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Abstract. Detailed physical models describing root water uptake (RWU) are an important tool for the prediction of RWU and

crop transpiration, but involved hydraulic parameters are hardly-ever available, making them less attractive for many studies.

Empirical models are more readily used because of their simplicity and the associated lower data requirements. The purpose of

this study is to evaluate the capability of some empirical models to mimic the RWU distribution under varying environmental

conditions predicted from numerical simulations with a detailed physical model. A review of some empirical models used as5

sub-models in ecohydrological models is presented, and alternative empirical RWU models are proposed. All these empirical

models are analogous to the standard Feddes model, but differ in how RWU is partitioned over depth or how the transpiration

reduction function is defined. The parameters of the empirical models are determined by inverse modelling of simulated depth-

dependent RWU. The performance of the empirical models and their optimized empirical parameters depend on the scenario.

The standard empirical Feddes model only performs well in scenarios with low root length density R, i.e. for scenarios with10

low RWU “compensation”. For medium and high R, the Feddes RWU model cannot mimic properly the root uptake dynamics

as predicted by the physical model. The RWU model by Jarvis only provides good predictions for low and mediumR scenarios.

For high R, it cannot mimic the uptake patterns predicted by the physical model. Incorporating a newly proposed reduction in

the Jarvis model improved RWU predictions. Regarding the ability of the models in predicting plant transpiration, all models

accounting for compensation show good performance. The Akaike information criteria (AIC) indicates that JMII, with no15

empirical parameters to be estimated, is the “best model”. The proposed models are better in predicting RWU patterns similar

to the physical model. The statistical indices point them as the best alternatives to mimic RWU predictions of the physical

model.
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1 Introduction

The rate at which a crop transpires depends on atmospheric conditions, the shape and properties of the boundary between

crop and atmosphere, root system geometry, and crop and soil hydraulic properties. The study and modelling of the involved

interactions is motivated by the importance of transpiration for global climate and crop growth (Chahine, 1992) as well as by

the role of root water uptake (RWU) in soil water distribution (Yu et al., 2007). The common modelling approach introduced by5

Gardner (1960), referred to as microcoscopic or mesoscopic (Raats, 2007), is not readily applicable to practical problems due

to the difficulty in describing the complex geometrical and operational function of the root system and its complex interactions

with soil (Passioura, 1988). However, it gives insight into the process and allows developing upscaled- physical macroscopic

models (De Willigen and van Noordwijk, 1987; Heinen, 2001; Raats, 2007; De Jong van Lier et al., 2008, 2013).

In many one- and two-dimensional problems, macroscopic RWU is modelled as a sink term in the Richards equation, whose10

dependency on water content or pressure head is usually represented by simple empirical functions (ex. Feddes et al. (1976,

1978); Lai and Katul (2000); Li et al. (2001); Vrugt et al. (2001); Li et al. (2006)). Most of these models are derived from

the Feddes et al. (1978) model, which consists of partitioning potential transpiration over depth according to root length den-

sity and applying a stress reduction function of piecewise linear shape — defined by five threshold empirical parameters —

to account for local uptake reduction. Results of experimental studies (Arya et al., 1975b; Green and Clothier, 1995, 1999;15

Vandoorne et al., 2012) and the development of physically based-models (De Jong van Lier et al., 2008; Javaux et al., 2008)

increased the understanding of the mechanism of RWU as a non-local process affected by non-uniform soil water distribution

in the rhizosphere (Javaux et al., 2013). Accordingly, a plant can increase water uptake in wetter soil layers in order to compen-

sate for uptake reductions in dryer layers to keep transpiration rate at potential rate or mitigate transpiration reduction. Several

empirical approaches have been developed over the years to account for this so-called compensation mechanism (Jarvis, 1989;20

Li et al., 2002, 2006; Lai and Katul, 2000). These models have been incorporated into larger hydrological models and tested

at site-specific environments, showing an improvement of predictive quality for, e.g., soil water content and crop transpira-

tion (ex. Braud et al. (2005); Yadav et al. (2009); Dong et al. (2010)). Comparisons with physically-based models (Jarvis,

2011; de Willigen et al., 2012) implicitly accounting for compensation showed that models not accounting for compensation,

like Feddes et al. (1978), are less accurate with respect to crop transpiration and soil water content predictions under some25

circumstances, e.g. at high root length density.

Recently, De Jong van Lier et al. (2013) developed a mechanistic model for predicting water potentials along the soil-root-

leaf pathway, allowing the prediction of RWU and crop transpiration. This model was incorporated in the eco-hydrological

model SWAP (Van Dam et al., 2008) by employing a piece-wise function between leaf pressure head and relative transpiration,

reducing the number of empirical parameters compared to other relations (ex. Fisher et al. (1981)). Besides parameters describ-30

ing soil hydraulic properties and root geometry, this new model requires information about root radial hydraulic conductivity,

xylem axial conductance and a limiting leaf water potential. Although conceptually interesting, the difficulty to obtain the

required input parameters makes the model less attractive for routine applications.
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Other physical RWU models include the Couvreur et al. (2012), comparable to the De Jong van Lier et al. (2013), as well

as more complex three-dimensional models (e.g. Javaux et al. (2013)), which account for the full root architecture, requiring

more input parameters and a higher computational effort. Specifically, the De Jong van Lier et al. (2013) model differs from

the previous mentioned models by the fact the RWU is based on matric flux potential with an equation derived from the

microscopic RWU approach (De Jong van Lier et al., 2008), whereas in other models RWU is based on water pressure head.5

The osmotic potential can also be included in the model (de Jong van Lier et al., 2009).

Empirical RWU models are more readily used because of their relative simplicity and lower data requirements. On the other

hand, their empirical parameters do not have a clear physical meaning and cannot be independently measured. Their limitations

under varying environmental conditions are not well established. For the case of the Feddes et al. (1978) transpiration reduction

function, threshold values are available in literature (Taylor and Ashcroft, 1972; Doorenbos and Kassam, 1986) for some10

crops and some levels of transpiration demand. Nevertheless, experimental (Denmead and Shaw, 1962; Zur et al., 1982) and

theoretical (Gardner, 1960; De Jong Van Lier et al., 2006) studies indicate that these parameters do not depend only on crop

type and atmospheric demand, but are also determined by root system parameters and soil hydraulic properties. Furthermore,

threshold values are hardly ever validated, and they cannot be used for other models (ex. the Jarvis (1989) model) due to

conceptual differences. Therefore, more accurate values for crops accounting for more environmental factors are necessary to15

apply these models for a wider range of scenarios. Due to the great number of models developed over the years, it is paramount

to investigate some of these models before attempting to determine their parameters.

The general purpose of this study is to evaluate the capability of some empirical models to mimic the dynamics of RWU

distribution under varying environmental conditions performed in numerical experiments with a detailed physical model pro-

posed by De Jong van Lier et al. (2013). The detailed physical model accounts for resistances from the soil to the leaf. We20

first review some empirical RWU models that have been employed in ecohydrological models and suggest some alternatives.

By determining the parameters of the empirical models by inverse modelling of simulated depth-dependent RWU, it becomes

clear to which extent the empirical models can mimic the dynamic patterns of RWU.

2 Theory

RWU and crop transpiration are linked through the principle of mass conservation for water flow in the soil-plant-atmosphere25

pathway:

Ta =

∫
zm

S(z)dz (1)

where Ta (L) is the crop transpiration and S (L3L−3T−1) is the root water uptake, dependent on crop properties and soil

hydraulic conditions, a function of soil depth z (L), and zm (L) the maximum rooting depth. Eq. 1 neglects the change of water

storage in the plant, which is justified for daily scale predictions, assuming that plants rehydrate to the same early morning30

water potentials on successive days (Taylor and Klepper, 1978).
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In a macroscopic modelling approach, RWU is calculated as a sink term S in the Richards equation, which for the vertical

coordinate is given by:

∂θ

∂t
=

∂

∂z

[
K(θ)

(∂h
∂z

+ 1
)]
−S (2)

where θ (L3 L−3) is the soil water content, h (L) the soil water pressure head, K (L T−1) the soil hydraulic conductivity, t (T)

the time and z (L) the vertical coordinate (positive upward). To apply eq. 2, a functional expression for S is needed. Physical5

equations in analogy to Ohm’s law have been suggested (see the review of Molz (1981) for examples) as well as expressions

derived by upscaling microscopic models (De Willigen and van Noordwijk, 1987; Feddes and Raats, 2004; De Jong van Lier

et al., 2008, 2013). Alternatively, simple empirical models requiring less information about plant and soil hydraulic properties

have also been proposed and are commonly used. Most of these models use the Feddes approach (Feddes et al., 1976, 1978),

formulated as:10

S(z) = Sp(z)α(h[z]) (3)

where α(h) is the RWU reduction function, defined by Feddes et al. (1978) as a piece-wise linear function of h (Fig. 1).

According to this approach, a reduction in S due to α(h[z])< 1 directly implies a transpiration reduction, making α(h) to be

called a transpiration reduction function. Sp is the potential RWU, which is determined by partitioning potential transpiration

Tp over depth. Several ways to estimate Sp have been proposed (Prasad, 1988; Li et al., 2001; Raats, 1974; Li et al., 2006), but15

it is most common to distribute Tp according to the fraction of root length density R (L L−3):

Sp(z) =
R(z)∫

zm

R(z)dz

Tp = β(z)Tp (4)

where β (L−1) is the normalized root length density.

Different expressions for α have been suggested, normally considering α a function of θ (ex. Lai and Katul (2000); Jarvis

(1989)), of h (ex. Feddes et al. (1978)) or of a combination of both (Li et al., 2006). Comparing to θ, h seems to be more20

feasible because of its relation to soil water energy and the fact that obtained parameters of such a function would be more

likely applicable to different soils. Some reduction functions, generally associated to reservoir models for soil water balance,

correlates RWU to the effective saturation. Regarding the shape of the reduction curve, they can be smooth non-linear functions

constrained between wilting point and saturation or piece-wise linear functions, but they all have more than one empirical

parameter. The parameters of the smooth non-linear functions allow easy curve fitting, whereas in the piece-wise functions25

they stand for the threshold at which RWU (or crop transpiration) is reduced due to drought stress, which has been an important

parameter in crop water management.

Metselaar and De Jong van Lier (2007) showed that for a vertically homogeneous root system the shape of α is not linearly

related to soil water content neither to pressure head. A linear relation to the matric flux potential, a composite soil hydraulic

function defined in eq. 5, is physically more plausible and was experimentally corroborated by Casaroli et al. (2010). Matric30
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flux potential is defined as

M =

h∫
hw

K(h)dh (5)

where hw is the soil pressure head at wilting point. Accordingly, a more suitable expression for α would be a piece-wise linear

function of M (Fig. 1). RWU can then be calculated by the Feddes model (eq. 3) by replacing its reduction function for water

deficit by the alternative illustrated in Fig. 1.5

2.1 Physically based root water uptake model

By upscaling earlier findings (De Jong Van Lier et al., 2006; Metselaar and De Jong van Lier, 2007) of water flow towards

a single root in the microscopic scale disregarding plant resistance to water flow, De Jong van Lier et al. (2008) derived the

following expression for S:

S(z) = ρ(z)(Ms(z)−M0(z)) (6)10

where Ms is the bulk soil matric flux potential, M0 the value of M at root surface and ρ(z) (L−2) a composite parameter,

depending on R and root radius r0:

ρ(z) =
4

r20 − a2r2m(z) + 2[r2m(z) + r20] ln[arm(z)/r0]
(7)

where rm(=
√

1/πR) (L) is the rhizosphere radius — defined as the half distance between neighbouring roots— and a the

distance relative to rm–r0 where water content equals the average soil water content. In De Jong van Lier et al. (2013), this15

model is extended by taking into account the hydraulic resistances to water flow within the plant. Dividing water transport

within the plant into two physical domains (from root surface to root xylem to leaf), assuming no water changes within the

plant tissue and by coupling eq. 6 for water flow within the rhizosphere, they derived the following expression relating water

potentials and Ta:

h0(z) = hl +ϕ(Ms(z)−M0(z)) +
Ta
Ll

(8)20

where h0 and hl (L) are the pressure heads at the root surface and leaf, respectively, Ll (T−1) is the overall conductance over

the root xylem-to-leaf pathway, and ϕ (T L−1) is defined as:

ϕ(z) =
ρr2m(z) ln

r0
rx

2Kroot
(9)

where Kroot (L T−1) is the radial root tissue conductivity (over the pathway from the root surface to the root xylem), and

rx (L) is the xylem radius. An analytical solution of eq. 8 for h0 or M0 depends on the M0(h0) expression. For a particular25

case of Brooks and Corey (1964) soils a solution is provided by De Jong van Lier et al. (2013). For van Genuchten–Mualem

type soils, eq. 8 has to be solved numerically or by using a semi-analytical solution of eq. 5 (De Jong van Lier et al., 2009). In
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any case, application of eq. 8 requires a function between Ta and hl. De Jong van Lier et al. (2013) defined Ta by a piece-wise

function imposing a limiting value hwl on hl:

Tr =


1 : hl > hwl

0≤ Tr ≤ 1 : hl = hwl

0 : hl < hwl

(10)

where Tr (= Ta/Tp) is the relative crop transpiration. Because Ta and hl are unknowns and Ta is undefined when hl = hwl,

the equation system cannot be solved analytically. An iterative solution was provided in De Jong van Lier et al. (2013) by5

defining a maximum possible transpiration rate Tp,max, corresponding to Ta (eq. 8) for hl = hwl. The system of equations is

then solved by defining plant stress in terms of Tp,max, according to the following boundary conditions: unstressed conditions :Tp,max > Tp : Ta = Tp, hl > hwl

stressed conditions : Tp,max < Tp : hl = hwl, Ta < Tp

In the De Jong van Lier et al. (2013) model, crop water stress, a condition for which Ta < Tp, is defined at the crop level

(Tardieu, 1996) and onsets when hl = hw. S can be calculated using eq. 6 by solving eq. 8, with h0 (so M0) variable over the10

root zone and controlled by plant hydraulic properties and soil hydraulic conditions.

Fig. 2 helps to understand how RWU is distributed over depth. hl can be regarded as a crop level measure of water deficit

stress over the whole root zone: as soil water is depleted, hl is reduced, thus increasing the driving force for RWU. Fig. 2 shows

RWU for several values of hl. As soil pressure head hs decreases, high uptakes are only achieved by lower hl. For a given hl

value, RWU is substantially reduced as hs decreases. If hl is not reduced while hs decreases, S becomes negative (negative S15

is not shown in Fig. 2, but it is part of the extension of each curve) and water will flow from root to soil, a phenomenon called

hydraulic lift or hydraulic re-distribution (Jarvis, 2011). This situation occurs when parts of the root zone are wetter and RWU

from these parts satisfies transpiration demand, hence hl is not reduced.

Fig. 2 also shows that RWU is sensitive to both R and hs, and that it can be locally balanced by R and soil water content.

Under homogeneous soil water distribution, RWU is partitioned proportionally to R. For heterogeneous conditions, RWU for20

lower R and higher R may be the same depending on the stress level (indicated by hl) and the hs (see Fig. 2). This is in

agreement with experimental results reported by several authors (Arya et al., 1975b, a; Green and Clothier, 1995; Verma et al.,

2014) who found less densely-rooted but wetter parts of the root zone to correspond to a significant portion of RWU when more

densely-rooted parts of the soil were drier, allowing the crop to maintain transpiration at potential rates. Due to empirical model

concepts that only use R for predicting RWU distribution over depth (under non-stressed conditions), these results have been25

interpreted as due to a mechanism labelled “compensation” by which uptake is “increased” from wetter layers to compensate

the “reduction” in the drier layers (Jarvis, 1989; Šimůnek and Hopmans, 2009). It is clear, however, that this compensation

concept is found on a reference RWU distribution based on R and it only needs to be explicitly addressed in empirical models.

In physical models, discriminating compensation is not necessary since in such models “compensation” follows implicitly

from the RWU mechanism.30
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In order to account for RWU pattern changes due to heterogeneous soil water distribution (the so-called “compensation”),

several empirical models have been developed over the years. These models follow the general framework of the Feddes et al.

(1978) model given by eq. 3. Below we review these models and present a new empirical alternative.

2.2 Empirical root water uptake models accounting for compensation

2.2.1 The Jarvis (1989) model5

Jarvis (1989) defined a weighted-stress index ω (0≤ ω ≤ 1) as

ω =

∫
zm

α(z)β(z)dz. (11)

where, differently from Feddes et al. (1978), α was defined as a function of the effective saturation. Whereas Feddes et al.

(1978) assume the RWU reduction directly to reflect in crop transpiration reduction, the Jarvis (1989) approach employs a

so-called “whole-plant stress function” given by:10

Ta
Tp

= min
{

1,
ω

ωc

}
(12)

where ωc is a threshold value of ω for the transpiration reduction. Substituting eq. 3 and 4 into eq. 1 (the mass conservation

principle) and combining with eq. 12, results in:

S(z) = Spα(z)α2, where α2 =
1

max
{
ω,ωc

} (13)

where α2 is called the compensation factor of RWU, distinct from Feddes’ α (eq. 3) and which can be derived by defining15

Ta by eq. 12. In the Jarvis (1989) model, α accounts for local reduction of RWU and transpiration reduction is computed by

eq. 12. When ω = 1, there is no RWU reduction (α= 1 throughout the root zone) and the model prediction is equal to the

Feddes model. For ωc < ω < 1, uptake is reduced in some parts of the root zone (as computed by α < 1) but the plant can still

achieve potential transpiration rates by increasing RWU over the whole root zone by the factor α2. When ω < ωc, even though

the uptake is increased by the factor α2, the potential transpiration rate cannot be met. The threshold value ωc places a limit on20

the plant’s ability to deal with soil water stress. When ωc tends to zero, eq. 12 tends to 1, and the plant can fully compensate

uptake and transpire at the potential rate provided that α > 0 at some position within the root zone.

In principle, any definition of α is applicable in eq. 11, and commonly the Feddes et al. (1978) reduction function is used

instead of the original Jarvis (1989) reduction function, e.g. in the HYDRUS model (Simunek et al., 2009). This modified

version of the Jarvis (1989) model, hereafter referred to as JMf, will be further analysed. Nevertheless, one should be careful in25

setting up and interpreting the threshold parameters of JMf. The Feddes et al. (1978) model does not account for compensation,

and the threshold pressure head value below which RWU is reduced (h3) also represents the value below which transpiration is

reduced, making h3 values from literature to refer to this interpretation. Instead, in the JMf the transpiration reduction only takes

place when ω < ωc, and soil pressure head in some layers is already supposed to be more negative than h3, which means that h3

in JMf is less negative than its equivalent in the Feddes model. In that sense, h3 for the JMf is hard to determine experimentally.30

An option to do so would be by inverse modelling, optimizing outcomes of soil water flow models with experimental data.
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Comparison to the De Jong van Lier et al. (2008) model

The physical basis of Jarvis (1989), defined by eq. 11 to 13 with using any α, has been questioned (Skaggs et al., 2006; Javaux

et al., 2013). However, the Jarvis model has, to some extent, a physical basis, and a comparison with the physically-based model

of De Jong van Lier et al. (2008) can be made, as demonstrated in Jarvis (2010, 2011). This is described in the following.

De Jong Van Lier et al. (2006) derived eq. 6 for describing RWU. Crop transpiration is obtained by integrating eq. 6 over5

zm as defined in eq. 1, leaving two unknowns: M0 and Ta. To solve for these, De Jong van Lier et al. (2008) defined Ta as a

piece-wise function as follows:

Ta
Tp

= min

{
1,
Tp,max
Tp

}
(14)

where Tp,max (L T−1), differently from the definition in the De Jong van Lier et al. (2013) model, is the maximum possible

transpiration rate reached when the root surface pressure head is constant over depth and equal to a limiting value hw. For such10

a condition M0 = 0, then Tp,max is given by:

Tp,max =

∫
zm

ρ(z)M(z)dz. (15)

From eq. 14 when Tp,max < Tp, drought stress occurs and Ta = Tp,max. Under this condition, M0 = 0 and S(z) becomes:

S(z) = ρ(z)M(z). (16)

When Tp,max > Tp, Ta = Tp (no drought stress) and M0 (> 0) is given by:15

M0 =

∫
zm

ρ(z)M(z)dz −Tp∫
zm

ρ(z)dz

(17)

Jarvis (2011) observed the similarities between eq. [14] and [12] of the models. Notice also the algebraic similarity between

ω (eq. 11) and Tp,max (eq. 15). Thus, Jarvis (2010) showed that both models provide the same results under drought stress if

α and β(z) are defined as follows:

α=
M

Mmax
(18)20

β =
ρ(z)∫

zm

ρ(z)dz

(19)
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where Mmax is the maximum value of M (i.e., at h= 0). By substituting eq. [18] and [19] into eq. 15 and comparing eq. 12

with eq. 14, ωc is found to be equal to:

ωc =
Tp

Mmax

∫
zm

ρ(z)dz

(20)

Substitution of eq. [18] to [20] into eq. [12] and [11] results in eq. 16 of De Jong van Lier et al. (2008) model for stressed

condition. Consequently, both models provide the same numerical results. For unstressed condition, analogous substitution5

results in:

S(z) = ρ(z)M(z)
Tp

Tpmax

=
ρ(z)M(z)∫

zm

ρ(z)M(z)dz

Tp (21)

Eq. 21 is different from eq. 6 and, therefore, the models cannot be correlated for these conditions. The Jarvis (1989) model

predicts RWU by a weighting factor between ρ and M throughout rooting depth. Defining α and β by eq. 18 and 19, respec-

tively, allowed to correlate both models only for stressed conditions. These definitions and the resulting model will be further10

analysed.

2.2.2 The Li et al. (2001) model

Li et al. (2001) proposed to distribute potential transpiration over the root zone by a weighted stress index ζ, being a function

of both root distribution and soil water availability:

ζ(z) =
α(z)R(z)lm∫

zm

α(z)R(z)lmdz

(22)15

where α (-) and R (L L−3) were previously defined and the exponent lm is an empirical factor. Originally, the lm values were

based on experimental works, but in principle it modifies the shape of RWU distribution over depth. For 0< lm < 1, the RWU

in sparsely rooted soil layers is increased in the attempt to mimic compensation. For lm > 1, which has no maximum, the

uptake in more densely rooted soil layers increases. Thus, Sp is given by:

Sp = ζ(z)Tp (23)20

and RWU is calculated by substituting eq. 23 into eq. 3, following the Feddes approach.

As an alternative to Jarvis (1989) model, Sp can be defined as function of root length density and soil water availability

distribution. Compensation is directly accounted for by the weighted stress index in eq. 22. However, using α to represent

soil water availability in eq. 22 does not mimic properly the compensation mechanism. Compensation may take place before

transpiration reduction. Using α in eq. 22 means that compensation will only take place after the onset of transpiration reduction25

when α in one or more layers is smaller then 1. The lm parameter may also be interpreted as to account for compensation under

non-stressed condition. However, compensation as well as the shape of the RWU distribution are likely to change as soil dries.

A constant lm can not account for that.
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2.2.3 The Molz and Remson (1970) and Selim and Iskandar (1978) models

Decades before Li et al. (2001), Molz and Remson (1970) and Selim and Iskandar (1978) already suggested to distribute

potential transpiration over depth according to root length density and soil water availability. Instead of using α to account for

soil water availability, they used soil hydraulic functions. The weighted stress index was defined as

ζ(z) =
Γ(z)R(z)∫

zm

Γ(z)R(z)dz

(24)5

where Γ is a soil hydraulic function to account for water availability. Molz and Remson (1970) used soil water diffusivity

D (L2T−1), and Selim and Iskandar (1978) used soil hydraulic conductivity K (LT−1) for Γ in eq. 24. RWU is then calculated

by substituting eq. 24 into eq. 23 and then into eq. 3 following the Feddes approach.

These models may better represent RWU and compensation than the Li et al. (2001) model. The compensation is implicitly

accounted for by means of Γ in ζ. Since Γ decreases as soil water is depleted, in a heterogeneous soil water distribution ζ in10

wetter layers is relatively increased because the overall
∫

ΓRdz is reduced due to the reduction of Γ in drier, more densely

rooted soil layers. Differently from the Li et al. (2001) model, this change in RWU distribution can occur before the onset

of transpiration reduction. Heinen (2014) compared different types of Γ in eq. 24 such as the relative hydraulic conductivity

(Kr =K/Ksat), relative matric flux potential (Mr =M/Mmax) and others. He found that using different forms of Γ provides

very different patterns of RWU, but did not indicate a preference for a specific one.15

2.2.4 Proposed empirical model

In describing soil water availability, the matric flux potential M may be a better choice than K or D, since it integrates K and

h or D and θ (Raats, 1974; De Jong van Lier et al., 2013). We propose a new weighted stress index, defined as:

ζm(z) =
RlmM(h)∫

zm

RlmM(h)dz

(25)

The exponent lm provides additional flexibility on distribution of TP over depth as was shown by Li et al. (2001). The proposed20

model differs from Li et al. (2006) only on the hydraulic property to account for soil water availability. The α function used in

Li et al. (2006) can only alter RWU distribution after the onset of transpiration reduction, as commented earlier. Contrastingly,

M allows for compensation before transpiration reduction, integrating the effect of both K and h.

The RWU can then be obtained by inserting eq. 25 into eq. 23 (Sp) and multiplied by any reduction function, such as the

Feddes et al. (1978) and proposed reduction functions. In other words, it follows the Feddes approach, which computes RWU25

by the two mentioned steps, differing only with respect to the way Sp is obtained: eq. 25 (multiplied by Tp) versus eq. 4.
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3 Material and Methods

3.1 Applied models

Table 1 summarizes the empirical RWU models evaluated in this study. They all follow the original Feddes model (eq. 3), but

differing in how RWU is partitioned over rooting depth or how α is defined. For each model, except for Jarvis (2010), we

defined a modified version by substituting the Feddes reduction function by the proposed reduction function (Fig. 1b), and5

these modified versions were also evaluated. The threshold values of the Feddes et al. (1978) reduction function for anoxic

conditions (h1 and h2) were set to zero. The value of the parameter h4 was set to −150 m. The other parameters of the models

were obtained by optimization as described in section 3.3.

All these models were embedded as sub-models into the ecohydrological model SWAP (Van Dam et al., 2008) in order to

solve eq. 2 and to apply it different scenarios of root length density, atmospheric demand and soil type (described in section 3.2)10

in order to analyse the behaviour and sensitivity of the models. Simulation results of SWAP in combination with each of the

RWU models were compared to the SWAP predictions in combination with the physical RWU model developed by De Jong

van Lier et al. (2013).

The values of the De Jong van Lier et al. (2013) model parameters used in the simulations are listed in Table 2. The values

of Kroot and Ll are within the range reported by De Jong van Lier et al. (2013).15

3.2 Simulation scenarios

3.2.1 Drying-out simulation

Boundary conditions for these simulations were no rain/irrigation and a constant atmospheric demand (potential transpiration)

over time. The simulation continued until simulated crop transpiration by the physical RWU model approached zero. Soil

evaporation was set to zero making soil water to depleted only due to RWU or bottom drainage. Free drainage (unit hydraulic20

gradient) at the maximum rooting depth was the bottom boundary condition. The soil was initially at hydrostatic equilibrium

with a water table located at 1 m depth. We performed simulations for two levels of atmospheric demand given by potential

transpiration (Tp) of 1 and 5 mm d−1. We also considered three soil types and three levels of root length density, as described

in the following.

3.2.2 Soil type25

Soil data for three top soils from the Dutch Staring series (Wösten et al., 1999) were used. The physical properties of these soils

are described by the Mualem-van Genuchten functions (Mualem, 1976; Van Genuchten, 1980) for the K − θ−h relations:

Θ = [1 + |αh|n](1/n)−1 (26)

K = KsatΘ
λ[1− (1−Θn/(n−1))1−(1/n)]2 (27)
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where Θ = (θ− θr)/(θs− θs); θ,θr and θs are water content, residual water content and saturated water content (L3 L−3),

respectively; h is pressure head (L); K and Ksat are hydraulic conductivity and saturated hydraulic conductivity, respectively

(L T−1); and α (L−1),n, and λ are empirical parameters. The parameter values for the three soils are listed in Table3. These

soils are identified in this text as clay, loam and sand.

3.2.3 Root length density distribution5

Three levels of root length density were used, according to the range of values normally found in the literature. We considered

low, medium and high root length density for average crop values equal to 0.01, 0.1 and 1.0 cm cm−3, respectively. For

all cases, we set the maximum rooting depth zmax equal to 0.5 m. Root length density over depth z was described by the

exponential function:

R(zr) =R0(1− zr)exp−bzr (28)10

where R0 (L L−3) is the root length density at the soil surface, b (-) is a shape-factor parameter and zr (= z/zmax) is the

relative soil root depth. The term (1− zr) in eq. 28 guarantees that root length density is zero at the maximum rooting depth.

The parameter R0 is hardly ever determined, whereas the average root length density of crops Ravg is usually reported in the

literature. Assuming R of such a crop given by eq. 28, it can be shown that:

1∫
0

R0(1− zr)exp−bzr dzr =Ravg (29)15

Solving eq. 29 for R0 and substituting into eq. 28 gives:

R(zr) =
b2Ravg

b+ exp−b−1
(1− zr)exp−bzr (b > 0) (30)

Fig. 3 shows R(zr) calculated from eq. 30 for different values of b and Ravg = 1 cm cm−3. As b approaches zero, eq. 30

tends to become linear, however it is not defined for b= 0. In our simulations b was arbitrarily set equal to 2.0.

3.3 Optimization20

The parameters of the empirical RWU models were estimated by solving the following constrained optimization problem:

minimize Φ(p) =

n∑
i=1

m∑
j=1

[S∗
i,j −Si,j(p)]2

subjectto p ∈ Ω

(31)

where Φ(p) is the objective function to be minimized, S∗
i,j is the RWU simulated by SWAP model together with the De Jong

van Lier et al. (2013) model at time i (time interval of one day) and depth j (of each soil layer) and Si,j(p) is the corresponding

RWU predicted by SWAP in combination with one of the empirical models shown in Table 1. p is the model parameter vector25

to be optimized, constrained in the domain Ω. Both p and Ω vary depending on the empirical RWU model used. Table 4
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shows the parameters of each empirical RWU model that were optimized and their respective constraints Ω. m and n are the

number of soil layers (50 soil layers of 1 cm thickness) and days of the simulation, respectively. The Jarvis (2010) model has

no empirical parameters and therefore requires no optimization.

Eq. 31 was solved using the PEST (Parameter ESTimation) tool (Doherty et al., 2005) coupled to the adapted version of

SWAP. PEST is a non-linear parameter estimation program that solves eq. 31 by the Gauss-Levenberg-Marquardt (GLM)5

algorithm, searching for the deviation, initially along the steepest gradient of the objective function and switching gradually

the search to Gauss-Newton algorithm as the minimum of the objective function is approached. Upon setting PEST parameters

we made reference runs of SWAP with each empirical model using random values of p and assessed the ability of PEST for

retrieving p. These reference runs allowed to properly set up PEST for our case. For highly non-linear problems as in eq. 31,

the optimized parameters set depends on the initial values of b. We used five random sets of initial values for p in order to10

guarantee that GLM encountered the global minimum and also to check the uniqueness of the solution. Runs led to the same

minimum in most cases, but if not, the minimum was compared and a fit run was run again.

The optimizations were performed for the drying-out simulation only. This guaranteed that RWU predictions from SWAP

corresponded to the best fit of each empirical model to the De Jong van Lier et al. (2013) model. This analysis aimed to

investigate the capacity of the empirical RWU models to mimic the RWU pattern predicted by the De Jong van Lier et al.15

(2013) model. These optimized parameters were subsequently used to evaluate the models in an independent growing season

scenario.

3.4 Growing season simulation

The models were evaluated by simulating the transpiration of grass with weather data from the De Bilt weather station, the

Netherlands (52◦06’ N; 5◦11 ’E), for the year 2006. The same root system distribution as in the drying-out simulations was20

used, i.e. a crop with roots exponentially distributed over depth as eq. 30 (b= 2.0) down to 50 cm below soil surface. We also

performed simulations for the same three types of soils and root length densities. In all cases the crop fully covered the soil with

a leaf area index of 3.0. Daily reference evapotranspiration ET0 was calculated by SWAP using the FAO Penman-Monteith

method (Allen et al., 1998). In SWAP model, a potential crop evapotranspiration ETp is obtained by multiplying ET0 by a

crop factor, which for the grass vegetation was set to 1 (Van Dam et al., 2008). ETp was partitioned into potential evaporation25

Ep and Tp using parameter values for common crops given in SWAP model (see Van Dam et al. (2008) for details).

The values of the empirical parameters of each RWU model corresponding to the type of soil and root length density were

taken from the optimizations performed in the drying-out experiment. Each parameter was estimated for two levels of Tp (1

and 5 mm d−1) and was linearly interpolated for intermediate levels of Tp. For Tp > 5 mm d−1 or Tp < 1 mm d−1, the values

estimated for these highest or lowest Tp values were used.30

The bottom boundary condition was the same as in the drying-out simulations (free drainage). Initial pressure heads were

obtained by iteratively running SWAP starting with the final pressure heads of the previous simulation until convergence.
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4 Results and Discussion

4.1 Drying-out simulation

4.1.1 Root water uptake pattern: De Jong van Lier et al. (2013) model

In this section we first focus on the behaviour of the De Jong van Lier et al. (2013) model in predicting RWU for the evaluated

scenarios in the drying-out experiment. Fig. 4 shows the RWU patterns for the case of clay soil for the three evaluated root5

length densities R and the two levels of potential transpiration Tp. It can be seen how R and Tp affect RWU distribution and

transpiration reduction as soil dries out. The onset and shape of transpiration reduction is affected by the RWU pattern. For low

R, the low number of roots in deeper layers is not sufficient to supply high RWU rates. When the upper layers become drier,

transpiration reduction follows immediately. Under medium and high R, the RWU front moves gradually downward as water

from the upper layers is depleted. For high R, the RWU front goes even deeper compared to medium R, and transpiration is10

maintained at potential rates for a longer time (Fig. 4). Accordingly, the plant exploits the whole root zone and little water

is left when transpiration reduction onsets, causing an abrupt drop in transpiration. Regarding Tp, the RWU patterns are very

similar for both evaluated rates, differing only in time scale: for high Tp the onset of transpiration reduction and the shift in

RWU front occur earlier. The patterns for the sand and loam soil (not shown here) are very similar. However, for the sand soil

potential transpiration is maintained a bit longer and more water is extracted at deeper layers. For the loam soil, the onset of15

transpiration reduction occurred earlier.

The leaf pressure head hl over time shown in Fig. 4 illustrates how the model adapts hl to R and Tp levels and soil drying.

Initially all scenarios have the same water content distribution and lower hl values are required for low R or high Tp scenarios

to supply potential transpiration rates. As soil becomes drier, hl is decreased in order to increase the pressure head gradient

between bulk soil and root surface, thus maintaining RWU corresponding to the demand. Therefore, uptake in wetter layers20

becomes more important. Transpiration reduction only onsets when hl reaches the limiting leaf pressure head hwl (=−200 m),

after significant changes in the RWU patterns, characterized by increased uptake from deeper layers.

For the high Tp–lowR scenarios, transpiration reduction starts at the first day of simulation although the soil is relatively wet.

This is a case of transpiration reduction under non-limiting soil hydraulic conditions due to high atmospheric demand (Cowan,

1965). For such conditions, the high water flow within the plant required to meet the atmospheric demand cannot be supported25

by the root system with a low R and hydraulic parameters given in Table 2. Higher atmospheric demand (here represented

by Tp) leads to faster reduction of hl caused by the hydraulic resistance to water flow within the plant, and the transpiration

rate and RWU are a function of hl. The physical model assumes a parsimonious relationship (eq. 10) between transpiration

and hl: transpiration rate is only reduced when hl reaches a limiting value hwl, which corresponds to a maximum possible

transpiration rate Tp,max allowed by the plant for the current soil hydraulic and atmospheric conditions. Under non-limiting30

soil hydraulic conditions, root system properties and plant hydraulic parameters (Table 2) are the major determining factors for

Tp,max, whereas soil hydraulic conditions play a minor role. Fig. 5 shows Tp,max as a function of Kroot for some values of Ll

with a constant soil pressure head of -1 m in the root zone for low R in the sandy soil. In this scenario, Kroot is limiting the
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crop transpiration and Ll becomes important only whenKroot increases. The potential transpiration can be achieved by raising

Kroot up to about 10 −7 m d−1. This can also be achieved by decreasing hwl (not shown in Fig. 5).

In the field, transpiration rate and root length density are related to each other: a high transpiration rate only occurs at high

leaf area and a high leaf area implies a high root length density. Thus, even in very dry and hot weather conditions, a crop with a

low R may not be able to realize high transpiration rate. Furthermore, crop transpiration depends on the stomatal conductance.5

In the De Jong van Lier et al. (2013) model, this is implicitly taken into account by the simple relationship between hl and Ta.

However, stomatal conductance is relatively complex and depends on several environmental factors such as air temperature,

solar radiation and CO2 concentration. Thefore, high potential transpiration rate may not be achieved because of the stomatal

conductance reduction due to temperature or solar radiation. These results can be enhanced by the coupling of the De Jong van

Lier et al. (2013) model to stomatal conductance models, such as the Tuzet et al. (2003) model.10

4.1.2 Root water uptake pattern predicted by the empirical models

In this section, we evaluate the empirical RWU models (models and their abbreviations are listed in Table 1) based on the

comparison of RWU patterns and transpiration reduction over time with the respective predictions from the De Jong van Lier

et al. (2013) model (VLM). All empirical model predictions are performed with respective optimized parameters as shown in

Table 5 and are discussed in section 4.1.4, thus representing the best fit with VLM.15

The RWU patterns simulated by VLM and the empirical models for the scenario of sandy soil and high R are shown in

Fig. 6 and 7 for low and high Tp , respectively. Both versions of the Feddes model (FM and FMm) predicted enhanced RWU

from the upper soil layers. When the soil pressure head (hs) (for FM) or soil matric flux potential (Ms) (for FMm) is greater

than the threshold value for uptake reduction, these uptake patterns are equivalent to the vertical R distribution. For conditions

drier than the threshold value (when αf and αm are less than 1), the predicted RWU patterns by the models become different20

(Fig. 6 and 7).

After a period of reduced RWU, the length of which depends on R, Tp and h3, RWU from the upper soil layers predicted

by FM rapidly decreases to zero. This zero-uptake zone expands downward as soil dries out. On the other hand, the uptake

predicted by FMm is substantially reduced right after the onset of transpiration reduction, proceeding at lower rates and a

much longer time until approaching zero. These features become evident by comparing the shape of both reduction functions25

(Fig. 8). αm is linear with M after M >Mc, but it is concavely-shaped as a function of h — as also shown by Metselaar

and De Jong van Lier (2007) and De Jong van Lier et al. (2009). This makes αm to reduce abruptly for M >Mc, causing a

substantial decrease in RWU even when h is slightly below the threshold value. Therefore, RWU proceeds at low rates for a

longer time. Conversely, due to the linear shape of αf , RWU predicted by FM remains higher for a longer time after h < h3.

No abrupt change in RWU patterns is predicted by this model, especially when Tp is low (Fig. 6). When h comes close to h4,30

αf is still relatively high and RWU continues, making h to rapidly approach h4. Another diverging feature between αf and

αm, also shown in Fig. 8, is that the shape of αm varies with soil type (regardless the value of its threshold parameter Mc),

whereas αf does not. These different features of the reduction functions also affect the matching values of the parameters as
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discussed below. The choice of the reduction function, however, affects transpiration over time only slightly, but RWU patterns

are strongly affected (Fig. 6 and 7).

The RWU patterns predicted by JMf and JMm models can be very different, as shown by Fig. 6 for the high R–low Tp

scenario. In fact, the JMf model did not predict any compensation at all because the optimal ωc equalled 1 (Table 5) — thus

becoming identical to FM — and the optimal h3 for JMf and FM were similar. In Fig. 6, although h3 values for FM and JMf5

(ωc = 1) are close to zero, the plant transpiration is near Tp for a prolonged time due to a small reduction of α. These high

R–low Tp scenarios with a high R in deep soil layers allow RWU at higher rates when surface soil layers becomes drier (as

predicted by VLM). Then, reducing ωc in an attempt to predict compensation with JMf makes the RWU pattern to deviate even

more from the VLM pattern. This is illustrated in Fig. 6 and by the optimal h3 and ωc values shown in Table 5. In order to

mimic the VLM uptake patterns, the value of h3 for all soil types in this scenario was equal or close to zero. Decreasing h3 or10

ωc to simulate compensation makes JMf predicting higher uptake from upper layers, increasing the discrepancy between the

models. The optimal ωc for all soil types was equal to 1 (in other words: no compensation). RWU in the upper layers predicted

by VLM is substantially reduced within a few days, whereas reducing ωc in JMf model to predict compensation causes also

an increase of uptake in upper layers. The model, therefore, cannot mimic the scenarios with compensation evaluated here.

Conversely, the JMm was able to reproduce considerably well the VLM pattern for these scenarios due to the shape of αm as15

discussed above. As soon as M >Mc in the upper layers, RWU decreased at a higher rate, compensated by increasing uptake

from the wetter, deeper layers. This agrees more closely to VLM predictions.

For high Tp (Fig. 7), the JMf model can predict compensation (ωc < 1), however its predicted RWU pattern is very different

from JMm and VLM. JMf predicts a higher RWU near the soil surface for a longer period than the other models that account

for compensation. This makes soil water depletion to be more intense and RWU from these layers will cease sooner when hs20

becomes lower than h4. At this point, Ta is predicted to continue equal to Tp because of the low optimal ωc (= 0.19), which

increases RWU from the deeper layers where h is close or equal to h4. JMm behaved very differently with uptake over the first

few days (when Ms >Mc) in accordance with R distribution. After M <Mc in upper soil layers,the RWU pattern started to

change gradually and RWU increased at lower depths.

The proposed models (PM and PMm ) are capable of predicting similar RWU patterns as VLM. For the low Tp–high R25

scenario (Fig. 6), RWU is more uniformly distributed over depth than in the VLM model for the first days and uptake from

upper layers is lower than that predicted by VLM model. For high Tp (Fig. 7), these models better represent RWU patterns and,

in general, there is not much difference in predictions of RWU between the proposed models. The shape of the transpiration

reduction over time however, is smoother than the VLM model. Concerning the relative transpiration curve, the proposed

models appear to be less precise than the other models that account for RWU compensation.30

JMII does not mimic well the RWU pattern predicted by VLM for the high R–low Tp scenarios. It overestimates uptake

from surface layers for the first days. Before the onset of transpiration reduction, uptake from upper layers becomes zero, but

is compensated by a higher uptake from deeper layers. The model is very sensitive to both R and M . For the high R–high

Tp scenarios, JMII provides better uptake pattern predictions (Fig. 7). However, the model does not perform well in the other

scenarios with low and medium R (data not shown here).35
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Comparing RWU predictions from JMf and JMII, it is seen that the Jarvis-type models are affected by the definition of α.

This becomes more evident by analysing Fig. 9 which shows α of JMII (eq. 18) as a function of hs and ωc (eq. 20) for different

soil types, expressed by Mmax. Focussing first on the α function, it can be seen that even though the soil resistance should

increase continuously as soil dries, defining α by eq. 18 does not seem very realistic. In this case α is suddenly reduced even

when the soil is near saturation. When hs = 1 m, for instance, α is much lower than 0.5. Such behaviour is not expected for the5

α concept. The ωc values are also extremely low. The low α values are, however, balanced by high α2 values (due to low ω and

ωc values), leading to suitable values of RWU in a given soil layer. Nevertheless, the magnitude of α and ωc are conceptually

questionable. Therefore, we conclude that: i) the ωc value in Jarvis-type models, which sets the compensation level, depends on

the α definition. For instance, for the original Jarvis (1989) model, ωc = 0.5 corresponds to a moderate level of compensation.

Surely, it does not hold if α is defined by eq. 18; ii) Comparing the Jarvis (1989) to the De Jong van Lier et al. (2008) model10

led to a rather unrealistic α function, and its behaviour does not properly represent the α concept. This is possibly due to the

fact that the De Jong van Lier et al. (2008) model does not take into consideration the plant hydraulic resistances. This might

explain the rapid decline of α near saturation. The threshold type functions seem to be more feasible.

The fact that JMII is more sensitive to both R and M , as stated above, when compared to the other M–based models is

attributed to the α function and the derived equations to express their parameters (eq. 19 and 20). It can be seen from Fig. 9(c)15

that β defined by eq. 19 (β of JMII) tends to be higher when R increases and lower when R decreases compared to β of JMf

and JMm. Thereby, for the first days of simulations when the soil hydraulic conditions tend to be rather uniform over depth,

JMII overestimates RWU compared to VLM predictions. This becomes more important for the high R–low Tp scenarios. For

such conditions, the RWU over depth predicted by the VLM tends to be more uniform, which seems reasonable as the low

transpiration demand can be met by any small R that can be found in deeper soil depths. After some time, the discrepancies20

between VLM and JMII tend to increase, since the higher RWU in the upper layers reduces h; thus, because of the α shape of

JMII RWU in the upper layers are suddenly reduced towards zero. These are the main reasons why JMII does not predict well

in the high R–low Tp scenarios.

4.1.3 Statistical indices

The performance of the empirical models was analysed by the coefficient of determination r2 and the model efficiency coef-25

ficient E (Nash and Sutcliffe, 1970) calculated by comparing to the RWU and relative transpiration predicted by VLM. For

the low R–high Tp scenarios, the VLM predicts water stress (Ta < Tp) since the beginning of the simulation as discussed in

section 4.1.1. The empirical models (except for JMf and JMm by setting ωc > 1) are not able to reproduce these results, thus

these scenarios are not taken into account when analysing the performance of the models.

These statistical indices for the evaluated scenarios of each model are concisely shown by the boxplots in Fig. 10. The width30

of whiskers indicates the range of the statistical indices for each model used in the evaluated scenarios. The outliers indicate

whether a model had different performance at some scenarios than its overall performance. Focusing first on RWU, it can be

easily seen the better performance of the proposed models. The performance of PM was just a bit poorer than PMm’s, shown

by the presence of an outlier and lower median. JMm performed as good as the proposed models, and only in two scenarios it
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had a bad performance as shown by the outliers in Fig. 10. The wider whiskers and presence of outliers of the others models

confirm their poorer performances.

Among the models that account for RWU compensation, JMf and JMII had the poorest performances. These models had

very low performances in the highR–low Tp scenarios and in general their performances were poorer for mediumR scenarios,

especially for low Tp. Thus, the use of αm in Jarvis-type models promotes substantial improvements, especially from medium5

to high R scenarios. For low R scenarios all models performed well and the highest values of the boxes in Fig. 10 usually refer

to this scenario.

On predicting transpiration all models accounting for compensation performed well, except JMf. It can be noticed that JMII

performed much better on predicting transpiration than RWU. All models performed poorest in the high R scenarios, similar

to what was shown for RWU predictions.10

As the evaluated models differ regarding the number of empirical parameters (from 0 to 2), it is important to use a statistical

measure that penalizes the models with more parameters. The Akaike’s information criteria (AIC) is a suitable measure for such

a model comparison. The selection of the “best” model is determined by an AIC score, defined as (Burnham and Anderson,

2002):

AIC = 2K − log(L(θ̂|y)) (32)15

where K is the number of fitting parameters and L(θ̂|y) is the log-likelihood at its maximum point. The “best” model is the

one with the lowestAIC score. Table 6 lists the best models for every scenario based on AIC score. Overall, the AIC supports

the above descriptive statistical analyses, indicating that the proposed models are the best models in predicting RWU estimated

by VLM, specially from medium–high R scenarios. For the low R scenarios JMm is the best model. On predicting Tr by

VLM, the above analyses indicated that in general most models had similar performance. The AIC indicated similar results,20

but overall JMm was the best model. The proposed models (PM or PMm) were the best models for high R–low Tp scenarios.

4.1.4 Relation of the optimal empirical parameters to R and Tp levels

The optimal values of the empirical parameters of all models (except for JMII that has no empirical parameters) for all scenarios

(except for the high Tp–lowR scenario) are shown in Table 5. The threshold reduction transpiration parameters h3 andMc (for

FM and FMm, respectively) stands for the soil hydraulic conditions from which the crop cannot meet its potential transpiration25

rate. Conceptually, the more the roots, the lower is h3 or Mc due to the larger root surface area for RWU, i.e. the crop can

extract water in drier soil conditions. Similarly, lower h3 andMc are expected for low Tp. This can also be deduced from Fig. 6

and 7 by means of the predictions of relative transpiration and RWU by VLM.

The optimal h3 and Mc values (Table 5) for FM and FMm, respectively, increase as R increases, contradicting their con-

ceptual relation to R. For Tp, there is no specific relationship for these parameters: whether they increase or decrease with30

Tp depends on the value of R. In drying-out scenarios, soil water from top layers depletes rapidly due to the higher initial

uptake. As a result, uptake from these layer starts to decrease whereas RWU in deeper, wetter layers increases. The higher the

R, the more intense is this process as seen by the VLM predictions in section 4.1.1. Because FM and FMm do not account for
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this mechanism, decreasing h3 or Mc in search for conceptually meaningful values would make these models to predict higher

RWU at upper layers (in accordance withR distribution) for a longer period, increasing the discrepancy with VLM predictions.

Therefore, their best fitted values are physically without meaning due to the model assumptions.

In order to interpret the parameters in Table 5 for JMf, one should first recall that α in JMf stands for the local RWU reduction

due to soil resistance. Thus, its h3 parameter refers to the local soil pressure at which RWU starts to reduce. It may be argued5

that RWU reduction occurs in drier soil conditions as R increases, that is h3 is more negative for higher R (similarly as for

FM and FMm). However, since JMf accounts for compensation, RWU is interpreted as a non-local process, i.e. uptake in one

layer depends on water status and root properties from other layers (Javaux et al., 2013). Thus, JM’s h3 parameter is affected

by other parts of the root zone. Predictions by VLM show that RWU reduction from the upper layers starts at less negative soil

pressure head as R increases. Therefore, h3 in JMf should increase as R increases. The values of h3 for JMf shown in Table 510

agrees to this conceptual meaning. The JMm’s Mc parameter can be interpreted likewise.

The JMf’s ωc parameter values for the high R–low Tp scenarios equal 1, thus contradicting its conceptual meaning: as in

these scenarios the compensation mechanism is more intense, ωc should be less than one for the medium and high R scenarios.

The reason for ωc = 1 was discussed in section 4.1.2. Conversely, ωc values for JMm follow the conceptual meaning.

The optimal parameters of the proposed models follow the logical relation to R and Tp. The lm values for both models are15

very close. The optimal lm values are less sensitive to soil types and more sensitive to R.

High correlation parameters might result in uncertainties and nonunique solution of the optimization problem. In general,

the correlation parameter coefficients were low, except in some scenarios in which high correlation coefficients between ωc

and h3 (or Mc) were found. These high correlations might be due to model structure rather than to the data used for fitting

the models, since the correlation for PM and PMm parameters were considerably low (absolute correlation coefficient below20

0.53).

4.1.5 Optimization using Tr

To evaluate the empirical models and find their empirical parameters, the empirical models were only fitted to RWU, since

we are primarily interested on the capability of the models in predicting the RWU patterns under different scenarios. This is

a great advantage of using physical RWU models, since RWU is not easily obtained in real conditions. Nevertheless, plant25

transpiration is one of the main outputs in RWU models and it is more easily obtained. Thus, one might consider to fit the

models to the temporal course of (relative) plant transpiration or to fit the models simultaneously to both plant transpiration

and RWU, at which a rather complicated optimization scheme is required.

We addressed this issue by fitting the models to the course of relative transpiration for some scenarios. The procedure was

the same as explained in Section 3.3, but substituting Si,j in eq 31 by Tri . The results for some models in two contrasting30

scenarios of R is shown in Fig 11. Models that account for “compensation” can predict Tr quite reasonably even when fitted to

RWU only. The models that do not account for “compensation” do not mimic well Tr course for the high R scenario predicted

by VLM, even when they are fitted to Tr, and the predictive quality decreases when fitted to RWU. The most important aspect

shown in Fig 11 is that fitting the models to Tr can improve Tr predictions but impairing considerably their RWU predictions,
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especially for high R. Conversely, if a model fits well to RWU, it can provide suitable transpiration predictions. This can also

be seen by the analysis of Section 4.1.3, when the proposed models and JMm had good performance in predicting Tr as well.

4.2 Growing season simulation

By evaluating the RWU models under real weather conditions during a relatively dry year and considering the same soil types

and crop characteristics as for the drying-out experiment, it was possible to use the respective soil type and root length density5

specific calibrated parameters. We did not evaluate the models for the low R scenario because the empirical models (except

JMf and JMm) were not able to mimic those conditions for high Tp (section 4.1.1) . This evaluation is also important when

analysing whether calibration of an empirical model with a single drying-out experiment type results in consistent behaviour

in other circumstances.

Fig 12 shows the time course of cumulative actual transpiration simulated by SWAP using all the RWU models, together with10

rainfall and Tp throughout the growing season period. Following the first dry spell, Tac by FM and FMm, not accounting for

“compensation”, starts to be lower than that by other models. Two or three more dry spells occur in the evaluated period. The

magnitude of the underestimation, however, varies with soil type and R. For the medium R–loam soil scenario, for instance,

the Tac for all models are similar. The Tac at the end of the evaluated period predicted by VLM for low R (not shown in

Fig. 12) was much lower and approximately equal for the three soil types (40.45, 40.05 and 40.08 cm for clay, loam and sand15

soil, respectively). In fact, a higher R resulted in an increasing difference of cumulative transpiration between soil types. Most

water is extracted from the clay soil, followed by sand and loam. Little difference of cumulative transpiration is found between

medium and highR: for sand and clay soil, the cumulative transpiration was slightly higher for highR and practically identical

for the loam soil.

Comparing cumulative Ta predicted by the empirical models with VLM predictions shows that the models that do not20

account for compensation underestimate cumulative Ta from 2.0 % (medium R –sand soil scenario) to 13.9 % (high R–clay

soil scenario). Overall, the highest underestimates occurred for high R. All other models predict similar values. Therefore, for

total actual transpiration any of the evaluated models accounting for compensation might be suitable after calibration.

An overall analysis of the models performance is shown in Fig. 13 and a list of the “best” model for each scenario based

on AIC is shown in Table 7. The best performances are from the models that account for compensation. An improvement of25

JMf by using the proposed reduction function can be observed. Among the models that account for compensation, JMf had the

worst performance. JMII also was poor in predicting RWU, but showed good performance in estimating plant transpiration.

Overall, the best performances were also obtained by the proposed models (PM and PMm) and by the modified Jarvis (1989)

model (JMm) in predicting RWU. These results also indicate that the strategy of designing a single drying-out experiment to

calibrate an empirical model is successful.30

According to the AIC, PM, PMm and JMm are best in predicting RWU. Regarding Tr predictions, Fig. 13 shows consider-

ably high statistical indices (E and r2) for all models that account for “compensation”. However, the AIC, which penalizes the

models with more parameters, indicates that JMII was the “best” model for most of the scenarios.

20



In general, the proposed models as well as JMm showed better performance than the other empirical models. It should be

noted, however, that these models are based on M , making them closer to the physical De Jong van Lier et al. (2013) model.

In this regard, it is important to separately compare JMf and JMm and PM and PMm. The only difference between JMf and

JMm is the α reduction, which resulted in considerable improvements as discussed. In the proposed models, M is included in

Sp(z) to distribute Tp over depth. In PMm, αm is used instead of the Feddes reduction function (used by PM). These simple5

modifications were sufficient to make these empirical models mimic the predictions made by the more complex physical model

when fitted.

5 Conclusions

Several simple RWU models have been developed over the years and here we outlined some of these models and also proposed

alternatives. Some of these models were embedded as sub-models into the eco-hydrological model SWAP (Van Dam et al.,10

2008) and their evaluation was based on the comparison with RWU predictions performed by the physical De Jong van Lier

et al. (2013) model (also embedded into the SWAP model) for two numerical experiments with several scenarios of soil type,

root length density and potential transpiration rates. The parameters of the empirical models were determined by inverse

modelling of simulated RWU. The simulated scenarios also allowed insight into the behaviour of the De Jong van Lier et al.

(2013) model, especially under wet soil conditions and high potential transpiration. In such scenarios and with a low R, the15

De Jong van Lier et al. (2013) model predicts crop transpiration reduction, as the maximum crop transpiration rate becomes

dependent on crop hydraulic parameters, especially the radial root hydraulic conductivity. More insight into these results may

be obtained by coupling the De Jong van Lier et al. (2013) physical model with stomatal conductance models. Regarding the

performance of the empirical models we conclude:

• The widely-used Feddes et al. (1978) empirical RWU model only performs well under circumstances of low root length20

density R, in other words, when root water “compensation” is low. From medium to high R, the model cannot mimic properly

the RWU dynamics as predicted by the De Jong van Lier et al. (2013) model, resulting in a poor performance. Moreover, the

optimized h3 values are counterintuitive when interpreting their conceptual meaning. Employing the proposed RWU reduction

function (the FMm model) does not improve performance with this respect.

• The JMf model provides good predictions only for low and medium R scenarios. For high R, the model cannot mimic25

the RWU patterns predicted by the De Jong van Lier et al. (2013) model. Using the proposed JMm reduction function helps

to improve RWU predictions. Similarly, the JMII model does not perform well for high R–low Tp scenarios, as explained in

Section 4.1.2.

• The proposed models are able to predict RWU patterns similar to those obtained by the De Jong van Lier et al. (2013)

model. The statistical indices point them as the best alternatives to mimic RWU predictions by the De Jong van Lier et al.30

(2013) model.
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• Regarding the ability of the models in predicting plant transpiration, all models accounting for compensation have good

performance. The AIC indicates that JMII is the “best model”. This model is also more suitable for blind predictions, as no

empirical parameters need to be estimated.

• The simulations for a growing season experiment confirmed these findings, suggesting that an experiment of soil drying-

out for two levels of potential transpiration, as designed in Section 3.2.1, is sufficient to analyse the performance of RWU5

models and retrieve their empirical parameters by defining the objective function in terms of RWU.

It should be noticed that the predictions from the De Jong van Lier et al. (2013) physical model do not represent a real

system. However, they show to be consistent with the phenomena behaviour and have adequate sensitive to variables and system

boundaries. In the usage of the empirical models, it is a common practice users to refer to the old parameters compilation made

by Taylor and Ashcroft (1972), which does not account for the dependence of the parameters on soil type. Moreover, these10

parameters depend on type of transpiration reduction function, which is not clear in the Taylor and Ashcroft (1972) compilation

but usually referred to as the Feddes model. The selected models based on the comparison with a detailed physical model,

the proposed models and JMf, have one additional parameter, also dependent on soil type, root length densityand potential

transpiration. Although the parameters for three soil types, root length density and potential transpiration are provided in this

study, a more robust and complete calibration may be necessary, mainly because general values of plant hydraulic resistances15

were used. Due to the dependence of the empirical parameters on soil type and potential transpiration, parameterizing the

selected empirical models for a specific crop might require more effort than when using the physical model whose parameters

can be determined independently. Using the physical model predictions, as in this study, seems a good strategy to calibrate

the empirical models. Ultimately, the choice over empirical or physical model will be based on the desired complexity and

understanding of the system, and on availability of parameter values.20
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List of tables

Table 1. Summary of empirical models used. αf and αm are the Feddes et al. (1978) (Fig. 1a) and proposed reduction functions (Fig. 1b),

Sp (eq. 4) is the potential root water uptake, ω (eq. 11) and ωc are the weighted stress index and threshold value in Jarvis (1989) model and

ζm (eq. 25) is the weighted stress index in the proposed models.

Model Acronym Equation

Feddes et al. (1978) model FM S(z) = Spαf

Modified Feddes et al. (1978) model FMm S(z) = Spαm

Jarvis (1989) model JMf S(z) = Sp
αf

max{ω,ωc}

Modified Jarvis (1989) model JMm S(z) = Sp
αm

max{ω,ωc}

Jarvis (2010) model JMII Eqs. 11 to 13 with parameters given by eqs. 18 to 20

proposed model I PM S(z) = ζmTpαf

proposed model II PMm S(z) = ζmTpαm
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Table 2. Values of the parameters of De Jong van Lier et al. (2013) model used in the simulations.

Parameter Value Unit

r0 0.5 mm

rx 0.2 mm

Kroot 3.5 · 10−8 m d−1

Ll 1 · 10−6 d−1

hws -150 m

hwl -200 m
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Table 3. Mualem-van Genuchten parameters for three soils of the Dutch Staring series (Wösten et al., 1999) used in simulations. θs and θr

are the saturated and residual water content, respectively; Ks is saturated hydraulic conductivity and α, λ and n are fitting parameters.

Staring soil ID Textural

class

Reference in

this paper

θr θr Ks α λ n

m m−3 m m−3 m d−1 m−1 - -

B3 Loamy

sand

Sand 0.02 0.46 0.1542 1.44 -0.215 1.534

B11 Heavy Clay Clay 0.01 0.59 0.0453 1.95 -5.901 1.109

B13 Sand Loam Loam 0.01 0.42 0.1298 0.84 -1.497 1.441
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Table 4. Parameters of the root water uptake models estimated by optimization and their respective constraints Ω.

Model Parameter Ω Unit

FM h3 −150< h3 < 0 m

FMm Mc 0<Mc <Mmax m2 d−1

JMf h3 −150< h3 < 0 m

ωc 0< ωc ≤ 1 -

JMm Mc 0<Mc <Mmax m2 d−1

ωc 0< ωc ≤ 1 -

PM h3 −150< h3 < 0 m

lm 0< lm ≤ 3 -

PMm Mc 0<Mc <Mmax m2 d−1

lm 0< lm ≤ 3 -
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Table 5. Optimal parameters of each empirical model for all scenarios in the drying-out experiment

FM FMm JMf JMm PM PMm

Soil Tp R h3 Mc h3 ωc Mc ωc h3 lm Mc lm

mm d−1 cm cm−3 cm cm2 d−1 cm - cm2 d−1 - cm - cm2 d−1 -

clay 1 0.01 -1968.7 0.213 -284.5 0.711 0.366 0.494 -1615.7 1.322 0.227 1.290

clay 1 0.10 -1211.0 0.329 -132.4 0.196 0.944 0.024 -7579.9 0.869 0.076 0.884

clay 1 1.00 -1.7 0.950 -0.0 1.000 5.971 0.004 -10673.7 0.354 0.022 0.342

loam 1 0.01 -7588.1 0.334 -5.0 0.457 22.483 0.016 -6927.6 1.086 0.408 1.084

loam 1 0.10 -6085.6 0.487 -93.9 0.126 25.721 0.002 -11795.6 0.911 0.113 0.917

loam 1 1.00 -17.0 5.014 -48.0 1.000 106.223 0.000 -10878.8 0.561 0.058 0.553

sand 1 0.01 -1014.0 0.146 -291.6 0.942 0.288 0.436 -621.2 1.262 0.149 1.252

sand 1 0.10 -1122.6 0.115 -113.6 0.407 1.925 0.005 -2351.3 1.179 0.024 1.159

sand 1 1.00 -3.9 0.338 -0.0 1.000 25.887 0.000 -3158.0 0.717 0.005 0.706

clay 5 0.10 -1397.7 0.334 -218.4 0.325 0.395 0.271 -5537.2 1.512 0.196 1.449

clay 5 1.00 -260.6 0.792 -135.3 0.148 1.212 0.013 -6745.0 0.672 0.088 0.687

loam 5 0.10 -5236.5 0.784 -0.0 0.277 2.306 0.100 -8322.9 1.165 0.488 1.157

loam 5 1.00 -1249.5 2.563 -292.9 0.161 28.143 0.001 -8630.0 0.833 0.224 0.838

sand 5 0.10 -918.0 0.190 -556.2 0.432 4.154 0.018 -1273.9 1.612 0.083 1.510

sand 5 1.00 -582.3 0.533 -342.5 0.193 4.888 0.001 -3582.3 1.272 0.012 1.240
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Table 6. Best models for the evaluated scenarios (root length density R, soil type and potential transpiration Tp) based on Akaike’s informa-

tion criteria AIC through comparison of root water uptake (RWU) and relative transpiration (Tr) predicted by De Jong van Lier et al. (2013)

physical model in the drying-out experiment.

Low Tp High Tp

R Clay Loam Sand Clay Loam Sand

RWU

Low JMm JMf JMm JMm JMm JMm

Medium PMm PMm JMII JMm PM PMm

High PMm PMm PM PM PMm PM

Tr

Low JMm JMm JMm JMm JMm JMm

Medium JMm JMm JMII JMm PM JMf

High PMm PMm PMm JMII JMm JMm
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Table 7. Best models for the evaluated scenarios (root length density R and soil type) based on Akaike’s information criteria AIC through

comparison of root water uptake (RWU) and relative transpiration (Tr) predicted by De Jong van Lier et al. (2013) physical model in the

growing season experiment.

Clay Loam Sand

Medium R High R Medium R High R Medium R High R

RWU JMm PM PM PMm JMm JMm

Tr JMII JMII JMf JMm JMII JMII
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Figure 1. a) Feddes et al. (1978) root water uptake reduction function. h2 and h3 are the threshold parameters for reduction in root water

uptake due to oxygen deficit and water deficit, respectively. The subscripts l and h stands for low and high potential transpiration Tp. h1 and

h4 are the soil pressure head values above and below which root water uptake is zero due to oxygen and water deficit, respectively. b) Root

water uptake reduction function αm as a function of matric flux potential M ; Mch and Mcl are the critical values of M for high and low Tp,

respectively, from which the uptake is reduced and Mmax is the maximum value of M , dependent on soil type.
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Figure 2. Root water uptake (RWU) as a function of soil pressure head hs for three values of root length density (0.01, 0.1 and 1.0 cm cm−3)

and leaf pressure head values ranging from -30 to -200 m by -10 m interval shown by colors gradient (lighter colors indicate lower values

and some values are also indicated in the plot). These results were obtained by the analytical solution of eq. 8 given by De Jong van Lier

et al. (2013) for a special case of Brooks and Corey (1964) soil. Plant transpiration was set to 1 mm d−1 and the soil and plant hydraulic

parameters were taken from De Jong van Lier et al. (2013).
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Figure 4. Time-depth root water uptake (RWU, d−1) pattern, leaf pressure head (hl, dashed line) and relative transpiration (Tr , continuous

line) simulated by SWAP model together with the De Jong van Lier et al. (2013) model for clay soil, two levels of potential transpiration Tp:

1 and 5 mm d−1 (first and second line of plots, respectively) and three levels of root length density R: low, medium and high (indicated at

the top of the figure).

37



10-9 10-8 10-7

Kroot m/d

0

5

10

15

20

T
p
,m
a
x
 m

m
/d

7.0e-05

8.9e-05

1.1e-04

1.3e-04

1.4e-04

1.6e-04

1.8e-04

2.0e-04

L
l d

−
1

Figure 5. Maximum possible transpiration Tp,max as a function of root hydraulic conductivity Kroot for some values of the overall con-

ductance over the root-to-leaf pathway Ll computed by De Jong van Lier et al. (2013) model for rooting depth of 0.5 m, low root length

density and constant soil pressure head over depth equals to -1 m for sandy soil. The dashed vertical line highlights the value of Kroot =

3.5 10−8 m d−1 that was used in our simulations. Horizontal dashed line highlights the value of potential transpiration.
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Figure 6. Time-depth root water uptake (RWU) pattern and relative transpiration (Tr) simulated by SWAP model together with De Jong van

Lier et al. (2013) sink and the others empirical models for sand soil texture, high root length density and Tp = 1 mm d−1.

39



1 Tr

0

10

20

30

40

De
pt

h,
 c

m

VLM

0 0.0054 0.011 0.016 0.021 0.027 0.032
RWU, d−1

1 Tr

FM

1 Tr

FMm

1 Tr

JMf

1 Tr

0 10 20 30 40

Time, d

0

10

20

30

40

De
pt

h,
 c

m
JMm

1 Tr

0 10 20 30 40

Time, d

JMII

1 Tr

0 10 20 30 40

Time, d

PM

1 Tr

0 10 20 30 40

Time, d

PMm

Figure 7. Time-depth root water uptake (RWU) pattern and relative transpiration (Tr) simulated by SWAP model together with De Jong van

Lier et al. (2013) sink and the others empirical models for sandy soil texture, high root length density and Tp = 5 mm d−1.
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Figure 9. (a) α of JMII model (eq. 18) as function of soil pressure head hs, (b) ωc parameter (eq. 20) for different soil types (the three soil

types used in the simulations and more soils from Wösten et al. (1999) ), expressed by Mmax and (c) the normalized root length density β

computed by the eqs. 4 (JMf) and 19 (JMII) as function of root length density R, with R over depth given by eq. 30 with Ravg and b equal

to 1.0 cm cm−3 and 2, respectively.
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Figure 10. Box plot of the coefficient of determination r2 and model efficiency coefficientE for the comparison of root water uptake (RWU)

and actual transpiration (Ta) predicted by each empirical model with the De Jong van Lier et al. (2013) model predictions for the drying-out

simulations for three levels of root length density and three types of soil and two potential transpiration levels. The symbols ∗ and ◦ represent

the average and outliers, respectively.
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Figure 11. Time-depth root water uptake (RWU) pattern and relative transpiration (Tr) simulated by SWAP model together with De Jong

van Lier et al. (2013) sink and some empirical models when optimization was performed with Tr instead of RWU for loam soil texture, low

(first line of plots) and high (second line of plots) root length density and Tp = 1 mm d−1. The dashed lines indicate Tr when the models

were optimized with RWU.
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Figure 12. Time course of actual cumulative plant transpiration Tac predicted by the De Jong van Lier et al. (2013) and all the empirical

models for the three types of soil (clay, loam and sand) and two levels of root length density (medium and high), rain and potential transpi-

ration Tp for the growing season experiment. The total Tac values predicted by each model for the whole period are shown in the plot aside

the model names.
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Figure 13. Box plot of the coefficient of determination r2 and model efficiency coefficientE for the comparison of root water uptake (RWU)

and actual transpiration (Ta) predicted by each empirical model with De Jong van Lier et al. (2013) model for the growing season experiment

for two levels of root length density and three types of soil. The symbols ∗ and ◦ represent the average and outliers, respectively.
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