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Abstract  10 

An increasingly uneven distribution of hydro-meteorological factors related to climate change has been detected by global 

climate models (GCMs), and the pattern of changes in water availability is commonly described with the phrase “dry gets 

drier, wet gets wetter” (DDWW). However, the DDWW pattern is dominated by oceanic areas, and recent studies based on 

both observed and modelled data have failed to verify the DDWW pattern on land. This study confirms the existence of a 

new DDWW pattern in China after analysing the observed streamflow data from 291 Chinese catchments from 1956 to 2000, 15 

revealing that the distribution of water resources has become increasingly uneven since 1950s. This pattern can be more 

accurately described as “drier regions are more likely to become drier, whereas wetter regions are more likely to become 

wetter”. Based on a framework derived from the Budyko hypothesis, this study estimates runoff trends via observations of 

precipitation (P) and potential evapotranspiration (Ep) and predicts the future trends from 2001 to 2050 according to the 

projections of five GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under three scenarios (RCP2.6, 20 

RCP4.5 and RCP8.5). The results show that this framework has a good performance for estimating runoff trends and that  

changes in P plays the most significant role. Most areas of China (over 60%) will experience water resource shortages under 

the projected climate changes. Despite the differences among the predicted results of the different models, the DDWW 

pattern does not hold in the projections, regardless of the model used.  Nevertheless, this conclusion remains tentative due to 

the large uncertainties in the GCM outputs. 25 

 

1 Introduction 

Terrestrial water availability is critical to human lives and economic activities (Milly et al., 2005). In recent decades, changes 

in water availability have had significant effects on human society (Piao et al., 2010) and the environment (Arnell, 1999) in 

the context of climate change. Runoff (Q) is a commonly adopted indicator of water availability (Milly et al., 2005). The 30 

response of Q to climate change has been widely investigated from the basin scale to the global scale, based on streamflow 
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observations (e.g., Pasquini and Depetris, 2007; Dai et al., 2009; Stahl et al., 2010) or model outputs (e.g., Hamlet et al., 

2007; Alkama et al., 2013; Greve et al., 2014). 

Under climate change, a trend towards more uneven distribution of the hydro-meteorological elements has been detected 

at the global scale by the global climate models (GCMs) both spatially (Held and Soden, 2006; Chou et al., 2009) and 

temporally (Chou et al., 2013), as well as the observed data (Allan, 2010; Durack, 2012; Liu, 2013). This trend results in 5 

probable enhancement of hydrological extremes such as floods and droughts. This response is known as the “rich-get-richer” 

mechanism (Chou and Neelin, 2004), from which follow-up studies derive diverse summaries of different elements, such as

“dry gets drier, wet gets wetter” for precipitation (P) (Allan, 2010) and precipitation minus evapotranspiration (P − E) 

(Held and Soden, 2006), “wet season gets wetter, dry season gets drier” for seasonal precipitation (Chou et al., 2013) and 

“fresh gets fresher, salty gets saltier” for ocean salinity (Durack, 2012; Roderick et al., 2014). Furthermore, it attracts a lot 10 

of attention to explore whether there exists a similar effect in Q on land as the “dry gets drier, wet gets wetter” (DDWW 

hereinafter for short) pattern found in P − E, which indicates the increasingly uneven distribution of the water resources. The 

original DDWW pattern predicted a simple active proportional relationship between P − E and ∆(P − E), as the sign of P −

E determines whether a region is dry (negative) or wet (positive). It should be noticed that the predicted changes were 

averages of latitudinal zones rather than values at the local scale (e.g., grid box or catchment), resulting in the dominance of 15 

the oceanic components in the DDWW pattern (Roderick et al., 2014), as P and E are dominated by exchanges over the 

ocean at most latitudes (Lim and Roderick, 2009). Thus, the DDWW pattern is more appropriately applied to the ocean than 

to the land. In fact, because the long-term mean P − E is overwhelmingly positive on land, the method of using the sign of 

P − E to identify wet and dry regions is not feasible anymore, as ∆(P − E) can obviously be negative. Therefore, some 

scholars tried to explore a new DDWW pattern to describe changes in the hydrological cycle on land at the local scale. Greve 20 

et al. (2014) adopted the aridity index (φ, =Ep/P, where Ep denotes the potential evapotranspiration) as a measurement of the 

aridity degree, and defined φ>2 as dry regions and φ<2 as wet regions. Consequently, the pattern became “φ>2, ∆(P − E)<0; 

whereas φ<2, ∆(P − E)>0”. However, the results, based on more than 300 combinations of various global hydrologic data 

sets containing both observed and modelled data, showed that only 10.8% of land areas robustly followed the adjusted 

DDWW pattern. Nevertheless, the study of Greve et al. (2014) still has some defects related to two major aspects: one is the 25 

existence of large uncertainties in E in both the satellite-based observations and the simulations (Kumar et al., 2016), and the 

other is artificially assigned threshold between the wet and dry regions, which, when the threshold is changed, changes the 

results. Therefore, a study based on observed Q data that are more direct and of relatively low uncertainty should be 

conducted as well as a new method to partition dry and wet regions not depending on the appointed threshold.  

However, it should be noted that the observed changes in Q are not only responses to climate change but are also 30 

responses to other factors, such as land cover changes and human activities, e.g., withdrawal and drainage (Stahl et al., 2010). 

To extract the components related only to climate change is an intractable process because there is no effective method to do 

so. Therefore, a roundabout means is to compare the credibly estimated changes in Q under the influence of climate change 
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with those of the observed data. The Budyko hypothesis (Budyko, 1948) is a robust and simple tool that can accurately 

model mean annual Q within a catchment based only on meteorological information under climate change (Koster and 

Suarez, 1999). The Budyko hypothesis depicts the long-term coupled water-energy balance for a catchment as   

E�/P� = f ( Ep
����/P�, c),                                                                                                                                                                                    (1) 

where the function f denotes Budyko-like equations,  Ep
���� is the mean annual potential evapotranspiration, and c is a parameter 5 

characterizing a particular catchment. There are various types of Budyko-like equations (e.g., Pike, 1964; Fu, 1981; 

Choudhury, 1999; Zhang et al., 2001; Yang et al., 2008; Wang and Tang, 2014; Zhou et al., 2015). The Budyko hypothesis 

has been examined and applied in both observation-based (Zhang et al., 2001; Oudin et al., 2008; Xu et al., 2014) and 

model-based studies (Zhang et al., 2008; Teng et al., 2012) and produces good consistency between observed and modelled 

data. By analysing hydro-meteorological data from 108 nonhumid catchments in China, Yang et al. (2007) confirmed that 10 

the Budyko hypothesis is capable of predicting Q both at long-term and annual time scales. Xiong and Guo (2012) assessed 

the Budyko hypothesis in 29 humid watersheds in southern China and found that parametric Budyko formulae can estimate 

the long-term average Q well. Therefore, it is reasonable to estimate Q using the Budyko hypothesis in China. The ability of 

the Budyko hypothesis to capture the effects of climate change on Q, as well as other details, is described in Section 2.3. 

Based on observed streamflow data from 291 catchments in China, this study first analyses the historical trends in annual 15 

Q, to explore the possible existence of a DDWW pattern via a new method proposed in Section 2.2. Then, adopting a simple 

framework derived from the Budyko hypothesis stated in Section 2.3, this study estimates the runoff trends caused by 

climate change in the study catchments, to reveal that the historical trends are mainly a response to climate change and 

identify the key influencing factor. Moreover, based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

projections of five GCMs, this study predicts changes in Q via the framework to determine whether the DDWW pattern will 20 

continue to hold in the future. 

2 Data and methods 

2.1 Study area and data  

This study collected hydrologic and meteorological data from 291 catchments in mainland China with drainage areas ranging 

from 372 to 142,963 km2. These catchments cover all the first-level basins of mainland China except the Huaihe River Basin 25 

(Figure 1). Annual restored discharge data from 1956 to 2000 for each catchment outlet were collected from the 

Hydrological Bureau of the Ministry of Water Resources of China. Here, the “restored” means that the effects of human 

activities on discharge have been mostly removed via the water balance method or other methods. Specifically, the process 

of restoring the station-observed discharge consists of two major parts: replenishing the consumption and removing the 

introduction. The water consumption includes the net consumption in agricultural, industrial and residential sectors as well 30 

as water loss in the reservoir due to evaporation and leakage. The introduction part includes the water diverted from other 
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watersheds and the extracted groundwater back into the river. The change in the reservoir storage can be either part 

depending on whether the change is positive or negative. Thus, the restored discharge can be considered the natural 

discharge (or very close). The records range in length from 21 years to 45 years, and 261 catchments have record lengths 

greater than 40 years.  

Two meteorological data sets were used in this study. One is the 10 km gridded data set interpolated by Yang et al. (2014) 5 

based on 736 stations of the China Meteorological Administration, including P and potential evapotranspiration (Ep) 

observations from 1956 to 2000. Based on this observed data set, the annual areal P and Ep of each catchment were 

calculated. The other is the daily bias-corrected (see Piani et al., 2010 and Hagemann et al., 2011) modelled data set from the 

Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, http://www.isi-mip.org) covering the period 1951–2050 

under scenarios RCP2.6, RCP4.5 and RCP8.5, as released by the CMIP5. These modelled data were initially downscaled to a 10 

0.5°×0.5° latitude–longitude grid then extracted and transformed into the ASCII format by the Institute of Environment and 

Sustainable Development in Agriculture, the Chinese Academy of Agricultural Sciences, China. The output data for each 

scenario include precipitation; mean, maximum and minimum air temperature; solar radiation; wind speed; and relative 

humidity for the five models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M). 

The daily Ep was estimated for each grid by the Penman Equation (Penman, 1948; see Appendix A for more details) based 15 

on the GCM outputs. Annual series of P and Ep were calculated as the sum of every daily P and Ep over a year. Then, annual 

catchment-averaged P and Ep data was calculated as the average of grid P and Ep within one catchment.  

2.2 Runoff trends and the DDWW pattern 

In this study, to estimate runoff trend, we used two slightly different methods for the historical (1956-2000) and projected 

period (2001-2050), respectively. The runoff trend for the historical period was estimated as the slope of the linear regression 20 

of the annual Q series, denoted by kQ, and can be calculated by   

kQ=
∑ (ti�t ̅m

i=1 )(Qi�Q�)

∑ (ti�t)̅2m
i=1

,                                                                                                                                                                      (2) 

where m is the observed record length of a catchment, i is the ith record, ti is the year of this record, t ̅is the average of all 

record years, as Q
i
 and Q are the observed annual runoff in ti and the mean annual runoff in historical period, respectively. 

The significance of kQ was tested using a t-test. The runoff trend of the projected period was denoted as ∆Q, defined as the 25 

change in mean annual runoff between historical and projected period, and can be computed as follows: 

∆Q=Q
p

− Q,                                                                                                                                                                              (3) 

where Q
p
 denotes the projected mean annual runoff.  

In the study of Greve et al. (2014), the DDWW pattern was sensitive to the assigned threshold for defining the dry and wet 

regions, i.e., different thresholds may lead to different (possibly conflicting) results. To remove the influence of the threshold, 30 

Allan et al. (2010) adopted percentile bins for P to define wet and dry regions, thereby successfully avoiding the pitfalls of 
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selecting a convincing threshold. Therefore, this study does not define absolute “wet” or “dry” regions but instead identifies 

relative “wetter” or “drier” ones. To be specific, two variables were chosen to be the indicators of the aridity index, Q and φ, 

respectively. The term φ is introduced to maintain consistency with studies based on the climate model data where Q is not 

available. The spatial distribution of Q and φ are shown in Figure 2, with Q ranging from 0 to 1400 mm a-1 and φ ranging 

from 0.5 to 8. We divide Q and φ into six intervals, the intervals with larger Q values and smaller φ values are wetter levels 5 

(Table 1). In each interval, the total catchments and becoming wetter catchments were counted, and then the proportion of 

wetter catchments, denoted as d, was calculated. A larger d value implies that more catchments have become wetter in this 

level. This study compares the d values of different intervals to examine a new DDWW pattern.   

2.3 A framework to estimate runoff trends under climate change 

Among various types of Budyko-like equations, two analytical equations proposed by Fu (1981) and Yang et al. (2008) 10 

should be highlighted. Because these two studies each introduce a catchment property parameter, ω and n, respectively (two 

examples of c in Equation (1)), the two equations are able to better capture the role of landscape characteristics. Yang et al. 

(2008) showed a high linear correlation between ω and n. Therefore, this study chooses the equation derived by Yang et al. 

(2008), which has been rewritten as follows: 

E�

P�
 =  �(

Ep
���

P�
)

-n

+1�

-1/n

.                                                                                                                                                                                       (4) 15 

Focusing on Q, this study transforms Equation (4) into 

Q�  = P� − P� �(
Ep
���

P�
)

-n

+1�

-1/n

.                                                                                                                                                                              (5) 

The parameter n can be calculated using the observed Q�,  P�  and Ep
��� of each catchment from the period of 1956 to 2000. The 

differential form of Equation (5) is derived as follows: 

 dQ =
∂Q

∂P
dP +

∂Q

∂Ep
dEp +

∂Q

∂n
dn,                                                                                                                                                            (6) 20 

where dQ, dP, dEp and dn denote deviations in the observed or modelled Q, P, Ep and n with respect to long-term mean 

value. Equation (6) has widely been used to estimate changes in annual Q (e.g., Yang and Yang, 2011; Roderick and 

Farquhar, 2011; Roderick et al., 2014). 

Since we focus on the effects of climate change, n is assumed to remain unchanged, i.e., dn equalling 0 (Yang and Yang, 

2011), and Equation (6) becomes 25 

 dQ =
∂Q

∂P
dP +

∂Q

∂Ep
dEp.                                                                                                                                   (7) 

For convenience, we introduce εP and ε0 to represent 
∂Q

∂P
 and 

∂Q

∂Ep
, which can be estimated based on n, P and Ep: 
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εP=
∂Q

∂P
�

�P,Ep�
=1 − �1+ �

Ep

P
�

-n

�

-
n+1

n

 and 

ε0=
∂Q

∂Ep
�

�P,Ep�

= − �1+ �
Ep

P
�

n

�

-
n+1

n

. 

Roderick et al. (2014) showed that the runoff changes (=∆(P − E) in this study) estimated using Equation (7) account for 

around 82% of the variation in the GCM projections of ∆(P − E). Therefore, Equation (7) can predict a reliable result under 

climate change projected by GCMs. Based on Equation (7), a framework can then be constructed to estimate runoff trends 5 

(see Appendix B for interpretation):                                                                                                                                                          

kQe =εPkP + ε0kEp
,                                                                                                                                                                    (8a) 

∆Q
e
 =εP∆P + ε0∆Ep,                                                                                                                                                               (8b) 

where kQe and ∆Q
e
 are estimated runoff trends of the historical and projected period, respectively; kP and kEp

are the linear 

regression-calculated trends in annual P and Ep, respectively; and ∆P and ∆Ep are changes in P and Ep, respectively.  10 

Equations (8a) and (8b) attribute the runoff trend to two major factors, the precipitation trend and the potential 

evapotranspiration trend. Equation (8a) estimates kQe according to the observed kP and kEp
. Equation (8b) estimates ∆Q

e
 

according to the GCM projections, and ∆P and ∆Ep are calculated as differences in P and Ep between 1956–2000 and 2001–

2050. Due to the uncertainty of the GCMs, the coefficient of variance (Cv) in each catchment is estimated. The Cv is defined 

as the ratio between the standard deviation and the absolute mean of the five ∆Q
e
 outputs of the respective GCMs. 15 

Specifically, a lower Cv indicates less uncertainty in ∆Q
e
 because the results of the different GCMs are similar.  

3 Results  

3.1 Historical trends in annual runoff 

Figure 3 presents the spatial distribution of observed kQ in the 291 study catchments. At the significance level of 0.05, 39.9% 

(116 of 291) of the study catchments are undergoing significant changes in annual Q and are called “significant catchments” 20 

in the following text. Trends towards wetter conditions (positive trends) are found mainly in the upper and lower reaches of 

the Yangtze River basin, the Southwest and the Southeast Rivers basin, the Pearl River basin and the Inland Rivers basin. 

The annual Q in the lower reaches of the Yangtze River basin and the Northern Xinjiang Uygur Autonomous Region is 

robustly increasing by over 2 mm a-1, which is greater than the rates of most other catchments. The largest increasing trend 

of 10.3 mm a-1 is observed in the Yangtze River basin. However, the catchments in the middle reaches of the Yangtze River 25 

basin and in northern and northeastern China are experiencing the greatest reductions in runoff, generally with significant 
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trends. Several catchments have negative trends of over 4 mm a-1, and the most severe situation is in the Yellow River basin, 

where the annual Q is decreasing at a rate of 7.2 mm a-1.  

The relationship between kQ and Q is plotted in Figure 4, which also shows the d for each interval. With increasing Q, d 

increases from 0.18 to 0.88, which means that “drier regions are more likely to become drier, whereas wetter regions are 

more likely to become wetter”. The slight decrease in d to 0.79 in the last interval can be attributed to the small sample size 5 

of this interval, as the number of catchments getting drier is actually equal in intervals 5 and 6 (Table 2). Therefore, it 

indicates a new DDWW pattern. This pattern emphasizes the fact that the distribution of water resources has become more 

uneven in China since 1950s. The process driving the uneven distribution of water resources in this study is powerful 

because nearly all the wettest catchments became wetter and the driest catchments became drier.  

Moreover, the DDWW pattern was explored based on kQ and φ is when Q is not available. Figure 5 shows that d 10 

decreases from 0.86 to 0.16 as φ increases, implying that the DDWW pattern also holds if we adopt φ to describe the aridity 

degree, similar to Greve et al. (2014). It is because of the monotonic decrease in Q with φ (Figure 6a). However, d increases 

sharply to 0.36 in the last interval, in contrast to the DDWW pattern. To understand this divergence, we have marked areas 

with φ> 2 and kQ> 0 (26 in total) in Figure 6b. Surprisingly, most of these areas (19 of 26) are located in areas with glaciers. 

Therefore, the changes in water storage (∆S) from the melting of glacial ice and snow also play a key role in the runoff 15 

generation there. However, φ does not consider the influence of ∆S, thereby leading to an overestimation of the aridity 

degree in these catchments, i.e., they are grouped into the wrong intervals. This reflects the weakness of the ability of φ to 

assess the aridity degree with respect to water resources compared to Q. Moreover, if acquiring ∆Sand redefining an 

adjustable aridity index (φ’) as (P − ∆S)/Ep, it is possible that these catchments with high φ also obey the DDWW pattern. 

3.2 Interpreting the trends from climate change perspective  20 

Based on a comparison of the Budyko-estimated kQe with observed kQ, the coefficients of determination (R2) (Legates and 

McCabe, 1999) are 0.70 and 0.86 for all catchments and for significant catchments, respectively (Figure 7).Therefore, the 

majority of the runoff trends can be attributed to changes in the atmospheric forcing of water and energy. However, the slope 

k is smaller than one (0.60 and 0.62 for all catchments and significant catchments, respectively), implying that the Budyko-

based framework underestimates the changes in runoff. Nevertheless, despite underestimating the runoff trends, the 25 

framework can correctly note the direction of runoff changes in more than 80% of the study catchments (Figure 7), as the 

error rates (proportions of misestimated catchments that have different signs of observed and estimated trends) in all and 

significant catchments are 18.6% (54 of 291) and 6.0% (7 of 116), respectively. Furthermore, the DDWW pattern works well 

based on kQe (Figure 8), which validates the DDWW pattern from the perspective of climate change based on historical 

meteorological observations. It also indicates the feasibility of using only P and Ep information to examine the pattern, and 30 

serves as a reference for studies based on climate model outputs.  
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In catchments where the observed and estimated signs are consistent, the parts of kQe generated from P (kQ
P , =εPkP) and Ep 

(kQ
0 , =ε0kEp

) are compared to find the factor controlling the runoff changes due to climate change. As shown in Figure 9, kP 

makes an overwhelming contribution in 88.6% (210 of 237) of these catchments, as ratios of absolute kQ
0  to absolute kQ

P  are 

smaller than 1. Moreover, when linking kP with Q (Figure 10), we observe a pattern similar to the DDWW pattern, i.e., 

“more precipitation in wetter areas, and less in drier areas”. This pattern is the result of the dominant position of kP and the 5 

positive effect of kP on the runoff trends. Therefore, from the perspective of climate change, the more uneven precipitation 

results in more uneven runoff, producing the DDWW pattern. 

3.3 Predicting future trends using the GCM projections 

Based on the GCM projections, equation (8b) predicts the future runoff trends ∆Q
e
 between the periods of 1956–2000 and 

2001–2050. The results show that great discrepancies appear in ∆Q
e
 among the five GCMs even under the same scenario, 10 

whereas the model-averaged results under different scenarios are close (Figure 11). The Cv values of ∆Q
e
 in each catchment 

are presented in Figure 12. Taking the RCP2.6 scenario as an example, over two-fifths (41.9%) of the catchments have a Cv 

value larger than 0.5, which is indicative of considerable uncertainty in the various models reported by previous studies (e.g., 

Greve et al., 2014; Kumar et al., 2016). However, the proposed DDWW pattern is no longer suitable under the three 

scenarios, regardless of which model is selected, because d decreases as Q increases, except for an increase in interval 6, in 15 

contrast to the DDWW pattern. However, it doesn’t mean an obvious alleviation of the uneven water resource distribution 

but conveys a bad news that most areas of China (over 60%, calculated from Table 3) will experience water resource 

shortages under the projected climate changes, whereas the changes in the conditions of the driest (interval 6) and wettest 

(interval 1) areas are relatively slight. Furthermore, the main meteorological factor controlling the future trends was 

identified based on the mean values of the five GCMs. Figure 13 shows that trends in P (∆P) are no longer the controlling 20 

factor, as only 40% of the catchments have values of �
ε0∆Ep���

εP∆P
� smaller than 1.  

The spatial distribution of model-averaged relative changes in Q (∆Q
e
/Q) is shown in Figure 14. The results under the 

three scenarios are similar. Red regions are catchments where Q will fall by more than 60% relative to the historical value, 

and most of these regions are located in the Yellow River Basin with relatively high certainty (Cv<0.5). The most severe 

situation arises in a catchment situated in the Yangtze River Basin, where the runoff is predicted to be nearly zero and the Cv 25 

is less than 0.2. In contrast, dark blue areas are catchments where Q is projected to increase by over 40%. These catchments 

are primarily located in the Inland River Basin, except for Northwest China, where catchments will suffer from a shortage of 

fresh water. Instead of continuing to become drier, catchments in Northeast and North China are projected to generate more 

runoff in the future, whereas catchments in the lower reaches of the Yangtze River Basin will experience considerable 
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reductions in runoff, despite historical increases. These are the most obvious distinctions between the projected and historical 

runoff changes. Thus, the DDWW pattern fails to accurately characterize these future patterns. 

However, an inevitable concern about the GCM outputs is their uncertainty, which determines the reliability of the 

projected results. To examine the uncertainty, one workable method is to compare meteorological observations with 

simulations for the period of 1956–2000. Taking the results of the GFDL-ESM2M model as an example (Figure 15), P is 5 

simulated well except for some obvious incorrectly estimated points far from the y = x line. However, simulations of Ep 

show tremendous deviations, resulting in no obvious linear relationship between the simulated and observed values. This 

simple comparison directly highlights the unreliability of the GCM outputs.  

4 Discussion 

In the present work, a new method not limited to the artificial selection of the threshold to partition dry and wet regions is 10 

proposed to examine the DDWW pattern. Our results confirmed that a feasible DDWW pattern exists in the historical runoff 

trends across China. However, if we adopted the same threshold φ=2 as Greve et al. (2014) to check Figure 5, we would get 

the totally opposite result that the DDWW pattern doesn’t hold. Therefore, the use of the new method may also verify the 

validity of the DDWW pattern in previous studies. Roderick et al., (2014) plotted the relationship between GCM-based 

gridded ∆(P − E) and P − E over land (Fig.1.(f) in the study of Roderick et al., (2014)) to argue that the proportional 15 

relationship between them revealed by Held and Soden (2006) doesn’t hold over land anymore. Nevertheless, seen from the 

new method’s perspective, the relationship seems consistent with the DDWW pattern found in this study, that the possibility 

of ∆(P − E)>0 gets larger as P − E gets larger. Additionally, the DDWW pattern might also hold in the study of Greve et al. 

(2014) according to Figure 4c in that study and the distribution of φ across the world. Therefore, a follow-up to this study is 

to promote the proposed method to the worldwide scale, to examine the DDWW pattern globally.            20 

Based on a Budyko-based framework, our findings suggest that climate change is the main reason resulting in the 

historical runoff trends and kP is the most significant factor associated with climate change. Roderick et al. (2014) reported a 

similar result in their research of GCM outputs (CMIP3), that the changes in water availability (∆(P − E)) are dominated by 

the changes in P (∆P) globally. Despite high correlation between kQ and kQe, the Budyko-based framework underestimates 

the observed changes in runoff. This is because the framework only quantifies the effects of climate change, and the 25 

estimated deviation may stem from the neglect of other influencing factors, such as ecological and environmental changes, 

that result in changes in the catchment properties (dn in Equation 6) that we assume to be constant in this study.  

In this study, Ep was calculated using the Penman Equation, which is considered one of the best way (Zhang et al., 2001) 

and is strongly recommended by Shuttleworth (2012). This method to estimate Ep is also adopted by other studies, e.g., Yang 

et al., (2014) and Xu et al. (2015) However, Roderick et al., (2015) suggested using the net radiation instead of Ep in the 30 
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Budyko hypothesis. Kumar et al., (2016) compared runoff change projections obtained by these two different methods, 

finding a similar result. Therefore, it is likely that the use of Ep or net radiation has little influence in our results. 

Our results showed that great discrepancy arises between the GCM-simulated and observed Ep, whereas GCM-simulated 

and observed P are way more coincident (Figure 15). This tremendous distinction in GCM’s performance in P and Ep 

simulations evokes doubts about the reliability of the bias-corrected GCM outputs used in this study. Actually, the bias-5 

correction process had been implemented to all GCM outputs, meaning all variables needed to calculate Ep were corrected 

simultaneously. We speculate that it might relate to the disparate effectiveness of the bias-correction process in different 

outputs, resulting in good fit to P and bad fit to Ep. 

5 Conclusions 

Based on the analysis of restored discharge in 291 catchments across China from 1956 to 2000, we proposed a suitable 10 

DDWW pattern that “drier regions are more likely to become drier, whereas wetter regions are more likely to become 

wetter”, which implies that the distribution of the water resources in China has become more uneven since the 1950s. The 

pattern holds both in the studies adopting Q and φ as the indicator of water availability. Furthermore, a framework based on 

the Budyko hypothesis reveals that the runoff changes can be mainly attributed to climate change and kP is the controlling 

factor. According to the projections of five GCMs from CMIP5 during the period of 2001-2050, the proposed DDWW 15 

pattern is no longer suitable. The model-average results suggest that over 60% of catchments will experience water resource 

shortages under future climate change. In addition, only 40% of the study catchments will be primarily controlled by ∆P, 

which is different from the phenomenon that the runoff change was controlled by precipitation in about 90% catchments in 

the historical period. The catchments in Northeast and North China, which were becoming drier, will generate more runoff in 

the future, whereas the catchments in the lower reaches of the Yangtze River Basin, which were becoming wetter, will 20 

experience considerable reductions in runoff. These changes represent the most obvious differences between the projected 

and historical runoff changes.  Nevertheless, the projected conclusions remain tentative due to the enormous unreliability of 

the GCM outputs as indicated by the extremely low correlations between the simulated and observed Ep values for the period 

of 1956–2000. 

The results of this study may serve as a helpful case to explore the rule of spatial heterogeneity in runoff trends and to 25 

supplement the study of the DDWW pattern under climate change. Though some studies suspected the existence of the 

DDWW pattern in land, this study proves that the DDWW pattern actually exists across China in history. It is essential to 

realize the more uneven distribution of water resources across China for China to better cope with climate change, as well as 

rationally manage and utilize water resources. Moreover, the proposed method, which divides catchments into several 

intervals representing different aridity degrees instead of assigning a threshold to partition wet and dry regions, can be easily 30 

promoted to the global study of the DDWW pattern and draw a more generalized conclusion over world. 
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Appendix A 

The procedure for using the Penman Equation to estimate Ep (mm d−1) based on the GCM outputs is described in detail in 

this appendix. The Penman Equation can be written as (Yang et al., 2011) 

Ep=
0.408∆(Rn�G)+2.624γ(1�0.536u2)(1�RH)es

∆�γ
,                                                                                                                                  (A.1) 

where es is the saturated vapor pressure (kPa), ∆ is the slope of the saturated vapour pressure versus air temperature curve 5 

(kPa °C−1) when the saturated vapour pressure equals es, Rn is the net radiation (MJ m−2 d−1), G is the soil heat flux (MJ 

m−2 d−1), γ is a psychometric constant (kPa °C−1), u2 is the wind speed at a height of 2 m (m s−1), and RH is the relative 

humidity (%) (Yang et al., 2011).  

The form of the saturated vapour pressure versus air temperature curve is 

e(T)=0.6108exp(
17.27T

T�237.3
),                                                                                                                                                       (A.2) 10 

where T denotes the daily air temperature, and es of the day can be calculated by 

es=
e(Tmax)+e(Tmin)

2
,                                                                                                                                                                   (A.3) 

where Tmax and Tmin are maximum and minimum daily air temperatures, respectively. 

The GCM outputs are daily Tmax, Tmin (which can be used to calculate es and ∆), u2 and RH. Assuming G equals 0 and if 

we compute Rn, we can use Equation (A.1) to estimate Ep. The process of utilizing the solar radiation (Rs) to compute Rn is 15 

described below. 

Firstly, we calculate the incoming net short wave radiation (Rns) by 

Rns=(1 − α)Rs,                                                                                                                                                                     (A.4) 

where � denotes the albedo. 

Next, the net outgoing long-wave radiation (Rnl) is estimated by 20 

Rnl=σ �
Tmax

4 �Tmin
4

2
� �0.34 − 0.14�ea� �1.35

Rs

Rs0
− 0.35�,                                                                                                        (A.5) 

where σ is the Stefan–Boltzmann constant (=4.903×10-9 MJ K-4 m-2 day-1), ea is the actual vapour pressure (=es × RH), and 

Rs0 is the clear-sky solar radiation, which can be computed by 

Rs0=(0.75 + 2×10-5z)Ra,                                                                                                                                                      (A.6) 

where z is the station elevation above sea level (m), which is available from the GCMs, and Ra is the extraterrestrial radiation 25 

(MJ m-2 d-1) determined by Equations (21) to (25) in Allen et al. (1998). 

Finally, by subtracting Rnl from Rns, we obtain Rn. 
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Appendix B 

This appendix provides an explicit description of the derivation of the framework for estimating kQ and ∆Q from Equation 

(8). Substituting Equation (8) into Equation (2) yields 

kQ=
∑ (ti�t ̅m

i=1 )(εP∆Pi�ε0∆Epi)

∑ (ti�t)̅2m
i=1

 .                                                                                                                                                        (B.1) 

This equation can be transformed into 5 

kQ=εP
∑ (ti�t ̅m

i=1 )∆Pi

∑ (ti�t)̅2m
i=1

+ ε0

∑ (ti�t ̅m
i=1 )∆Epi

∑ (ti�t)̅2m
i=1

 .                                                                                                                                         (B.2) 

Recalling the definition of the trend in this study, Equation (B.2) can be considered a linear combination of kP and kEp
: 

kQ =εPkP + ε0kEp
 . 

Equation (3) can be rewritten as 

∆Q=
∑ Qpi��Q� m

i=1

m
 .                                                                                                                                                                    (B.3) 10 

Recombination of the variables leads to the following expression: 

∆Q=
∑ (Qpi�Q�) m

i=1

m
 .                                                                                                                                                                     (B.4) 

Similarly, the substitution of Equation (8) yields 

∆Q=
∑ (εP∆Pi�ε0∆Epi) 

m
i=1

m
.                                                                                                                                                             (B.5) 

We finally obtain the target equation: 15 

∆Q =εP∆P + ε0∆Ep . 
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Figure 1: Spatial distribution of the 291 study catchments across mainland China. 

 

Figure 2: Spatial distribution of mean annual runoff Q (left) and aridity index φ (right) in the 291 study catchments. 
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Figure 3: The observed runoff trends (kQ) in the 291 catchments for the period of 1956 to 2000. Dark red and blue denote catchments 

with a trend smaller than -6 mm a-1 and larger than 8 mm a-1, respectively. Crosshatched areas are significant catchments (p7). Grey shaded 
areas are glaciers based on the second glacier inventory data set of China (Guo et al., 2014). 

 5 

Figure 4: Relationship between observed runoff trends kQ and mean annual runoff Q for the study catchments (left) and values of 

d in each interval according to Q (right). d denotes the proportion of catchments with positive trends in each interval. Interval numbers 1 
to 6 correspond to six intervals 0–200, 200–400, 400–600, 600–800,800–1000 and 1000–1400. 
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Figure 5: Relationship between observed runoff trends kQ and mean annual runoff Q for the study catchments (left) and values of 

d in each interval according to φ (right). Interval numbers 1 to 6 correspond to six intervals 0.5–2/3, 2/3–1, 1–1.5, 1.5–2,2–3 and 3–8. 

 
Figure 6: Relationship between mean annual runoff Q and aridity index φ in the study catchments (left) and the distribution of 5 
catchments with φ>2 and kQ>0 (right). Grey shaded areas are glaciers based on the second glacier inventory data set of China (Guo et al., 
2014). 

  

-9

-6

-3

0

3

6

9

12

0.1 1 10

k Q
(m

m
 a

-1
)

φ

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

0

200

400

600

800

1000

1200

1400

0 2 4 6 8
φ

Q�
 (

m
m

) 

Interval number 

d 



20 
 

  

Figure 7: Comparison of estimated runoff trends kQe with observed trends kQ for (left) all catchments and (right) significant 

catchments. Significant catchments are ones experiencing significant changes in runoff at the significance level of 0.05. The error rate is 
defined as the proportion of catchments in which the signs of the observed and estimated trends differ.  

 5 

Figure 8: Relationship between observed runoff trends kQe and mean annual runoff Q for the study catchments (left) and values of 

d in each interval according to Q (right). Interval numbers 1 to 6 correspond to six intervals 0–200, 200–400, 400–600, 600–800,800–
1000 and 1000–1400. 
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Figure 9: Exploring the controlling factor in the DDWW pattern according to the Budyko hypothesis. (left) Relationship between 

the ratio of absolute kQ
0  (=ε0kEp

, the part of the estimated runoff trends kQe generated from potential evapotranspiration changes) to absolute 

kQ
P  (= εPkP, the part of kQe generated from precipitation changes) and the mean annual runoff Q. (right) The cumulative frequency curve 5 

of �kQ
0 /kQ

P �. 
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Figure 10: Relationship between observed runoff trends kP and mean annual runoff Q for the study catchments (left) and values of 

d in each interval according to Q (right). Interval numbers 1 to 6 correspond to six intervals 0–200, 200–400, 400–600, 600–800,800–
1000 and 1000–1400. 5 
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Figure 11: Projections of future trends ∆Qe under (top) RCP2.6, (middle) RCP4.5 and (bottom) RCP8.5 scenarios for the period 

2001-2050. (left column) Relationship between projected ∆Qe of the five models and their means and mean annual runoff Q. (right 

column) Values of d in each interval according to Q based on ∆Qe of the five models and their means. Interval numbers 1 to 6 correspond 5 
to six intervals 0–200, 200–400, 400–600, 600–800,800–1000 and 1000–1400. 
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Figure 12: Cv values of projected future trends ∆Qe under (left) RCP2.6, (middle) RCP4.5 and (right) RCP8.5 Scenarios. 

   
   5 

Figure 13: Exploring the controlling factor in the projected climate change under (left) RCP2.6, (middle) RCP4.5 and (right) 
RCP8.5.  
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Figure 14: Spatial distribution of the model-averaged relative changes in mean annual runoff Q (=∆Qe/Q) for the period of 2001 to 
2050 under three different scenarios. Hatched areas denote regions with Cv values smaller than 0.5, whereas double-hatched areas 
represent regions with Cv values smaller than 1. 

 5 
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Figure 15: Comparison of the observed meteorological data with the simulations from the GFDL-ESM2M model for the period 
1956–2000.  
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Table 1: Details of the interval partitions based on mean annual runoff Q and aridity index φ. 

Interval number Interval range Sample size 

Based on Q 

1 0-200 141 

2 200-400 42 

3 400-600 31 

4 600-800 26 

5 800-1000 32 

6 1000-1400 19 

Based on φ 

1 0.5-2/3 21 

2 2/3-1 72 

3 1-1.5 33 

4 1.5-2 55 

5 2-3 68 

6 3-8 42 
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Table 2: Number of catchments with kQ>0 and respective d in each interval based on Q and φ in the analysis of the observed trends. 

Interval 

number 

Number of catchments 

with kQ>0 
d 

Based on Q 

1 26 0.18 

2 11 0.26 

3 12 0.39 

4 20 0.77 

5 28 0.88 

6 15 0.79 

Based on φ 

1 18 0.86 

2 53 0.74 

3 6 0.18 

4 9 0.16 

5 11 0.16 

6 15 0.36 
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Table 3: Numbers of catchments with ∆Qe>0 and respective d in each interval based on Q of five GCMs and their means in the 
analysis of the projected trends under three scenarios. 

 
Interval 

number 
1 2 3 4 5 6 

RCP2.6 

GFDL-ESM2M 
Number 74 12 6 6 13 12 

d 0.52 0.29 0.19 0.23 0.41 0.63 

HadGEM2-ES 
Number 76 12 9 5 9 12 

d 0.54 0.29 0.29 0.19 0.28 0.63 

IPSL-CM5A-

LR 

Number 86 13 8 2 4 3 

d 0.61 0.31 0.26 0.08 0.13 0.16 

MIROC-ESM-

CHEM 

Number 93 16 9 5 6 4 

d 0.66 0.38 0.29 0.19 0.19 0.21 

NorESM1-M 
Number 75 14 8 7 11 13 

d 0.53 0.33 0.26 0.27 0.34 0.68 

Model-averaged 
Number 80 13 6 5 7 8 

d 0.57 0.31 0.19 0.19 0.22 0.42 

RCP4.5 

GFDL-ESM2M 
Number 62 8 3 6 10 11 

d 0.44 0.19 0.10 0.23 0.31 0.58 

HadGEM2-ES 
Number 72 11 8 7 9 10 

d 0.51 0.26 0.26 0.27 0.28 0.53 

IPSL-CM5A-

LR 

Number 77 13 8 3 6 6 

d 0.55 0.31 0.26 0.12 0.19 0.32 

MIROC-ESM-

CHEM 

Number 97 20 11 5 8 5 

d 0.69 0.48 0.35 0.19 0.25 0.26 

NorESM1-M 
Number 60 16 6 8 8 10 

d 0.43 0.38 0.19 0.31 0.25 0.53 

Model-averaged 
Number 71 13 6 5 7 7 

d 0.50 0.31 0.19 0.19 0.22 0.37 

RCP8.5 

GFDL-ESM2M Number 84 11 6 4 8 6 
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d 0.60 0.26 0.19 0.15 0.25 0.32 

HadGEM2-ES 
Number 75 12 8 5 9 10 

d 0.53 0.29 0.26 0.19 0.28 0.53 

IPSL-CM5A-

LR 

Number 71 10 6 3 5 4 

d 0.50 0.24 0.19 0.12 0.16 0.21 

MIROC-ESM-

CHEM 

Number 76 17 6 5 5 4 

d 0.54 0.40 0.19 0.19 0.16 0.21 

NorESM1-M 
Number 74 11 6 6 7 10 

d 0.52 0.26 0.19 0.23 0.22 0.53 

Model-averaged 
Number 75 13 6 4 6 6 

d 0.53 0.31 0.19 0.15 0.19 0.32 

 


