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Abstract. Detailed physical models describing root water uptake (RWU) are an important tool for the prediction of RWU

and crop transpiration, but involved hydraulic parameters are hardly-ever available, making them less attractive for many

studies. Empirical models are more readily used because of their simplicity and lower data requirements. The purpose of this

study is to evaluate the capability of some empirical models to mimic the RWU distribution under varying environmental

conditions predicted from numerical simulations with a detailed physical model. A review of some empirical models used as5

sub-models in ecohydrological models is presented, and alternative empirical RWU models are proposed. The parameters of

the empirical models are determined by inverse modelling of simulated depth-dependent RWU. The simulated scenarios give

more insight into the behaviour of the physical model, especially under wet soil conditions and high potential transpiration rate.

The performance of the empirical models and their optimized empirical parameters depend on the scenario. The largely used

empirical RWU model by Feddes only performs well in scenarios with low root length density R, i.e. for the scenarios of low10

RWU “compensation”. For medium and high R, the Feddes RWU model cannot mimic properly the root uptake dynamics as

predicted by the physical model. The RWU model by Jarvis provides good predictions only for low and medium R scenarios.

For highR, the Jarvis model cannot mimic the uptake patterns predicted by the physical model. Incorporating a newly proposed

reduction in the Jarvis model improved RWU predictions. The proposed models are more capable of predicting similar RWU

patterns by the physical model. The statistical indices point them as the best alternatives to mimic RWU predictions by the15

physical model.

1 Introduction

The rate at which a crop transpires depends on atmospheric conditions, the shape and properties of the boundary between crop

and atmosphere, the root system geometry, and crop and soil hydraulic properties. The study and modelling of the involved

interactions is motivated by the importance of transpiration for global climate and crop growth (Chahine, 1992) as well as by20

the role root water uptake (RWU) plays in soil water distribution (Yu et al., 2007). The common modelling approach introduced

by Gardner (1960), referred to as microcoscopic or mesoscopic (Raats, 2007), is not readily applicable to practical problems

due to the difficulty in describing the complex geometrical and operational function of root system and its complex interactions
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with soil (Passioura, 1988). However, it gives insight into the process and allows developing upscaled- physical macroscopic

models (De Willigen and van Noordwijk, 1987; Heinen, 2001; Raats, 2007; De Jong van Lier et al., 2008, 2013).

In many one- and two-dimensional problems, macroscopic RWU is modelled as a sink term in the Richards equation, whose

dependency on water content or pressure head is usually represented by simple empirical functions (ex. Feddes et al. (1976,

1978); Lai and Katul (2000); Li et al. (2001); Vrugt et al. (2001); Li et al. (2006)). Most of these models are derived from the5

Feddes et al. (1978) model, which consists of partitioning potential transpiration over depth according to root length density and

applying a stress reduction function of piecewise linear shape — defined by five threshold empirical parameters — to account

for local uptake reduction. Results of experimental studies (Arya et al., 1975b; Green and Clothier, 1995, 1999; Vandoorne

et al., 2012) and the development of physically based-models (De Jong van Lier et al., 2008; Javaux et al., 2008) have helped

in understanding the mechanism of RWU as a non-local process affected by non-uniform soil water distribution (Javaux et al.,10

2013). Accordingly, a plant can increase water uptake in wetter soil layers in order to compensate for uptake reductions in dryer

layers to keep transpiration rate at potential rate or mitigate transpiration reduction. Several empirical approaches have been

developed over the years to account for this so-called compensation mechanism (Jarvis, 1989; Li et al., 2002, 2006; Lai and

Katul, 2000). These models have been incorporated into larger hydrological models and tested at site-specific environments,

showing improved predictions for, e.g., soil water content and crop transpiration (ex. Braud et al. (2005); Yadav et al. (2009);15

Dong et al. (2010)). Comparisons with physically-based models (Jarvis, 2011; de Willigen et al., 2012) implicitly accounting

for compensation showed that models that do not account for compensation, like Feddes et al. (1978), are less accurate with

respect to crop transpiration and soil water content predictions.

Recently, De Jong van Lier et al. (2013) developed a mechanistic model for predicting water potentials along the soil-root-

leaf pathway, allowing the prediction of RWU and crop transpiration. This model was incorporated in the eco-hydrological20

model SWAP (Van Dam et al., 2008) by employing a piece-wise function between leaf pressure head and relative transpiration,

reducing the number of empirical parameters compared to other relations (ex. Fisher et al. (1981)). Besides parameters describ-

ing soil hydraulic properties and root geometry, this new model requires information about root radial hydraulic conductivity,

xylem axial conductance and a limiting leaf water potential. Although conceptually interesting, the difficulty to obtain the

required input parameters makes the model less attractive for routine applications.25

Empirical RWU models are more readily used because of their relative simplicity and lower data requirements. On the

other hand, their empirical parameters do not have a clear physical meaning and cannot be independently measured. Their

limitations under varying environmental conditions are quite incomprehensible and not well established. For the case of the

Feddes et al. (1978) transpiration reduction function, indeed, threshold values are available in literature (Taylor and Ashcroft,

1972; Doorenbos and Kassam, 1986) for some crops and some levels of transpiration demand. Nevertheless, experimental30

(Denmead and Shaw, 1962; Zur et al., 1982) and theoretical (Gardner, 1960; De Jong Van Lier et al., 2006) studies indicate

that these parameters do not depend only on crop type and atmospheric demand, but are also determined by root system

parameters and soil hydraulic properties. Furthermore, there are only very few analyses of the validity of these values, and

they cannot be used for other models (ex. the Jarvis (1989) model) due to differences in model concepts. Therefore, more

accurate values for crops accounting for more environmental factors are necessary in order to apply these models in wider35
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scenarios. Due to the great number of models developed over the years, it is paramount to investigate some of these models

before attempting to determine their parameters.

The general purpose of this study is to evaluate the capability of some empirical models to mimic the dynamics of RWU

distribution under varying environmental conditions performed in numerical experiments with a detailed physical model (De

Jong van Lier et al., 2013). The detailed physical model accounts for resistances from the soil to the leaf. We first review some5

empirical RWU models that have been employed in ecohydrological models and suggest some alternatives. By determining

the parameters of the empirical models by inverse modelling of simulated depth-dependent RWU, it becomes clear to which

extent the empirical models can mimic the dynamic patterns of RWU.

2 Theory

RWU and crop transpiration are linked through the continuity principle for water flow in the soil-plant-atmosphere pathway:10

Ta =
∫

zm

S(z)dz (1)

where Ta (L) is the crop transpiration and S (L3L−3T−1) is the root water uptake, dependent on crop properties and soil

hydraulic conditions, a function of soil depth z (L), and zm (L) the maximum rooting depth. Eq. 1 neglects the change of water

storage in the plant, which is justified for daily scale predictions, assuming that plants rehydrate to the same early morning

water potentials on successive days (Taylor and Klepper, 1978).15

In a macroscopic modelling approach, RWU is calculated as a sink term S in the Richards equation, which for the vertical

coordinate is given by:

∂θ

∂t
=

∂

∂z

[
K(θ)

(∂h
∂z

+ 1
)]
−S (2)

where θ (L3 L−3) is the soil water content, h (L) the soil water pressure head, K (L T−1) the soil hydraulic conductivity, t (T)

the time and z (L) the vertical coordinate (positive upward). To apply eq. 2, an expression for S is needed. Physical equations20

in analogy to Ohm’s law have been suggested (see the review of Molz (1981) for examples) as well as expressions derived

by upscaling microscopic models (De Willigen and van Noordwijk, 1987; Feddes and Raats, 2004; De Jong van Lier et al.,

2008, 2013). Alternatively, simple empirical models requiring less information about plant and soil hydraulic properties have

also been proposed and are more commonly used. Most of these models use the Feddes approach (Feddes et al., 1976, 1978),

formulated as:25

S(z) = Sp(z)α(h[z]) (3)

where α(h) is the RWU reduction function, defined by Feddes et al. (1978) as a piece-wise linear function of h (Fig. 1).

According to this approach, a reduction in S due to α(h[z])< 1 directly implies a transpiration reduction, making α(h) to be

called as transpiration reduction function. Sp is the potential RWU, which is determined by partitioning potential transpiration
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Tp over depth. Several ways to estimate Sp have been proposed (Prasad, 1988; Li et al., 2001; Raats, 1974; Li et al., 2006), but

it is most common to distribute Tp according to the fraction of root length density R (L3L−3):

Sp(z) =
R(z)∫

zm

R(z)dz
Tp = β(z)Tp (4)

where β (L−1) is the normalized root length density.

Different functions to calculate α have been suggested, normally considering α a function of θ (ex. Lai and Katul (2000);5

Jarvis (1989)), of h (ex. Feddes et al. (1978)) or of a combination of both (Li et al., 2006). Using h seems to be more feasible

because of its relation to soil water energy and the fact that obtained parameters of such a function would be more likely

applicable to different soils. Some reduction functions, generally associated to reservoir models for soil water balance, cor-

relates RWU to the effective saturation. Regarding the shape of the reduction curve, they can be smooth non-linear functions

constrained between wilting point and saturation or piece-wise linear functions, but they all have more than one empirical pa-10

rameter. The parameters of the smooth non-linear functions allow easy curve fitting, whereas in the piece-wise functions they

stand for the threshold at which RWU (or crop transpiration) is reduced due to drought stress, which has been an important

parameter in crop water management.

Metselaar and De Jong van Lier (2007) showed that for a vertically homogeneous root system the shape of α is linearly

related nor to soil water content neither to pressure head. A linear relation to the matric flux potential, a composite soil15

hydraulic function defined in eq. 5, is physically more plausible and was experimentally shown by Casaroli et al. (2010).

Matric flux potential is defined as

M =

h∫

hw

K(h)dh (5)

where hw is the soil pressure head at wilting point. Accordingly, a more suitable expression for α would be a piece-wise linear

function of M (Fig. 1). RWU can then be calculated by the Feddes model (eq. 3) by replacing its reduction function for water20

deficit by the alternative illustrated in Fig. 1.

2.1 Physically based root water uptake model

By upscaling earlier findings (De Jong Van Lier et al., 2006; Metselaar and De Jong van Lier, 2007) of water flow towards

a single root in the microscopic scale disregarding plant resistance to water flow, De Jong van Lier et al. (2008) derived the

following expression for S:25

S(z) = ρ(z)(Ms(z)−M0) (6)

where Ms is the bulk soil matric flux potential, M0 the value of M at root surface and ρ(z) (L−2) a composite parameter,

depending on R and root radius r0:

ρ(z) =
4

r20 − a2r2m(z) + 2[r2m(z) + r20] ln[arm(z)/r0]
(7)
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where rm(=
√

1/πR) (L) is the rhizosphere radius — defined as the half distance between neighbouring roots— and a the

relative distance from r0 to rm where water content equals bulk soil water content. In De Jong van Lier et al. (2013), this model

is extended by taking into account the hydraulic resistances to water flow within the plant. Dividing water transport within the

plant into two physical domains (from root surface to root xylem to leaf), assuming no water changes within the plant tissue

and by coupling eq. 6 for water flow within the rhizosphere, they derived the following expression relating water potentials and5

Ta:

h0(z) = hl +ϕ(Ms(z)−M0(z)) +
Ta
Ll

(8)

where Ll (T−1) is the overall conductance over the root-to-leaf pathway and hl (L) the leaf pressure head. Notice that S can

be calculated by eq. 6 upon solving eq. 8. ϕ (T L−1) is defined as:

ϕ(z) =
ρr2m(z) ln

r0
rx

2Kroot
(9)10

where Kroot (L T−1) is the radial root tissue conductivity (from root surface to root xylem) and rx (L) the xylem radius. Ta is

a function of hl, which was defined piece-wisely by imposing a limiting value hw on hl:

Tr =





1 : hl > hw

0≤ Tr ≤ 1 : hl = hw

0 : hl < hw

(10)

where Tr (= Ta/Tp) is the relative crop transpiration. Crop water stress, a condition for which Ta < Tp, is defined at the crop

level (Tardieu, 1996) and onsets when hl = hw. Because Ta and hl are unknowns, eq. 8 and 10 cannot be solved analytically,15

but an efficient numerical algorithm is described in De Jong van Lier et al. (2013).

Fig. 2 helps to understand how RWU is distributed over depth. hl can be regarded as a crop level measure of water deficit

stress over the whole root zone: as soil gets drier, hl is reduced, which increases the driving force for RWU (see RWU for the

several values of hl in Fig. 2). As soil pressure head hs decreases, high uptakes are only achieved by lower hl. For a certain

hl value, RWU is substantially reduced as hs decreases. If hl is not reduced as hs gets lower, S becomes negative (negative S20

is not shown in Fig. 2, but it is part of an extension of each curve) and water will flow from root to soil. This situation occurs

when parts of the root zone are wetter and RWU from these parts satisfies transpiration demand, and hl is not reduced.

Fig. 2 also shows that RWU is sensitive to both R and hs, and that it can be locally balanced by the R and soil water content.

Under homogeneous soil water distribution, RWU is partitioned proportionally to R. For non-homogeneous conditions, RWU

for lower R can be the same for higher R depending on the stress level (indicated by hl) and the hs (see Fig. 2). This is in25

agreement with experimental results reported by several authors (Arya et al., 1975b, a; Green and Clothier, 1995; Verma et al.,

2014) who found less densely-rooted but wetter parts of the root zone to correspond to a significant portion of RWU when more

densely-rooted parts of the soil are drier, allowing the crop to maintain transpiration at potential rates. Due to empirical model

concepts that employ only R for predicting RWU distribution over depth (for nonstressed conditions), these results have been

interpreted as due to a mechanism labelled “compensation” by which uptake is “increased” from wetter layers to compensate30
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the “reduction” in the drier layers (Jarvis, 1989; Šimůnek and Hopmans, 2009). Clearly, this compensation concept is based

on a reference RWU distribution based on R and is only relevant in empirical models. In physical models, discriminating

compensation becomes less important since in such models “compensation” follows implicitly from the RWU mechanism.

In order to account for RWU pattern changes due to heterogeneous soil water distribution (the so-called “compensation”),

several empirical models have been developed over the years. These models follow the general framework of the Feddes et al.5

(1978) model given by eq. 3. Below we review these models and present a new empirical alternative.

2.2 Empirical root water uptake models accounting for compensation

2.2.1 The Jarvis (1989) model

Jarvis (1989) defined a weighted-stress index ω (0≤ ω ≤ 1) as

ω =
∫

zm

α(z)β(z)dz. (11)10

where, differently from Feddes et al. (1978), α was defined as a function of the effective saturation. In principle, any definition

of α is applicable in eq. 11, and in this paper we will refer to the Feddes et al. (1978) reduction function unless mentioned.

Whereas Feddes et al. (1978) assume the RWU reduction directly to reflect in crop transpiration reduction, the Jarvis (1989)

approach employs a so-called “whole-plant stress function” given by:

Ta
Tp

= min
{

1,
ω

ωc

}
(12)15

where ωc is a threshold value of ω for the transpiration reduction. Substituting eq. 3 and 4 into eq. 1 (the continuity principle)

and combining with eq. 12, results in:

S(z) = Spα(z)α2, where α2 =
1

max
{
ω,ωc

} (13)

where α2 is called the compensation factor of RWU, distinct from the Feddes model (eq. 3) and which can be derived by

defining Ta by eq. 12. In the Jarvis (1989) model, α accounts for local reduction of RWU and transpiration reduction is20

computed by eq. 12. When ω = 1, there is no RWU reduction (α= 1 throughout the root zone) and the model prediction is

equal to the Feddes model. For ωc < ω < 1, uptake is reduced in some parts of the root zone (as computed by α < 1) but the

plant can still achieve potential transpiration rates by increasing RWU over the whole root zone by the factor α2. When ω < ωc,

the uptake is still increased by the factor α2 but the potential transpiration rate cannot be met. The threshold value ωc places

a limit on the plant’s ability to deal with soil water stress. When ωc tends to zero, eq. 12 tends to 1, and the plant can fully25

compensate uptake and transpire at the potential rate provided that α > 0 at some position within the root zone.

An analogy to stomata functioning is described by eq. 12 (Jarvis, 1989, 2011), putting this model in a more physical context.

However, operational and physical limitations of this model have been raised (Skaggs et al., 2006; Javaux et al., 2013). The

model introduces an additional parameter (ωc), which should be determined by inverse modelling and is dependent on atmo-

spheric demand, rooting properties (usually related to root length density) and soil type. Another difficulty is the conceptual30

6

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-59, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 16 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



limitation raised by Skaggs et al. (2006), who showed that the model does not mimic compensation properly and affronts the

definition of α, as can be noticed by analysing eq. 13: RWU is reduced by α, but increased by the factor 1/max[ω,ωc], making

the interpretation of α obscure. Another limitation is the linking of compensation to crop stress, making it to fail in predicting

compensation under wet condition with a heterogeneous soil pressure head distribution (Javaux et al., 2013).

Using the piece-wise linear Feddes reduction function for α, care must be taken in setting up and interpreting the threshold5

parameters of this function. The Feddes et al. (1978) model does not account for compensation, and the threshold pressure

head value below which RWU is reduced (h3) also represents the value below which transpiration is reduced, making h3

values from literature usually to refer to this interpretation. Comparing to the Jarvis model, the transpiration reduction only

takes place when ω < ωc, and soil pressure head in some layers is already supposed to be more negative than h3, which means

that h3 in Jarvis (1989) model is less negative than the equivalent in the Feddes model. In that sense, h3 for the Jarvis (1989)10

model is hard to determine experimentally. Inverse modelling by optimizing outcomes of soil water flow models with measured

values of field experiments is an option.

Comparison to the De Jong van Lier et al. (2008) model

The Jarvis (1989) model was shown to be “numerically” identical to De Jong van Lier et al. (2008) physical model, but only

under limiting hydraulic conditions (Jarvis, 2010, 2011). We briefly review this similarity and its implications on the empirical15

concept of the Jarvis (1989) model.

De Jong Van Lier et al. (2006) derived eq. 6 for describing RWU. Crop transpiration is obtained by integrating eq. 6 over

zm as defined in eq. 1, leaving two unknowns: M0 and Ta. In order to solve for these, De Jong van Lier et al. (2008) defined

Ta as a piece-wise function as follows:

Ta
Tp

= min

{
1,
Tpmax

Tp

}
(14)20

where Tpmax (L T−1) is the maximum possible transpiration rate attained when M0 = 0, given by:

Tpmax =
∫

zm

ρ(z)M(z)dz. (15)

From eq. 14 when Tpmax < Tp, drought stress occurs and Ta = Tpmax . Under this condition, pressure head at the root surface

reaches hw→M0 = 0 and S(z) becomes:

S(z) = ρ(z)M(z). (16)25

When Tpmax > Tp, Ta = Tp (no drought stress) and M0 (> 0) is given by:

M0 =

∫

zm

ρ(z)M(z)dz −Tp
∫

zm

ρ(z)dz
(17)

7

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-59, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 16 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



Jarvis (2011) observed the similarities between eq. [14] and [12] of the models. Notice also the algebraic similarity between

ω (eq. 11) and Tpmax (eq. 15). Thus, Jarvis (2010) showed that both models provide the same results for the stressed phase if α

and β(z) are defined as follows:

α=
M

Mmax
(18)

5

β =
ρ(z)∫

zm

ρ(z)dz
(19)

where Mmax is the maximum value of M (i.e., at h= 0). By substituting eq. [18] and [19] into eq. 15 and comparing eq. 12

with eq. 14, ωc is found to be equal to:

ωc =
Tp

Mmax

∫

zm

ρ(z)dz
(20)

Substitution of eq. [18] to [20] into eq. [12] and [11] results in eq. 16 of De Jong van Lier et al. (2008) model for stressed10

condition. Consequently, both models provide the same numerical results. For unstressed condition, analogous substitution

results in:

S(z) = ρ(z)M(z)
Tp

Tpmax

=
ρ(z)M(z)∫

zm

ρ(z)M(z)dz
Tp (21)

Eq. 21 is different from eq. 6 and, therefore, the models cannot be correlated for these conditions. The Jarvis (1989) model

predicts RWU by a weighting factor between ρ andM throughout rooting depth. Definingα and β by eq 18 and 19, respectively,15

allowed to correlate both models only for stressed conditions. These definitions and the resulting model will be further analysed.

2.2.2 The Li et al. (2001) model

Li et al. (2001) proposed to distribute potential transpiration over the root zone by a weighted stress index ζ, being a function

of both root distribution and soil water availability:

ζ(z) =
α(z)R(z)λ∫

zm

α(z)R(z)λdz
(22)20

where α (-) and R (L L−3) were previously defined and the exponent λ is an empirical factor that modifies the shape of RWU

distribution over depth. The smaller λ, the more water is taken up in deeper soil layers. Thus, Sp is given by:

Sp = ζ(z)Tp (23)
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and RWU is calculated by substituting eq. 23 into eq. 3, following the Feddes approach.

Defining Sp as function of root length density and soil water availability distribution is an alternative to the Jarvis (2011)

model. Compensation is directly accounted for by the weighted stress index in eq. 22. However, the choice of α to represent

soil water availability in eq. 22 does not mimic properly the compensation mechanism. Compensation may take place before

transpiration reduction. Using α in eq. 22 means that compensation will only take place after the onset of transpiration reduction5

when α in one or more layers is less than unity. The λ parameter may also be interpreted as to account for compensation under

non-stressed condition. Compensation, however, and shape of RWU distribution are likely to change as soil dries. A constant

λ can not account for that.

2.2.3 The Molz and Remson (1970) and Selim and Iskandar (1978) models

Decades before Li et al. (2001), Molz and Remson (1970) and Selim and Iskandar (1978) had already suggested to distribute10

potential transpiration over depth according to root length density and soil water availability. Instead of using α to account for

soil water availability, they used soil hydraulic functions. The weighted stress index was defined as

ζ(z) =
Γ(z)R(z)∫

zm

Γ(z)R(z)dz
(24)

where Γ is a soil hydraulic function to account for water availability. Molz and Remson (1970) used soil water diffusivity

D (L2T−1), and Selim and Iskandar (1978) used soil hydraulic conductivity K (LT−1) for Γ in eq. 24. RWU is then calculated15

by substituting eq. 24 into eq. 23 and then into eq. 3 following the Feddes approach.

These models may better represent RWU and compensation than the Li et al. (2001) model. The compensation is implicitly

accounted for by means of Γ in ζ. In drier soil layers, Γ is reduced, whereas in wetter soil layers Γ is increased, thus increasing

RWU in these layers before the onset of transpiration reduction. Heinen (2014) compared different types of Γ in eq. 24 such as

the relative hydraulic conductivity (Kr =K/Ksat), relative matric flux potential (Mr =M/Mmax) and others. He found that20

using different forms of Γ provides very different patterns of RWU, but did not indicate a preference for a specific one.

2.2.4 Proposed empirical model

In describing soil water availability, the matric flux potential M may be a better choice than K or D, since it integrates K and

h or D and θ (Raats, 1974; De Jong van Lier et al., 2013). We propose a new weighted stress index, defined as:

ζm(z) =
RλM(h)∫

zm

RλM(h)dz
(25)25

The exponent λ provides additional flexibility on distribution of TP over depth as was shown by Li et al. (2001).
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3 Material and Methods

Table 1 summarizes the empirical RWU models evaluated in this study. They all follow the basic Feddes model (eq. 3), but

diverging on how RWU is partitioned over rooting depth or how α is defined. For each model, except for Jarvis (2010), we

defined a modified version by substituting the Feddes reduction function by the proposed reduction function (Fig. 1b), and

these modified versions were also evaluated. The threshold values of the Feddes et al. (1978) reduction function for anoxic5

conditions (h1 and h2) were set to zero. The value of the parameter h4 was set to −150 m. The other parameters of the models

were obtained by optimization as described in section 3.2.

All these models were embedded as sub-models into the ecohydrological model SWAP (Van Dam et al., 2008) in order to

solve eq. 2 and to apply it for all kind of soil water flow conditions. Different scenarios of root length density, atmospheric

demand and soil type (described in section 3.1) were set up in order to analyse the behaviour and sensitivity of the models.10

Simulation results of SWAP in combination with each of the RWU models were compared to the SWAP predictions when

combined to the physical RWU model developed by De Jong van Lier et al. (2013).

The values of the De Jong van Lier et al. (2013) model parameters used in the simulations are listed in Table 2. The values

of Kroot and Ll are within the range reported by De Jong van Lier et al. (2013).

3.1 Simulation scenarios15

3.1.1 Drying-out simulation

Boundary conditions for these simulations were no rain/irrigation and a constant atmospheric demand over time. The simulation

continued until simulated crop transpiration by the physical RWU model approached zero. Soil evaporation was set to zero

making the soil to dry out only due to RWU or drainage at the bottom. Free drainage (unit hydraulic gradient) at the maximum

rooting depth was the bottom boundary condition. The soil was initially in hydrostatic equilibrium with a water table located20

at 1 m depth. We performed simulations for two levels of atmospheric demand given by potential transpiration Tp: 1 and 5

mm d−1. We also considered three types of soil and three levels of root length density, as described in the following.

3.1.2 Soil type

Soil date for three top soils from the Dutch Staring series (Wösten et al., 1999) were used. The physical properties of these

soils, described by the Mualem-van Genuchten functions (Mualem, 1976; Van Genuchten, 1980) for the K − θ−h relations,25

are listed in Table3. These soils are identified in this text as clay, loam and sand (Table 3).

3.1.3 Root length density distribution

Three levels of root length density were used, according to the range of values normally found in the literature. We considered

low, medium and high root length density for average crop values equal to 0.01, 0.1 and 1.0 cm cm−3, respectively. For

all cases, we set the maximum rooting depth zmax equal to 0.5 m. Root length density over depth z was described by the30
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exponential function:

R(zr) =R0(1− zr)exp−bzr (26)

where R0 (L L−3) is the root length density at the soil surface, b (-) is a shape-factor parameter and zr (= z/zmax) is the

relative soil root depth. The term (1− zr) in eq. 26 guarantees that root length density is zero at the maximum rooting depth.

The parameter R0 is hardly ever determined, whereas the average root length density of crops Ravg is usually reported in the5

literature. Assuming R of such a crop given by eq. 26, it can be shown that:

1∫

0

R0(1− zr)exp−bzr dzr =Ravg (27)

Solving eq. 27 for R0 and substituting into eq. 26 gives:

R(zr) =
b2Ravg

b+ exp−b−1
(1− zr)exp−bzr (b > 0) (28)

Fig. 3 shows R(zr) calculated from eq. 28 for different values of b and Ravg = 1 cm cm−3. As b approaches zero, eq. 2810

tends to become linear, however it is not defined for b= 0. In our simulations b was arbitrarily set equal to 2.0.

3.2 Optimization

The parameters of the empirical RWU models were estimated by solving the following constrained optimization problem:

minimize Φ(p) =
n∑

i=1

m∑

j=1

[S∗i,j −Si,j(p)]2

subjectto p ∈ Ω

(29)

where Φ(p) is the objective function to be optimized, S∗i,j is the RWU simulated by SWAP model together with the De Jong15

van Lier et al. (2013) model at time i and depth j and Si,j(p) is the corresponding RWU predicted by SWAP in combination

with one of the empirical models shown in Table 1. p is the model parameter vector to be optimized, constrained in the domain

Ω. Both p and Ω vary depending on the empirical RWU model used. Table 4 shows the parameters of each empirical RWU

model that were optimized and their respective constraints Ω.m and n are the number of soil layers and days of the simulation,

respectively. The Jarvis (2010) model has no empirical parameters and therefore requires no optimization.20

Eq. 29 was solved by using the PEST (Parameter ESTimation) tool (Doherty et al., 2005) coupled to the adapted version

of SWAP. PEST is a non-linear parameter estimation program that solves eq. 29 by the Gauss-Levenberg-Marquardt (GLM)

algorithm, searching for the deviation, initially along the steepest gradient of the objective function and switching gradually

the search to Gauss-Newton algorithm as the minimum of the objective function is approached. Upon setting PEST parameters

we made reference runs of SWAP with each empirical model using random values of p and assessed the ability of PEST for25

retrieving p. These reference runs served to set up properly PEST for our case. For high non-linear problems as the one in

eq. 29 GLM depends on the initial values of b. We used five random sets of initial values for p in order to guarantee that GLM

found the global minimum and also to check the uniqueness of the solution.
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The optimizations were performed for the drying-out simulation only. This guaranteed that RWU predictions from SWAP

corresponded to the best fit of each empirical models to the De Jong van Lier et al. (2013) model. This analysis aimed to

investigate the capacity of the empirical RWU models to mimic the RWU pattern predicted by the De Jong van Lier et al.

(2013) model. These optimized parameters were subsequently used to evaluate the models in an independent growing season

scenario.5

3.2.1 Growing season simulation

The models were evaluated by simulating the transpiration of grass with weather data from the De Bilt weather station, the

Netherlands (52◦06’ N; 5◦11 ’E), for the year 2006. The same root system distribution as in the drying-out simulations was

used, i.e. a crop with roots exponentially distributed over depth as eq. 28 (b= 2.0) down to 50 cm below soil surface. We also

performed simulations for the same three types of soils and root length densities. In all cases the crop fully covered the soil with10

a leaf area index of 3.0. Daily reference evapotranspiration ET0 was calculated by SWAP using the FAO Penman-Monteith

method (Allen et al., 1998). In SWAP model, a potential crop evapotranspiration ETp is obtained by multiplying ET0 by a

crop factor, which for the grass vegetation was set to 1 (Van Dam et al., 2008). ETp was partitioned into potential evaporation

Ep and Tp using parameter values for common crops given in SWAP model (see Van Dam et al. (2008) for details).

The values of the empirical parameters of each RWU model corresponding to the type of soil and root length density were15

taken from the optimizations performed in the drying-out experiment. Each parameter was estimated for two levels of Tp (1

and 5 mm d−1) and was linearly interpolated for intermediate levels of Tp. For Tp > 5 mm d−1 or Tp < 1 mm d−1, the values

estimated for these highest or lowest Tp values were used.

The bottom boundary condition was the same as in the drying-out simulations (free drainage). Initial pressure heads were

obtained by iteratively running SWAP starting with the final pressure heads of the previous simulation until convergence.20

4 Results and Discussion

4.1 Drying-out simulation

4.1.1 Root water uptake pattern: De Jong van Lier et al. (2013) model

In this section we first focus on the behaviour of the De Jong van Lier et al. (2013) model in predicting RWU for the evaluated

scenarios in the drying-out experiment. Fig. 4 shows the RWU patterns for the case of clay soil for the three evaluated root25

length densities R and the two levels of potential transpiration Tp. It can be seen how R and Tp affect RWU distribution and

transpiration reduction as soil dries out. The onset and shape of transpiration reduction is affected by the RWU pattern. For low

R, the low amount of roots in deeper layers is not sufficient to supply high RWU rates. When the upper layers become drier,

transpiration reduction follows immediately. Under medium and high R, the RWU front moves gradually downward as water

from the upper layers is depleted. For high R, the RWU front goes even deeper compared to medium R, and transpiration is30

sustained at potential rates for longer time (Fig. 4). Accordingly, the plant exploits the whole root zone and little water is left
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when transpiration reduction onsets, causing an abrupt drop in transpiration. Regarding Tp, the RWU patterns are very similar

for both evaluated rates, differing only in time scale: for high Tp the onset of transpiration reduction and the shift in RWU front

occur earlier. The patterns for the sand and loam soil (not shown here) show very similar features.

The leaf pressure head hl over time shown in Fig. 4 illustrates how the model adapts hl to R and Tp levels and soil drying.

Initially all scenarios have the same water content distribution and lower hl values are required for low R or high Tp scenarios5

to supply potential transpiration rates. As soil becomes drier, hl is decreased in order to increase the pressure head gradient

between bulk soil and root surface and thus maintaining RWU corresponding to the potential demands. Therefore, uptake in

wetter layers become more important. Transpiration reduction only onsets when hl reaches the limiting leaf pressure head hw

(=−200 m), after significant changes in the RWU patterns, characterized by increased uptake in deeper layers.

For the high Tp–low R scenarios, transpiration reduction starts at the first day of simulation although the soil is relatively10

wet. This is a case of transpiration reduction under non-limiting soil hydraulic conditions due to high atmospheric demand

(Cowan, 1965). For such conditions, the high water flow within the plant required to attend the atmospheric demand cannot

be supported by the root system with a low R and hydraulic parameters given in Table 2. Higher atmospheric demand (here

represented by Tp) increases the reduction of hl caused by the hydraulic resistance to water flow within the plant, and the

transpiration rate and RWU are a function of hl. The physical model assumes a parsimonious relationship (eq. 10) between15

transpiration and hl: transpiration rate is only reduced when hl reaches a limiting value hw, which corresponds to a maximum

possible transpiration rate Tp,max allowed by the plant for the current soil hydraulic and atmospheric conditions. Under non-

limiting soil hydraulic conditions, Tp,max is a function of root system properties and plant hydraulic parameters only (Table 2).

Fig. 5 shows Tp,max as a function of Kroot for some values of Ll with a constant soil pressure head in the root zone of -1 m

for the low R in the sandy soil. It can be seen that Kroot is limiting the crop transpiration and that Ll becomes important only20

when Kroot increases. The potential transpiration can be achieved by raising Kroot up to about 10 −7 m d−1. This can also be

achieved by decreasing hw (not shown in Fig. 5).

In the field, transpiration rate and root length density are related to each other: a high transpiration rate only occurs at high

leaf area and a high leaf area implies a high root length density. Thus, even in very dry and hot weather conditions, a crop with

a low R may not be able to realize high transpiration. Furthermore, crop transpiration depends on the stomatal conductance.25

In the De Jong van Lier et al. (2013) model, this is implicitly taken into account by the simple relationship between hl and Ta.

However, stomatal conductance is relatively complex and depends on several environmental factors such as air temperature,

solar radiation and CO2 concentration. Thus, high potential transpiration rate may not be achieved because of the stomatal

conductance reduction due to temperature or solar radiation. These results can be enhanced by the coupling of the De Jong van

Lier et al. (2013) model to stomatal conductance models, such as the Tuzet et al. (2003) model.30

4.1.2 Root water uptake pattern predicted by the empirical models

In this section, we evaluate the empirical RWU models (models and their abbreviations are listed in Table 1) based on the

comparison of RWU patterns and transpiration reduction over time with the respective predictions from the De Jong van Lier
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et al. (2013) model (VLM). All empirical model predictions are performed with respective optimized parameters as shown in

Table 5 and are discussed in section 4.1.4, thus representing the best fit with VLM.

The RWU patterns simulated by VLM and the empirical models for the scenario of sandy soil and high R are shown in

Fig. 6 and 7 for low and high Tp , respectively. Both versions of Feddes model (FM and FMm) predicted enhanced RWU from

the upper soil layers. When the pressure head (hs) (for FM) or soil matric flux potential (Ms) (for FMm) is greater than the5

threshold value for uptake reduction, these uptake patterns are equivalent to the vertical R distribution. For conditions drier

than the threshold value (when αf and αm are less than 1), the predicted RWU patterns by the models become different (Fig. 6

and 7).

After a period of reduced RWU, the length of which depends on R, Tp and h3, RWU from the upper soil layers predicted

by FM rapidly decreases to zero. This zero-uptake zone expands downward as soil dries out. On the other hand, the uptake10

predicted by FMm is substantially reduced right after the onset of transpiration reduction, proceeding at lower rates and a much

longer time until approaching zero. These features become evident by comparing the shape of both reduction functions (Fig. 8).

αm is linear with M after M >Mc, but it is concavely-shaped as a function of h — as also shown by Metselaar and De Jong

van Lier (2007) and De Jong van Lier et al. (2009). Thus, αm is abruptly reduced for M >Mc, causing substantial reduction

in RWU even when h is slightly below the threshold value. Therefore, RWU proceeds at low rates for longer time. Conversely,15

due to the linear shape of αf , RWU predicted by FM remains higher for a longer time after h < h3. No abrupt change in RWU

patterns is predicted by this model, especially when Tp is low (Fig. 6). When h comes close to h4, αf is still relatively high

and RWU continues, making h to rapidly approach h4. Another diverging feature between αf and αm, also shown in Fig. 8,

is that the shape of αm varies with soil type (regardless the value of its threshold parameter Mc), whereas αf does not. These

different features of the reduction functions also affect the matching values of the parameters as discussed below. The choice20

of the reduction function, however, affects transpiration curve over time only slightly, but RWU patterns are strongly affected

(Fig. 6 and 7).

The RWU patterns predicted by JM and JMm models can be very different, as shown by Fig. 6 for the high R–low Tp

scenario. In fact, the JM model did not predict any compensation at all because the optimal ωc was equal to unity (Table 5) —

thus becoming identical to FM — and the optimal h3 for JM and FM were similar. These high R–low Tp scenarios with a high25

R in deep soil layers allow RWU at higher rates when surface soil layers becomes drier (as predicted by VLM). Then, reducing

ωc in an attempt to predict compensation with JM makes RWU pattern to deviate even more from the VLM pattern. This is

illustrated in Fig. 6 and by the optimal h3 and ωc values shown in Table 5. In order to mimic the VLM uptake patterns, the

value of h3 for all soil types in this scenario was equal or close to zero. Decreasing h3 or ωc in order to simulate compensation

makes JM predicting higher uptake from upper layers, increasing the discrepancy between the models. The optimal ωc for30

all soil types was equal to 1 (in other words: no compensation). RWU in the upper layers predicted by VLM is substantially

reduced within a few days, whereas reducing ωc in JM model to predict compensation causes also an increase of uptake in

upper layers. The model, therefore, cannot mimic the scenarios with compensation evaluated here. Conversely, the JMm was

able to reproduce considerably well the VLM pattern for these scenarios due to the shape of αm as discussed above. As soon
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as M >Mc in the upper layers, RWU decreased at a higher rate, compensated by increasing uptake from the wetter, deeper

layers. This agrees more closely to VLM predictions.

For high Tp (Fig. 7), the JM model can predict compensation (ωc < 1), however its predicted RWU pattern is very different

from JMm and VLM. JM predicts a higher RWU near the soil surface for a longer period than the other models that account

for compensation. This makes soil water depletion to be more intense and RWU from these layers will cease sooner when hs5

becomes lower than h4. At this point, Ta is predicted to continue equal to Tp because of the low optimal ωc (= 0.19), which

increases RWU from the deeper layers where h > h4. JMm behaved very differently with uptake over the first few days (when

Ms >Mc) in accordance with R distribution. After M <Mc in upper soil layers,the RWU pattern started to change gradually

and RWU increased at lower depths.

The proposed models (PM and PMm ) are capable of predicting similar RWU patterns as VLM. For the low Tp–high R10

scenario (Fig. 6), RWU is more uniformly distributed over depth than in the VLM model for the first days and uptake from

upper layers is lower than that predicted by VLM model. For high Tp (Fig. 7), these models better represent RWU patterns and,

in general, there is not much difference in predictions of RWU between the proposed models. The shape of the transpiration

reduction over time however, is smoother than the VLM model. Concerning the relative transpiration curve, the proposed

models appear to be less precise than the other modes that account for RWU compensation.15

JMII does not mimic well the RWU pattern for the high R–low Tp scenarios. It overestimates uptake from surface layers

for the first days. Before the onset of transpiration reduction, uptake from upper layers becomes zero, but is compensated by

a higher uptake from deeper layers. The model is very sensitive to either R or M . For the high R–high Tp scenarios JMII

provides better uptake pattern predictions (Fig. 7). However, the model does not perform well in the other scenarios of low and

medium R (data not shown here), which will be discussed in section 4.1.3.20

4.1.3 Statistical indices

The performance of the empirical models was analysed by the coefficient of determination r2 and the model efficiency coef-

ficient E (Nash and Sutcliffe, 1970) calculated by comparing to the RWU and relative transpiration predicted by VLM. For

the low R–high Tp scenarios, the VLM predicts water stress (Ta < Tp) since the beginning of the simulation as discussed in

section 4.1.1. The empirical models (except for JM and JMm by setting ωc > 1) are not able to reproduce these results, thus25

these scenarios are not taken into account on analysing the performance of the models.

These statistical indices for the evaluated scenarios of each model are concisely shown by the boxplots in Fig. 9. The width

of whiskers indicates the range of the statistical indices for each model used in the evaluated scenarios. The outliers indicate

whether a model had different performance at some scenarios than its overall performance. Focusing first on RWU, it can be

easily seen the better performance of the proposed models. The performance of PM was just a bit poorer than PMm’s, showed30

by the presence of an outlier and lower medium. JMm performed as good as the proposed models, and only in two scenarios

it had bad performance as shown by the outliers in Fig. 9. The wider whiskers and presence of outliers of the others models

confirm their poorer performances.
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Among the models that account for RWU compensation, JM and JMII had the poorest performances. These models had

very low performances in the highR–low Tp scenarios and in general their performances were poorer for mediumR scenarios,

especially for low Tp. Thus, the use of αm to replace Feddes original reduction function αf in Jarvis (1989) model promotes

substantial improvements, especially from medium to high R scenarios. For low R scenarios all models performed well and

the highest values of the boxes in Fig. 9 usually refer to this scenario.5

On predicting transpiration all models accounting for compensation performed well, except JM. It can be noticed that JMII

performed much better on predicting transpiration than RWU. Similarly as for the RWU predictions, all models had their

poorest performance in the high R scenarios.

4.1.4 Relation of the optimal empirical parameters to R and Tp levels

The optimal values of the empirical parameters of all models (except for JMII that has no empirical parameters) for all scenarios10

(except for the high Tp–lowR scenario) are shown in Table 5. The threshold reduction transpiration parameters h3 andMc (for

FM and FMm, respectively) stands for the soil hydraulic conditions from which the crop cannot meet its potential transpiration

rate. Conceptually, the more the roots, the lower is h3 or Mc due to the larger root surface area for RWU, i.e. the crop can

extract water in drier soil conditions. Similarly, lower h3 andMc are expected for low Tp. This can also be deduced from Fig. 6

and 7 by means of the predictions of relative transpiration and RWU by VLM.15

The optimal h3 and Mc values (Table 5) for FM and FMm, respectively, increase as R or Tp increases, contradicting their

conceptual relation to R and Tp levels. In drying-out scenarios, soil water from top layers depletes rapidly due to the higher

initial uptake. As a result, uptake from these layer starts to decrease whereas RWU in deeper, wetter layers increases. The

higher the R, the more intense is this process as seen by the VLM predictions in section 4.1.1. Because FM and FMm do not

account for this mechanism, decreasing h3 or Mc in search for conceptually meaningful values would make these models to20

predict higher RWU at upper layers (in accordance with R distribution) for a longer period, increasing the discrepancy with

VLM predictions. Therefore, their best fitted values are physically without meaning due to the model assumptions.

In order to interpret the parameters in Table 5 for JM, one should first recall that α in JM stands for the local RWU reduction

due to soil resistance. Thus, its h3 parameter refers the local soil pressure at which RWU starts to reduce. It may be argued

that RWU reduction occurs in drier soil conditions as R increases, that is h3 is more negative for higher R (similarly as for25

FM and FMm). However, since JM accounts for compensation, RWU is interpreted as a non-local process, i.e. uptake in one

layer depends on water status and root properties from other layers (Javaux et al., 2013). Thus, JM’s h3 parameter is affected

by other parts of the root zone. Predictions by VLM show that RWU reduction from the upper layers starts at less negative soil

pressure head as R increases. Therefore, h3 in JM should increase as R increases. The values of h3 for JM shown in Table 5

agrees to this conceptual meaning. The JMm’s Mc parameter can be interpreted likewise.30

The JM’s ωc parameter values for the high R–low Tp scenarios equal 1, thus contradicting its conceptual meaning: as in

these scenarios the compensation mechanism is more intense, ωc should be less than one for the medium and high R scenarios.

The reason for ωc = 1 was discussed in section 4.1.2. Conversely, ωc values for JMm follow the conceptual meaning.
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The optimal parameters of the proposed models follow the logical relation to R and Tp. The l values for both models are

very close. The optimal l values are less sensitive to soil types and more sensitive to R.

4.2 Growing season simulation

By evaluating the RWU models under real weather conditions during a relatively dry year and considering the same soil types

and crop characteristics as for the drying-out experiment, it was possible to use the respective soil type and root length density5

specific calibrated parameters. We did not evaluate the models for the low R scenario because the empirical models (except

JM and JMm) were not not able to mimic those conditions for high Tp (section 4.1.1) . This evaluation is also important to

analyse whether calibration of an empirical model with a single drying-out experiment type results in consistent behaviour in

other circumstances.

Table 6 shows the cumulative actual transpiration simulated by SWAP using all the RWU models. Actual cumulative tran-10

spiration predicted by VLM for low R was much lower and approximately equal for the three soil types (40.45, 40.05 and

40.08 cm for clay, loam and sand soil, respectively). In fact, a higher R resulted in an increasing difference of cumulative

transpiration between soil types. Most water is extracted from the clay soil, followed by sand and loam. Little difference of

cumulative transpiration is found between medium and highR: for sand and clay soil, the cumulative transpiration was slightly

higher for high R and practically identical for the loam soil.15

Comparing cumulative Ta predicted by the empirical models with VLM predictions shows that the models that do not

account for compensation underestimate cumulative Ta from 2.0 % (medium R –sand soil scenario) to 13.9 % (high R–clay

soil scenario). Overall, the highest underestimates occurred for high R. All other models predict similar values. Therefore, for

total actual transpiration any of the evaluated models accounting for compensation might be suitable after calibration.

An overall analysis of the models performance is shown in Fig. 10. The best performances are from the models that account20

for compensation. An improvement of JM by using the proposed reduction function can be observed. Among the models

that account for compensation, JM had the worst performance. JMII also was poor in predicting RWU. Overall, the best

performances were also obtained by the proposed models (PM and PMm) and by the modified Jarvis (1989) model (JMm).

These results also indicate that the strategy to calibrate an empirical model in a single drying-out experiment is successful.

5 Conclusions25

Several simple RWU models have been developed over the years and here we outlined some of these models and also proposed

alternatives. Some of these models were embedded as sub-models into the eco-hydrological model SWAP (Van Dam et al.,

2008) and their evaluation was based on the comparison of RWU predictions performed by the physical De Jong van Lier

et al. (2013) model (also embedded into the SWAP model) for two numerical experiments with several scenarios of soil type,

root length density and potential transpiration. The parameters of the empirical models were determined by inverse modelling30

of simulated RWU. The simulated scenarios allowed insight into the behaviour of the De Jong van Lier et al. (2013) model,

especially under wet soil conditions and high potential transpiration. We found that for the low R–high Tp scenarios the De
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Jong van Lier et al. (2013) model predicts crop transpiration reduction in wet soil conditions. For such cases, the maximum crop

transpiration rate is dependent on crop hydraulic parameters, especially the radial root hydraulic conductivity. More insight into

these results may be obtained by coupling the De Jong van Lier et al. (2013) physical model with stomatal conductance models.

Regarding the performance of the empirical models we conclude:

• The widely-used Feddes et al. (1978) empirical RWU model performs well only under circumstances of low root length5

density R, that is for the scenarios of low root water “compensation”. From medium to high R, the model cannot mimic

properly the RWU dynamics as predicted by the De Jong van Lier et al. (2013) model, resulting in very poor predictions.

Besides, the optimized h3 values are counterintuitive when interpreting their conceptual meaning. Using our proposed RWU

reduction function (the FMm model) does not improve performance either.

• The Jarvis (1989) model provides good predictions only for low and medium R scenarios. For high R, the model cannot10

mimic the RWU patterns predicted by the De Jong van Lier et al. (2013) model. Using our proposed reduction function (the

JMm model) helps to improve RWU predictions. Similarly, the JMII model does not perform well for highR–low Tp scenarios.

• The proposed models are capable of predicting RWU patters similar to those obtained by the De Jong van Lier et al.

(2013) model. The statistical indices point them as the best alternatives to mimic RWU predictions by the De Jong van Lier

et al. (2013) model.15

• The simulations for a growing season experiment confirmed these findings, suggesting that a single experiment of soil

drying-out is sufficient to analyse the performance of RWU models and retrieve their empirical parameters by defining the

objective function in terms of RWU.
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List of tables

Table 1. Summary of empirical models used. αf and αm are the Feddes et al. (1978) (Fig. 1a) and proposed reduction functions (Fig. 1b),

Sp (eq. 4) is the potential root water uptake, ω (eq. 11) and ωc are the weighted stress index and threshold value in Jarvis (1989) model and

ζm (eq. 25) is the weighted stress index in the proposed models.

Model Acronym Equation

Feddes et al. (1978) model FM S(z) = Spαf

Modified Feddes et al. (1978) model FMm S(z) = Spαm

Jarvis (1989) model JM S(z) = Sp
αf

max{ω,ωc}

Modified Jarvis (1989) model JMm S(z) = Sp
αm

max{ω,ωc}

Jarvis (2010) model JMII Eqs. 11 to 13 with parameters given by eqs. 18 to 20

proposed model I PM S(z) = ζmTpαf

proposed model II PMm S(z) = ζmTpαm
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Table 2. Values of the parameters of De Jong van Lier et al. (2013) model used in the simulations.

Parameter Value Unit

r0 0.5 mm

rx 0.2 mm

Kroot 3.5 · 10−8 m d−1

Ll 1 · 10−6 d−1

hw -200 m
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Table 3. Mualem-van Genuchten parameters for three soils of the Dutch Staring series (Wösten et al., 1999) used in simulations. θs and θr

are the saturated and residual water content, respectively; Ks is saturated hydraulic conductivity and α, λ and n are fitting parameters.

Staring soil ID Textural

class

Reference in

this paper

θr θr Ks α λ n

m m−3 m m−3 m d−1 m−1 - -

B3 Loamy

sand

Sand 0.02 0.46 0.1542 1.44 -0.215 1.534

B11 Heavy Clay Clay 0.01 0.59 0.0453 1.95 -5.901 1.109

B13 Sand Loam Loam 0.01 0.42 0.1298 0.84 -1.497 1.441
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Table 4. Parameters of the root water uptake models estimated by optimization and their respective constraints Ω.

Model Parameter Ω Unit

FM h3 −150< h3 < 0 m

FMm Mc 0<Mc <Mmax m2 d−1

JM h3 −150< h3 < 0 m

ωc 0< ωc ≤ 1 -

JMm Mc 0<Mc <Mmax m2 d−1

ωc 0< ωc ≤ 1 -

PM h3 −150< h3 < 0 m

lm 0< lm ≤ 1 -

PMm Mc 0<Mc <Mmax m2 d−1

lm 0< lm ≤ 1 -
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Table 5. Optimal parameters of each empirical model for all scenarios in the drying-out experiment

FM FMm JM JMm PM PMm

Soil Tp RD h3 Mc h3 ωc Mc ωc h3 l Mc l

mm d−1 cm cm−3 cm cm2 d−1 cm - cm2 d−1 - cm - cm2 d−1 -

clay 1 0.01 -1968.7 0.213 -284.5 0.711 0.366 0.494 -1615.7 1.322 0.227 1.290

clay 1 0.10 -1211.0 0.329 -132.4 0.196 0.944 0.024 -7579.9 0.869 0.076 0.884

clay 1 1.00 -1.7 0.950 -0.0 1.000 5.971 0.004 -10673.7 0.354 0.022 0.342

loam 1 0.01 -7588.1 0.334 -5.0 0.457 22.483 0.016 -6927.6 1.086 0.408 1.084

loam 1 0.10 -6085.6 0.487 -93.9 0.126 25.721 0.002 -11795.6 0.911 0.113 0.917

loam 1 1.00 -17.0 5.014 -48.0 1.000 106.223 0.000 -10878.8 0.561 0.058 0.553

sand 1 0.01 -1014.0 0.146 -291.6 0.942 0.288 0.436 -621.2 1.262 0.149 1.252

sand 1 0.10 -1122.6 0.115 -113.6 0.407 1.925 0.005 -2351.3 1.179 0.024 1.159

sand 1 1.00 -3.9 0.338 -0.0 1.000 25.887 0.000 -3158.0 0.717 0.005 0.706

clay 5 0.10 -1397.7 0.334 -218.4 0.325 0.395 0.271 -5537.2 1.512 0.196 1.449

clay 5 1.00 -260.6 0.792 -135.3 0.148 1.212 0.013 -6745.0 0.672 0.088 0.687

loam 5 0.10 -5236.5 0.784 -0.0 0.277 2.306 0.100 -8322.9 1.165 0.488 1.157

loam 5 1.00 -1249.5 2.563 -292.9 0.161 28.143 0.001 -8630.0 0.833 0.224 0.838

sand 5 0.10 -918.0 0.190 -556.2 0.432 4.154 0.018 -1273.9 1.612 0.083 1.510

sand 5 1.00 -582.3 0.533 -342.5 0.193 4.888 0.001 -3582.3 1.272 0.012 1.240
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Table 6. Actual cumulative transpiration predicted by the De Jong van Lier et al. (2013) and all the empirical models for three types of soil

(clay, loam and sand) and two levels of root length density R (medium and high) for the growing season experiment.

Clay Loam Sand

Model Medium R High R Medium R High R Medium R High R

VLM 46.33 46.51 43.65 43.64 45.56 45.97

PMm 45.79 46.28 43.63 43.75 45.67 46.41

PM 45.68 45.74 43.36 43.34 46.18 46.26

JMII 45.83 46.12 43.59 43.63 45.53 46.32

JMm 45.52 46.11 42.91 43.79 45.29 46.11

JM 45.72 45.10 43.36 43.12 46.00 45.89

FMm 42.66 40.11 42.69 40.81 43.23 41.70

FM 43.48 43.16 42.64 41.61 44.60 44.29
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Figure 1. a) Feddes et al. (1978) root water uptake reduction function. h2 and h3 are the threshold parameters for reduction in root water

uptake due to oxygen deficit and water deficit, respectively. The subscripts l and h stands for low and high potential transpiration Tp. h1 and

h4 are the soil pressure head values above and below which root water uptake is zero due to oxygen and water deficit, respectively. b) Root

water uptake reduction function αm as a function of matric flux potential M ; Mc is the critical value of M from which the uptake is reduced

and Mmax is the maximum value of M , dependent on soil type.
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Figure 2. Root water uptake S as a function of soil pressure head hs for three values of root length density (0.01, 0.1 and 1.0 cm cm−3) and

leaf pressure head values ranging from -30 to -200 m by -10 m interval shown by colors gradient (lighter colors indicate lower values and

some values are also indicated in the plot). These results were obtained by the analytical solution of eq. 8 given by De Jong van Lier et al.

(2013) for a special case of Brooks and Corey (1964) soil. Plant transpiration was set to 1 mm d−1, rooting depth to 0.5 m, and the soil and

plant hydraulic parameters were taken from De Jong van Lier et al. (2013).
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Figure 4. Time-depth root water uptake (RWU, d−1) pattern, leaf pressure head (hl, dashed line) and relative transpiration (Tr , continuous

line) simulated by SWAP model together with the De Jong van Lier et al. (2013) model for clay soil, two levels of potential transpiration Tp:

1 and 5 mm d−1 (first and second line of plots, respectively) and three levels of root length density R: low, medium and high (indicated at

the top of the figure).
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Figure 5. Maximum possible transpiration Tp,max as a function of root hydraulic conductivity Kroot for some values of the overall con-

ductance over the root-to-leaf pathway Ll computed by De Jong van Lier et al. (2013) model for rooting depth of 0.5 m, low root length

density and constant soil pressure head over depth equals to -1 m for sandy soil. The dashed vertical line highlights the value of Kroot =

3.5 10−8 m d−1 that was used in our simulations. Horizontal dashed line highlights the value of potential transpiration.
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Figure 6. Time-depth root water uptake (RWU) pattern and relative transpiration (Tr) simulated by SWAP model together with De Jong van

Lier et al. (2013) sink and the others empirical models for sandy soil texture, high root length density and Tp = 1 mm d−1.
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Figure 7. Time-depth root water uptake (RWU) pattern and relative transpiration (Tr) simulated by SWAP model together with De Jong van

Lier et al. (2013) sink and the others empirical models for sandy soil texture, high root length density and Tp = 5 mm d−1.
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Figure 9. Box plot of the coefficient of determination r2 and model efficiency coefficient E for the comparison of root water uptake (RWU)

and actual transpiration (Ta) predicted by each empirical model with the De Jong van Lier et al. (2013) model predictions for the drying-out

simulations for three levels of root length density and three types of soil and two potential transpiration levels. The symbols ∗ and ◦ represent

the average and outliers, respectively.
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Figure 10. Box plot of the coefficient of determination r2 and model efficiency coefficientE for the comparison of root water uptake (RWU)

and actual transpiration (Ta) predicted by each empirical model with De Jong van Lier et al. (2013) model for the growing season experiment

for two levels of root length density and three types of soil. The symbols ∗ and ◦ represent the average and outliers, respectively.
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