
Dear Editor,

Please find enclosed the third revision of the manuscript "Simple Scaling of Extreme Precipitation in North America" by
Innocenti et al. to be considered for publication in HESS.

According to the referee’s comment, we added a discussion of recent results concerning the evidences of extreme rainfall
modification with climate change and the implications of these results in terms of the temporal scaling presented in our paper5
[Lines 23 to 4, Page 18].

Following HESS editorial instructions, we provide a detailed response to the referee’s comment (which is reported in blue in
the following text). Line and page numbering (in bold) refers to the revised manuscript in "track changes" mode attached to
this reply.

Sincerely,10

Silvia Innocenti, on behalf of the co-authors.
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Referee’s comments

This paper has been reviewed in the past and I am coming new to the review process here. Hence I will try to keep my
comments constructive and general rather than heavy on details, as I feel other reviewers have addressed those well.

My main problem with the paper is assumption of SS in a warming climate. There have been too many papers that show (a) that5
rainfall extremes are scaling with rising temperature [Westra, S., L. V. Alexander, and F. W. Zwiers (2013), Global increasing
trends in annual maximum daily precipitation, Journal of Climate, 26(11), 3904-3918.], and (b) that the scaling is greater with
short duration rainfall than long duration rainfall [Hardwick-Jones, R., S. Westra, and A. Sharma (2010), Observed relation-
ships between extreme sub-daily precipitation, surface temperature, and relative humidity, Geophysical Research Letters, 37,
doi:10.1029/2010GL045081.]. Given this, one needs to question whether the SS assumption the authors use is justifiable or10
not.

However, there is considerable uncertainty in the conclusions drawn in the above papers, which allows for this paper to make
a contribution to the overall discussion. To add to the discussion already there in the paper, I suggest the authors add a section
discussing this issue, and the need for further developing of SS models that possibly consider temperature as a covariate in
some form or the other. If there is no such variation, one is implicitly assuming stationary co-variability of rainfall with tem-15
perature irrespective of rainfall duration, which I believe does not make sense to do anymore.

I also suggest the authors look at [doi:10.1016/j.jhydrol.2016.12.002.] which makes a similar case, and actually presents an ap-
proach for generating rainfall sequences such that derived design intensities do observe some type of scaling with temperature
differently at different durations. I believe, though, this is an area of evolving research and a lot more needs to be done - but a
discussion of all that is happening and what more holes need to be filled will help other researchers who follow in this space.20

I recommend publication - but with a good discussion of these issues included in.

Authors’ response to referee’s comments

We definitely agree with the reviewer that well known theoretical and empirical evidences support the ongoing changes in
precipitation in a warmer climate [Trenberth et al. (2003), Westra and al. (2014)]. In particular, the literature has extensively25
shown evidences of the extreme rainfall intensification as a result of climate change, with studies particularly analyzing i)
changes in the intensity, frequency, and spatial patterns of extreme rainfall at global, regional, and local scales [e.g., Trenberth
(2005), Alexander et al. (2006), Westra et al. (2013), Hartmann et al. (2013), Donat et al. (2016)], and ii) the relationship
between increases in daily and sub-daily rainfall extremes with increasing temperature and changes in humidity conditions
[e.g., Trenberth et al. (2003), Westra and al. (2014), Panthou et al. (2014), Barbero et al. (2017), Wasko and Sharma (2017)].30

As suggested by the reviewer, two common major conclusions resulted from these studies. Firstly, with global warming, rain-
fall extremes are expected to change at a rate equal to or higher than the moisture holding capacity of the atmosphere. The use
of the Clausius-Clapeyron relationship [CC scaling] leads to an expected global sensitivity of extreme rainfall equal to ∼ 7%
per ◦C; however the actual scaling between extreme rainfall and temperature (or dew point temperature) estimated in empirical
studies was generally higher that the theoretical CC value and greatly varied in space and with the chosen rainfall exceedance35
probability [e.g., Westra and al. (2014) and references therein]. Secondly, higher temperatures are expected to induce greater
CC scaling rates for short duration extreme rainfall [e.g., up to a few hours] than those at daily or longer time scales [e.g.,
Lenderink and Attema (2015), Barbero et al. (2017), Wasko and Sharma (2017)].

As a result, the SS exponent,H , describing the link between short and long duration AMS distributions, may effectively change
in a changing climate and the hypothesis of a stationary temporal scaling used in our analysis does not hold over long time hori-40
zons. As suggested by the reviewer, one possible way to incorporate this non-stationarity in temporal scaling models could be
to allow SS and GEV parameters to vary in time as a function of temperature, rather than assuming a constant value for H and
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the same AMS probability distribution over the whole observational period. A comparable approach has been used in Wasko
and Sharma (2017) for conditioning precipitation distribution parameters on monthly temperature when using a Neyman-Scott
rectangular pulses (RPLS) process for the simulation of continuous rainfall series.

Although interesting, however, the possibility of applying this approach for our study remains difficult. In particular, the esti-
mation of temporal trends for the SS scaling-temperature relationships would be challenging considering the relatively short5
historical records available in our analysis [see Barbero et al. (2017) for a discussion on the estimation of trends for daily and
sub-daily precipitation extremes in North America]. Moreover, a comprehensive separate study would be needed to investigate
the complex relationship between H and the increasing temperature in order to correctly identify the suitable covariate(s) for
a non-stationary SS model.

Notwithstanding, considering the importance of the issue raised by the reviewer, we added the following paragraph at10
Lines 13 to 17, Page 3:

"Note that, although modifications in precipitation distributions are expected as a result of climate changes [e.g., Trenberth
(2003), Hartmann et al. (2013), Westra et al. (2014)], the proposed approach implicitly relies on the assumption of stationarity
for extreme rainfall. This choice has been motivated by both the limited evidence for changes in rainfall intensities for North
America extremes during last decades, and the difficulties of assessing distribution changes from short recorded series, espe-15
cially for sub-daily extremes [Barbero et al. (2017) and references therein]."

Moreover Lines 23 to 4, Page 18 [Sect. 7 Discussion and conclusion] have been modified to:

"Moreover, two important limitations of the presented SS approach must be stressed. Firstly, a more comprehensive assessment
of the scaling exponent uncertainty and of the influence of dataset characteristics on the estimation of AMS simple scaling is
recommended for a reliable estimation of SS IDF curves. Secondly, the proposed model relies on the implicit hypothesis of20
stationarity of AMS over the observed period while growing evidence supports the ongoing changes in extreme precipitation
intensity, frequency, duration, and spatial patterns as a result of climate change [e.g., Hartmann et al. (2013), Westra et al.
(2014), Donat et al. (2016)]. In particular, short duration extreme rainfall is expected to respond to global warming with a
different sensitivity to temperature than those expected at daily or longer time scales [e.g., Westra et al. (2014), Lenderink and
Attema (2015), Wasko and Sharma (2017), Barbero et al. (2017)] which implies a change in the temporal scaling properties of25
precipitation over time.
Hence, considering these limitations and our general results, any future extension of this study should investigate the possi-
bility of introducing spatial information in scaling models as well as the characterization of possible evolution of the scaling
exponent in a warmer climate in order to identifying valuable approaches allowing non-stationarity of SS model parameters. "
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Abstract. Extreme precipitation is highly variable in space and time. It is therefore important to characterize precipitation

intensity distributions at several temporal and spatial scales. This is a key issue in infrastructure design and risk analysis, for

which Intensity-Duration-Frequency (IDF) curves are the standard tools used for describing the relationships among extreme

rainfall intensities, their frequencies, and their durations. Simple Scaling (SS) models, characterizing the relationships among

extreme probability distributions at several durations, represent a powerful means for improving IDF estimates. This study5

tested SS models for approximately 2700 stations in North America. Annual Maxima Series (AMS) over various duration in-

tervals from 15 min to 7 days were considered. The range of validity, magnitude, and spatial variability of the estimated scaling

exponents were investigated. Results provide additional guidance for the influence of both local geographical characteristics,

such as topography, and regional climatic features on precipitation scaling. Generalized Extreme Value (GEV) distributions

based on SS models were also examined. Results demonstrate an improvement of GEV parameter estimates, especially for the10

shape parameter, when data from different durations were pooled under the SS hypothesis.

1 Introduction

Extreme precipitation is highly variable in space and time as various physical processes are involved in its generation. Char-

acterizing this spatial and temporal variability is crucial for infrastructure design and to evaluate and predict the impacts of

natural hazards on ecosystems and communities. Available precipitation records are however sparse and cover short time peri-15

ods, making a complete and adequate statistical characterization of extreme precipitation difficult. The resolution of available

data, whether observed at meteorological stations or simulated by weather and climate models, often mismatches the resolu-

tion needed for applications (e.g., Blöschl and Sivapalan, 1995; Maraun et al., 2010; Willems et al., 2012), thus adding to the

difficulty of achieving complete and adequate statistical characterizations of extreme precipitation.

The need for multi-scale analysis of precipitation has been widely recognized in the past (Rodriguez-Iturbe et al., 1984;20

Blöschl and Sivapalan, 1995; Hartmann et al., 2013; Westra et al., 2014, among others) and much effort has been put into

the development of relationships among extreme precipitation characteristics at different scales. The conventional approach

for characterizing scale transitions in time involves the construction of Intensity-Duration-Frequency (IDF) or the equivalent

Depth-Duration-Frequency (DDF) curves (Bernard, 1932; Burlando and Rosso, 1996; Sivapalan and Blöschl, 1998; Kout-

soyiannis et al., 1998; Asquith and Famiglietti, 2000; Overeem et al., 2008; Veneziano and Yoon, 2013). These curves are a25

standard tool for hydraulic design and risk analysis as they describe the relationships between the frequency of occurrence of
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extreme rainfall intensities (depth) Xd and various durations d (e.g., CSA, 2012). Analysis is usually conducted by separately

estimating the statistical distributions of Xd at the different durations (see Koutsoyiannis et al., 1998; Papalexiou et al., 2013,

for discussions about commonly used probability distributions) The parameters or the quantiles of these theoretical distribu-

tions are then empirically compared to describe the variations of extreme rainfall properties across temporal scales.

Despite its simplicity, this procedure presents several drawbacks. In particular, it does not guarantee the statistical consistency5

of precipitation distributions, independently estimated at the different durations, and it limits IDF extrapolation at non-observed

scales or ungauged sites. Uncertainties of estimated quantiles are also presumably larger because precipitation distribution and

IDF curve parameters are fitted separately.

Scaling models (Lovejoy and Mandelbrot, 1985; Gupta and Waymire, 1990; Veneziano et al., 2007) based on the concept of

scale invariance (Dubrulle et al., 1997), have been proposed to link rainfall features at different temporal and spatial scales.10

Scale invariance states that the statistical characteristics (e.g., moments or quantiles) of precipitation intensity observed at two

different scales d and λd can be related to each other by a power law of the form:

f(Xλd) = λ−Hf(Xd) (1)

where f(.) is a function of X with invariant shape when rescaling the variable X by a multiplicative factor λ and for some

values of the exponent H ∈ R. In the simplest case, a constant multiplicative factor adequately describes the scale change. The

corresponding mathematical models are known as Simple Scaling (SS) models (Gupta and Waymire, 1990). SS models are at-15

tractive because of the small number of parameters involved, as opposed to Multiscaling (MS) models which involve more than

one multiplicative factor in Eq. (1) (e.g., Lovejoy and Schertzer, 1985; Gupta and Waymire, 1990; Burlando and Rosso, 1996;

Veneziano and Furcolo, 2002; Veneziano and Langousis, 2010; Langousis et al., 2013). A single scaling exponent H is used

to characterize the extreme rainfall distribution at all scales over which the scale invariance property holds. As a consequence,

a consistent and efficient estimation of extreme precipitation characteristics is possible, even at non-sampled temporal scales,20

and a parsimonious formulation of IDF curves based on analytical results is available (e.g., Menabde et al., 1999; Burlando

and Rosso, 1996; De Michele et al., 2001; Ceresetti, 2011).

Theoretical and physical evidence of the scaling properties of precipitation intensity over a wide range of durations has been

provided by several studies. MS has been demonstrated to be appropriate for modeling the temporal scaling features of the

precipitation process (i.e., not only the extreme distribution) and for the extremes in event-based representations of rainfall25

(stochastic rainfall modeling) (e.g., Veneziano and Furcolo, 2002; Veneziano and Iacobellis, 2002; Langousis et al., 2013, and

references therein). These multifractal features of precipitation last within a finite range of temporal scales (approximatively

between 1 hour and 1 week) and concern the temporal dependence structure of the process. They have been connected to the

large fluctuations of the atmospheric and climate system governing precipitation which are likely to produce a "cascade of

random multiplicative effects" (Gupta and Waymire, 1990).30

At the same time, many studies confirmed the validity of SS for approximating the precipitation distribution tails in IDF es-

timation (for examples of durations ranging from 5 min to 24 h see Menabde et al., 1999; Veneziano and Furcolo, 2002; Yu

et al., 2004; Nhat et al., 2007; Bara et al., 2009; Ceresetti et al., 2010; Panthou et al., 2014). This type of scaling is substan-
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tially different from the temporal scaling since it only refers to the power law shape of the marginal distribution of extreme

rainfall. Application of the SS models to precipitation records showed that the scaling exponent estimates may depend on the

considered range of durations (e.g., Borga et al., 2005; Nhat et al., 2007) and the climatological and geographical features of

the study regions (e.g., Menabde et al., 1999; Bara et al., 2009; Borga et al., 2005; Ceresetti et al., 2010; Blanchet et al., 2016).

However, the application of the SS framework has been mainly restricted to specific regions and small observational datasets.5

A deeper analysis of the effects of geoclimatic factors on the SS approximation validity and on estimated scaling exponent is

thus needed.

The present study aims to deepen the knowledge of the scale-invariant properties of extreme rainfall intensity by analyzing SS

model estimates across North America using a large number of station series. The specific objectives of this study are: a) asses

the ability of SS models to reproduce extreme precipitation distribution; b) explore the variability of scaling exponent estimates10

over a broad set of temporal durations and identify possible effects of the dominant climate and pluviometric regimes on SS;

c) evaluate the possible advantages of the introduction of the SS hypothesis in parametric models of extreme precipitation.

Note that, although modifications in precipitation distributions are expected as a result of climate changes [e.g., Trenberth

(2003), Hartmann et al. (2013), Westra et al. (2014)], the proposed approach implicitly relies on the assumption of stationarity

for extreme rainfall. This choice has been motivated by both the limited evidence for changes in rainfall intensities for North15

America extremes during last decades, and the difficulties of assessing distribution changes from short recorded series, espe-

cially for sub-daily extremes [Barbero et al. (2017) and references therein].

The article is structured as follows. In Sect. 2 the statistical basis of scaling models is presented, while data and their prelimi-

nary treatments are described in Sect. 3. Sect 4 presents the distribution-free estimation of SS models and their validation using

available series. Section 5 focuses on to the spatial variability of SS exponents and discusses the scaling exponent variation20

from a regional perspective. Finally, the SS estimation based on the Generalized Extreme Value (GEV) assumption is discussed

in Sect. 6, followed by a discussion and conclusions [Sect. 7]. Table S1 of the supplementary material lists in alphabetic order

the recurrent acronyms used in text.

2 Simple Scaling models for precipitation intensity

When the equality in Eq. (1) holds for the cumulative distribution function (cdf) of the precipitation intensityX sampled at two25

different durations d and λd, the Simple Scaling (SS) can be expressed as (Gupta and Waymire, 1990; Menabde et al., 1999):

Xd
dist
= λHXλd, (2)

where H ∈ R and dist
= means that the same probability distribution applies for Xd and Xλd, up to a dilatation or contraction of

size λH . An important consequence of the SS assumption is that Xd and λHXλd have the same distribution. Hence, if Xd and

Xλd have finite moments of order q, E[Xq
d ] and E[Xq

λd], these moments are thus linked by the following relationship (Gupta30
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and Waymire, 1990; Menabde et al., 1999):

E[Xq
d ] = λHqE[Xq

λd]. (3)

This last relationship is usually referred to as the wide sense simple scaling property (Gupta and Waymire, 1990) and signifies

that simple scaling results in a simple translation of the log-moments between scales:

ln{E[Xq
d ]}= ln{E[Xq

λd]}+Hq lnλ (4)

Moreover, without loss of generality, λ can always be expressed as the scale ratio λ= d/d∗ defined for a reference dura-

tion d∗ chosen, for simplicity, as d∗ = 1. Therefore, the SS model can be estimated and validated over a set of durations5

d1 < d2 < .. < dD by simply checking the linearity in a log-log plot of the X moments versus the observed durations dj ,

j = 1,2, . . . ,D [see, for instance, Gupta and Waymire (1990); Burlando and Rosso (1996); Fig. 1 of Nhat et al. (2007); and

Fig. 2 (a) of Panthou et al. (2014)]. If H estimated for the first moment equals the exponents (slopes) for the other moments,

the precipitation intensity X can be considered scale invariant under SS in the interval of durations d1 to dD.

More sophisticated methods have also been proposed for detecting and estimating scale invariance [for instance, dimensional10

analysis, Lovejoy and Schertzer (1985); Tessier et al. (1993); Bendjoudi et al. (1997); Dubrulle et al. (1997); spectral analysis

and wavelet estimation Olsson et al. (1999); Venugopal et al. (2006) Ceresetti (2011); and empirical probability distribution

function (pdf) power law detection Hubert and Bendjoudi (1996); Sivakumar (2000); Ceresetti et al. (2010)]. However, estima-

tion through the moment scaling analysis is by far the simplest and most intuitive tool to check the SS hypothesis for a large

dataset. For this reason, the presented analyses are based on this method.15

According to the literature, the values of the scaling exponents H generally range between 0.4 and 0.8 for precipitation inten-

sity considered at daily and shorter time scales (e.g., Burlando and Rosso, 1996; Menabde et al., 1999; Veneziano and Furcolo,

2002; Bara et al., 2009) (note that for the rainfall depth the scaling exponent Hdepth = 1−H applies). Values from 0.3 to 0.9

have also been reported for some specific cases (e.g., Yu et al., 2004; Panthou et al., 2014, for scaling intervals defined within

1 h and 24 h).20

Higher H values have been generally observed for shorter-duration intervals, and regions dominated by convective precipita-

tion (e.g., Borga et al., 2005; Nhat et al., 2007; Ceresetti et al., 2010; Panthou et al., 2014, and references therein). Nonetheless,

some studies performing spatio-temporal scaling analysis reached a different conclusion. For instance, Eggert et al. (2015), an-

alyzing extreme precipitation events from radar data for durations between 5 min and 6 h and spatial scales between 1 km and

50 km, indirectly showed that stratiform precipitation intensity generally displays higher temporal scaling exponents than con-25

vective intensity. For short-duration intervals (typically less than one hour), previous studies have also reported more spatially

homogeneous H estimates than for long-duration intervals (e.g., Alila, 2000; Borga et al., 2005, and references therein). This

suggests that processes involved in the generation of local precipitation are comparable across different regions.

More generally, higher H values are associated with larger variations in moment values as the scale is changed (i.e. a stronger

scaling), while H close to zero means that the Xd distributions for different durations d more closely match each other.30
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2.1 Simple Scaling GEV models

Annual Maximum Series (AMS) are widely used to select rainfall extremes from available precipitation series. Various the-

oretical arguments and experimental evidences support their use for extreme precipitation inference (e.g., Coles et al., 1999;

Katz et al., 2002; Koutsoyiannis, 2004a; Papalexiou et al., 2013).

Based on the asymptotic results of the Extreme Value Theory (Coles, 2001), the AMS distribution of a random variable X is5

well described by the Generalized Extreme Value (GEV) distribution family. If we represent the AMS by (x1,x2, ...,xn), the

GEV cdf can be written as (Coles, 2001):

F (x) = exp

{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
}

(5)

where ξ 6= 0, −∞< x≤ µ+σ/ξ if ξ < 0 (bounded tail), and 1/µ+σξ ≤ x <+∞ if ξ > 0 (heavy tail). If ξ = 0 (light-tailed

shape, Gumbel distribution), Eq. (5) reduces to:10

F (x) = exp

{
−exp−

{
x−µ
σ

}}
(6)

where −∞< x <+∞. In Eq. (5) and (6), the parameters µ ∈ R, σ > 0 and ξ respectively represent the location, scale, and

shape parameters of the distribution. The shape parameter describes the characteristics of the distribution tails. Thus, high order

quantile estimation is particularly affected by the value of ξ.

In applications, the GEV distribution is frequently constrained by the assumption that ξ = 0 (i.e., to the Gumbel distribution),15

due to the difficulty of estimating significant values of the shape parameter when the recorded series are short (e.g., Borga

et al., 2005; Overeem et al., 2008; CSA, 2012). However, based on theoretical and empirical evidence, many authors have

shown that this assumption is too restrictive for extreme precipitation, and may lead to important underestimations of the

extreme quantiles (e.g., Koutsoyiannis, 2004a, b; Overeem et al., 2008; Papalexiou et al., 2013; Papalexiou and Koutsoyiannis,

2013). Instead, approaches aimed at increasing the sample size may be used to improve the estimation of the GEV distribution20

shape parameter (for instance, the Regional Frequency Analysis (RFA), Hosking and Wallis, 1997). Among these approaches,

SS models constitute an appealing way to pool data from different samples (durations) and reduce uncertainties in GEV

parameters.

For the GEV distribution it is straightforward to verify that, if X dist
= GEV (µ,σ,ξ) then λX

dist
= GEV (λµ,λσ,ξ) for any

λ ∈ R. This means that the GEV family described by Eq. (5) and (6) satisfies Eq. (1) and thus complies with statistical scale25

invariance for any constant multiplicative transformation of X . Hence, when the scale invariance is further assumed for the

change of observational scale from duration d to λd [as in Eq. 2], the wide sense SS definition [Eq. (3)] gives:

µd = dHµ∗ ,σd = dHσ∗ , and ξd = ξ∗ (7)

where µ∗, σ∗, and ξ∗ represent the GEV parameters for a reference duration d∗ chosen, for simplicity, as d∗ = 1, so that λ= d.
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2.2 SS GEV estimation

Taking advantage of the scale invariant formulation of the GEV distribution, many authors have proposed simple scaling IDF

and DDF models for extreme precipitation series (e.g., Yu et al., 2004; Borga et al., 2005; Bougadis and Adamowski, 2006;

Bara et al., 2009; Ceresetti, 2011). In these cases, the scaling exponent and the GEV parameters are generally estimated in

two separate steps: first, the H value is empirically determined through a log-log linear regression, as described above; then,5

GEV parameters µ∗, σ∗, and ξ∗ for the reference duration d∗ are estimated on the pooled sample of all available durations.

In this case, classical estimation procedures, such as GEV Maximum-Likelihood (ML) (Coles, 2001) or Probability Weighted

Moment (PWM) (Greenwood et al., 1979; Hosking et al., 1985), can be used.

In a few other cases, a Generalized Additive Model ML (GAM-ML) framework (Coles, 2001; Katz, 2013) has also been used

to obtain the joint estimate ofH,µ∗,σ∗, and ξ∗ through the introduction of the duration as model covariate (e.g. Blanchet et al.,10

2016).

3 Data and study region

Four station datasets were used for the construction of intensity Annual Maxima Series (AMS) at different durations: the

Daily Maxima Precipitation Data (DMPD) and the Hourly Canadian Precipitation Data (HCPD) datasets provided by En-

vironment and Climate Change Canada (ECCC) and the MDDELCC [in french Ministère du Développement Durable, de15

l’Environnement et de la Lutte contre les Changements Climatiques] for Canada, and the Hourly Precipitation Data (HPD) and

15-Min Precipitation Data (15PD) datasets made available by the National Oceanic and Atmospheric Administration (NOAA)

agency [http://www.ncdc.noaa.gov/data-access/land-based-station-data] for United States. The total number of stations was

approximately 3400, with roughly 2200 locations having both DMPD and HCPD series, or both HPD and 15PD series. The

majority of stations are located in the United States and in the southern and most densely populated areas of Canada. In north-20

ern regions the station network is sparse and the record length does not generally exceed 15 or 20 years. Moreover, for most of

DMPD and HCPD stations, the annual recording period does not cover the winter season and available series generally include

precipitation measured from May to October. For this reason, the year from which the annual maxima was sampled was limited

to the recording season going from June to September for northern stations [stations located north of the 52nd Parallel] and

from June to September for the southern stations. As a result, 122 days a year were used for northern stations and 184 days a25

year for remaining stations.

Data were collected through a variety of instruments [e.g., standard, tipping-bucket, and Fischer-Porter rain gauges] and pre-

cipitation values were processed and quality-controlled using both automated and manual methods (CSA, 2012, HPD and

15PD online documentation). Most often, observations were recorded by tipping-bucket gauges with tip resolution from 0.1

mm to 2.54 mm (CSA, 2012; Devine and Mekis, 2008). 15 min series usually present the coarser instrument resolution, with30

a minimum non-zero value of 2.54 mm, observed for about 80.5% of 15PD stations. The effects of such a coarse instrument

resolution on simple scaling estimates could be important leading to empirical Xd cdfs becoming step-wise functions with a

low number of steps. Some preliminary analyses aiming at evaluating these effects on SS estimates are presented in the sup-
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plementary material [see Fig. S2 and S3]. However, the 15PD dataset is important considering the associated network density

and its fine temporal resolution, and thus it has been retained for our study. The main characteristics of the available datasets

are summarized in Table 1.

The scaling AMS datasets were constructed according to the following steps:

(i) Three duration sets were defined: a) 15 min to 6 h with a 15min step; b) 1 h to 24 h with a 1h step; c) 6 h to 168 h (75

days) with a 6h step. These duration sets are hereinafter referred to as Short-Duration (SD), Intermediate-Duration (ID), and

Long-Duration (LD) datasets, respectively [see Figure 1 (a)].

(ii) Meteorological stations that were included in each final dataset were selected according to the following criteria: 1) precip-

itation series must have at least 85% of valid observations for each May to October (or June to September) period, otherwise

the corresponding year was considered as missing; 2) each station must have at least 15 valid years; 3) for each station, it was10

possible to compute AMS for all durations considered in the scaling dataset (e.g., HCPD and HPD stations were not included

in the SD dataset because only hourly durations were available). Note that, in order to exclude outliers possibly associated with

recording or measurement errors, extremely large observations were discarded and assimilated to missing data. In particular,

as in some previous studies (e.g., Papalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013), an iterative procedure was

applied prior to step (ii)-1) to discard observations larger than 10 times the second largest value of the series.15

(iii) A moving window was applied to 15PD, HCPD, and HPD series to estimate aggregated series at each duration. For DMPD

series, a quality check was also implemented in order to guarantee that precipitation intensities recorded each day at different

durations were consistent with each other. For instance, each pair of DMPD rainfall intensity [mm] (xd1 ,xd2) observed at du-

rations d1 < d2 must respect the condition xd2/xd1 ≥ d1/d2 derived from the definitions of daily maximum rainfall intensity

and depth; otherwise all DMPD values recorded that day were discarded and assimilated to missing data.20

(iv) For each selected station, annual maxima were extracted for each valid year and duration. For stations having both DMPD

and HCPD series, or 15PD and HPD series, for each year, the annual maxima extracted from these two series were compared

and the maximum value was retained as the annual maximum for that year.

Major characteristics of each scaling AMS dataset are reported in Table 2.

4 SS estimation through Moment Scaling Analysis (MSA)25

Moment Scaling Analysis (MSA) for the SD, ID, and LD datasets was carried out to empirically validate the use of SS models

for modeling AMS empirical distributions. Assessing the validity of the SS hypothesis for various duration intervals also aimed

at determining the presence of different scaling regimes for precipitation intensity distributions.

In order to identify possible changes in the SS properties of AMS distributions, various scaling intervals were defined for the

MSA. In particular, all possible subsets with 6, 12, 18 and 24 contiguous durations were considered within each dataset. Figure30

2 and Figure 3 show the 136 scaling intervals thereby defined: 40 scaling intervals for SD and ID, and 56 scaling intervals for
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LD. For instance, the top left matrix of Fig. 2(a) presents the 6-duration scaling intervals 15 min - 1 h 30 min, 30min - 1 h 45

min, . . . , 4 h 45 min - 6 h defined for the SD dataset [i.e. the 19 scaling intervals containing six contiguous durations defined

with a 15min increment]. More schematically, Fig. 1(b) shows an example of the first five 6-duration scaling intervals for the

ID dataset [i.e. 1 h - 6 h, 2 h - 7 h, . . . , 5 h - 10 h, containing six contiguous durations defined with an increment of 1h]. This

procedure was defined in order to evaluate the sensitivity of the SS estimates to changes in the first duration d1 of the scaling5

interval and in the interval length [i.e. the number of durations included in the scaling interval].

For each scaling interval (for simplicity, their index has been omitted), the validity of the SS hypothesis was verified according

to the following steps:

1. MSA regression: for each q = 0.2,0.4, . . . ,2.8,3, the slopes Kq of the log-log linear relationships between the empirical

q−moments 〈Xq
d〉 of Xd1 ,Xd2 , . . . , XdD and the corresponding durations d1,d2, . . . ,dD in the scaling interval [d1,dD] were10

estimated by Ordinary Least Squares (OLS) [see Fig. 1 (c) for a graphic example]. Order q ≥ 3 were not considered because

of the possible biases affecting empirical high order moment estimates.

2. Slope test: to verify the SS assumption that the estimatedKq exponents vary linearly with the moment order q, i.e.Kq ≈Hq,

an OLS regression between the MSA slopes Kq and q was applied [see Fig. 1 (d)]. For the regression line Kq = ĥ0 + ĥ1 q, a

Student’s t-test was then used to test the null hypothesis H0: ĥ1 =K1. If H0 was not rejected at the significance level α= 0.05,15

the SS assumption was considered appropriate for the scaling interval and the simple scaling exponent H =K1 was retained.

3. Goodness-of-Fit (GOF) test: for each duration d, the goodness of fit of the Xd distribution under SS was tested using

the Anderson-Darling (AD) and the Kolmogorov-Smirnov (KS) tests. These tests aim at validating the appropriateness of

the scale invariance property for approximating the Xd cdf by the distribution of Xd,ss = d−HXd∗ . To this end, each AMS,

xdj =
(
xdj ,1,xdj ,2, . . . ,xdj ,i, . . .xdj ,n

)
, recorded at duration dj was rescaled at the reference duration d∗ by inverting Eq. (2):20

x∗
dj =

(
dj
Hxdj ,1,dj

Hxdj ,2, . . . ,dj
Hxdj ,i, . . .dj

Hxdj ,n

)
(8)

where n represents the number of observations (years) in xdj . Then, the pooled sample, xd∗ , of the D rescaled AMS, x∗
dj ,

was used to define Xd∗ under the SS assumption:

xd∗ =
(
x∗

d1 , . . . ,x
∗
dj , . . . ,x

∗
dD .
)

(9)

Since, in Eq. (9), D represents the number of durations dj in the scaling interval, n×D rescaled observations were included25

in xd∗ .

As in previous applications (e.g., Panthou et al., 2014), the AD and KS tests were then applied at significance level α= 0.05

to compare the empirical distributions (Cunnane plotting formula, Cunnane, 1973) of the SS sample, xd,ss = d−Hxd∗ , and the

non-SS sample, xd. In fact, despite the low power of KS and AD tests for small sample tests, they represent the only suitable

solution to the problem of comparing empirical cdfs when the data do not follow a normal distribution. Because both AD30

and KS are affected by the presence of ties in the samples (e.g., repeated values due to rounding or instrument resolution), a

permutation test approach (Good, 2013) was used to estimate test p-values. According to this approach, data in xd and xd,ss
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were pooled and randomly reassigned to two samples having same sizes as the SS and non-SS samples. Then, the test statistic

distribution under the null hypothesis of equality of the Xd,ss and Xd distributions was approximated by computing its value

over a large set of random samples. Finally, the test p-value was obtained as the proportion of random samples presenting a

test statistic value larger than the value observed for the original sample.

The SS model validity and the mean error resulting from approximating the Xd distribution by the SS model were then5

evaluated in a cross-validation setting. For this analysis, each duration was iteratively excluded from each scaling interval and

the scaling model re-estimated at each station by repeating steps 1 to 3 [MSA regression, Slope test, and GOF tests]. Predictive

ability indices, such as the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) between empirical and SS

distribution quantiles, were then estimated for highest quantiles for valid SS stations. In particular, to focus on return periods

of practical interest for IDF estimation, only quantiles larger than the median were considered (i.e., only return periods greater10

than 2 years).

For each station s, the normalized RMSE, εxd,s
, was estimated:

εxd,s
=
εxd,s

xd,s
(10)

where εxd,s
and xd,s are, respectively, the RMSE and the mean value of all Xd quantiles of order p > 0.5. Then, the average

over all stations of the normalized RMSE, εxd
, was computed for each scaling interval and duration:15

εxd
=

1

ns

ns∑
s=1

εxd,s
(11)

where ns is the number of valid SS stations in the dataset. Note that εxd
is a measure of error, meaning that values of εxd,s

closer to 0 correspond to a better fit than larger values.

4.1 Model estimation and validation

Figure 2 presents the results of steps 1 to 3 of the methodology for evaluating the SS validity. For all the three scaling datasets,20

no particular pattern was observed for slope test results, and at most 2% of the stations within each scaling interval displaying

a non linear evolution of the scaling exponent with the moment order. For this reason, Fig. 2(a)-(c) show, for each scaling

interval and duration, the proportion of valid SS stations without differentiating for slope or GOF test results. As showed in the

example in Fig.1(e), for each scaling interval, valid SS stations were defined as stations having not rejected both the Slope test

for the scaling interval and the GOF tests for each duration included in this scaling interval.25

As expected, the proportion of valid SS stations decreased when the number of durations within the scaling interval increased

and with decreasing d1. This is particularly evident for short d in SD and ID datasets. More GOF test rejections were observed

for longer scaling intervals [not shown], due to the higher probability of observing large differences between xd and xd,ss

quantiles when xd,ss had larger sample size and included data from more distant durations. However, several factors can

impact GOF test results when shorter d1 are considered. First, GOF tests are particularly sensitive to the presence of very large30

values in short-duration samples. Second, when considering durations close to the temporal resolution of the recorded series
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[i.e., 15 min in SD and 1 h in ID and LD], stronger underestimations could affect the measure of precipitation because intense

rainfall events are more likely to be split between two consecutive time steps. Finally, preliminary analyses [Fig. S2 and S3

in the supplementary material] showed that the largest GOF test rejections could also be connected to the coarse instrument

resolution of 15PD series, which, similar to the temporal resolution effect, induces larger measurement errors in the shortest

duration series. Note that comparable resolution issues were previously reported by some authors while estimating fractal5

and intermittency properties of rainfall processes (e.g., Veneziano and Iacobellis, 2002; Mascaro et al., 2013) and IDF (e.g.,

Blanchet et al., 2016).

Valid SS station proportions between 0.99 and 1 were always observed for GOF tests in ID and LD datasets, except for some

durations shorter than 3 h (ID dataset) or 6 h (LD dataset). When considering both GOF and Slope test, with the exception

of some durations ≤1 hour, the proportion of stations satisfying SS was higher than 0.9, and the majority of scaling intervals10

[65%, 90%, and 98% of the scaling intervals in SD, ID, and LD, respectively] included at least 95% of valid SS stations. For

each scaling interval, only valid SS stations were considered in the rest of the analysis.

These findings were also confirmed by cross-validation experiments. The proportion of valid SS stations resulting from cross-

validation Slope and GOF tests were similar, event if slightly lower, to proportions displayed in Fig. 2 [see Fig. S4 of the

supplementary material].15

Figure 3 presents, for each scaling interval and duration, the station average, εxd
, of the normalized RMSE. These graphics show

that mean relative errors on intensity quantiles did not generally exceed 5% of the precipitation estimates for 6-duration scaling

intervals [Fig. 3, first col.]. Greater errors were observed for durations at the border of the scaling intervals. Not surprisingly,

this result underlines that, in a cross-validation setting, both the MSA estimation of H and the Xd,ss approximation are

less sensitive to the exclusion of an inner duration of the scaling interval than to the exclusion of d1 or dD. Conversely, the20

extrapolation under SS of the Xd distribution is generally less accurate for durations at the boundaries or outside the scaling

interval used to estimate H . Moreover, as for the valid SS station proportion, the performances of the model deteriorated

with decreasing d1 and with increasing scaling interval length, especially for durations at the border of the scaling intervals.

However, for more that 70% of 12-, 18-, and 24-duration scaling intervals, εxd
≤ 0.1 for each duration included in the scaling

interval. εxd
≥ 0.25 were observed for 15 min in 12-duration or longer scaling intervals, pointing out the weaknesses of the25

model in approximating short duration extremes when the scaling interval included durations ≥ 3 h.

4.2 Estimated scaling exponents and their variability

In order to evaluate the sensitivity of SS to the considered scaling interval, the variability ofH with d1 has been analyzed. Then,

the spatial distribution of the scaling exponents for each scaling interval was studied to assess the uncertainty in H estimation

and the dependence of SS exponents on local geoclimatic characteristics.30

Investigating the variability of the scaling exponent with the scaling interval is particularly important since, if SS is assumed

to be valid between some range of durations, one should expect that H remains almost unchanged over the various scaling

intervals included in this range. For this reason, the variation ∆H(j)
of the scaling exponents computed for overlapping scaling
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intervals having the same d1 but different lengths was analyzed. For each station and d1, ∆H(j)
was defined as:

∆H(j)
=H(j)−H(6) (12)

where j = 12,18, or 24 represents the number of durations considered in the specified scaling interval, H(j) is the correspond-

ing scaling exponent, and H(6) is the scaling exponent estimated for the 6-duration scaling interval having the same d1. If SS

is appropriate over a range of durations, ∆H(j)
is expected to be small for scaling intervals defined within this range.5

Figures 4(ii)-(iv) show for all relevant scaling intervals, the median, Interquantile Range (IQR), and quantiles of order 0.1 and

0.9 of the ∆H(j)
distribution over valid SS stations. Adding new durations to the scaling intervals the median ∆H(j)

, as well as

its IQR, increased for all d1. Nonetheless the median scaling exponent variation was generally smaller than 0.05, except for a

relatively small proportion of stations. Equally important, |∆H(j)
| was generally centered on 0 and for all d1 ≥ 1 h more than

50% of stations had |∆H(12)
| ≤ 0.025 (SD dataset) and |∆H(18)

| ≤ 0.03 (ID dataset) [Fig. 4 (ii)-(iii)].10

For some stations, a dramatic difference could exist in IDF estimations obtained with the different definitions of the scaling

interval. For instance, for the 24-duration scaling interval "1h - 24h" (ID dataset), the median ∆H(24)
was equal to 0.047 [Fig.

4(iv) b)]. For the interval "15min - 6h" (SD dataset), ∆H(24)
was even larger, with a median scaling exponent variation approx-

imately equal to 0.087 and with 25% of stations having ∆H(24)
≥ 0.11 [Fig. 4(iv) a)]. Finally, changes in H values were also

important when comparing 6- and 12-duration scaling intervals when d1 ≤ 1 h (SD and ID datasets) and in LD dataset [Fig. 415

(ii)].

The median, Interquantile Range (IQR), and quantiles of order 0.1 and 0.9 of the H distribution across stations, are presented

in Fig. 4(i) for each 6-duration scaling interval. The smallest median H values were observed for d1 ≤ 30 min in Fig. 4 (a-i),

and for the longest d1s in Fig. 4 (c-i). Scaling intervals beginning at 15 and 30 min also displayed the smallest variability across

stations. Although fewer stations were available for these intervals (only 15PD stations were used and the number of valid SS20

stations was smaller), this result is consistent with previous reports in the literature demonstrating that H values are spatially

more homogeneous for short durations.

A larger dispersion of H values was observed when d1 ranged between approximately 1 h and 5 h, in particular in the SD

dataset, for which the 10th-90th percentile difference almost covered the entire range of observed H values [Fig. 4 (i)]. This

result could be partially explained by the use of scaling intervals having equally spaced durations. This implies that the mean25

distance between the logarithms of durations in the scaling interval decreases as d1 increases. Hence, the OLS estimator of H

used in the MSA regression may have larger variance for longer d1, especially when scaling intervals include few durations.

Larger uncertainty may thus have an impact on theH estimation for the longest d1 scaling intervals of SD. However, as showed

in next sections, H spatial distribution may also explain the greater variability of the scaling exponent for d1 greater than a few

hours.30

Largest median H were observed for d1 greater than 10 hours [Fig. 4 (b-i)] and lower than 2 days [Fig. 4 (c-i)], with approxi-

mately half of the stations havingH ≥ 0.8. This means that a stronger scaling (i.e., largerH values) is needed to relate extreme

precipitation distributions at approximately 12-hours to distributions at daily and longer scales. It may therefore be expected

that the stations characterized byH closer to 1 are located in geographical areas where differences in precipitation distributions
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are important among temporal scales included in these scaling intervals.

Examples of the spatial distributions of the scaling exponent are given in Fig. 5 and 6 for the first and last d1 for each interval

length and dataset, respectively. Since only one 24-duration scaling interval was defined for both the SD and ID datasets, only

scaling intervals containing 6, 12, and 24 (Fig. 5) or 18 (Fig. 6) durations are presented. This avoids the redundancy of showing

twice the "15min - 6h" (SD dataset) and "1h - 24h" (ID dataset) scaling intervals.5

Generally, the scaling exponent displayed a strong spatial coherence and varied smoothly in space, although a more scattered

distribution of H characterizes maps in Fig. 6. In this last figure, the local variability of H may be attributed to the larger

estimation uncertainties affecting longer d1 scaling intervals, as previously mentioned. Meaningful spatial variability and clear

spatial patterns emerged for d1 ≥ 1 h. In fact, for stations located in the interior and southern areas of the continent, a shift

from weaker scaling regimes (smaller H) to higher H values was observed as d1 increases [e.g., second and third rows of Fig.10

5]. On the contrary, a smoother evolution of H over the scaling intervals characterized the northern coastal areas, especially in

north-western regions, and the Rockies, where H > 0.75 values were rarely observed even for greater d1 values.

5 Regional analysis

Regional differences in scaling exponents were investigated. Only the results for the 6-duration scaling intervals are presented,

similar results having been obtained for longer scaling intervals [see the supplementary material, Fig. S6 and S7 for 12- and15

18-duration scaling intervals]. Stations were pooled into six climatic regions based on the classification suggested by Bukovsky

(2012) [see Fig. 7]. Stations outside the domain covered by the Bukovsky regions were attributed to the nearest region. Regions

with less than 10 stations were not considered (regions without colored borders in Fig. 7); regions A1 (W_Tun) and A2

(NW_Pac) were kept separated since only 14 stations were available in region A1 (W_Tun) for ID and LD datasets.

To provide deeper insights about regional features of precipitation associated with specific scaling regimes two variables related20

to the precipitation events observed within AMS were also analyzed: the mean number of events per year, N̄eve, and the mean

wet time per event, T̄wet, contributing to AMS within each scaling interval. For a given year and station, annual maxima

associated to different durations of a given scaling interval were considered to belong to the same precipitation event if the

time intervals over which they occurred overlapped. The mean wet time per event contributing to AMS, T̄wet, was defined as

the mean number of hours with non-zero precipitation within each event. Details on the calculation of N̄eve, T̄wet, and the25

corresponding results are presented in the supplementary material [Sect. S2 and Fig. S5 and S6].

5.1 Regional variation of the scaling exponents.

Figure 8 shows the distribution of H within each region. Three types of curves can be identified. First, curves in Fig. 8 (a) to

(c) have a characteristic smooth S shape. Conversely, Fig. 8 (d) displays a rapid increase of H for scaling intervals defined in

ID and LD datasets until d1 = 2 days, preceded and followed by two plateaus: one plateau for the longest d1 with remarkably30

high H values, and one for the shortest d1 with small H values. Finally, an inverse-U-shaped curve can be seen in Fig. 8 (e)

and (f), with globally high H values already reached at sub-daily durations in dry regions (E).
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For d1 ≤ 24 h, Fig. 8 (a) displays lower values ofH than Fig. 8 (e)-(f), meaning that smaller variation in AMS moments are ob-

served in A1 and A2 when the scale is changed. This difference can be partially explained by the weaker impact of convection

processes in generating very short duration extremes in rNorth-West coastal regions with respect to southern areas (regions E

and F). For northern regions, in fact, the transition between short and long duration precipitation regimes may be smoothed out

by cold temperatures which moderate short-duration convective activity, especially for W_Tun (region A1). The topography5

characterizing the northern pacific coast may then explain the smoothing effect for the curve of region NW_Pac (A2). In this

case, in fact, the precipitation rates at daily and longer scales are enhanced by the orographic effect acting on synoptic weather

systems coming from the Pacific Ocean (Wallis et al., 2007).

Similarly, mountainous regions in C [Fig. 8 (c)] displayed the smallest variations of H over d1, indicating that analogous scal-

ing regimes characterize both short- and long-duration scaling intervals. Again, this may be related to the important orographic10

effects of precipitation in these regions that are involved in the generation of extremes for both sub-daily and multi-daily time

scales. The mean number of events per year in regions A and C was higher than in regions E-F, in particular for SD scaling

intervals, and displayed steeper decreases with increasing d1 [Fig. S5 (a) and (c) in the supplementary material].

Main differences between regions B and A were the stronger scaling regimes observed in B, which were mainly due to con-

tributions from stations located in the south-eastern part of the E_Bor region (not shown). For scaling intervals in the ID15

dataset, region B was also characterized by the highest mean number of events per year, with most of the stations presenting

N̄eve > 2 for d1 = 1 h and d1 = 2 h and sharp decreases of N̄eve with increasing d1 [Fig. S5 (b) in the supplementary material].

Moreover, a remarkably large range of N̄eve was observed for 1 h ≤ d1 ≤ 6 h, suggesting that B may be highly heterogeneous.

Two distinct scaling regimes can be observed for SW_Pac (region D) at, respectively, d1 ≤ 3 h (SD dataset) and d1 ≥ 2 days

(ID dataset) [region D in Fig. 8 (d)]. These plateaus may be interpreted by recalling that 1−H =Hdepth. On the one hand, the20

low and constant H observed for d1 ≤ 3 h indicates that the average precipitation depth increases with duration at the same

growth rate for all these intervals. On the other hand, H approximately equal to 0.9 at daily and longer durations demonstrates

that the average precipitation depth associated with long-duration annual maxima remained roughly unchanged when the dura-

tion increased from 1.5 to 7 days (λHdepth ≈ 1 in Eq. (3)). This, along with the fact that the scaling exponent increased almost

monotonically for 1 h ≤ d1 ≤ 24 h (ID and LD datasets), suggests that extremes at durations shorter than ∼ 3 h (SD dataset)25

drive annual maxima precipitation rates at longer scales, with the rapid and continuous decay in mean intensity caused by the

increasing size of the temporal scale of observation.

For SW_Pac (region D), the relative absence of long-lasting weather systems able to produce important extremes for long

durations, was confirmed by the analysis of N̄eve and T̄wet [see Fig. S5 and S6 of the supplementary material]. In fact, the

mean number of events per year was relatively high for short durations (the median N̄eve is equal to 1.82 for d1 = 15 min30

and to 1.4 for d1 = 1h), while it rapidly decreased below 1.1 events per year for d1 ≥ 6 h (ID dataset) and for d1 ≥ 18 h (LD

dataset). With the exception of d1 = 6 h (LD dataset), at least 90% of SW_Pac stations had N̄eve ≤ 1.25 for all d1 > 3 h. In

other regions, median N̄eve were never smaller than 1.1 for the SD and ID datasets, except for d1 ≥ 12h in region E.

These results suggests that both the distinctive topography of the west coast and the characteristic large-scale circulation of the

south-west areas of the continent are crucial factors determining the transition between the two scaling regimes in region D.35
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Median H values displayed inverse-U shapes for the remaining regions with very small IQR, despite the high number of valid

SS stations: a slow transition from lower to higher H is observed approximately between 1 h and 12 h (region E) or 30 h

(region F). The strongest scaling regimes were observed for 1 h ≤ d1 ≤ 2 days in arid western regions [Fig. 8 (e)], while

median H values greater than 0.8 were only observed for approximately 6 h ≤ d1 ≤ 2 days in more humid areas [8 (f)]. In

both region E and F, very short-duration extremes are typically driven by convective processes, while a transition to different5

precipitation regimes may be expected between 1 h and a few hours. However, H shows a smoother increase in Fig. 7 (f) with

respect to Fig. 7(e). This may indicate that in eastern areas [region F] sub-daily duration extremes are more likely associated

to embedded convective and stratiform systems, or to mesoscale convective systems, which are less active in western dry areas

of region E (Kunkel et al., 2012). On the contrary, differences between short- and long-duration extreme precipitation intensity

seem stronger for south-western dry regions [Fig. 8 (e)], where less intense summer extremes are expected compared to eastern10

areas [see supplementary material, Fig. S1]. In particular, H tended to scatter in a range of higher values for approximately 1

h ≤ d1 ≤ 12 h indicating that precipitation intensity moments strongly decrease as the duration increases.

In summary, these results suggest a regional effect on precipitation scaling of both local geographical characteristics, such as

topography or coastal effects, and general circulation patterns. In general, the weakest scaling regimes were observed for short

d1 and along the west coast of the continent and seem to be connected to scaling intervals and climatic areas characterized15

by homogeneous weather processes. Low H values correspond in fact to small variations in AMS distribution moments. On

the contrary, stronger scaling regimes were observed for longer d1 in the other regions of the study area. This indicates that

important changes occur in AMS moments across duration and, thus, in extreme precipitation features. According to these

results, it would be important to take into account the climatological information included in the scaling exponent to improve

SS and IDF estimation. Even more important, these results give useful guidelines for modeling the spatial distribution of H ,20

which could help for the definition of IDF relationships at non-sampled locations.

6 Simple Scaling GEV etimation

Results presented in this section are limited to a descriptive analysis of GEV parameter estimates for 6-duration scaling in-

tervals. Similar results were generally obtained for 12-, 18-, and 24-duration intervals [see supplementary material, Fig. S10

to S16]. An assessment of the potential improvements carried out by Simple Scaling GEV (SS GEV) models with respect to25

non-SS GEV models is also presented.

In our study, the Probability Weighted Moment (PWM) procedure was applied to estimate SS-GEV parameters µ∗, σ∗, and ξ∗

[Eq. (7)] from xd∗ [Eq. (9)]. For each duration d, PWM were also used to estimate non-SS parameters µd, σd, and ξd from

each of the non-SS samples xd. Preliminary comparisons of various estimation methods [PWM, classical ML estimators, and

GAM-ML; see Sect. 2.2], showed that PWM slightly outperformed the other methods.30

Quantiles estimated from the SS and the non-SS GEV were compared with empirical quantiles. Global performance measures,

such as RMSE, were computed to evaluate the overall fit of the estimated GEV to the empirical Xd distributions. In particular,

mean errors between SS and non-SS quantile estimates and empirical quantiles were compared using the relative total RMSE

14



ratio, Rrmse, defined as:

Rrmse =
[Rss−Rnon−ss]

Rnon−ss
(13)

where

Rmod =

D∑
d=d1

εd,mod
x̄d

(14)

represents the normalized mean square difference between model and empirical quantiles of order p > 0.5 for all the durations5

included in the scaling interval. See Eq. 10 for the definition of εd,mod for each station.

6.1 Estimated SS GEV parameters

Figure 9 presents the distributions over valid SS stations of the SS GEV parameters rescaled at d∗ = 1 h [Fig. 9 (a) and (b)]

and d∗ = 24 h [Fig. 9 (c)].

For the SD dataset, even for scaling intervals which did not include the reference duration d∗, the µ∗ and σ∗ distributions10

appeared to be similar to the non-SS µd and σd distributions [Figure 9, first row]. Similarly, for 6 h ≤ d1 ≤ 2 days in the

LD dataset, the SS location and scale parameter distributions are in relatively close agreement with the corresponding non-SS

parameter distributions. Conversely, for the ID dataset, both µ∗ and σ∗ distributions are more positively skewed than the cor-

responding non-SS distributions. Finally, for d1 ≥ 2 days in the LD dataset, µ∗ and σ∗ had distributions shifted toward lower

values than µ24h and σ24h. Moreover, the relative differences ∆µ = (µ∗−µd)/µd and ∆σ = (σ∗−σd)/σd were estimated for15

each station, duration, and scaling interval. Two important results came out of this analysis [see Figures S11 and S12 of the

supplementary material]. On the one hand, median values of ∆µ and ∆σ were generally smaller than±5% and±10%, respec-

tively. On the other hand, ∆σ showed large positive values when ξd = 0 (i.e. Gumbel distributions), while small ∆σ < 0 were

estimated when ξd 6= 0 [not shown for conciseness]. These results are interesting since the estimation of the scale parameter

σ of a GEV distribution may be biased when the shape parameter is spuriously set to zero (ξ = 0). Hence, while non-SS µd20

values can be considered to be accurate estimates of the Xd location parameter, small uncertainties should be expected for

the scale parameter only when the ξd value is correctly assessed. In addition, µ∗ and σ∗ displayed a strong spatial coherence.

Their spatial distributions were characterized by an obvious North-West to South-East gradient [Fig. 10 shows examples for

the scaling intervals 15min - 1.5h, 1h - 6h, and 6h - 36h].

Notable differences between SS GEV and non-SS GEV estimates were observed for the shape parameter [Fig. 9, third col., and25

Fig. 11]. Firstly, for cases having shape parameters strictly different from zero [third column of Fig. 9], ξ∗ absolute values were

smaller than non-SS ξd absolute values. Secondly, the distributions of ξ∗ across stations were generally more peaked around

their median value than the corresponding non-SS distributions. Finally, for the non SS model the majority of stations had

shape parameter ξd non-significantly different from zero, while the fraction of SS GEV shape parameters ξ∗ 6= 0 was always

greater than 39% (Hosking et al., 1985, asymptotic test for PWM GEV estimators applied at level 0.05;). In particular, for each30

duration, non-SS models estimated light-tailed distributions (i.e., ξd = 0) for more than 85% of the stations, except that for d=
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15 min and d= 30 min [Fig. 11, first col.]. Conversely, for all scaling intervals with d1 > 15 min, SS GEV shape parameters

were significantly different from zero for 40% to 45% of valid SS stations [Fig. 11, second col.]. Moreover, when using scaling

intervals of 12 durations or more, the proportion of ξ∗ > 0 was always important [greater than 35% for all 18- and 24-duration

scaling intervals; see the supplementary material, Fig. S10].

The previous results suggest that pooling data from several durations may effectively reduce the sampling effects impacting5

the estimation of ξ, allowing more evidence of non-zero shape parameters, and, in many cases, of heavy tailed (ξ > 0) AMS

distributions. This conclusion is consistent with previous reports, namely that 100- to 150-year series are necessary to unam-

biguously assess the heavy-tailed character of precipitation distributions (e.g., Koutsoyiannis, 2004b; Ceresetti et al., 2010).

These studies typically reported values of ξ ≈ 0.15 (e.g., Koutsoyiannis, 2004b), which are close to ξ∗ values estimated in the

present analysis for cases with ξ∗ > 0.10

However, uncertainties on ξ∗ estimates remain important. Support for this comes from the spatial distribution of ξ∗, which was

still highly heterogeneous, with local variability dominating at small scales [e.g., Fig. 10, third col.].

6.2 Improvement with respect to Non-SS models

The proportion of series for which the SS model RMSE, εd,ss, was smaller than the non-SS GEV RMSE, εd,non−ss, was

analyzed [see the supplementary material, Fig. S11]. For cases with non-zero ξ∗, more than 60% of stations had εd,ss <15

εd,non−ss over most scaling intervals and durations. The 6-duration scaling intervals "15 min - 1 h 30 min" (SD dataset) and

"1 h - 6 sih" (ID dataset) showed the largest fractions of stations with increasing errors. On the contrary, increasing errors

(εd,ss > εd,non−ss) were observed for all scaling intervals and durations for most stations (generally more than 70%) having

ξ∗ = 0.

Figure 12 presents theRrmse distribution over valid SS stations. When the SS shape parameters were not significantly different20

from zero [Fig. 12, second col.], the relative increases in total RMSE were usually smaller than 0.1 in SD dataset and only

scaling intervals with d1 < 1 h had greater Rrmse. For the ID and LD datasets, the medians of the total relative RMSE ratio

distributions were smaller than 0.05 for d1 ≥ 4 h and d1 ≥ 24 h, respectively. Furthermore, more than 90% of stations had

Rrmse < 0.125 for d1 ≥ 6 h (ID dataset) and d1 ≥ 30 h (LD dataset). When ξ∗ 6= 0, an increase of the mean error in high order

quantile estimates was observed for d1 = 15 min (SD dataset) and d1 = 1 h (ID dataset) for at least half of the stations [Fig. 12,25

first col.; note the different scale on the y-axis]. However, for all other d1, negativeRrmse values were observed for the majority

of stations for all scaling intervals, with a median reduction up to 30% of the mean error. Note that also for 12- and 18-duration

scaling intervals the median Rrmse where generally negative for d1 > 1 h and ξ∗ 6= 0 [Fig. S14 and S15 of the supplementary

material]. Conversely, Rrmse increased for the majority of stations in all 24-duration scaling intervals having d1 < 12 h [Fig.

S17 of the supplementary material]. Note also that no particular spatial pattern characterized the Rrmse estimates.30
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7 Discussion and conclusion

This study investigated simple scaling properties of extreme precipitation intensity across Canada and the United States. The

ability of SS models to reproduce extreme precipitation intensity distributions over a wide range of sub-daily to weekly dura-

tions was evaluated. The final objective was to identify duration intervals and geographical areas for which the SS model can

be used for an efficient production of IDF curves.5

The validity of SS models was empirically confirmed for the majority of the scaling intervals. In particular, based on the com-

parison of SS distributions to empirical quantiles, the hypothesis of a scale-invariant shape of the Xd distribution held for all

duration intervals spanning from 1 h to 7 days. Less convincing results were obtained for durations shorter than 1 h, especially

for the longest scaling intervals (24-duration intervals). One possible explanation is that the coarse instrument resolution of the

available 15 min series may strongly impact both the validation tools (for instance, GOF tests) and SS estimates. These results10

provide important operative indications concerning the inner and outer cut-off durations for AMS scaling and show the impor-

tance of a deeper analysis to evaluate the impact of dataset characteristics (e.g., their temporal and measurement resolutions,

or the series length) on the scale invariant properties of extreme precipitation.

The majority of the estimated scaling exponents ranged between 0.35 and 0.95, showing a smooth evolution over the scaling

intervals and a well-defined spatial structure. Six geographical regions, initially defined according to a climatological classifi-15

cation of North America into 20 regions, displayed different features in terms of scaling exponent values. Specifically, distinct

median values of H were observed for the various geographical regions, each characterized by a different precipitation regime.

This is consistent with results reported in the literature for some specific regions and smaller observational datasets (e.g., Borga

et al., 2005; Nhat et al., 2007; Ceresetti et al., 2010; Panthou et al., 2014, and references therein). Moreover, while small

and smooth changes of H over the scaling intervals were observed in regions containing the majority of stations, one region,20

SW_Pac, displayed two dramatically distinct scaling regimes separated by a steep transition occurring between a few hours

and 24 h. These results limit the applicability of SS models in SW_Pac, and were connected to the local features of intense

precipitation events by the analysis of the mean number of events per year and the mean wet time of these events.

Weak scaling regimes, characterized by relatively small H values (H close to 0.5), were generally observed for scaling inter-

vals containing very short durations (e.g, less than 2 h) and for regions on the west coast of the continent [regions A1, A2,25

and D; see Fig. 8]. For these scaling intervals and regions, we can expect that extreme precipitation events observed at various

durations will have similar statistical characteristics, being governed by homogeneous weather processes.

The interpretation of high H values (e.g., H > 0.8), observed between 1 and several days, depending on the region, is more

complex. These scaling regimes correspond to mean precipitation depth that varies little with duration. This suggests an im-

portant change in precipitation regimes occurring at some durations included in the scaling interval. One interesting example30

was region SW_Pac (region D) for scaling intervals of durations longer than 1 day . In this case, the analysis of the mean

number of events per year sampled in AMS suggested that very few long-duration extreme events were produced by large-scale

dynamic precipitation systems.

For scaling intervals of durations longer than 4 days, scaling exponents seemed to converge to approximately 0.7 for all regions,
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except west coast regions (regions A1, A2, and D).

These results suggest that SS represents a reasonable working hypothesis for the development of more accurate IDF curves.

This may have important implications for infrastructure design and risk assessment for natural ecosystems, which would ben-

efit from a more accurate estimation of precipitation return levels. Besides, the spatial distribution of the scaling exponent and

its dependency on climatology should be taken into account when defining SS duration intervals for practical estimation of5

IDF. The accuracy of the SS approximation may in fact depend on the range of considered temporal scales. Equally critical,

estimated H values were found to gradually evolve with the considered scaling intervals. In this respect, interesting extensions

of the analysis should consider methods for the quantification of the uncertainty in H estimations as well as the possibility

of modeling the scaling exponent as a function of both the observational duration and the AMS distribution quantile/moment

order, i.e. by the use of a multiscaling (MS) framework for IDFs. Equally important, the events sampled by the AMS also10

showed different statistical features within different geographical regions and some specific results [e.g., for the SW_Pac

region] stimulate the interest for an analysis of the scaling property of extreme precipitation by the use of a temporal stochastic

scaling approach.

The evaluation of SS model performances under the assumption of GEV distributions for AMS intensity was then performed.

Results indicate that the proposed SS GEV models may lead to a more reliable statistical inference of extreme precipitation15

intensity than that based on the conventional non-SS approach. In particular, a better assessment of the GEV shape parameter

seems possible when pooling data from several durations under the scaling hypothesis. The use of the SS approximation may

introduce biases in high quantile estimates when AMS distributions move drastically away from perfect scale invariance (short

durations and/or longest scaling intervals). Nonetheless, decreases in the SS GEVRMSE with respect to non-SS GEV models

for d1 longer than a few hours and/or scaling intervals shorter than 24 durations indicate that quantile errors in IDF estimates20

can be generally reduced.

Caution is advised when interpreting these results due to the fact that high order empirical quantiles were used as reference

estimates of true Xd quantiles, which could be a misleading assumption especially when available AMS are short. Moreover,

two important limitations of the presented SS approach must be stressed. Firstly, a more comprehensive assessment of the

scaling exponent uncertainty and of the influence of dataset characteristics on the estimation of AMS simple scaling is recom-25

mended for a reliable estimation of Simple Scaling IDF curves. Secondly, the proposed model relies on the implicit hypothesis

of stationarity of AMS over the observed period while growing evidence supports the ongoing changes in extreme precipi-

tation intensity, frequency, duration, and spatial patterns as a result of climate change (e.g., Hartmann et al., 2013; Westra

et al., 2014; Donat et al., 2016). In particular, short duration extreme rainfall is expected to respond to global warming with a

different sensitivity to temperature than those expected at daily or longer time scales (e.g., Westra et al., 2014; Lenderink and30

Attema, 2015; Wasko and Sharma, 2017; Barbero et al., 2017) which implies a change in the temporal scaling properties of

precipitation over time.

Hence, considering these limitations and our general results, any future extension of this study should investigate the possi-

bility of introducing spatial information in scaling models as well as the characterization of possible evolution of the scaling

exponent in a warmer climate in order to identifying valuable approaches allowing non-stationarity of SS model parameters.35
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Moreover, a more comprehensive assessment of the scaling exponent uncertain and of the influence of dataset characteristics

on the estimation of AMS simple scaling is recommended. Considering these limitations and our general results, any future

extension of this study should investigate the possibility of introducing spatial information in scaling models as well as

improvements of scaling GEV estimation procedures.

8 Data availability5

The 15-Min Precipitation Data (15PD) and Hourly Precipitation Data (HPD) were freely obtained from NOAA/Climate

Prediction Center (CPC) [http://www.ncdc.noaa.gov/data-access/land-based-station-data]. Houly Canadian Precipitation Data

(HCPD) and Maximum Daily Precipitation Data (DMPC) for Canada were acquired from Environment and Climate Change

Canada (ECCC) and from the MDDELCC of Québec [data available upon request by contacting Info-Climat@mddelcc.gouv.qc.ca].
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Table 1. List of available datasets and their main characteristics.

Dataset Region
N. of Operational Temporal Prevalentc

stations periodb resolution resolution [mm]

Daily Maxima Prec. Dataa (DMPC) Canada 370 1964-2007 1, 2, 6, 12 h 0.1 (82.25%)

Hourly Canadian Prec. Data (HCPD) Canada 665 1967-2003 1 h 0.1 (70%)

Hourly Prec. Data (HPD) USA 2531 1948-2013 1 h 0.254 (82.5%)

15-Min Prec. Data (15PD) USA 2029 1971-2013 15 min 2.54 (80.42%)

a Daily maxima depth series over a 24-hour window beginning at 8:00 AM.
b Main station network operational period corresponding to 25th percentile of the first recording year and the 75th percentile of the last

recording year of the stations.
c Prevalent instrument resolution, estimated by the lowest non-zero value for each series, and corresponding percentage of stations with this

resolution.
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Table 2. Final datasets used in scaling analysis and corresponding AMS characteristics.

Scaling
Durations

N. of Mean series Max series

dataset Stations length [yr] length [yr]

SDa 15min, 30min, ..., 6h 1083 20 36

ID 1h, 2h, ...,24h 2719 37.4 66

LD 6h, 12h, ..., 168h 2719 37.4 66

a Only 15PD series.
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Figure 1. Methodology steps: a) Definition of the SD, ID, and LD scaling datasets. b) Identification of durations and scaling intervals within

each matrix of Fig. 2 and 3; c) Moment Scaling Analysis (MSA) regression for the estimation of the slope coefficients Kq; d) Slope test:

regression of Kq on the moment order q and Student’s t-test for the null hypothesis H0: ĥ1 =K1; e) Examples of valid and non-valid SS

stations according to the Slope and GOF tests; f) Example of valid SS station proportion values and Normalized RMSE values, rxd , as

represented, in Fig. 2 and 3.

Figure 2. Proportion of stations satisfying both the Slope and GOF tests applied at the 0.95 confidence level, for each duration (vertical axis)

and scaling interval (horizontal axis) for the SD, ID, and LD datasets [row a), b), and c) respectively]. White circles indicate proportions

between 0.25 and 0.90. See Fig. 1 (b) and (f) for the identification of durations and scaling intervals within each matrix.

Figure 3. Cross-Validation Normalized RMSE averaged over all valid SS stations (rxd ) for each duration (vertical axis) and scaling interval

(horizontal axis) in the SD, ID, and LD datasets [row a), b), and c) respectively]. White circles indicate values between 0.15 and 0.3. See Fig.

1 (b) and (f) for the identification of durations and scaling intervals within each matrix.

Figure 4. Col. (i): Median and relevant quantiles of the scaling exponent distribution over all valid SS stations for each 6-duration scaling

interval. Col. (ii)-(iv): Median and relevant quantiles of the distribution of the scaling exponent deviation ∆H(j)
[defined in Eq. (12)]. The

average number of valid SS stations over the scaling intervals (identified by their first duration, d1 ) is indicated at the top of each graph.

Figure 5. Spatial distribution of the scaling exponent for the first (i.e. with minimum d1) 6-, 12-, and 24-duration scaling intervals (first,

second, and third col., respectively) for SD, ID, and LD datasets (first, second, and third row, respectively). These scaling intervals correspond

to the first column of matrices in Fig. 2 and 3.

Figure 6. Spatial distribution of the scaling exponent for the last (i.e. with maximum d1) 6-, 12-, and 18-duration scaling intervals (first,

second, and third col., respectively) for SD, ID, and LD datasets (first, second, and third row, respectively). These scaling intervals correspond

to the last column of matrices in Fig. 2 and 3.

Figure 7. Climatic regions of Bukovsky (2012) [grey borders] and regions defined for this analysis [regions A1 to F in the legend; colored

borders]. Abbreviations for each region are in parenthesis.

Figure 8. Median and Interquantile Range (IQR) of the scaling exponent distribution over valid SS stations within each region of Fig. 7 for

6-duration scaling intervals for the SD (left curve), ID (central curve), and LD (right curve) datasets. For each region, the mean number of

valid SS stations over the scaling intervals is indicated in brackets in the legend. See Fig. 7 for region definition.
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Figure 9. Distribution over valid SS stations of SS GEV parameters (gray and black lines) for 6-duration scaling intervals and non-SS GEV

parameters (red solid and dashed lines) for reference durations. Location and scale parameters (first and second col., respectively) are scaled

at d∗ = 1h (SD and ID datasets) and d∗ = 24h (LD dataset). Distributions for the shape parameter (third col.) are presented for ξ > 0 and

ξ < 0, excluding cases where ξ = 0 (Gumbel distribution).

Figure 10. Spatial distribution over valid SS stations of SS GEV position (first col.), scale (second col.), and shape (3rd col.; gray symbols

indicate Gumbel distributions, ξ∗ = 0) parameters scaled at d∗ = 1h for the first 6-duration scaling interval (i.e. interval with minimum d1)

of: SD (a), ID (b), and LD (c) datasets.

Figure 11. Stacked histograms of the fractions of valid SS stations with ξ < 0 (in red), ξ = 0 (in grey), and ξ > 0 (in blue) resulting from the

Hosking test applied at the 0.95 confidence level for each duration (non-SS GEV, first col.) and each 6-duration scaling interval (SS GEV,

second col.) for: SD (a), ID (b), and LD (c) datasets.

Figure 12. Distribution of the relative total RMSE ratio, Rrmse, for ξ∗ < 0 (first col.), ξ∗ = 0 (second col.), and ξ∗ > 0 (third col.) for 6-

duration scaling intervals in SD (a), ID (b), and LD (c) datasets. The average number of valid SS station over the scaling intervals is indicated

in the right-top corner of each graph.
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