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Abstract. Extreme precipitation is highly variable in space and time. It is therefore important to characterize precipitation

intensity distributions at several temporal and spatial scales. This is a key issue in infrastructure design and risk analysis, for

which Intensity-Duration-Frequency (IDF) curves are the standard tools used for describing the relationships among extreme

rainfall intensities, their frequencies, and their durations. Simple Scaling (SS) models, characterizing the relationships among

extreme probability distributions at several durations, represent a powerful means for improving IDF estimates. This study5

tested SS models for approximately 2700 stations in North America. Annual Maxima Series (AMS) over various duration

intervals from 15 h to 7 days were considered. The range of validity, magnitude, and spatial variability of the estimated scaling

exponents were investigated. Results provide additional guidance for the influence of both local geographical characteristics,

such as topography, and regional climatic features on precipitation scaling. Generalized Extreme Value (GEV) distributions

based on SS models were also examined. Results demonstrate an improvement of GEV parameter estimates, especially for the10

shape parameter, when data from different durations were pooled under the SS hypothesis.

1 Introduction

Extreme precipitation is highly variable in space and time as various physical processes are involved in its generation. Char-

acterizing this spatial and temporal variability is crucial for infrastructure design and to evaluate and predict the impacts of

natural hazards on ecosystems and communities. Available precipitation records are however sparse and cover short time peri-15

ods, making a complete and adequate statistical characterization of extreme precipitation difficult. The resolution of available

data, whether observed at meteorological stations or simulated by weather and climate models, often mismatches the resolu-

tion needed for applications (e.g., Blöschl and Sivapalan, 1995; Maraun et al., 2010; Willems et al., 2012), thus adding to the

difficulty of achieving complete and adequate statistical characterizations of extreme precipitation.

The need for multi-scale analysis of precipitation has been widely recognized in the past (Rodriguez-Iturbe et al., 1984;20

Blöschl and Sivapalan, 1995; Hartmann et al., 2013; Westra et al., 2014, among others) and much effort has been put into

the development of relationships among extreme precipitation characteristics at different scales. The conventional approach

for characterizing scale transitions in time involves the construction of Intensity-Duration-Frequency (IDF) or the equivalent

Depth-Duration-Frequency (DDF) curves (Bernard, 1932; Burlando and Rosso, 1996; Sivapalan and Blöschl, 1998; Kout-

soyiannis et al., 1998; Asquith and Famiglietti, 2000; Overeem et al., 2008; Veneziano and Yoon, 2013). These curves are a25

standard tool for hydraulic design and risk analysis as they describe the relationships between the frequency of occurrence of
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extreme rainfall intensities (depth) Xd and various durations d (e.g., CSA, 2012). Analysis is usually conducted by separately

estimating the statistical distributions of Xd at the different durations (see Koutsoyiannis et al., 1998; Papalexiou et al., 2013,

for discussions about commonly used probability distributions). The parameters or the quantiles of these theoretical distribu-

tions are then empirically compared to describe the variations of extreme rainfall properties across temporal scales.

Despite its simplicity, this procedure presents several drawbacks. In particular, it does not guarantee the statistical consistency5

of precipitation distributions, independently estimated at the different durations, and it limits IDF extrapolation at non-observed

scales or ungauged sites. Uncertainties of estimated quantiles are also presumably larger because precipitation distribution and

IDF curve parameters are fitted separately.

Scaling models (Lovejoy and Mandelbrot, 1985; Gupta and Waymire, 1990; Veneziano et al., 2007) based on the concept of

scale invariance (Dubrulle et al., 1997), have been proposed to link rainfall features at different temporal and spatial scales.10

Scale invariance states that the statistical characteristics (e.g., moments or quantiles) of precipitation intensity observed at two

different scales d and λd can be related to each other by a power law of the form:

f(Xλd) = λ−Hf(Xd) (1)

where f(.) is a function of X with invariant shape when rescaling the variable X by a multiplicative factor λ and for some

values of the exponent H ∈ R. In the simplest case, a constant multiplicative factor adequately describes the scale change.

The corresponding mathematical models are known as Simple Scaling (SS) models (Gupta and Waymire, 1990). SS models15

are attractive because of the small number of parameters involved, as opposed to multiscaling (MS) models which involve

more than one multiplicative factor in Eq. (1) (e.g., Lovejoy and Schertzer, 1985; Gupta and Waymire, 1990; Burlando and

Rosso, 1996; Veneziano and Furcolo, 2002; Veneziano and Langousis, 2010; Langousis et al., 2013). A single scaling exponent

H is used to characterize the extreme rainfall distribution at all scales over which the scale invariance property holds. As a

consequence, a consistent and efficient estimation of extreme precipitation characteristics is possible, even at non-sampled20

temporal scales, and a parsimonious formulation of IDF curves based on analytical results is available (e.g., Menabde et al.,

1999; Burlando and Rosso, 1996; De Michele et al., 2001; Ceresetti, 2011).

Theoretical and physical evidence of the scaling properties of precipitation intensity over a wide range of durations has been

provided by several studies. MS has been demonstrated to be appropriate for modeling the temporal scaling features of the

precipitation process (i.e., not only the extreme distribution) and for the extremes in event-based representations of rainfall25

(stochastic rainfall modeling) (e.g., Veneziano and Furcolo, 2002; Veneziano and Iacobellis, 2002; Langousis et al., 2013, and

references therein). These multifractal features of precipitation last within a finite range of temporal scales (approximatively

between 1 hour and 1 week) and concern the temporal dependence structure of the process. They have been connected to the

large fluctuations of the atmospheric and climate system governing precipitation which are likely to produce a "cascade of

random multiplicative effects" (Gupta and Waymire, 1990).30

At the same time, many studies confirmed the validity of SS for approximating the precipitation distribution tails in IDF

estimation (for examples of durations ranging from 5 min to 24 h see Menabde et al., 1999; Veneziano and Furcolo, 2002; Yu

et al., 2004; Nhat et al., 2007; Bara et al., 2009; Ceresetti et al., 2010; Panthou et al., 2014). This type of scaling is substantially
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different from the temporal scaling since it only refers to the power law shape of the marginal distribution of extreme rainfall.

Application of the SS models to precipitation records showed that the scaling exponent estimates may depend on the considered

range of durations (e.g., Borga et al., 2005; Nhat et al., 2007) and the climatological and geographical features of the study

regions (e.g., Menabde et al., 1999; Bara et al., 2009; Borga et al., 2005; Ceresetti et al., 2010). However, the application

of the SS framework has been mainly restricted to specific regions and small observational datasets. A deeper analysis of the5

effects of geoclimatic factors on the SS approximation validity and on estimated scaling exponent is thus needed.

The present study aims to deepen the knowledge of the scale-invariant properties of extreme rainfall intensity by analyzing SS

model estimates across North America using a large number of station series. The specific objectives of this study are: a) asses

the ability of SS models to reproduce extreme precipitation distribution; b) explore the variability of scaling exponent estimates

over a broad set of temporal durations and identify possible effects of the dominant climate and pluviometric regimes on SS;10

c) evaluate the possible advantages of the introduction of the SS hypothesis in parametric models of extreme precipitation.

The article is structured as follows. In Sect. 2 the statistical basis of scaling models is presented, while data and their preliminary

treatments are described in Sect. 3. Sect 4 presents the distribution-free estimation of SS models and their validation using

available series. Section 5 focusses on to the spatial variability of SS exponents and discusses the scaling exponent variation

from a regional perspective. Finally, the SS IDF estimation based on the Generalized Extreme Value (GEV) assumption is15

discussed in Sect. 6, followed by a discussion and conclusions [Sect. 7].

2 Simple Scaling models for precipitation intensity

When the equality in Eq. (1) holds for the cumulative distribution function (cdf) of the precipitation intensity X , considered at

two different durations d and D = λd, Simple Scaling can be expressed as (Gupta and Waymire, 1990; Menabde et al., 1999):

20

XD
d=λ−HXd, (2)

where H ∈ R and d= means that the same probability distribution applies for Xd and XD, up to a dilatation or contraction

of size λ−H = (D/d)−H . An important consequence of the SS assumption is that, if XD has finite moments E[Xq
D] of order

q, then Xq
D and λ−HXq

d have the same distribution. Their moments are thus linked by the following relationship (Gupta and

Waymire, 1990; Menabde et al., 1999):

E[Xq
D] = λ−HqE[Xq

d ]. (3)

This last relationship is usually referred to as the wide sense simple scaling property (Gupta and Waymire, 1990) and signifies25

that simple scaling results in a simple translation of the log-moments between scales:

ln{E[Xq
D]}= ln{E[Xq

d ]}−Hq lnλ (4)

Therefore, the SS model can be estimated and validated over a set of durations d1 < d2 < .. < dD by simply checking the

linearity of the X moments versus the scale ratio λ in a log-log plot (Gupta and Waymire, 1990; Burlando and Rosso, 1996).
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If H estimated for the first moment equals the exponents (slopes) for the other moments, the precipitation intensity X can be

considered scale invariant under SS in the range of durations d1 to dD.

More sophisticated methods have also been proposed for detecting and estimating scale invariance [for instance, dimensional

analysis, Lovejoy and Schertzer (1985); Tessier et al. (1993); Bendjoudi et al. (1997); Dubrulle et al. (1997); spectral analysis

and wavelet estimation Olsson et al. (1999); Venugopal et al. (2006) Ceresetti (2011); and empirical probability distribution5

function (pdf) power law detection Hubert and Bendjoudi (1996); Sivakumar (2000); Ceresetti et al. (2010)]. However, esti-

mation through the moment scaling analysis is by far the simplest and most intuitive tool to check the SS hypothesis for a large

dataset. For this reason, the presented analyses are based on this method.

According to the literature, the values of the scaling exponents H generally range between 0.4 and 0.8 for precipitation inten-

sity considered at daily and shorter time scales (e.g., Burlando and Rosso, 1996; Menabde et al., 1999; Veneziano and Furcolo,10

2002; Bara et al., 2009) (note that Hintensity = 1−Hdepth). Values from 0.3 to 0.9 have also been reported for some specific

cases (e.g., Yu et al., 2004; Panthou et al., 2014, for scaling intervals defined within 1 h and 24 h).

HigherH values have been generally observed for shorter-duration intervals, and regions dominated by convective precipitation

(e.g., Borga et al., 2005; Nhat et al., 2007; Ceresetti et al., 2010; Panthou et al., 2014, and references therein). Nonetheless,

some studies performing spatio-temporal scaling analysis reached a different conclusion. For instance, Eggert et al. (2015),15

analyzing extreme precipitation events from radar data for durations between 5 min and 6 h and spatial scales between 1 km

and 50 km, indirectly showed that stratiform precipitation intensity generally displays higher temporal scaling exponents than

convective intensity. For short-duration intervals (typically less than one hour), previous studies have also reported more spa-

tially homogeneous H estimates than for long-duration intervals (e.g., Alila, 2000; Borga et al., 2005, and references therein).

This suggests that processes involved in the generation of local precipitation are comparable across different regions.20

More generally, higher H values are associated with larger variations in moment values as the scale is changed (i.e. a stronger

scaling), while H close to zero means that the Xd distributions for different durations d more closely match each other.

2.1 Simple Scaling GEV models

Annual Maximum Series (AMS) are widely used to select rainfall extremes from available precipitation series. Various the-

oretical arguments and experimental evidences support their use for extreme precipitation inference (e.g., Coles et al., 1999;25

Katz et al., 2002; Koutsoyiannis, 2004a; Papalexiou et al., 2013).

Based on the asymptotic results of the Extreme Value Theory (Coles, 2001), the AMS distribution of a random variable X is

well described by the Generalized Extreme Value (GEV) distribution family. If we represent the AMS by (x1,x2, ...,xn), the

GEV cdf can be written as (Coles, 2001):

F (x) = exp

{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
}

(5)30

where ξ 6= 0, −∞< x≤ µ+σ/ξ if ξ < 0 (bounded tail), and 1/µ+σξ ≤ x <+∞ if ξ > 0 (heavy tail). µ ∈ R, σ > 0 and ξ

respectively represent the location, scale, and shape parameters of the distribution. The shape parameter describes the charac-
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teristics of the distribution tails and the frequency of the extremes generated by F (x). Thus, high order quantile estimation is

particularly affected by the value of ξ. If ξ = 0 (light-tailed shape, Gumbel distribution), Eq. (5) reduces to:

F (x) = exp
{
−exp−

{
x−µ
σ

}}
(6)

where −∞< x <+∞.

In applications, the GEV distribution is frequently constrained by the assumption that ξ = 0 (i.e., to the Gumbel distribution),5

due to the difficulty of estimating significant values of the shape parameter when the recorded series are short (e.g., Borga et al.,

2005; Overeem et al., 2008; CSA, 2012). However, based on theoretical and empirical evidence, many authors have shown that

this assumption is too restrictive for extreme precipitation, and may lead to important underestimations of the extreme quantiles

(e.g., Koutsoyiannis, 2004a, b; Overeem et al., 2008; Papalexiou et al., 2013). Instead, approaches aimed at increasing series

length may be used to improve the estimation of the GEV distribution shape parameter (for instance, the Regional Frequency10

Analysis (RFA), Hosking and Wallis, 1997). Among these approaches, SS models constitute an appealing way to pool data

from different samples (durations) and reduce uncertainties in GEV parameters.

For the GEV distribution it is straightforward to verify that, if X d=GEV (µ,σ,ξ) then λX d=GEV (λµ,λσ,ξ) for any λ ∈ R.

This means that the GEV family described by Eq. (5) and (6) satisfies Eq. (2) and thus complies with scale invariance for any

constant multiplicative transformation of X . Under this assumption the wide sense SS definition [Eq. (3)] gives:15

µd = d−Hµ∗ ,σd = d−Hσ∗ , and ξd = ξ∗ (7)

where µ∗, σ∗, and ξ∗ represent the GEV parameters for a reference duration d∗ chosen, for simplicity, as d∗ = 1 , so that λ= d.

2.2 SS GEV estimation

Taking advantage of the scale invariant formulation of the GEV distribution, many authors have proposed simple scaling IDF

and DDF models for extreme precipitation series (e.g., Yu et al., 2004; Borga et al., 2005; Bougadis and Adamowski, 2006;

Bara et al., 2009; Ceresetti, 2011). In these cases, the scaling exponent and the GEV parameters are generally estimated in20

two separate steps: first, the H value is empirically determined through a log-log linear regression, as described above; then,

GEV parameters µ∗, σ∗, and ξ∗ for the reference duration d∗ are estimated on the pooled sample of all available durations.

Classical estimation procedures, such as GEV Maximum-Likelihood (ML) (Coles, 2001) or Probability Weighted Moment

(PWM) (Greenwood et al., 1979; Hosking et al., 1985), can be used.

3 Data and study region25

Four station datasets were used for the construction of intensity AMS at different durations: the Daily Maxima (DM) and the

Hourly (H) datasets provided by Environment Canada (ECCC) and the MDDELCC [in french Ministère du Développement

Durable, de l’Environnement et de la Lutte contre les Changements Climatiques] for Canada, and the Hourly Precipitation
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Data (HPD) and 15-Min Precipitation Data (15PD) datasets made available by the National Oceanic and Atmospheric Admin-

istration (NOAA) agency [http://www.ncdc.noaa.gov/data-access/land-based-station-data] for United States. The total number

of stations was approximately 3400, with roughly 2200 locations having both DM and H series, or both HPD and 15PD series.

The majority of stations are located in the United States and in the southern and most densely populated areas of Canada. In

northern regions the station network is sparse and the record length does not generally exceed 15 or 20 years. Moreover, for5

most of DM and H stations, the annual recording period does not cover the winter season and available series generally include

precipitation measured from May to October. For this reason, the year was defined as the period from June to September for

the stations located north of the 52nd Parallel [122 days a year were used], while the period from May to October was used for

remaining stations [184 days a year].

Data were collected through a variety of instruments [e.g., standard, tipping-bucket, and Fischer-Porter rain gauges] and pre-10

cipitation values were processed and checked using both automated and manual methods (CSA, 2012, HPD and 15PD online

documentation). Most often, observations were recorded by tipping-bucket gauges with tip resolution from 0.1 mm to 2.54 mm

(CSA, 2012; Devine and Mekis, 2008). 15 min series usually present the coarser resolution, with a minimum non-zero value

of 2.54 mm, observed for about 80.5% of 15PD stations. The effects of such a coarse resolution on simple scaling estimates

could be important leading to empirical Xd cdfs becoming step-wise functions with a low number of steps. Some preliminary15

analyses aiming at evaluating these effects on SS estimates are presented in the supplementary material [see Fig. S2 and S3].

However, the 15PD dataset is important considering the associated network density and its fine temporal resolution, and thus

it has been retained for our study. The main characteristics of the available datasets are summarized in Table 1.

The scaling AMS datasets were constructed according to the following steps:

(i) Three duration sets were defined: a) 15 min to 6 h with a 15min step; b) 1 h to 24 h with a 1h step; c) 6 h to 168 h (720

days) with a 6h step. These duration sets are hereinafter referred to as Short-Duration (SD), Intermediate-Duration (ID), and

Long-Duration (LD) datasets, respectively.

(ii) Meteorological stations that were included in each final dataset were selected according to the following criteria: 1) pre-

cipitation series must have at least 85% of valid observations each year, otherwise the year was considered as missing; 2) each

station must have at least 15 valid years; 3) for each station, it was possible to compute AMS for all durations considered in the25

scaling dataset (e.g., H and HPD stations were not included in the SD dataset because only hourly durations were available).

(iii) A moving window was applied to 15PD, H, and HPD series to estimate aggregated series at each duration. For DM series, a

quality check was also implemented in order to guarantee that precipitation intensities recorded each day at different durations

were consistent with each other (for instance, each pair of DM intensity (xd1 ,xd2) observed at durations d1 < d2 must respect

the condition d1/d2 ≤ xd2/xd1 ≤ 1, otherwise the day was considered as missing).30

(iv) For each selected station, annual maxima were extracted for each valid year and duration. Then, for stations having both

DM and H series, or 15PD and HPD series, over a common time period, annual maximum values between these two series

were retained.

Major characteristics of each scaling AMS dataset are reported in Table 2.
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4 SS estimation through Moment Scaling Analysis (MSA)

Moment Scaling Analysis (MSA) for the SD, ID, and LD datasets was carried out to empirically validate the use of SS models

for intensity AMS. Assessing the validity of the SS hypothesis for various duration intervals also aimed at determining the

presence of different scaling regimes for precipitation intensity distributions. The spatial distribution of the scaling exponents

was then analyzed to assess the dependence of SS on local geoclimatic characteristics.5

In order to identify possible changes in the SS properties of AMS distributions, various scaling intervals were defined for the

MSA. All possible subsets with 6, 12, 18 and 24 contiguous durations were considered for each dataset. Figure 1 and Figure

2 show the 136 scaling intervals thereby defined: 40 scaling intervals for SD and IS, and 56 for LD. For instance, the first

matrix on the left of Fig. 1(a) presents the 6-duration scaling intervals 15min - 1.5h, 30min - 1.75h, . . . , 4.75h - 6h from the SD

dataset (with 15min step). This procedure was defined in order to evaluate the variability of the SS estimates when changing10

the position of the scaling interval [hereinafter identified by its first duration d1; see examples in Figure 1(d)] and the number

of durations considered.

For each scaling interval (for simplicity, their index has been omitted), the validity of the SS hypothesis was verified according

to the following steps:

1. MSA regression: for q = 0.2,0.4, . . . ,2.8,3, the slopesKq of the log-log linear relationships between the empirical q−moments15

〈Xq
d〉 of Xd1 ,Xd2 , . . . , XdD

and the corresponding durations d1,d2, . . . ,dD in the scaling interval were estimated by Ordinary

Least Squares (OLS). Order q ≥ 3 were not considered because of the possible biases affecting empirical high order moment

estimates.

2. Slope test: Regressing Kq on q, the hypothesis that the estimated Kq-exponents vary linearly with the order of moment q

was verified. To this end, a t-Student test was used to test the null hypothesis H0: β1 =K1, where β1 is the slope coefficient of20

the simple regression model Kq = β0 +β1q. If H0 was not rejected at the significance level α= 0.05, the SS assumption for

the scaling interval was considered appropriate and the simple scaling exponent H =K1 was retained.

3. Goodness-of-Fit (GOF) test: for each duration d, the goodness of fit of the Xd distribution under SS was tested using the

Anderson-Darling (AD) and the Kolmogorov-Smirnov (KS) tests. These tests aim at validating the appropriateness of the scale

invariance property for approximating the Xd cdf by the distribution of λ−HXd∗ . To this end, the pooled sample25

xd∗ =
(
x′
d1 , . . . ,x

′
dj
, . . . ,x′

dD

)
(8)

of the rescaled AMS, x′
dj

, for all durations dj , j = 1, . . . ,D, in the scaling interval, was used to define Xd∗ under the SS

assumption. Using d∗ = 1 h, the rescaled sample x′
dj

of the annual maxima xdj ,i, i= 1, . . . ,n, observed for dj was:

x′
dj

=
(
dj
Hxdj ,1,dj

Hxdj ,2, . . . ,dj
Hxdj ,i, . . .dj

Hxdj ,n

)
(9)

where n represents the number of observations (years) available for each duration. Hence, n×D rescaled observations were30

included in xd∗ .
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The tests were then applied at significance level α= 0.05 to compare xd and xd∗ empirical distributions (Cunnane plotting

formula, Cunnane, 1973) as in previous precipitation scaling applications (e.g., Panthou et al., 2014). In fact, despite the

low power of KS and AD tests for small sample tests, they represent the only suitable solution to the problem of comparing

empirical cdfs when the data do not follow a normal distribution. Because both AD and KS are affected by the presence of ties

in the samples (e.g., repeated values due to rounding or instrument resolution), a permutation test approach (Good, 2013) was5

used to estimate test p-values. According to this approach, pooled data of xd and xd∗ were randomly reassigned to the SS and

non-SS samples. Then, the test statistic distribution under the null hypothesis of equality of the d−HXd∗ and Xd distributions

was approximated by computing its value over a large set of random samples. Finally, the test p-value was obtained as the

proportion of random samples presenting a test statistic value larger than the value observed for the original sample.

The mean error resulting from approximating the Xd distribution by the SS model was then evaluated in a cross-validations10

setting. For this analysis, each duration was iteratively excluded from each scaling interval and the scaling model re-estimated

at each station. Predictive ability indices, such as the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE)

between empirical and SS distribution quantiles, were estimated for highest quantiles. In particular, to focus on return periods

of practical interest for IDF estimation, only quantiles larger than the median were considered (i.e., only return periods greater

than 2 years).15

The average over all stations of the normalized RMSE, rxd
, for each scaling interval and duration was used:

rxd
=

1
ns

nS∑

s=1

rxd,s
(10)

where ns is the number of valid SS stations in the dataset and

rxd,s
=
rxd,s

xd,s
(11)

rxd,s
and xd,s are, respectively, the RMSE and the mean value of all Xd quantiles of order p > 0.5 at station s.20

4.1 Model estimation and validation

Figure 1 presents the results of points 1 to 3 of the procedure for the evaluation of the SS validity. It shows, for each scaling

interval and duration, the proportion of valid SS stations [Fig. 1(a)-(c)]. As showed in the example in Fig. 1(e), for each scaling

interval, valid SS stations were defined as stations having not rejected both the Slope test for the scaling interval and the GOF

tests for each duration included in this scaling interval.25

As expected, the proportion of valid SS stations decreased when the number of durations within the scaling interval increased

and with decreasing d1. This is particularly evident for short d in SD and ID datasets. More GOF test rejections were observed

for longer scaling intervals [not shown], due to the higher probability of observing large differences between xd and xd∗ quan-

tiles when xd∗ was larger and included data from more distant durations. However, several factors can impact GOF test results

when shorter d1 are included in the scaling intervals. First, the SS hypothesis could be rejected due to the presence of very large30

values in short-duration samples, to which GOF tests are particularly sensitive. Second, when considering durations close to the
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temporal resolution of the recorded series, stronger underestimations could affect the measure of precipitation because intense

rainfall events are more likely to be split between two consecutive time steps. Finally, preliminary analyses [Fig. S2 and S3 in

the supplementary material] showed that the largest GOF test rejections could also be connected to the coarse tip resolution

of 15PD series, which, similar to the temporal resolution effect, induces larger measurement errors in the shortest duration

precipitation series. Note that comparable resolution issues were previously reported by some authors while estimating fractal5

and intermittency properties of rainfall processes (e.g., Veneziano and Iacobellis, 2002; Mascaro et al., 2013).

Valid SS station proportions between 0.99 and 1 were always observed for GOF tests in ID and LD datasets, except for some

durations shorter than 3 h (ID dataset) or 6 h (LD dataset). For all three datasets, no particular pattern was observed for slope

test results [not shown], with at most 2% of the stations within each scaling interval displaying a non linear evolution of the

scaling exponent with the moment order.10

When considering both GOF and Slope test, with the exception of some durations≤1 hour, the proportion of stations satisfying

SS was higher than 0.9, and the majority of scaling intervals [65%, 90%, and 98% of the scaling intervals in SD, ID, and LD,

respectively] included at least 95% of valid SS stations. For each scaling interval, only valid SS stations were considered in the

rest of the analysis.

Figure 2 presents, for each scaling interval and duration, the station average, rxd
, of the normalized RMSE. These graphics15

show that mean relative errors on intensity quantiles did not generally exceed 5% of the precipitation estimates for 6-duration

scaling intervals [Fig. 2, first col.]. As for the valid SS station proportion, the performances of the model deteriorated with de-

creasing d1 and with increasing scaling interval length, especially for durations at the border of the scaling intervals. However,

for more that 70% of 12-, 18-, and 24-duration scaling intervals, rxd
≤ 0.1 for each duration included in the scaling interval.

rxd
≥ 0.25 were observed for 15 min in 12-duration or longer scaling intervals, pointing out the weaknesses of the model in20

approximating short duration extremes when the scaling interval included durations ≥ 3 h.

4.2 Estimated scaling exponents

The median, Interquantile Range (IR), and quantiles of order 0.1 and 0.9 of the H distribution across stations, are presented in

Fig. 3(i) for each 6-duration scaling interval. Figures 3(ii) - (iv) show the distribution of the scaling exponent variation ∆H(j)

observed over stations when each scaling interval is lengthened from 6 to 12, 18, and 24 durations. For each station and each25

d1, ∆H(j) was defined as:

∆H(j) =H(j)−H(6) (12)

where j = 12,18, or 24 represent the number of durations considered in the specified scaling interval, H(j) is the correspond-

ing scaling exponent, and H(6) is the scaling exponent estimated for the corresponding 6-duration scaling interval (i.e., the

6-duration interval having the same d1).30

Figures 3(ii)-(iv) represent the changes observed inH values when the scaling interval length and d1 increased. Median ∆H(j) ,

as well as its IR, increased with the number of durations added to the scaling interval for all d1. For the 24-duration scaling

interval "1h - 24h" (ID dataset), for instance, median ∆H(24) = 0.047 was observed. For the interval "15min - 6h" (SD dataset),
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∆H(24) was even larger, with a median scaling exponent variation approximately equal to 0.087 and with 25% of stations

having ∆H(24) ≥ 0.11. These results indicate that, for some stations, a dramatic difference could exist in IDF estimations ob-

tained with the different definitions of the scaling interval. Changes in H values were also important when comparing 6- and

12-duration scaling intervals when d1 ≤ 1 h (SD and ID datasets) and in LD dataset [Fig. 3 (ii)].

Nonetheless the median scaling exponent variation was generally smaller than 0.05, except for a relatively small proportion of5

stations. Equally important, |∆H(j) | was generally centered on 0 and for all d1 ≥ 1 h more than 50% of stations had |∆H(12) | ≤
0.025 (SD dataset) and |∆H(18) | ≤ 0.03 (ID dataset) [Fig. 3 (ii)-(iii)].

The smallest median H values were observed for the shortest d1 (d1 ≤ 30 min) in Fig. 3 (a-i), and for the longest d1s in Fig.

3 (c-i). Scaling intervals beginning at 15 and 30 min also displayed the smallest variability across stations. Although fewer

stations were available for these intervals (only 15PD stations were used and the number of valid SS stations was smaller),10

this result is consistent with previous reports in the literature demonstrating that H values are spatially more homogeneous for

short durations.

A larger dispersion of H values was observed when d1 ranged between approximately 1 h and 5 h, in particular in the SD

dataset, for which the 10th-90th percentile difference almost covered the entire range of observed H values [Fig. 3 (i)]. This

result could be in part explained by the fact that, if the scaling interval length is fixed, then the variance V [ln(d)] of the MSA15

regression covariate decreases as d1 increases. In fact, the use of a logarithmic scale for the MSA regression implies that the

mean distance between durations in the scaling interval decreases as d1 increases Thus, regression errors of the same magnitude

in short and long d1 scaling intervals differently affect the OLS variance of H , especially when scaling intervals are short. This

may result in larger uncertainty of H for longer d1 scaling intervals of SD. Moreover, as showed in next sections, H variability

across stations may be effectively larger due to the greater spatial variability of the scaling exponent for d1 longer than a few20

hours.

Largest median H were observed for d1 greater than 10 hours [Fig. 3 (b-i)] and lower than 2 days [Fig. 3 (c-i)], with approxi-

mately half of the stations havingH ≥ 0.8. This means that a stronger scaling (i.e., largerH values) is needed to relate extreme

precipitation distributions at approximately 12-hours to distributions at daily and longer scales. It may therefore be expected

that the stations characterized byH closer to 1 are located in geographical areas where differences in precipitation distributions25

are important among temporal scales included in these scaling intervals.

Examples of the spatial distributions of the scaling exponent are given in Fig. 4 and 5 for the first and last d1 for each interval

length and dataset, respectively. Since only one 24-duration scaling interval was defined for both the SD and ID datasets, only

scaling intervals containing 6, 12, and 24 (Fig. 4) or 18 (Fig. 5) durations are presented. This avoids the redundancy of showing

twice the "15min - 6h" (SD dataset) and "1h - 24h" (ID dataset) scaling intervals.30

Generally, the scaling exponent displayed a strong spatial coherence and varied smoothly in space, although a more scattered

distribution of H characterizes maps in Fig. 5. In this last figure, the local variability of H may be attributed to the larger esti-

mation uncertainties, as previously mentioned. Meaningful spatial variability and clear spatial patterns emerged for d1 ≥ 1 h.

In fact, for stations located in the interior and southern areas of the continent, a shift from weaker scaling regimes (smaller H)

to higher H values was observed as d1 increases [e.g., second and third rows of Fig. 4]. On the contrary, a smoother evolution35
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of H over the scaling intervals characterized the northern coastal areas, especially in north-western regions, and the Rockies,

where H > 0.75 values were rarely observed even for greater d1 values.

5 Regional analysis

Regional differences in scaling exponents were investigated. Only the results for the 6-duration scaling intervals are presented,

similar results having been obtained for longer scaling intervals [see the supplementary material, Fig. S5 and S6 for 12- and5

18-duration scaling intervals].

Stations were pooled into six climatic regions based on a previous classification suggested by Bukovsky (2012) [see Fig. 6].

Stations outside the domain covered by the Bukovsky regions were attributed to the nearest region. Regions with less than 10

stations were not considered (regions without colored borders in Fig. 6) and region A1 (W_Tun) was kept separated from

region A2 (NW_Pac) because only 14 stations were available in region A1 (W_Tun) for ID and LD datasets.10

To provide deeper insights about regional features of precipitation associated with specific scaling regimes two variables related

to the precipitation events observed within AMS were also analyzed: the mean number of events per year, N̄eve, and the mean

wet time per event, T̄wet, contributing to AMS within each scaling interval. For a given year and station, annual maxima

associated to different durations of a given scaling interval were considered to belong to the same precipitation event if the

time intervals over which they occurred overlapped [see Fig. 7 (g); in this example 3, 4, and 5 h annual maxima are associated15

with the first event while 1, 2, and 6 h annual maxima are associated to the second event]. The mean number of events at each

station was then computed:

N̄eve =
1
n

n∑

i

Neve,i (13)

with Neve,i the number of non-overlapping time intervals, i.e. the number of different events contributing to AMS during the

ith year of record. The distribution of N̄eve values within each region is presented in Fig. 7.

The mean wet time per event contributing to AMS, T̄wet, was defined as the mean number of hours with non-zero precipitation20

within each event. Details on the calculation of T̄wet and corresponding results are presented in the supplementary material

[Sect. S1 and Fig. S4].

5.1 Regional variation of the scaling exponents.

Figure 8 shows the distribution of H within each region. Three types of curves can be identified. First, curves in Fig. 8 (a) to

(c) have a characteristic smooth S shape. Conversely, Fig. 8 (d) displays a rapid increase of H for scaling intervals defined in25

ID and LD datasets until d1 = 2 days, preceded and followed by two plateaus, one for the longest d1 with remarkably high H

values, and one for the shortest d1 with small H values. Finally, an inverse-U-shaped curve can be seen in Fig. 8 (e) and (f),

with globally high H values already reached at sub-daily durations in dry regions (E).

The difference between Fig. 8 (a) and (e)-(f) can be partially explained by the weaker impact of convection processes in gen-

erating very short duration extremes in regions A1 and A2 with respect to southern areas (regions E and F). For northern30
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regions, the transition between short and long duration precipitation regimes may be smoothed by cold temperatures which

moderate short-duration convective activity, especially for W_Tun (region A1). The topography characterizing the northern

pacific coast may explain the smoothing effect for the curve of region NW_Pac (A2): precipitation rates at daily and longer

scales are enhanced by the orographic effect acting on synoptic weather systems coming from the Pacific Ocean (Wallis et al.,

2007).5

Similarly, mountainous regions in C [Fig. 8 (c)] displayed the smallest variations of H over d1, indicating that analogous scal-

ing regimes characterize both short- and long-duration scaling intervals. Again, this may be related to the important orographic

effects of precipitation in these regions that are involved in the generation of extremes for both sub-daily and multi-daily time

scales.

The mean number of events per year in regions A and C was higher than in regions E-F, in particular for SD scaling intervals,10

and displayed steeper decreases with increasing d1 [Fig. 7 (a) and (c)].

Main differences between regions B and A were the stronger scaling regimes observed in B, which were mainly due to contri-

butions from stations located in the south-eastern part of the E_Bor region (not shown). For scaling intervals in the ID dataset,

region B was also characterized by the highest mean number of events per year, with most of the stations presenting N̄eve > 2

for d1 = 1 h and d1 = 2 h and sharp decreases of N̄eve with increasing d1 [Fig. 7 (b)]. Moreover, a remarkably large range of15

N̄eve was observed for 1 h ≤ d1 ≤ 6 h, suggesting that B may be highly heterogeneous.

Two distinct scaling regimes can be observed for SW_Pac (region D) at, respectively, d1 ≤ 3 h (SD dataset) and d1 ≥ 2 days

(ID dataset) [region D in Fig. 8 (d)]. These plateaus may be interpreted by recalling that 1−Hintensity =Hdepth. On the one

hand, the low and constant H observed for d1 ≤ 3 h indicates that the average precipitation depth increases with duration at

the same growth rate for all these intervals. On the other hand, H approximately equal to 0.9 at daily and longer durations20

demonstrates that the average precipitation depth associated with long-duration annual maxima remained roughly unchanged

when the duration increased from 1.5 to 7 days (λHdepth ≈ 1 in Eq. (3)). This, along with the fact that the scaling exponent

increased almost monotonically for 1 h≤ d1 ≤ 24 h (ID and LD datasets), suggests that extremes at durations shorter than∼ 3

h (SD dataset) drive annual maxima precipitation rates at longer scales, with the rapid and continuous decay in mean intensity

caused by the increasing size of the temporal scale of observation.25

For SW_Pac (region D), the relative absence of long-lasting weather systems able to produce important extremes for long

durations, was confirmed by the analysis of N̄eve and T̄wet [for results on T̄wet see Fig. S4 of the supplementary material]. In

fact, the mean number of events per year was relatively high for short durations (the median N̄eve is equal to 1.82 for d1 = 15

min and to 1.4 for d1 = 1h), while it rapidly decreased below 1.1 events per year for d1 ≥ 6 h (ID dataset) and for d1 ≥ 18 h

(LD dataset). With the exception of d1 = 6 h (LD dataset), at least 90% of SW_Pac stations had N̄eve ≤ 1.25 for all d1 > 330

h. In other regions, median N̄eve were never smaller than 1.1 for the SD and ID datasets, except for d1 ≥ 12h in region E.

MedianH values displayed inverse-U shapes for the remaining regions with very small IR, despite the high number of valid SS

stations: a slow transition from lower to higherH is observed approximately between 1 h and 12 h (region E) or 30 h (region F).

The strongest scaling regimes were observed for 1 h≤ d1 ≤ 2 days in arid western regions [Fig. 8 (e)], while median H values

greater than 0.8 were only observed for approximately 6 h ≤ d1 ≤ 2 days in more humid areas [8 (f)]. In both region E and F,35
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very short-duration extremes are typically driven by convective processes, while a transition to different precipitation regimes

may be expected between 1 h and a few hours. However, the smoother increase of H visible in Fig. 8 (f) with respect to (e)

may also indicate that, in eastern areas, the occurrence of sub-daily duration extremes are more likely associated to embedded

convective and stratiform systems, or to mesoscale convective systems less active in western dry areas (Kunkel et al., 2012). On

the contrary, for south-western dry regions [Fig. 8 (e)], where less intense summer extremes are expected compared to eastern5

areas [see supplementary material, Fig. S1], differences between short- and long-duration extreme precipitation intensity seem

stronger sinceH tended to scatter in a range of higher values: precipitation intensity moments strongly decrease as the duration

increases for approximately 1 h ≤ d1 ≤ 12 h.

In summary, these results suggest a regional effect on precipitation scaling of both local geographical characteristics, such as

topography or coastal effects, and general circulation patterns. Weak scaling regimes were observed for short d1 and along10

the west coast of the continent and seem to be connected to scaling intervals and climatic areas characterized by homoge-

neous weather processes. Low H values correspond in fact to small variations in AMS distribution moments. On the contrary,

stronger scaling regimes, which indicate important changes occurring in AMS moments across duration and, thus, in extreme

precipitation features, were observed for longer d1 in the other regions of the study area. According to these results, it would

be important to take into account the climatological information included in the scaling exponent to improve SS and IDF esti-15

mation. Even more important, these results could help for the definition of IDF relationships at non-sampled locations by the

construction of spatial models for the IDF parameter H .

6 SS GEV etimation

Results presented in this section are limited to a descriptive analysis of GEV parameter estimates, and to an assessment of the

potential improvements carried out by SS GEV models with respect to PWM estimates of non-SS GEV models, for 6-duration20

scaling intervals. Similar results were generally obtained 12-, 18-, and 24-duration intervals [see supplementary material, Fig.

S9 to S15].

In our application, GEV parameters µ∗, σ∗, and ξ∗ [Eq. (7)] were estimated for xd∗ [Eq. (8)] using the PWM procedure.

Preliminary comparisons among several estimation methods [e.g., PWM, classical ML estimators, and Generalized Additive

Model ML - see Coles (2001), Katz (2013) - in which the joint estimation of H,µ∗,σ∗, and ξ∗ is obtained by the introduction25

of the duration as model covariate], showed that PWM slightly outperformed other methods.

Quantiles estimated from the SS and the non-SS GEV were compared with empirical quantiles. Global performance measures,

such as RMSE, were computed to evaluate the overall fit of the estimated GEV to the empirical Xd distributions. In particular,

mean errors between SS and non-SS quantile estimates and empirical quantiles were compared using the relative total RMSE

ratio, Rrmse, defined as:30

Rrmse =
[Rss−Rnon−ss]

Rnon−ss
(14)
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where

Rmod =
D∑

d=d1

rd,mod
x̄d

(15)

represents the normalized mean square difference between model and empirical quantiles of order p > 0.5 for all the durations

included in the scaling interval.

6.1 Estimated SS GEV parameters5

Figure 9 presents the distributions over valid SS stations of the SS GEV parameters scaled at d∗ = 1 h [Fig. 9 (a) and (b)]

and d∗ = 24 h [Fig. 9 (c)]. For the SD dataset, even for scaling intervals which did not include the reference duration d∗, the

µ∗ and σ∗ distributions appeared to be similar to the non-SS µd and σd distributions [Figure 9, first row]. Conversely, in the

ID and LD datasets, both µ∗ and σ∗ distributions were more positively skewed than the corresponding non-SS distributions.

Moreover, the relative differences ∆µ = (µ∗−µd)/µd and ∆σ = (σ∗−σd)/σd were estimated for each station, duration, and10

scaling interval. Two important results came out of this analysis [see Figures S10 and S11 of the supplementary material]. On

the one hand, median values of ∆µ and ∆σ were generally smaller than ±5% and ±10%, respectively. On the other hand, ∆σ

showed large positive values when ξd = 0 (i.e. Gumbel distributions), while small ∆σ < 0 were estimated when ξd 6= 0 [not

shown for conciseness]. These results are interesting since, while non-SS µd values are generally considered to be accurate

estimates of the Xd location parameter, small uncertainties are expected for the scale parameter only when the ξd value is15

correctly assessed. In fact, the scale parameter σd may be strongly biased when the shape parameter is spuriously set to zero

(ξd = 0).

In addition, µ∗ and σ∗ displayed strong coherence in their spatial distributions, which were characterized by an obvious North-

West to South-East gradient [Fig. 10 shows examples for the scaling intervals 15min - 1.5h, 1h - 6h, and 6h - 36h].

Notable differences between SS GEV and non-SS estimates were observed for the shape parameter [third column of Fig. 9].20

Firstly, SS ξ∗ were closer to 0 than non-SS ξd, for both positive and negative shape values. Secondly, ξ∗ distributions were

generally more peaked around their median value than non-SS estimates.

Note that, the majority of stations had non-SS shape parameters ξd non-significantly different from zero according to asymp-

totic test proposed by Hosking et al. [1985] for PWM GEV estimators applied at level 0.05. In particular, for each duration,

non-SS models estimated light-tailed distributions (i.e., ξd = 0) for more than 85% of the stations, except that for d= 15 min25

and d= 30 min [Fig. 11, first col.]. Conversely, for all scaling intervals with d1 > 15 min, SS GEV shape parameters were

significantly different from zero for 40% to 45% of valid SS stations [Fig. 11, second col.]. Moreover, when using scaling

intervals of 12 durations or more, the proportion of ξ∗ > 0 was always important (greater than 35%) for all 18- and 24-duration

scaling intervals [see the supplementary material, Fig. S9].

The previous results suggest that pooling data from several durations may effectively reduce the sampling effects impacting30

the estimation of ξ, allowing more evidence of non-zero shape parameters, and, in many cases, of heavy tailed (ξ > 0) AMS

distributions. This conclusion is consistent with previous reports, namely that 100- to 150-year series are necessary to unam-

biguously assess the heavy-tailed character of precipitation distributions (e.g., Koutsoyiannis, 2004b; Ceresetti et al., 2010). In
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general, typical values of ξ ≈ 0.15, close to the estimated ξ∗ for cases in which ξ∗ > 0, have also been reported (e.g., Kout-

soyiannis, 2004b).

However, uncertainties on ξ∗ estimates remain important. Support for this comes from the spatial distribution of ξ∗, which was

still highly heterogeneous, with local variability dominating at small scales [e.g., Fig. 10, third col.].

6.2 Improvement with respect to Non-SS models5

The proportion of series for which the SS model RMSE, rd,ss, was smaller than the non-SS GEV RMSE, rd,non−ss, was

analyzed [see the supplementary material, Fig. S12]. For cases with non-zero ξ∗, the fraction of stations with rd,ss < rd,nonss

was higher than 60% for most of the scaling intervals and durations. On the contrary, rd,ss > rd,nonss was observed for the

majority of stations (generally more than 70%) with ξ∗ = 0.

Figure 12 presents the Rrmse distribution over valid SS stations. When the SS distribution shape parameters were not signif-10

icantly different from zero [Fig. 12, second col.], the relative increases in total RMSE were usually smaller than 0.1 in SD

dataset, with only scaling intervals with d1 < 1 h having greater Rrmse. For the ID and LD datasets, the medians of the total

relative RMSE ratio distributions were smaller than 0.05 for d1 ≥ 4 h and d1 ≥ 24 h, respectively. Furthermore, more than 90%

of stations had Rrmse < 0.125 for d1 ≥ 6 h (ID dataset) and d1 ≥ 30 h (LD dataset). When ξ∗ 6= 0, an increase of the mean

error in high order quantile estimates was observed for d1 = 15 min (SD dataset) and d1 = 1 h (ID dataset) for at least half of15

the stations [Fig. 12, first col.; note the different scale on the y-axis]. However, for all other d1, negative Rrmse values were

observed for the majority of stations for all scaling intervals, with a median reduction up to 30% of the mean error. Note that

also for 12- and 18-duration scaling intervals the median Rrmse where generally negative for d1 > 1 h and ξ∗ 6= 0 [Fig. S13

and S14 of the supplementary material]. Conversely, Rrmse increased for the majority of stations in all 24-duration scaling

intervals having d1 < 12 h [Fig. S15 of the supplementary material]. Note also that no particular spatial pattern characterized20

the Rrmse estimates.

7 Discussion and conclusion

This study investigated simple scaling properties of extreme precipitation intensity across Canada and the United States. The

ability of SS models to reproduce extreme precipitation intensity distributions over a wide range of sub-daily to weekly dura-

tions was evaluated. The final objective was to identify duration intervals and geographical areas for which the SS model can25

be used for the production of IDF curves.

The validity of SS models was empirically confirmed for the majority of the scaling intervals. In particular, the hypothesis of a

scale-invariant shape of the Xd distribution held for all duration intervals spanning from 1 h to 7 days based on the comparison

of SS distributions to empirical quantiles. Less convincing results were obtained for durations shorter than 1 h, especially for

the longest scaling intervals (24-duration intervals). One possible explanation is that the coarse measurement resolution of the30

available 15 min series may strongly impact both the validation tools (for instance, GOF tests) and SS estimates. These results

provide important operative indications concerning the inner and outer cut-off durations for AMS scaling.
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The majority of the estimated scaling exponents ranged between 0.35 and 0.95, showing a smooth evolution over the scaling

intervals and a well-defined spatial structure. Six geographical regions, initially defined according to a climatological classifi-

cation of North America into 20 regions, displayed different features in terms of scaling exponent values. Specifically, distinct

median values of H were observed for the various geographical regions, each characterized by a different precipitation regime.

This is consistent with results reported in the literature for some specific regions and smaller observational datasets (e.g.,5

Borga et al., 2005; Nhat et al., 2007; Ceresetti et al., 2010; Panthou et al., 2014, and references therein). Moreover, while

small and smooth changes of H over the scaling intervals were observed in regions containing the majority of stations, one

region, SW_Pac, displayed two dramatically distinct scaling regimes separated by a steep transition occurring between a few

hours and 24 h. These results limit the applicability of SS models in SW_Pac, and were connected to the local features of

intense precipitation events by the analysis of the mean number of events per year and the mean wet time of these events.10

Weak scaling regimes, characterized by relatively small H values (H close to 0.5), were generally observed for scaling inter-

vals containing very short durations (e.g, less than 2 h) and for regions on the west coast of the continent [regions A1, A2,

and D; see Fig. 8]. For these scaling intervals and regions, we can expect that extreme precipitation events observed at various

durations will have similar statistical characteristics, being governed by homogeneous weather processes.

The interpretation of high H values (e.g., H > 0.8), observed between 1 and several days, depending on the region, is more15

complex. These scaling regimes correspond to mean precipitation depth that varies little with duration. This suggests an im-

portant change in precipitation regimes occurring at some durations included in the scaling interval. One interesting example

was region SW_Pac (region D) for scaling intervals of durations longer than 1 day . In this case, the analysis of the mean

number of events per year sampled in AMS suggested that very few long-duration extreme events were produced by large-scale

dynamic precipitation systems.20

For scaling intervals of durations longer than 4 days, scaling exponents seemed to converge to approximately 0.7 for all regions,

except west coast regions (regions A1, A2, and D).

These results suggest that SS represents a reasonable working hypothesis for the development of more accurate IDF curves.

Besides, the spatial distribution of the scaling exponent and its dependency on climatology should be taken into account when

defining SS duration intervals since the accuracy of the SS approximation may depend on the range of considered temporal25

scales. Equally critical, estimatedH values were found to gradually evolve with the considered scaling intervals. In this respect,

interesting extensions of the analysis should consider methods for the quantification of the uncertainty inH estimations as well

as the possibility of modeling the scaling exponent as a function of both the observational duration and the AMS distribution

quantile/moment order, i.e. by the use of a multiscaling (MS) framework for IDFs. Equally important, the events sampled by

the AMS also showed different statistical features within different geographical regions and some specific results [e.g., for the30

SW_Pac region] stimulate the interest for an analysis of the scaling property of extreme precipitation by the use of a temporal

stochastic scaling approach.

The evaluation of SS model performances under the assumption of GEV distributions for AMS intensity was then performed.

Results indicate that the proposed SS GEV models may lead to a more reliable statistical inference of extreme precipitation

intensity than that based on the conventional non-SS approach. In particular, a better assessment of the GEV shape parameter35
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seems possible when pooling data from several durations under the scaling hypothesis. The use of the SS approximation may

introduce biases in high quantile estimates when AMS distributions move drastically away from perfect scale invariance (short

durations and/or longest scaling intervals). Nonetheless, decreases in the SS GEVRMSE with respect to non-SS GEV models

for d1 longer than a few hours and/or scaling intervals shorter than 24 durations indicate that quantile errors in IDF estimates

can be generally reduced.5

Caution is advised when interpreting these results due to the fact that high order empirical quantiles were used as reference

estimates of true Xd quantiles, which could be a misleading assumption especially when available AMS are short. Considering

this limitation and our general results, any future extension of this study should investigate the possibility of introducing spatial

information in scaling models as well as improvements of scaling GEV estimation procedures.

8 Data availability10

The 15min Precipitation Data (15PD) and Hourly Precipitation Data (HPD) were freely obtained from NOAA/Climate Pre-

diction Center (CPC) [http://www.ncdc.noaa.gov/data-access/land-based-station-data]. Houly (H) and Maximum Daily (DM)

data for Canada were acquired from Environment and Climate Change Canada (ECCC) and from the MDDELCC of Québec

[data available upon request by contacting Info-Climat@mddelcc.gouv.qc.ca].
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Table 1. List of available datasets and their main characteristics.

Dataset Region
N. of Operational Temporal Prevalentc

stations periodb resolution resolution [mm]

Daily Maximaa (DM) Canada 370 1964-2007 1, 2, 6, 12 h 0.1 (82.25%)

Hourly (H) Canada 665 1967-2003 1 h 0.1 (70%)

Hourly Prec. Data (HPD) USA 2531 1948-2013 1 h 0.254 (82.5%)

15-Min Prec. Data (15PD) USA 2029 1971-2013 15 min 2.54 (80.42%)

a Daily maxima depth series over a 24-hour window beginning at 8:00 AM.
b Main station network operational period corresponding to 25th percentile of the first recording year and the 75th percentile of

the last recording year of the stations.
c Prevalent measurement resolution, estimated by the lowest non-zero value for each series, and corresponding percentage of

stations with this resolution.

22

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-586, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 30 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



Table 2. Final datasets used in scaling analysis and corresponding AMS characteristics.

Scaling
Durations

N. of Mean series Max series

dataset Stations length [yr] length [yr]

SDa 15min, 30min, ..., 6h 1083 20 36

ID 1h, 2h, ...,24h 2719 37.4 66

LD 6h, 12h, ..., 168h 2719 37.4 66

a Only 15PD series.
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Figure 2. Cross-Validation Normalized RMSE averaged over all valid SS stations (rxd ) for each duration (vertical axis) and scaling interval

(horizontal axis) in the SD, ID, and LD datasets [row a), b), and c) respectively]. See Fig. 1 (d) for the identification of durations and scaling
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Figure 3. Col. (i): Median and relevant quantiles of the scaling exponent distribution over all valid SS stations for each 6-duration scaling
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average number of valid SS stations over the scaling intervals (identified by their first duration, d1 ) is indicated at the top of each graph.
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second, and third col., respectively) for SD, ID, and LD datasets (first, second, and third row, respectively). These scaling intervals correspond

to the first column of matrices in Fig. 1 and 2.
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duration scaling intervals in SD (a), ID (b), and LD (c) datasets. The average number of valid SS station over the scaling intervals is indicated

in the right-top corner of each graph.
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