presented? It is well known that confidence in a return level decreases rapidly when the period is more 

than about two times the length of the original data set. Fig 9 could be removed.] 

Uncertainty increases with return period. As underlined by the reviewer, this is well known and expected. 

However, our objective is to quantify the uncertainty due to the use of a reduced record for different 

climates and different record lengths. In fact, the information provided by Fig. 9 and 10 is more than 

“uncertainties increase for longer return period”: it includes (i) quantitative information (ii) for different 

climates and (iii) for different record lengths. Fig. 9 only reports 3 examples among many, but we think 

is it useful for the reader to better understand the message underlying Fig. 10.  

 

9) Finally, I would like to draw your attention to a somewhat old, but still relevant, review on methods 

to IDF and DDF curves and their uncertainties that might have some valuable lessons in it: Aart Overeem, 

Adri Buishand and Iwan Holleman, Journal of Hydrology, 2008, 348, pp 124-134 

We thank the reviewer you for the suggestion. The suggested paper, actually still up-to-date, helped in 

this revision process and is now cited in the new version of the manuscript. 

 

Specific Comments: 

 

Page 5- Line 15: 

- I would expect to introduce parameters and explain a little bit how they were computed. 

- It is not clear which method used for estimating the GEV distribution parameters by maximum 

likelihood. 

- The assumptions regarding the convenience of the GEV to represent the AMS distribution through the 

Fisher-Tippett theorem, as well as calculation procedures, would be useful to present in the Appendix. 

We thank the reviewer for these comments. We would like to point out that we used an established 

extreme values distribution (GEV) and derived the distribution parameters using one of the most 

commonly used methods (maximum likelihood). Details on these methods can be found in textbooks 

(e.g. Coles, 2001) and in the references provided in the text. Our contribution does not advance 

knowledge on this aspect. 

As the reviewer suggested, the parameters need to be introduced in the main text. Therefore, we updated 

text in section 3.1 as follows: “The GEV distribution is a three parameters extreme values distribution 

used worldwide to model rainfall extremes (e.g. Fowler and Kilsby, 2003; Gellens, 2002; Koutsoyiannis, 

2004; Overeem et al., 2008). It is described by the location, scale and shape parameters, representing 



mean, dispersion and skewness of the distribution, respectively. […] At-site GEV parameters (i.e. pixel 

by pixel) were identified using the maximum likelihood method (MATLAB statistics toolbox).” 

As suggested, Appendix was revised to include information on the convergence of extreme values 

distributions to the GEV: “Under hypotheses on the regularity of the tail of the distribution, the Fisher-

Tippet theorem demonstrates that GEV distribution is the only possible limit distribution for the extreme 

values of independent and identically distributed random variables.” 

 

- The bootstrap was applied to assess this uncertainty of record length. This method considers only the 

uncertainty for the return periods (it’s my understanding). What about the uncertainty of the estimation 

of the GEV parameters (i.e. sampling errors)? 

The MATLAB statistics toolbox used in this study provides the confidence interval of the derived GEV 

parameters. However, the uncertainty of estimation of the GEV parameters is not the subject of this study.  

Overeem et al. (2008) and Overeem et al. (2009) have proposed the bootstrapping of the data series used 

for the GEV fit to identify the uncertainty related to the fit. Perhaps this approach used in the past 

motivates the question by the referee. 

In sections 3.3 and 4.4 of this study, we are assessing the uncertainty related to the record length, i.e. to 

the under-sampling of rainfall climatology. To do so, as mentioned by the reviewer, we devised the 

bootstrap approach based on long records of rain gauge data, that are here assumed to represent the 

variability of extreme rainfall climatology (section 3.3: “We assumed the records of rain gauge data to 

be a complete sample of the climatology of extremes for return periods comparable to the remotely sensed 

data record length”). The bootstrapped approach consists in three steps: (i) randomly sampling the AMS, 

(ii) deriving the GEV parameters and (iii) deriving the IDF values for selected return periods. The record 

length-related uncertainty in the GEV parameters is implicitly calculated (as 5-95th quantile interval) as 

a necessary step of the bootstrapping. 

 

Page6- Line 12: 

- Figure 2: Estimates of the GEV parameters could be present by Box-Whisker plot that obtained from 

999 bootstrap samples, as well for 25th and 75th percentiles of the bootstrap samples. 

We think the reviewer misunderstood Fig. 2. The figure shows the 25-75th quantile interval of the set of 

parameters obtained from pixels characterized by the examined climate, i.e. the 25-75th quantile interval 

among the number of pixels reported in Table 1. No bootstrap is performed here. We prefer to keep the 

quantile interval bars rather than using a box plot (i) because the number of elements in each climatic 

class is different and (ii) for consistency with Fig. 3 and with the use of quantile intervals we adopted 

throughout the paper. 

 

It is also suggested to present the parameter variation against the time by a linear representation that 

could help the readers to grasp the message from the figures. 

[Moved above]. We kindly refer to comment 6b above for more information. 

 

- How are different climatic regions thought to affect precipitation (location and scale parameters)? It 

should be discussed at least (regarding figure 2). 

Thank you for making this point. We revised section 2.1 by inserting the following statement: “Important 

gradients have been reported also for the climatology of extreme rainfall. Low return period intensities 

were found to be scaled with the mean annual precipitation. Conversely, the more arid the climate is, the 

more skewed the extreme value distribution is, with long return period intensities for arid areas being 

higher than the corresponding values for semiarid and Mediterranean areas, especially for short 

durations (Ben Zvi, 2009; Marra and Morin, 2015).” 

 



Page 6- 

- The location and scale parameters are not addressed in details. It is not clear to the reader without 

background knowledge of the GEV df. 

Thank you for making this point. We added text to recall the meaning of the parameters and to be more 

explicit: “We recall here that the scale, location and shape parameters provide a measure of the mean, 

dispersion and skewness of the underlying distribution, respectively. Location parameters from HRC 

(CHRC) estimates are smaller (larger) than the ones from radar over Mediterranean climate and over 

the sea, meaning that extreme values from HRC (CHRC) are in general lower (higher) than radar 

extreme values while in semiarid and arid climates HRC and CHRC generally identify higher parameters 

than the radar (i.e. higher extreme values). Differences in the location parameters can be associated to 

the bias between extreme values in the datasets. The scale parameters are normalized over the 

corresponding location parameters in order to appreciate the relative differences. Normalized scale 

parameters from HRC and CHRC are similar and lower than the ones derived from radar. Normalized 

scale parameters, together with their variability, tend to increase when moving from sea to 

Mediterranean, semiarid and arid climates. The drier climate, the larger the dispersion of the GEV 

distribution. A slight increase of the normalized scale parameters with duration can be noticed in the 

HRC/CHRC data.” 

 

Page 8- 

- I am totally lost. What’s the link between section 4.4 with previous sections? 

This section presents results on the quantification of uncertainty related to the record length of remote 

sensing datasets, introduced in section 3.3. To make things clearer we added a short introductory sentence 

to the section: “In this section, we present the results of the bootstrap sampling of long rain gauge records 

used to quantify the uncertainty related to the record length of remote sensing datasets. The uncertainty 

presented here is the component related to the under-sampling of rainfall climatology due to the use of 

short data records and is quantified as the 5–95th quantile interval of the bootstrap sampling.” 

 

Page 12- Line 13: 

- Sorry if I missed this, how is the coverage of upscaled radar and CMORPH pixels? Are they exactly 

the same? Please, explicitly specify their spatial coverage. 

Page 12 actually contains references, so we are not sure we understood what the reviewer is referring to 

(page 7?). We think that the reviewer can be either asking about each “upscaled” radar and CMORPH 

pixel, information that can be found in section 3.1 (page 5, lines 11-12): “In order to have radar and 

satellite data on a common grid suitable for the comparison, the full archive of hourly radar data was 

remapped by spatially averaging the 1×1 km2 radar pixels to the corresponding ~8×8 km2 CMORPH 

pixels” or about the areal coverage of the comparison, which is reported in section 3.2 (page 5, lines 24-

27): “The comparison is extended over an analysis domain defined excluding the pixels that are known 

to be not reliable. In particular, pixels located closer than 27 km or farther than 185 km from the radar 

or behind the hilly region are excluded due to insufficient reliability of the radar data, and pixels located 

in proximity of major lakes are excluded due to false rainfall signals in the CMORPH rainfall estimates”. 

 

Page 18- 

- What’s the dashed line in Fig 2 for shape parameter? 

The dashed lines showed the “0” value. We propose to remove it in order to make the figure clearer. 

 

Page 20- 

- Appendix A. The legend and description in caption do not show similar things (check). 



We guess this comment also refers to both Fig. 4 and 6. We apologize for this; the captions will be 

updated. 

 

Page 25- 

- Why Fig 9 presented? It is well known that confidence in a return level decreases 

rapidly when the period is more than about two times the length of the original data 

set. Fig 9 could be removed. 

[Moved above]. Please, see our response to comment 8 above. 
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