
Dear Editor,

Please find enclosed the second revision of the manuscript "Simple Scaling of Extreme Precipitation in North America"
by Innocenti et al. to be considered for publication in HESS.

According to comments from the first and third reviewers, we modified several paragraphs resulting in a clearer and more
comprehensive description of methodology and results, in particular for Sect 4 to 6. Methodological choices for the regional5
analysis (Section 4.2) are discussed and reviewed in our reply to the first reviewer. In particular, we explained and motivated
in details our methodology for the definition of geographical regions in North America in our reply to comment 15 a). Some
additional analysis has been also presented in the reply to this specific comment. Finally, important considerations and further
explanations concerning the results presented for Sect. 6 (SS GEV models) have been added.

We provide below a detailed response to each comment and a copy of the revised manuscript in "track changes" mode. The10
following specific colors are used to link corrections and reviewers’ comments:

– blueR1 is used to underline changes related to first referee comments,

– redR2 is used for changes related to the second referee comments,

– purpleR3 is used for changes related to the third referee comments,

– and gray is used for all other changes.15

Line and page numbering (in bold) refers to the revised manuscript in "track changes" mode attached to this reply.

Sincerely,

Silvia Innocenti, on behalf of the co-authors.

1



Authors’ response to 1st referee’s comments

This article is too long, very difficult to read, and has almost convinced me that Simple Scaling does work: e.g. Figure 3i
and Figure 7, the scaling coefficient H is all over the places, whereas one would expected it to be constant over different dura-
tions, being a scale-invariant parameter. An other example is my last comment (just citing your text). Also, it is not clear to me5
why the authors chose the Bukovsky regions for their regional analysis, when they have a clerar clustering in their Figures 4
and 5 (and S1) which suggests a different regionalization. Moreover, the physical interpretation in Section 5 is not clear (how
do you link the behaviour of H across different durations with the topography, as an example). Often the exposition does not
follow a logical order. I doubt several results in Section 6. My overall comment is that the authors dwelve too much into the
details, but they fail to convey the main message (at least to me ... ). I regret to say that my recommendation is a rejection: I10
leave however the decision to the Editor, since I am not sure I have fully understood the study.

My numerous comments:

1. Equation 2 (and through out the article): I suggest changing the notation by replacing above the equality sign (=) the15
letter “d” with “pdf”. This avoid confusion with “d” denoting the duration.

Thank you for the suggestion but the relationship in Eq. 2 is more general and does not only concern the pdf. To avoid
confusion, we replaced d

= by dist
= in Eq. 2, at Line 25, Page 3, and at Line 23, Page 5.

2. Page 5, the sentence at line 12-13-14 should be stated earlier, after line 9.20

The paragraph has been moved to Lines 6 to 10, Page 5.

3. Page 5, lines 24-25: The equalities at line 24 pertains a dilatation of the (values of the) GEV distributions by a factor
lambda, whereas Equation 2 pertains to a change of distribution due to a sampling on different durations, with a dilatation
factor = lambda. The implication stated at line 25 (the GEV family satisfies Equation 2) is not a direct consequence of25
the equality at line 24. Rephrase (you might have to add a specific reference, or show explicitely the implication).

We understand the reviewer perspective and we agree that we did not clearly explain these points in Section 2. In partic-
ular, we did not explicitly mention that SS models assume statistical scale-invariance with respect to the sampling scale
[as stated, for instance, at Lines 9 to 12, Page 2].
In order to explicitly mention this point in the text we rewrote Lines 20 to 22, Page 3 as:30

"When the equality in Eq. (1) holds for the cumulative distribution function (cdf) of the precipitation intensityX sampled
at two different durations d and λd, the Simple Scaling (SS) can be expressed as [Gupta and Waymire, 1990; Menabde
et al, 1999]:

Xd
dist
= λHXλd"35

We also agree that the paragraph describing the scale-invariant nature of the GEV distribution may be misleading since
equations at Line 23, Page 5 only imply the validity of Eq. (1) for the GEV cdf with respect to a constant multiplicative
factor λ. Then, Eq. (2) follows if we consider the GEV cdf scale invariance being valid when changing the observational
scale from d to λd. To be more precise, we thus rephrased Lines 24 to 27, Page 5 as:
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"This means that the GEV family described by Eq. (5) and (6) satisfies Eq. (1) and thus complies with statistical scale
invariance for any constant multiplicative transformation of X . When this scale invariance is further assumed for the
change of observational scale from duration d to λd [as in Eq. (2)], the wide sense SS definition [Eq. (3)] gives: ... [Eq.
(7)] ".

5

4. Equation 7: I would still prefer you replace d with lambda (since the protagonist here is the dilatation factor)! Here and
throughout the article, wherever consistency is required.

We appreciate the reviewer’s suggestion but, in our opinion, it is important, here, to highlight the fact that the AMS
distribution for any duration d can be always reparametrized in terms of the GEV distribution parameters of an unit scale
used as reference duration (d∗ = 1). This notation allows in fact to underline that GEV parameters µd, σd, and ξd can be10
thought almost as adimensional parameters for any arbitrary set of durations in the range of scale for which SS is valid.

In our application [Sect. 6], the use of d∗ = 1h and, thus, of λ= d [Line 3, Page 4 and Line 3, Page 4] allows to compare
the parameters of different scaling intervals without the specification of a particular λ for each interval, and to underline
the physical interpretation of the SS GEV parameters in the different scaling intervals.

15

5. Page 6, line 19: I appreciate your clarification wrt my previous comment. In light of that explanation, I suggest adding
at the end of this sentence “ .. from May to October in the south, and from June to September in the north. Specifically,
the ’year’ from which the annual maxima was sampled, was limited to the observed summer season, and was defined as
... ”.

To improve the text we modified Lines 23 to 28, Page 6 to:20

"For this reason, the year from which the annual maxima was sampled was limited to the recording season going from
June to September for northern stations [stations located north of the 52nd Parallel] and from June to September for the
southern stations. As a result, 122 days a year were used for northern stations and 184 days a year for remaining stations."

6. Page 7, line 4: write “ ... at least 85% of valid observations for each summer season, otherwise ... ”25

Thank you for the suggestion. Since the May to October or June to September periods don’t correspond to the summer
season, we changed the sentence for the following [Line 10, Page 7]:

"at least 85% of valid observations for each May to October (or June to September) period, otherwise the corresponding
year was considered as missing."

30

7. Page 6, line 23: substitute ’cheked’ with ’quality controlled’.

Done.

8. Page 7, line 13: typo: “finstance”.

Corrected, thank you.35
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9. Page 7, line 30: use the new notation 1h30 rather than 1.5h ...

Done: the paragraph has been modified after the addition of Fig. 1. [see our reply to your comment 12 a)].

10. Page 7, line 23-24: you need to better state what MSA does. Line 23 is fine, “for intensity AMS” is too concise: you
could write something like “for inferring annual maxima / extremes / GEV parameters for durations not sampled by5
using SS on sampled durations” or something similar.

The expression has been replaced by "for modeling AMS empirical distributions" [Line 30, Page 7].

For seek of precision, we did not add "for durations not sampled by using SS on sampled durations" since SS models
can be used for modeling sampled duration distributions, and not only for non-sampled ones. Accordingly, in fact, we
estimated SS and evaluated its performances in both "calibration" and "cross-validation" mode [see also reply to com-10
ment 12 e) - (Section 4)].

11. Page 7, line 27: write “scaling intervals” in italic, so that the reader understand this is a definition (valid from hereafter
throughout all the article).

Done.15

12. Section 4:

a) I do still believe that the article will gain in adding a figure showing i) the linear regression between log(duration)
and log(moments) and ii) the (previously obtained) regession coefficients Kq and q (as Figure 4a in Panthou et al,
2014). These figures were fundamental for me to understand page 8, lines 8 to 16 (i.e. what you do in the MSA20
regression and in the slope test).

Following your suggestion we added a new figure [Fig. 2 on Page 27] which explains the various steps of the
methodology used for non-parametric SS estimation [Section 4]. In particular, the new Fig. 1 contains six panels
representing the following steps:

Panel a): Definition of the SD, ID and LD scaling datasets.25

Panel b): Example of the definition of five scaling intervals for the ID dataset. This panel is intended to help interpreting
Fig.2 and 3.

Panel c): MSA regression: estimation of Kq slope coefficients.
Panel d): Slope test: testing linearity of coefficient Kq on q.
Panel e): Definition of Valid SS stations.30

Panel f): Example of Valid SS station proportion and Normalized RMSE (rxd
) as presented, respectively, in Fig. 2 and

3 [Fig. 1 and 2 in the previous version of the manuscript].

The following references were also added in the text:

– at Line 9, Page 7: "[see Figure 1(a)]";
– at Line 7, Page 8: "More schematically, Fig. 1(b) shows an example of the first five 6-duration scaling intervals35

for the ID dataset [i.e. 1h - 6h, 2h - 7h, . . . , 5h - 10h, containing six contiguous durations defined with an
increment of 1h]." ;
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– at Line 17, Page 8: "[see Fig. 1(c) for a graphic example]";
– at Line 20, Page 8: "[see Fig. 1 (d)]";
– in the captions of Fig. 2 and 3: "See Fig. 1 (b) and (f) for the identification of durations and scaling intervals

within each matrix.".

b) In the text regarding the MSA regression, you need to add a sentence which explains that the slope Kq that you are5
evaluating is equal to -Hq (it took me a while to figure this out), and that this is from Equation 4. Also, at line 8
write “for each q ... ”, so that it is clear that you have a Kq for each individual separate q.

Thank you for the suggestion but the equality Kq =H q is what we want to evaluate with slope test, while the
MSA regression should not assume this linear relationship: as explained at Lines 7 to 8, Page 4, SS models can be
considered valid only if Kq ≈Hq.10

As you suggested, we added "each" at Line 15, Page 8 which now reads: "for each q = 0.2,0.4, . . . ,2.8,3, the
slopes Kq of the log-log linear relationships between the empirical q−moments ...."

c) In the slope test text (page 8, lines 12-16) you need first to say that you aim to find the scaling coefficient H, which
is the slope of the line you obtain while regressing Kq versus q. Then you say that you use a OLS regression and15
estimate H, and you call such estimate β1 (I would call it Ĥ). Finally you can say that you perform a t-test on the
regression. I suggest stating that the null hypothesis was Ĥ =K1, and that if this null hypothesis is not rejected
then you set H = Ĥ =K1. I would avoid whiting the relation Kq = β0 +β1q (otherwise the reader will ask where
β0 is gone, for the equality of K1 = β1).

We apologize for this lack of clarity. To improve the description of this methodological step, which aim at testing20
the linearity of the Kq scaling exponents estimated at the previous step, we modified Lines 19 to 25, Page 8 to:

"To verify the SS assumption that the estimated Kq exponents vary linearly with the moment order q, i.e.Kq ≈Hq,
an OLS regression between the MSA slopes Kq and q was applied [see Fig. 1 (d)]. For the regression line
Kq = ĥ0 + ĥ1q, a Student’s t-test was then used to test the null hypothesis H0: ĥ1 =K1. If H0 was not rejected
at the significance level α= 0.05, the SS assumption was considered appropriate for the scaling interval and the25
simple scaling exponent H =K1 was retained."

d) The Goodness of Fit test (page 8 lines 19-26) can be explained more clearly, following the cronologiocal order of
the calculations you perform: first, you consider the AMS for each duration dj , AMS dj = {xdj ,1,xdj ,2, ...xdj ,n},
and you rescale it as djH· AMS dj , which can be considered as a sample of the reference duration (the choice of30
notation x′dj is confusing, since one would think it is a sample for the duration dj , whereas it is a sample for the
reference duration). You then pool together these rescales samples for all dj. Then you invert equation 2 and obtain,
from this large sample, a sample for each duration dj, under SS hypohesis.

Following your suggestion we changed notation for the description of the SS sample construction and we rephrased
Lines 28 to 13, Page 8 to:35

"To this end, each AMS, xdj =
(
xdj ,1,xdj ,2, . . . ,xdj ,i, . . .xdj ,n

)
, recorded at duration dj was rescaled at the refer-

ence duration d∗ by inverting Eq. (2):

x∗dj =
(
dj
Hxdj ,1,dj

Hxdj ,2 , . . . ,dj
Hxdj ,i, . . .dj

Hxdj ,n

)
(8)
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where n represents the number of observations (years) in xdj . Then, the pooled sample, xd∗ , of the D rescaled
AMS, x∗dj , was used to define Xd∗ under the SS assumption:

xd∗ =
(
x∗d1 , . . . ,x

∗
dj , . . . ,x

∗
dD .
)

(9)

Since, in Eq. (9),D represents the number of durations dj in the scaling interval, n×D rescaled observations were
included in xd∗ ."5

e) I suggest performing the GOF test also in a cross validation way (e.g. for the ID dataset, when you test the duraton
of 3h, you rescale to the duration of 1h all durations excluded the 3h; then you invert Eq.2 and you apply the test
to the obtained -slightly smaller- samples).

Thank you for pointing out our omission. The GOF and Slope test were also applied during the cross-validation10
experiment, which consists of repeating steps 1 to 3 described on Page 8 [see below], but we did not present the
relative results since these are not substantially different to those of Fig. 2 [Fig. 1 in the previous version]. For
completeness, we added these results (Slope and GOF tests in cross-validation) in Fig. S4 of the supplementary
material.

To clarify that the steps 1 to 3 were repeated in a cross-validation setting, Lines 24 to 29, Page 9 were modified to:15

"The SS model validity and the mean error resulting from approximating the Xd distribution by the SS model were
then evaluated in a cross-validation setting. For this analysis, each duration was iteratively excluded from each
scaling interval and the scaling model re-estimated at each station by repeating steps 1 to 3 [MSA regression,
Slope test, and GOF tests]".20

Then, we added the following reference to cross-validation results presented in Fig. S4 [Line 13, Page 11]:

"These findings were also confirmed by cross-validation experiments. The proportion of valid SS stations resulting
from cross-validation Slope and GOF tests were similar, event if slightly lower, to proportions displayed in Fig. 2
[see Fig. S4 of the supplementary material].

Moreover, the following explanation has been added in the introduction of the supplementary material:25

"Figure S4 presents the results for the cross-validation experiment for the SS model (Slope and GOF tests) for each
duration and scaling interval. "

f) Page 9, lines 21-23: this is not entirely clear, do you repeat all steps associated to the GOF part only (page 8, line
7 onwards), or also for the MSA regression and slope test? Only after reading page 11 line 1 I understood that you30
repeat all (points 1,2,3 at page 8). Make the sentence clearer.

The sentence has been modified specifying that steps 1 to 3 of the methodology [MSA regression, Slope test, and
GOF tests] were repeated in cross-validation experiments. Please, see our reply to the previous comment.

g) Text from page 9 line 27 to page 10, line 4: similar to what suggested for the GOF test, describe what you calculate35
in order of calculation, i.e. define first the normalized RMSE for each station (Eq 11) and after the average over all
stations (Eq 10).

Following your suggestion Lines 1 to 13, Page 10 were modified to:
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"For each station s, the normalized RMSE, εxd,s
, was estimated:

εxd,s
=
εxd,s

xd,s
(8)

where εxd,s
and xd,s are, respectively, the RMSE and the mean value of all Xd quantiles of order p > 0.5. Then,

the average over all stations of the normalized RMSE, εxd
, was computed for each scaling interval and duration:

εxd
=

1

ns

ns∑
s=1

εxd,s
(9)5

where ns is the number of valid SS stations in the dataset. Note that εxd
is a measure of error, meaning that values

of εxd,s
closer to 0 correspond to a better fit than larger values. ".

13. Section 4.1:

a) Figure 1 shows results of slope test and GOF test together. However a reader is intrigued in disentageling the two.
You have actually looked at the results seperately, and decided to put them together, with the knowledge that solely10
the GOF test has a signal. The reader, however, does not know this and remains in the doubt up unti reading at the
end of page 10 (lines 25-27). I suggest you to move the sentence at lines 25-27 at the very beginning of the descrip-
tion of these results, after line 10. After this sentence, you should state that the differences in station rejections for
the separate durations as shown in Figure 1 are due to the results of GOF test only. And then you keep describing
Figure 1 as in your lines 11-25 (which I assume refers solely to the GOF test: this should be made more explicit).15
Eliminate the [not shown] at line 13 (I think you show this, with the SD dataset)

We agree with the reviewer and we modify the first paragraph of section 4.1 to [see Line 15, Page 10]:

"Figure 2 presents the results of steps 1 to 3 of the methodology for evaluating the SS validity. For all the three scal-
ing datasets, no particular pattern was observed for slope test results, with at most 2% of the stations within each
scaling interval displaying a non linear evolution of the scaling exponent with the moment order. For this reason,20
Fig. 2(a)-(c) show, for each scaling interval and duration, the proportion of valid SS stations without differentiating
for slope or GOF test results. "

b) Figure 2: Page 11, lines 2-4: rewite this as “On the other hand, the extrapolation under SS of the Xd distribution is
generally less accurate for durations at the boundaries of the scaling intervals (especially for the short durations)”.25
You do not show/perform extrapolations of Xd by estimating H with durations outside the scaling interval (as far
as I can see), and I believe you meant to rewrite the sentence deleted at line 5.

Thank you fo the suggestion. Apply the cross-validation for durations at the boundaries of the scaling intervals
results in the estimation of H and Xd using non-recorded durations (i.e. durations outside the scaling interval
since one boundary is moved). For instance, the first cross-validation for the interval 1h-6h in the ID dataset con-30
sists in the estimation of the SS model on durations 2h, 3h, 4h, 5h, and 6h. Then, this model is evaluated for 1h
which technically is outside of the scaling interval "2h-6h" used for the estimation. For this reason, we modified
Line 20, Page 11 to:

" Conversely, the extrapolation under SS of the Xd distribution is generally less accurate for durations at the
boundaries or outside the scaling interval used to estimate H . "35

7



c) Figure 2: I would be curious to see the slope and GOF test results also for the cross validation experiment (as in
Figure 1, to be able to compare them). This actually is related also to my previous comments e) and f) for Section
4. In alternative, you could reproduce Figure 2 for the non-cross- validation calculation.

Please, refer to reply to comment 12 e): Fig. S4 showing Slope and GOF test results for cross-validation experiments
has been added to the supplementary material.5

14. Section 4.2: After your introductory sentence (page 11, lines 10-12) I suggest describing first the results pertaining to
∆H (Figure 3 ii, iii, iv) and after the results pertaining to the spatial variability of H (Figure 3 i, and Figures 4 and 5).
My suggestions for improvement are:

a) Join the paragraph at lines 13-16 with the paragraph at lines 20-25 (page 11).

The paragraphs are now contiguous.10

b) Eliminate (move) the sentence at page 11 lines 26-27 to page 12 line 11, where you will start the description of the
spatial variability of H.

Done. Lines 7 to 10, Page 12 now reads:

"Figures 4(ii)-(iv) show the median, Interquantile Range (IQR), and quantiles of order 0.1 and 0.9 of the ∆H(j)
15

distribution over valid SS stations for all relevant scaling intervals."

c) The text at lines 29-33 is difficult to follow, give (for each sentence) a precise reference to the figure panels.

Thank you for the suggestion. The references to figures have been added and the paragraphs has been rewritten.
Please, see our reply to your following comment.20

d) You might want to discuss first the results at page 12 lines 3-10 (which are positive, showing near zero DeltaH )
and after the results at page 11, line 29 to page 12 line 2 (which are more detailed and negative).

The paragraphs have been inverted [Lines 10 to ??, Page 12]:

"Adding new durations to the scaling intervals, median ∆H(j)
, as well as its IQR, increased for all d1. Nonetheless25

the median scaling exponent variation was generally smaller than 0.05, except for a relatively small proportion of
stations. Equally important, |∆H(j)

| was generally centered on 0 and for all d1 ≥ 1 h more than 50% of stations
had |∆H(12)

| ≤ 0.025 (SD dataset) and |∆H(18)
| ≤ 0.03 (ID dataset) [Fig. 4 (ii)-(iii)].

For some stations, a dramatic difference could exist in IDF estimations obtained with the different definitions of the
scaling interval. For instance, for the 24-duration scaling interval "1h - 24h" (ID dataset), the median ∆H(24)

was30
equal to 0.047 [Fig. 4(iv) b)]. For the interval "15min - 6h" (SD dataset), ∆H(24)

was even larger, with a median
scaling exponent variation approximately equal to 0.087 and with 25% of stations having ∆H(24)

≥ 0.11 [Fig. 4(iv)
a)]. Finally, changes in H values were also important when comparing 6- and 12-duration scaling intervals when
d1 ≤ 1 h (SD and ID datasets) and in LD dataset [Fig. 4 (ii)]."

e) Eliminate lines 13-17 and the related sentence at lines 30-31 of page 12 (this is too technical and does not add meat35
to the article, but rather distracts the reader).

Thank you for the suggestion. The sentence needed to be rephrased as also pointed out by Reviewer 3 [see comment
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3 of the 3rd Reviewer]. However, we consider that the paragraph is important for the interpretation of Fig. 4 and 5
and following results since it highlights an important issue on the uncertainty of theH estimator. In this regard, note
that Reviewer 3 did not suggest to eliminate the sentence but to rephrase it. To simplify the text without eliminating
all the information, Lines 34 to 12, Page 12 have been modified to:

"This result could be partially explained by the use of scaling intervals having equally spaced durations. This5
implies that the mean distance between the logarithms of durations in the scaling interval decreases as d1 increases.
Hence, the OLS estimator ofH used in the MSA regression may have larger variance for longer d1, especially when
scaling intervals include few durations. Larger uncertainty may thus have an impact on the H estimation for the
longest d1 scaling intervals of SD. However, as showed in next sections, H spatial distribution may also explain
the greater variability of the scaling exponent for d1 greater than a few hours."10

15. Section 5:

a) Figure 4 and 5 (and Figure S1) show clear spatial clustering in the behaviour of H (as commented in my previous
revisions): I still think that the authors should apply a cluster analysis to their own data. Climatology and extremes
are different, and extremes might not follow the Bukovsky regions. You can develop a spatial model for SS and IDF
estimation (as you state at page 15, lines 16-18) solely considering a regionalization based on the extreme behavior15
(rather than pre-set regions).

The reviewer raised an interesting question regarding the construction of homogeneous region for extremes, which,
as underlined by the reviewer, generally display a different spatial distribution than climatology. Two distinct issues
must be discussed to correctly address the reviewer’s comment: on the one hand, the choice of a methodology for
the definition of geographical regions which is consistent with our analysis, and, on the other hand, the difference20
between "regionalization and regional estimation" evoked by the reviewer and the more general concept of "spatial
model" for IDF parameters mentioned in our text.

To address the problem of the identification of homogeneous regions for extremes, a panoply of algorithms based
on different approaches has been developed in the literature [e.g., Grimaldi et al, 2011; Hosking and Wallis, 1997;
among others]. According to several authors [e.g., Wazneh et al., 2015; and references therein], the definition of25
homogeneous regions involves a great amount of subjectivity due to the choice of :

i) the definition of ’homogeneity’ and the subsequent choice of the site characteristics or statistics to be used for
the classification [for instance, should one use the geographical location, elevation, climatological features,
and/or precipitation extreme indexes for the observed sites?];

ii) the number of regions and some basic classification criteria [e.g., should be the regions be geographically30
contiguous?] which depend on several factors such as the spatial scale of the analysis and on the subsequent
use of the classification [e.g., should one use the regionalization for approximating unknown quantities at
un-gaged sites or it is only a descriptive tool?];

iii) the algorithm performing the classification based on the selected classification variables [site characteristic(s)
and/or site statistic(s)];35

Points i)-iii) are also closely interconnected. For instance, if one uses a cluster analysis based on site extreme
precipitation statistics, stations from different geographical areas could be pooled in the same group [see figure
below]. This non-spatially-contiguous classification may lack of physical consistency and may be hardly interpreted
in term of climatology.

An example is provided in Figure 1 which shows the results of a basic k-means cluster analysis performed on H40
(scaling exponent) and P̄24h (climatic median of station AMS for the duration d= 24h) for the scaling interval
presented in Fig. 5 [Fig. 4 of the previous version of the paper mentioned by the reviewer]. The number of groups
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Figure 1. Example of regions obtained after applying a k-mean cluster analysis applied on H (scaling exponent) and P̄24h (climatic median
of station AMS for the duration d= 24h) for scaling interval presented in Fig. 5 of the paper. Stations of the same color belong to the same
cluster.

has been arbitrarily set to Nreg = 6, since six geoclimatic regions were used in the paper based on Bukovsky
(2012) classification [see Fig. 7]. However, more objective criteria should be defined to guide the selection of an
appropriate number of clusters.

Even if, at a first sigh, the clustering in Fig 1 does not seem to significantly differ with the one used in our analysis,
it is important to highlight that:5

a) As observed by the reviewer in its previous revision, some regions used in the paper may be split in various
subregions; however, these differences seem to be mainly driven by the NW-to-SE gradient of P̄24h (see Fig.
S1 of the supplementary material).

b) As previously noted, the method produces non-contiguous regions which limits the possibility of interpreting
the physical meaning of the values taken by the scaling exponent at a regional scale in terms of geoclimatic10
characteristics of the regions. To improve the performances of the clustering method and allow for the def-
inition of physically sound regions, one should probably include other classification variables, such as the
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geographical coordinates, the mean Total Annual Precipitation and Temperature, or other climatological in-
dexes.

c) The classification is based on the H and P̄24h which are at-site statistics of rainfall extremes estimated on
available AMS. The estimation of this unknown quantities entails an amount of uncertainty which may im-
pact the classification in an unpredictable way, especially if observed series are short. Conversely, climatic5
statistics such as the mean Total Annual Precipitation and Temperature can be generally estimated with lower
uncertainty.

Essentially, more sophisticated methods should be used to provide an accurate and physically consistent clustering
in order to rigorously define the spatial structure of H and, eventually, to approximate AMS distributions with a
regional approach, as recommended by the reviewer. Although interesting, we sincerely believe that these analyses10
deserve to be comprehensively done and are out of scope of this study. In that perspective, it is important to remind
that :

Firstly, our study did not intend, at this point, to use a regional approach to estimate SS models and IDF curves;
the main objective of Section 5, is to investigate the relationship between the spatial distribution of H and the
geographical and climatological features of the study region. This qualitative analysis was merely descriptive and15
did not aim at defining a regional and strictly homogeneous value of H .

Secondly, to our opinion, H can be realistically expected to be a climatological characteristic of extremes with a
smoother behavior in space than other extreme statistics [e.g.,high order moments or quantiles of extreme precipi-
tation distributions]. This is also confirmed by maps in Fig. 5 [Fig. 4 in the previous version].

Finally, the Bukovsky (2012) regions correspond to a subdivision of North America territory into homogeneous20
climatological regions that was already been used in the literature [e.g., Separovic et al., 2013; Prein et al., 2016;].
Our analysis could hardly reproduce the accuracy of this classification with the available data. Hence, Bukovsky
regions appeared to be a convenient and reasonable choice for our study.

We realized that some confusion may arise by the expression "spatial model" used in the following sentence
[Line 12, Page 16]: "Even more important, these results could help for the definition of IDF relationships at25
non-sampled locations by the construction of spatial models for the IDF parameter H". Note that this sentence did
not refer to to regional estimation approaches such as RFA (Regional Frequency Analysis). These regionalization
approaches effectively rely on an accurate definition of homogeneous regions and the validation of homogeneous
regions in order to pool the series from stations with similar characteristics. However, Line 12, Page 16 referred
to "spatial models" aiming at explicitly modeling the spatial distribution of the GEV and/or IDF parameters such30
as in Begueria, and Vicente-Serrano (2006), Blanchet and Lehning (2010), Panthou et al (2012), and Davison et al.
(2012). To avoid any confusion we rephrased the sentence at Line 12, Page 16 as:

"Even more important, these results give useful guidelines for modeling the spatial distribution of H , which could
help for the definition of IDF relationships at non-sampled locations."

35
– Begueria, S and SM Vicente-Serrano (2006). Mapping The Hazard Of Extreme Rainfall By Peaks Over Threshold Extreme Value Analysis

And Spatial Regression Techniques. J Appl Meteorol. Vol. 45. no. 1, pp. 108–124.
– Blanchet, J, Marty, C, and M Lehning (2009). Extreme value statistics of snowfall in the Swiss Alpine region. Water Resour Res. Vol. 45.

no. 5.
– Blanchet, J. and M. Lehning (2010). Mapping snow depth return levels : smooth spatial modeling versus station interpolation. Hydrol40

Earth Syst Sc. Vol. 14. no. 12, pp. 2527–2544.
– Davison, Anthony C, SA Padoan, M Ribatet, et al. (2012). Statistical modeling of spatial extremes.
– Grimaldi S, Kao S-C, Castellarin A, Papalexiou S-M, Viglione A, Laio F, Aksoy H and Gedikli A (2011) Statistical Hydrology. In: Peter

Wilderer (ed.) Treatise on Water Science, vol. 2, pp. 479–517 Oxford: Academic Press.
– Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis: An Approach Based on L-moments. Cambridge, UK, 244pp45
– Panthou, G., T. Vischel, T. Lebel, J. Blanchet, G. Quantin, and A. Ali (2012). Extreme rainfall in West Africa : A regional modeling. Water

Resour Res. Vol. 48. no. 8, n/a–n/a.
– Prein, A. F., Holland, G. J., Rasmussen, R. M., Clark, M. P., and Tye, M. R. 2016. Running dry: The US Southwest’s drift into a drier

climate state. Geophysical Research Letters, 43(3), 1272-1279.
– Separovic L, A Alexandru, R Laprise, A Martynov, L Sushama, K Winger, K Tete, M Valin. 2013. Present climate and climate change over50

North America as simulated by the fifth-generation Canadian regional climate model. Clim Dyn 41:3167-3201. DOI 10.1007/s00382-
013-1737-5.
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– H. Wazneh, F. Chebana, T.B.M.J. Ouarda, Delineation of homogeneous regions for regional frequency analysis using statistical depth func-
tion, Journal of Hydrology, Volume 521, February 2015, Pages 232-244, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2014.11.068.

b) page 13, lines 9-23: I am not sure the two statistics described here add too much to the article (unless they help
the physical interpretation of Section 5.1, which is obscure to me -see following comment-): in fact, I believe that
their behaviour is expected, from their definition: shorter duration have a larger number of events, which decay the5
longer is d1 (S4); conversely, the mean wet time per event decay as d1 grows (averaged on longer duration) ... I
suggest moving all this to the supplementary material (also the related text at page 14 lines 7-8, 10-13, 23-32). The
implications at page 14, line 13 is not clear.

Thank you for the suggestion but we consider that N̄eve and T̄wet concretely show some important features of the
extreme events sampled by the AMS observed for the set of durations included in the scaling intervals. Therefore,10
we didn’t move this paragraph to the supplemtary material. We agree that their overall behavior and patterns over
d1 are generally expected. However, the differences among panels of Fig. S5 and S6 (Fig. S4 and S5 of the previous
version of the supplementary material) are crucial and support the physical interpretation of H and the regional
analysis given at Page 14.

16. Section 5.1:15

a) From page 13 line 30 to page 14 line 3: The link between the behaviour of H and the physical characteristics of the
precipitation in the region is missing / not clear. Similarly, at page 14 lines 4-7, the implication is not clear at all.

In order to improve the discussion of Fig. 8 we recalled that "higher H values are associated with larger varia-
tions in moment values as the scale is changed (i.e. a stronger scaling), while H close to zero means that the Xd

distributions for different durations d more closely match each other." [Line 28, Page 4] This was also stated at20
Line 29, Page 15, Line 7, Page 16, and Line 27, Page 19 ,and at Line 3, Page 15 for Hdepth = 1−H . In this
regard, note that, as reported in the literature, higher H values have been generally observed for shorter-duration
intervals and regions dominated by convective precipitation (e.g., Borga et al., 2005; Nhat et al., 2007; Ceresetti
et al., 2010; Panthou et al., 2014, and references therein); this was mentioned at Line 20, Page 4.

Hence, we modified Lines 17 to 25, Page 14 to:25

"For d1 ≤ 24 h, Fig. 8 (a) displays lower values of H than Fig. 8 (e)-(f), meaning that smaller variation in AMS
moments are observed in A1 and A2 when the scale is changed. This difference can be partially explained by the
weaker impact of convection processes in generating very short duration extremes in North-West coastal regions
with respect to southern areas (regions E and F). For northern regions, in fact, the transition between short and
long duration precipitation regimes may be smoothed out by cold temperatures which moderate short-duration30
convective activity, especially for W_Tun (region A1). The topography characterizing the northern pacific coast
may then explain the smoothing effect for the curve of region NW_Pac (A2). In this case, in fact, the precipitation
rates at daily and longer scales are enhanced by the orographic effect acting on synoptic weather systems coming
from the Pacific Ocean (Wallis et al., 2007)."

35

b) Maybe you need to explain beforehand what does it means (physically) when H is small and when H is large (as at
page 15, lines 13-15), when H increase and when H decreases with d1.

Please, see our reply to the previous comment. As you mentioned, Lines 15 to 29, Page 4 already list the results in
the literature that reports the physical interpretation ofH and gives details about its spatial distribution over several
regions. In the initial version of the paper this explanation was part of the introduction of Sect. 5, just before the40
interpretation of our results. However, they have been moved following Editor’s suggestion to improve the separa-
tion between the methods, results and discussions. In this way, the practical interpretation of high and low values
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of the scaling exponent had been logically linked to its statistical meaning [Eq. (2) and lines below].

In the actual version of the manuscript, Section 5.1 is structured as follow: the section first describes the regional
distribution of H; then the connection between H spatial patterns to the geographical and climatological charac-
teristics of each region is made; finally a general interpretation of the results fis given at Lines 2 to 11, Page 16.

5

c) Page 14, lines 14-22: good interpretation of the behaviour in Region D.

Thank you.

d) Page 15 lines 2-5: clear, whereas you loose me at lines 6-9.

Thank you for pointing out our lack of clarity. Lines 24 to 1, Page 15 have been rephrased to:10

"However, H shows a smoother increase in Fig. 7 (f) with respect to Fig. 7(e). This may indicate that in eastern
areas [region F] sub-daily duration extremes are more likely associated to embedded convective and stratiform
systems or to mesoscale convective systems, which are less active in western dry areas of region E (Kunkel et al.,
2012). On the contrary, differences between short- and long-duration extreme precipitation intensity seem stronger
for south-western dry regions [Fig. 8 (e)], where less intense summer extremes are expected compared to eastern15
areas [see supplementary material, Fig. S1]. In particular, H tended to scatter in a range of higher values for
approximately 1 h ≤ d1 ≤ 12 h indicating that precipitation intensity moments strongly decrease as the duration
increases."

e) page 15, lines 10-11: I disagree with this sentence, I have not seen any evidence that the material illustrated here20
supports these results (you have not proven this).

In Section 5.1 we showed that different geographical regions generally displayed distinct distribution of H for dif-
ferent scaling intervals [panels (a)-(f) of Fig. 8 show different curves]. These regions are characterized by different
climates and precipitation regimes [please, see also our reply to comment 15 a) for a discussion of the importance of
choosing geo-climatological regions for this analysis]. The suggestion we made at Line 2, Page 16 is thus that one25
can suppose a link (even qualitative) between the difference observed forH values [e.g, for the black lines in Fig. 8
representing the median ofH in each region] and the differences between the specific climates and weather regimes
characterizing each region. We think that the results presented in the paper qualitatively support the hypothesis that
there exist a link between scaling and climatology even if it is not proven in a statistical or mathematical way. That
was we use the term "suggest". However, to prevent any confusion we rephrased this sentence as:30

"In summary, these results suggest that both local geographical characteristics, such as topography or coastal
effects, and general circulation patterns may influence precipitation scaling at a regional scale."

17. Section 6:

a) From page 15 line 30 to page 16 line 7: since you are assessing a distribution, why don’t you use a KS statistics,
rather than inventing an engeneered metric which compares the quantiles? Recall Equation 11 for clarity, please.35

Thank you for the suggestion but we preferred to limit the used of the GOF test (AD and KS) to the non-parametric
estimation of SS models (Section 4) for several reasons. Primarily, these tests have a low statistical power so it is
always preferable to limit their use to situations in which no alternative exists; this was the case in Section 4. Sec-
ondly, the use of a discrepancy measure such as RMSE allows to numerically evaluate the mean errors on quantile

13



estimates; conversely, GOF tests can only state the statistical significance of the results according to a specified
significance level. For this reason, in Sect. 4 we also estimated the Normalized RMSE after the evaluation of SS
validity via the use of the KS and AD tests. Finally, the use of GOF tests is not strictly necessary to validate the use
of the SS-GEV models considering that i) the use of the SS hypothesis for approximating the AMS distributions
has been legitimated by results in Section 4 and that ii) the GEV distribution is the only natural distribution to use5
for Annual Maxima Series. Hence, no direct logical alternative exists.

As you suggested, the following reference to Eq. (11) has been added at Line 4, Page 17:

"See Eq. 10 for the definition of εd,mod for each station."

b) Page 16, line 13: for the ID and LD datasets, the behaviour of the SS parameters versus non-SS parameters is10
opposite, they cannot be both more right skewed for the SS estimation.

Thank you for pointing out this error. We agree with the reviewer that, while for the ID dataset "both µ∗ and σ∗
distributions were more positively skewed than the corresponding non-SS distributions", this is not true for LD.
Hence, we corrected the sentence to [Lines 9 to 13, Page 17]:

"Similarly, for 6 h ≤ d1 ≤ 2 days in the LD dataset, the SS location and scale parameter distributions are in rela-15
tively close agreement with the corresponding non-SS parameter distributions. Conversely, in the ID dataset, both
µ∗ and σ∗ distributions are more positively skewed than the corresponding non-SS distributions. Finally, for d1 ≥
2 days in the LD dataset, µ∗ and σ∗ had distributions shifted toward lower values than µ24h and σ24h."

c) Page 16, line 16: it seems to me that the discerepancies between SS and non-SS parameters for the LD dataset and20
long durations (the ∆µ and ∆σ in the supporting material) and quite big.

Thank you for pointing out our mistake: the colorbar label was expressed in percent scale, while ∆µ and ∆σ where
defined in relative scale. The error has been corrected by changing the colorbar labels of Fig. S12 and S13 to,
respectively, ∆µ% and ∆σ%.

Once these corrections made, one can observed that the relative biases in µ and σ estimates were small in most cases25
since the "median values of ∆µ and ∆σ were generally smaller than±5% and±10%" [as stated at Line 15, Page 17].

d) Page 16, lines 14-21: there is something strange about your results: you state that the estimation of the scale pa-
rameter has a small uncertainty when the shape parameter is correctly estimated. However, from Figure 8. I can see30
that the shape parameter is not correctly estimated (red and black curves do not match). What is the implication
of the mismatch of the shape parameter for the non-SS and SS estimation on your results? The shape parameter is
usually set to zero because it is all over the places, and often not-significantly different from zero (as you find in
your Figure 9c: the estimated shape parameter is quite noisy)!!!

Figure 9 presents the distributions of SS and non-SS GEV parameters across all stations (these are not at-site dif-35
ferences). For the shape parameter (Fig. 9, 3rd col.), one has to remind (as specify in the caption) that the case
ξ = 0 was not considered [see also our reply to comment 17 h)]. Hence, the fact that the red and black curves don’t
match simply indicate that the shape parameters estimated using the SS hypothesis are different than the non-SS
estimates when the shape parameter is significantly different from zero.

We argue that the SS model allows a better assessment of the the shape parameter values than the non-SS model.40
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In our application, in fact, the majority of stations have non-SS shape parameters ξd which are non-significantly
different from zero while these fractions are substantially reduced under the SS model [see Fig. 11]. In this re-
gard, note that many authors have shown that the fact of setting ξ = 0 "may lead to important underestimations of
the extreme quantiles quantiles (e.g., Koutsoyiannis, 2004a, b; Overeem et al., 2008; Papalexiou et al., 2013; Pa-
palexiou and Koutsoyiannis, 2013)" [see Line 17, Page 5]. Moreover, we observed more evidence of heavy tailed5
AMS distributions for SS GEV models (ξ∗ > 0) with values of ξ∗ mostly in the (0.10,0.25] interval [please, see
Line 8, Page 18, Fig. 11, and Fig. 9, 3rd col.]. These results are consistent with previous studies, which reported
typical values of ξ ≈ 0.15 for cases in which AMS are long enough to reduce estimation uncertainty and provide
non-zero estimates of the GEV shape parameter (e.g., Koutsoyiannis, 2004b). [see Line 9, Page 18]. Hence, the
shape parameter ξ∗ seemed to be better assessed by SS GEV models, since under the SS hypothesis, the statistical10
information from several durations can be pooled.

Concerning the scale parameter estimation, we observed that the estimation of the scale parameter, σ, may be bi-
ased when the ξ is spuriously set to zero [Line 17, Page 17], since the σ may tends in this case to increase to fit the
distribution to the more extreme events. Hence, large uncertainties in ξ could imply large uncertainties and biases
in σ.15

In other words, our interpretation of Fig. 9 [Fig. 8 in the previous version] is that SS-hypothesis provides a frame-
work under which the GEV parameters (especially the shape parameter) are more accurately estimated than the
non-SS estimates, even if we recognize that strong uncertainties still affect the ξ∗ estimation [Line 14, Page 18].
Furthermore all our results are consistent with what has been previously reported in the literature.

To better stress these points, several changes have been made in Section 6.1 [Page 17]:20

– We moved the sentence "the scale parameter σd may be biased when the shape parameter is spuriously set to
zero (ξd = 0)" from the end of the paragraph to Line 17, Page 17.

– Lines 25 to 1, Page 17 has been rewritten as:

"Notable differences between SS GEV and non-SS GEV estimates were observed for the shape parameter25
[Fig. 9, third col., and Fig. 11] Firstly, for cases having shape parameters strictly different from zero [third
column of Fig. 9], ξ∗ absolute values were smaller than non-SS ξd absolute values. Secondly, the distributions
of ξ∗ across stations were generally more peaked around their median value than the corresponding non-SS
distributions. Finally, for the non SS model, the majority of stations had shape parameter ξd non-significantly
different from zero, while the fraction of SS GEV shape parameters ξ∗ 6= 0 was always greater than 39%30
[asymptotic test for PWM GEV estimators applied at level 0.05; Hosking et al., 1985]. "

e) Page 16, lines 22-23: I agree with this sentence, nice spatial coherence.

f) Page 16, lines 25-26: why SS shape parameter is nearer to zero and exhibit less spread? Is this an effect of the
assumptions of SS?35

Yes, as stated at Line 7, Page 18, the fact that ξ∗ show less variability than ξd is one of the results which suggest
that "pooling data from several durations may effectively reduce the sampling effects impacting the estimation of
ξ, allowing more evidence of non-zero shape parameters, and, in many cases, of heavy tailed (ξ > 0) AMS distri-
butions.". In other words, the improvement in GEV estimation induced by the SS models allows to 1) decrease the
number of ξ = 0 cases, and, 2) reduce the dispersion of shape parameters among the station which manifest itself40
into shape parameter values closer to zero.
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g) Page 16, line 27: very difficult sentence to read (essentially the shape parameter is zero).

As reported in reply to comment 16 d), the sentence has been rewritten as [Line 30, Page 17]:

"Finally, for the non SS model the majority of stations had shape parameter ξd non-significantly different from zero,
while the fraction of SS GEV shape parameters ξ∗ 6= 0 was always greater than 39% [asymptotic test for PWM
GEV estimators applied at level 0.05; Hosking et al., 1985]."5

h) Page 16, lines 27-31: these results are not intuitive. Figure 10 suggests that the shape parameter for the non-SS
estimates is predominantely zero, whereas for the SS estimates there is a large proportions of positive and negative
shape parameters. However, the right column of Figure 8 shows exactely the opposite (SS estimate are nearer to
zero than non-SS estimates). I assume the difference is due to the very different width of confidence interval as-10
sociated to the estimate of the shape parameter, for non- SS and SS samples. Are the sample sizes very different
(I believe so ... given that x* in equation 8 is obtained from a very large sample). Then maybe these results are
artificial ... (as you conclude afterwards, at page 17, lines 3-5: but this link is not explicit)!!!

The reviewer must remind that Fig. 9, 3rd col, excludes cases for which ξ = 0 (Gumbel distribution) [see the cap-
tion of Fig. 9]. Therefore, Figures 9 and 11 are not inconsistent since a larger fraction of stations have significant15
non-zero shape parameters for the SS-model. The reviewer might be right when he mentioned that the difference
between shape parameter distributions is due to the very different width of confidence interval associated to the
estimate for the SS- and non-SS models. Sample sizes are indeed very different since the SS model pools the AMS
from all the durations included in each scaling interval. These results are not "artificial" and reflect the fact that,
under SS model, the sampling error is reduced. Corrections made due to previous comments should have clarified20
these points [for instance, see also our reply to comment 16 d)].

d) Page 17, lines 7: eliminate (not clear what this refer too).

To make the text clearer, we modify the sentence to [Line 11, Page 18]:

"These studies typically reported values of ξ ≈ 0.15 (e.g., Koutsoyiannis, 2004b), which are close to ξ∗ values25
estimated in the present analysis for cases with ξ∗ > 0. "

e) Overall, the text starting at page 16 line 27 and ending at page 17 line 10 should be all reorganized ina more coher-
ent single paragraph.

We agree with the reviewer and corrections made in response to previous comments should have improved the text
between Line 30, Page 17 and Line 15, Page 18.30

f) Page 17, lines 12-15: Figure S13 shows that for shape parameter equal to 0 (the majority of the stations) the error
of quantiles estimated by the non-SS is smaller than that for SS estimates.

Yes, as reported at Line 3, Page 18, for many stations (55% to 60% for 6-duration scaling intervals) the SS shape
parameter is not-significantly different from zero (ξ∗ = 0). In these cases, the SS GEV model allows a reduction35
of the mean error on quantiles only for a small proportion of stations (generally lower than 0.4), as showed in Fig.
S14 [Fig. S13 in the previous submission]. Conversely, for cases with non-zero ξ∗ = 0, the fraction of stations with
decreasing errors was higher than 60% for most of the scaling intervals and durations.

To better describe these results Lines 18 to 23, Page 18 have been modified to:
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"For cases with non-zero ξ∗, more than 60% of stations had εd,ss < εd,non−ss over most scaling intervals and
durations. The 6-duration scaling intervals "15 min - 1 h 30 min" (SD dataset) and "1 h - 6 sih" (ID dataset) showed
the largest fractions of stations with increasing errors. On the contrary, increasing errors (εd,ss > εd,non−ss) were
observed for all scaling intervals and durations for most stations (generally more than 70%) having ξ∗ = 0. "
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Authors’ response to 2nd referee’s comments

I checked the article and author’s responses. I think the authors did a good job to account for both reviews. A few techni-
cal points need to be addressed but this is minor.

Minor comments:5

1. p 3 l 23 : the fact that Xq
d and λHqXq

λd have the same distribution comes directly from (2). You don’t need for that to
have finite moments (please note by the way that exponent ‘q’ is missing in lambda). However (3) needs finite moments.

Corrected, thank you. The paragraph now reads [Lines 26 to 29, Page 3]:

"An important consequence of the SS assumption is that Xd and λHXλd have the same distribution. Hence, if Xd and10
Xλd have finite moments of order q,E[Xq

d ] andE[Xq
λd], these moments are thus linked by the following relationship ... "

2. p7 l 14 : I don’t think the relation xd2 ≤ xd1 for d1< d2 is always valid. For example, let consider the hourly series
with values 10-2-10 mm/h. Then the maximum 2h-intensity is 12/2=6mm/h, while the maximum 3h-intensity is 22/3>6
mm/h. So xd2 > xd1 for d2=3h and d1=2h. Also xd2/xd1 < d1/d2.15

We apologize for the error made in the sentence at Line 20, Page 7 and we agree that relationship xd2 ≤ xd1 is not
always valid. The numerical algorithm used for data screening and AMS construction considered the following criterion
for precipitation depth [mm]:

xd2
xd1
≥ d2
d1

When the rainfall depth is used, in fact, the relationship must be respected for each couple of durations d1 < d2 (for your20
example we have: xd1 = 12< 22 = xd2 and xd2

xd1
= 22

11 ≥
3
2
d2
d1

). The confusion arose when converting this relationship in
term of rainfall intensity. The error has been corrected by changing Line 20, Page 7 to:

"For instance, each pair of DMPD rainfall intensities [mm/h] (xd1 ,xd2) observed at durations d1 < d2 must respect the
condition xd2/xd1 ≥ d1/d2 derived from the definitions of daily maximummaxima rainfall intensity and depth; "

25

3. p 7 l 29 : IS→ ID ?

Corrected.

4. p 7 l 30: the first matrix on the left of Fig. 1(a)→ the top left matrix of Fig. 1(a)

Corrected, thank you.30

5. p 8 : Does the SS sample xd,ss comprises the non-SS sample xd ? I guess it should not (for independence testing) but it
is not clear to me on (8)
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We agree that for GOF tests applied in Sect 4 it would be worth considering SS samples xd,ss that do not contain data
from duration d. For this reason, the steps 1-3 of the methodology described at Page 9 has been repeated in a cross
validation settings [see also the replies to comments 11 e), 11 f), and 12 c) of the 1st referee].

However, in the mathematical definition of SS sample, xd,ss, [Line 15, Page 9] one should include the observations of
the rescaled AMS for duration d (i.e., observations from sample sample xd). This sample, in fact, is not only used for the5
SS validation presented in Section 4, but also for other analyses which require to include the rescaled xd observations
in xd,ss. For instance, for the estimation of the SS GEV models [Sect. 6, Lines 24 to 26, Page 16] xd,ss should contain
observations from AMS observed at d and rescaled at d∗.

6. p 15 l 25 : obtained 12→ obtained for 1210

Corrected.
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Authors’ response to 3rd referee’s comments

Thank you for the opportunity to review this manuscript. I agree with the two reviewers on that the first two sections of
the paper are very well written and the rest of the sections need improvement in order to clearly deliver your messages. Al-
though still a little bit difficult to understand (I had to read it a few times. But it could be due to my lack of background.), I5
can see that the manuscript has improved significantly by addressing the comments from previous reviewers. I recommend the
manuscript to be accepted with minor revisions.

1. There are a lot of symbols and abbreviations in this manuscript. Maybe the authors can redefine them when first used in
each major section (as well as in figure captions) to help readers to understand the methods and results better. Or adding
a glossary table in the supplementary documents may help.10

Following the reviewer suggestion we added Table S1 to the supplementary material; this table lists the relevant and
recurrent acronyms. A reference to Table S1 has then been added in the introduction [Line 17, Page 3]. Then, additional
definitions of some acronyms have also been added to the text [see, for instance, acronym added at Line 21, Page 3,
AMS definition added at Line 13, Page 6, section title of Sect. 6, and reference to Figure 1 a) added at Line 9, Page 7].

15

2. What is the colour scheme in Figure 1? Can you please add a legend of the colour scheme?

We apologize for the technical problem, the color bar has been added to Fig. 2 [corresponding to Fig. 1 in the previous
version of the manuscript].

3. To improve readability, this reviewer recommends the authors to break some long sentences into shorter ones. For20
example, the sentence starting on Line 11 on Page 12 includes at least three messages, which should be broken down
into shorter sentences. There are a number of similar sentences in the results and discussion sections.

We agree with the reviewer and we rephrase various paragraphs of the manuscript in order to increase the readability.
See, for instance, the following paragraphs :

– Sect. 4: Line 27, Page 10, Line 7, Page 8, and Line 34, Page 12 [cited by the reviewer];25

– Sect. 5: Line 24, Page 15, Line 1, Page 14, Line 14, Page 14, and Line 7, Page 16;

– Sect. 6: Line 18, Page 16, Line 22, Page 17, and Line 30, Page 17;

– Conclusion: Line 8, Page 20

4. Section 7 on discussion and conclusion seems to be a summary of what you have written so far. Can you please add
some discussion on why this research is important? How can the outcomes be used in practical sense? For example, do30
they imply any changes to current flood risk estimation/infrastructure design guidelines? What are the limitations of this
study and recommended future research?

Several part of Sect. 7 introduce the mentioned issues. In particular recommended extensions of the research or study
limitations were briefly discussed at Line 6, Page 20, Line 29, Page 20, and Line 11, Page 20. However, to make more
explicit references to practical implications and limitations of our study, the following modifications have been made:35

– We modified Lines 6 to 8, Page 20 to :

"These results suggest that SS represents a reasonable working hypothesis for the development of more accu-
rate IDF curves. This may have important implications for infrastructure design and risk assessment for natural
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ecosystems, which would benefit from a more accurate estimation of precipitation return levels. Besides, the spatial
distribution of the scaling exponent and its dependency on climatology should be taken into account when defining
SS duration intervals for practical estimation of IDF. The accuracy of the SS approximation may in fact depend on
the range of considered temporal scales. Equally critical, estimated H values were found to gradually evolve with
the considered scaling intervals."5

– We modified Lines 26 to 31, Page 20 to :

"Caution is advised when interpreting these results due to the fact that high order empirical quantiles were used
as reference estimates of true Xd quantiles, which could be a misleading assumption especially when available
AMS are short. Moreover, a more comprehensive assessment of the scaling exponent uncertain and of the influence10
of dataset characteristics on the estimation of AMS simple scaling is recommended. Considering these limitations
and our general results, any future extension of this study should investigate the possibility of introducing spatial
information in scaling models as well as improvements of scaling GEV estimation procedures. "
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Abstract. Extreme precipitation is highly variable in space and time. It is therefore important to characterize precipitation

intensity distributions at several temporal and spatial scales. This is a key issue in infrastructure design and risk analysis, for

which Intensity-Duration-Frequency (IDF) curves are the standard tools used for describing the relationships among extreme

rainfall intensities, their frequencies, and their durations. Simple Scaling (SS) models, characterizing the relationships among

extreme probability distributions at several durations, represent a powerful means for improving IDF estimates. This study5

tested SS models for approximately 2700 stations in North America. Annual Maxima Series (AMS) over various duration in-

tervals from 15 min to 7 days were considered. The range of validity, magnitude, and spatial variability of the estimated scaling

exponents were investigated. Results provide additional guidance for the influence of both local geographical characteristics,

such as topography, and regional climatic features on precipitation scaling. Generalized Extreme Value (GEV) distributions

based on SS models were also examined. Results demonstrate an improvement of GEV parameter estimates, especially for the10

shape parameter, when data from different durations were pooled under the SS hypothesis.

1 Introduction

Extreme precipitation is highly variable in space and time as various physical processes are involved in its generation. Char-

acterizing this spatial and temporal variability is crucial for infrastructure design and to evaluate and predict the impacts of

natural hazards on ecosystems and communities. Available precipitation records are however sparse and cover short time peri-15

ods, making a complete and adequate statistical characterization of extreme precipitation difficult. The resolution of available

data, whether observed at meteorological stations or simulated by weather and climate models, often mismatches the resolu-

tion needed for applications (e.g., Blöschl and Sivapalan, 1995; Maraun et al., 2010; Willems et al., 2012), thus adding to the

difficulty of achieving complete and adequate statistical characterizations of extreme precipitation.

The need for multi-scale analysis of precipitation has been widely recognized in the past (Rodriguez-Iturbe et al., 1984;20

Blöschl and Sivapalan, 1995; Hartmann et al., 2013; Westra et al., 2014, among others) and much effort has been put into

the development of relationships among extreme precipitation characteristics at different scales. The conventional approach

for characterizing scale transitions in time involves the construction of Intensity-Duration-Frequency (IDF) or the equivalent

Depth-Duration-Frequency (DDF) curves (Bernard, 1932; Burlando and Rosso, 1996; Sivapalan and Blöschl, 1998; Kout-

soyiannis et al., 1998; Asquith and Famiglietti, 2000; Overeem et al., 2008; Veneziano and Yoon, 2013). These curves are a25

standard tool for hydraulic design and risk analysis as they describe the relationships between the frequency of occurrence of

1



extreme rainfall intensities (depth) Xd and various durations d (e.g., CSA, 2012). Analysis is usually conducted by separately

estimating the statistical distributions of Xd at the different durations (see Koutsoyiannis et al., 1998; Papalexiou et al., 2013,

for discussions about commonly used probability distributions). The parameters or the quantiles of these theoretical distribu-

tions are then empirically compared to describe the variations of extreme rainfall properties across temporal scales.

Despite its simplicity, this procedure presents several drawbacks. In particular, it does not guarantee the statistical consistency5

of precipitation distributions, independently estimated at the different durations, and it limits IDF extrapolation at non-observed

scales or ungauged sites. Uncertainties of estimated quantiles are also presumably larger because precipitation distribution and

IDF curve parameters are fitted separately.

Scaling models (Lovejoy and Mandelbrot, 1985; Gupta and Waymire, 1990; Veneziano et al., 2007) based on the concept of

scale invariance (Dubrulle et al., 1997), have been proposed to link rainfall features at different temporal and spatial scales.10

Scale invariance states that the statistical characteristics (e.g., moments or quantiles) of precipitation intensity observed at two

different scales d and λd can be related to each other by a power law of the form:

f(Xλd) = λ−Hf(Xd) (1)

where f(.) is a function of X with invariant shape when rescaling the variable X by a multiplicative factor λ and for some

values of the exponent H ∈ R. In the simplest case, a constant multiplicative factor adequately describes the scale change. The

corresponding mathematical models are known as Simple Scaling (SS) models (Gupta and Waymire, 1990). SS models are15

attractive because of the small number of parameters involved, as opposed to Multiscaling multiscaling (MS) models which

involve more than one multiplicative factor in Eq. (1) (e.g., Lovejoy and Schertzer, 1985; Gupta and Waymire, 1990; Burlando

and Rosso, 1996; Veneziano and Furcolo, 2002; Veneziano and Langousis, 2010; Langousis et al., 2013). A single scaling

exponent H is used to characterize the extreme rainfall distribution at all scales over which the scale invariance property holds.

As a consequence, a consistent and efficient estimation of extreme precipitation characteristics is possible, even at non-sampled20

temporal scales, and a parsimonious formulation of IDF curves based on analytical results is available (e.g., Menabde et al.,

1999; Burlando and Rosso, 1996; De Michele et al., 2001; Ceresetti, 2011).

Theoretical and physical evidence of the scaling properties of precipitation intensity over a wide range of durations has been

provided by several studies. MS has been demonstrated to be appropriate for modeling the temporal scaling features of the

precipitation process (i.e., not only the extreme distribution) and for the extremes in event-based representations of rainfall25

(stochastic rainfall modeling) (e.g., Veneziano and Furcolo, 2002; Veneziano and Iacobellis, 2002; Langousis et al., 2013, and

references therein). These multifractal features of precipitation last within a finite range of temporal scales (approximatively

between 1 hour and 1 week) and concern the temporal dependence structure of the process. They have been connected to the

large fluctuations of the atmospheric and climate system governing precipitation which are likely to produce a "cascade of

random multiplicative effects" (Gupta and Waymire, 1990).30

At the same time, many studies confirmed the validity of SS for approximating the precipitation distribution tails in IDF

estimation (for examples of durations ranging from 5 min to 24 h see Menabde et al., 1999; Veneziano and Furcolo, 2002; Yu

et al., 2004; Nhat et al., 2007; Bara et al., 2009; Ceresetti et al., 2010; Panthou et al., 2014). This type of scaling is substantially
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different from the temporal scaling since it only refers to the power law shape of the marginal distribution of extreme rainfall.

Application of the SS models to precipitation records showed that the scaling exponent estimates may depend on the considered

range of durations (e.g., Borga et al., 2005; Nhat et al., 2007) and the climatological and geographical features of the study

regions (e.g., Menabde et al., 1999; Bara et al., 2009; Borga et al., 2005; Ceresetti et al., 2010; Blanchet et al., 2016). However,

the application of the SS framework has been mainly restricted to specific regions and small observational datasets. A deeper5

analysis of the effects of geoclimatic factors on the SS approximation validity and on estimated scaling exponent is thus needed.

The present study aims to deepen the knowledge of the scale-invariant properties of extreme rainfall intensity by analyzing SS

model estimates across North America using a large number of station series. The specific objectives of this study are: a) asses

the ability of SS models to reproduce extreme precipitation distribution; b) explore the variability of scaling exponent estimates10

over a broad set of temporal durations and identify possible effects of the dominant climate and pluviometric regimes on SS;

c) evaluate the possible advantages of the introduction of the SS hypothesis in parametric models of extreme precipitation.

The article is structured as follows. In Sect. 2 the statistical basis of scaling models is presented, while data and their preliminary

treatments are described in Sect. 3. Sect 4 presents the distribution-free estimation of SS models and their validation using

available series. Section 5 focuses on to the spatial variability of SS exponents and discusses the scaling exponent variation15

from a regional perspective. Finally, the SS IDF estimation based on the Generalized Extreme Value (GEV) assumption

is discussed in Sect. 6, followed by a discussion and conclusions [Sect. 7]. Table S1 of the supplementary material lists in

alphabetic order the recurrent acronyms used in text.R3

2 Simple Scaling models for precipitation intensity

When the equality in Eq. (1) holds for the cumulative distribution function (cdf) of the precipitation intensity X sampled20

consideredR1 at two different durations d and λd, the Simple Scaling (SS)R3 can be expressed as (Gupta and Waymire, 1990;

Menabde et al., 1999):

Xd
dist
= λHXλd, (2)

Xd
d
=λHXλd (2)R1

where H ∈ R and dist
=

d
= R1 means that the same probability distribution applies for Xd and Xλd, up to a dilatation or25

contraction of size λH . An important consequence of the SS assumption is that, if Xd has finite moments E[Xq
d ] of order q,

thenR2 Xd and λHXλdλ
HXq

λd
R2 have the same distribution. Hence, if Xd and Xλd have finite moments of order q, E[Xq

d ]

and E[Xq
λd], these TheirR2 moments are thus linked by the following relationship (Gupta and Waymire, 1990; Menabde et al.,

1999):

E[Xq
d ] = λHqE[Xq

λd]. (3)
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This last relationship is usually referred to as the wide sense simple scaling property (Gupta and Waymire, 1990) and signifies

that simple scaling results in a simple translation of the log-moments between scales:

ln{E[Xq
d ]}= ln{E[Xq

λd]}+Hq lnλ (4)

Moreover, without loss of generality, λ can always be expressed as the scale ratio λ= d/d∗ defined for a reference dura-

tion d∗ chosen, for simplicity, as d∗ = 1. Therefore, the SS model can be estimated and validated over a set of durations

d1 < d2 < .. < dD by simply checking the linearity in a log-log plot of the X moments versus the observed durations dj ,5

j = 1,2, . . . ,D [see, for instance, Gupta and Waymire (1990); Burlando and Rosso (1996); Fig. 1 of Nhat et al. (2007) ; and

Fig. 2 (a) of Panthou et al. (2014)]. If H estimated for the first moment equals the exponents (slopes) for the other moments,

the precipitation intensity X can be considered scale invariant under SS in the interval of durations d1 to dD.

More sophisticated methods have also been proposed for detecting and estimating scale invariance [for instance, dimensional

analysis, Lovejoy and Schertzer (1985); Tessier et al. (1993); Bendjoudi et al. (1997); Dubrulle et al. (1997); spectral analysis10

and wavelet estimation Olsson et al. (1999); Venugopal et al. (2006) Ceresetti (2011); and empirical probability distribution

function (pdf) power law detection Hubert and Bendjoudi (1996); Sivakumar (2000); Ceresetti et al. (2010)]. However, estima-

tion through the moment scaling analysis is by far the simplest and most intuitive tool to check the SS hypothesis for a large

dataset. For this reason, the presented analyses are based on this method.

According to the literature, the values of the scaling exponents H generally range between 0.4 and 0.8 for precipitation inten-15

sity considered at daily and shorter time scales (e.g., Burlando and Rosso, 1996; Menabde et al., 1999; Veneziano and Furcolo,

2002; Bara et al., 2009) (note that for the rainfall depth the scaling exponent Hdepth = 1−H applies). Values from 0.3 to 0.9

have also been reported for some specific cases (e.g., Yu et al., 2004; Panthou et al., 2014, for scaling intervals defined within

1 h and 24 h).

Higher H values have been generally observed for shorter-duration intervals, and regions dominated by convective precipita-20

tion (e.g., Borga et al., 2005; Nhat et al., 2007; Ceresetti et al., 2010; Panthou et al., 2014, and references therein). Nonetheless,

some studies performing spatio-temporal scaling analysis reached a different conclusion. For instance, Eggert et al. (2015), an-

alyzing extreme precipitation events from radar data for durations between 5 min and 6 h and spatial scales between 1 km and

50 km, indirectly showed that stratiform precipitation intensity generally displays higher temporal scaling exponents than con-

vective intensity. For short-duration intervals (typically less than one hour), previous studies have also reported more spatially25

homogeneous H estimates than for long-duration intervals (e.g., Alila, 2000; Borga et al., 2005, and references therein). This

suggests that processes involved in the generation of local precipitation are comparable across different regions.

More generally, higher H values are associated with larger variations in moment values as the scale is changed (i.e. a stronger

scaling), while H close to zero means that the Xd distributions for different durations d more closely match each other.

2.1 Simple Scaling GEV models30

Annual Maximum Series (AMS) are widely used to select rainfall extremes from available precipitation series. Various the-

oretical arguments and experimental evidences support their use for extreme precipitation inference (e.g., Coles et al., 1999;
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Katz et al., 2002; Koutsoyiannis, 2004a; Papalexiou et al., 2013).

Based on the asymptotic results of the Extreme Value Theory (Coles, 2001), the AMS distribution of a random variable X is

well described by the Generalized Extreme Value (GEV) distribution family. If we represent the AMS by (x1,x2, ...,xn), the

GEV cdf can be written as (Coles, 2001):

F (x) = exp

{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ}
(5)5

where ξ 6= 0, −∞< x≤ µ+σ/ξ if ξ < 0 (bounded tail), and 1/µ+σξ ≤ x <+∞ if ξ > 0 (heavy tail). If ξ = 0 (light-tailed

shape, Gumbel distribution), Eq. (5) reduces to:R1

F (x) = exp

{
−exp−

{
x−µ
σ

}}
(6)

where −∞< x <+∞. In Eq. (5) and (6), the parameters R1 µ ∈ R, σ > 0 and ξ respectively represent the location, scale,

and shape parameters of the distribution. The shape parameter describes the characteristics of the distribution tails. Thus, high10

order quantile estimation is particularly affected by the value of ξ.

If ξ = 0 (light-tailed shape, Gumbel distribution), Eq. (5) reduces to:

F (x) = exp
{
−exp−

{
x−µ
σ

}}
(6)

where −∞< x <+∞. R1

In applications, the GEV distribution is frequently constrained by the assumption that ξ = 0 (i.e., to the Gumbel distribution),15

due to the difficulty of estimating significant values of the shape parameter when the recorded series are short (e.g., Borga et al.,

2005; Overeem et al., 2008; CSA, 2012). However, based on theoretical and empirical evidence, many authors have shown that

this assumption is too restrictive for extreme precipitation, and may lead to important underestimations of the extreme quantiles

(e.g., Koutsoyiannis, 2004a, b; Overeem et al., 2008; Papalexiou et al., 2013; Papalexiou and Koutsoyiannis, 2013). Instead,

approaches aimed at increasing the sample size may be used to improve the estimation of the GEV distribution shape param-20

eter (for instance, the Regional Frequency Analysis (RFA), Hosking and Wallis, 1997). Among these approaches, SS models

constitute an appealing way to pool data from different samples (durations) and reduce uncertainties in GEV parameters.

For the GEV distribution it is straightforward to verify that, ifX dist
= X

d
= R1 GEV (µ,σ,ξ) then λX dist

= λX
d
= R1 GEV (λµ,λσ,ξ)

for any λ ∈ R. This means that the GEV family described by Eq. (5) and (6) satisfies Eq. (1) (2))R1 and thus complies with

statisticalR1 scale invariance for any constant multiplicative transformation of X . Hence, when the scale invariance is further25

assumed for the change of observational duration from d to λd [as in Eq. (2)], Under this assumptionR1 the wide sense SS

definition [Eq. (3)] gives:

µd = dHµ∗ ,σd = dHσ∗ , and ξd = ξ∗ (7)

where µ∗, σ∗, and ξ∗ represent the GEV parameters for a reference duration d∗ chosen, for simplicity, as d∗ = 1, so that λ= d.
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2.2 SS GEV estimation

Taking advantage of the scale invariant formulation of the GEV distribution, many authors have proposed simple scaling IDF

and DDF models for extreme precipitation series (e.g., Yu et al., 2004; Borga et al., 2005; Bougadis and Adamowski, 2006;

Bara et al., 2009; Ceresetti, 2011). In these cases, the scaling exponent and the GEV parameters are generally estimated in

two separate steps: first, the H value is empirically determined through a log-log linear regression, as described above; then,5

GEV parameters µ∗, σ∗, and ξ∗ for the reference duration d∗ are estimated on the pooled sample of all available durations.

In this case, classical estimation procedures, such as GEV Maximum-Likelihood (ML) (Coles, 2001) or Probability Weighted

Moment (PWM) (Greenwood et al., 1979; Hosking et al., 1985), can be used.

In a few other cases, a Generalized Additive Model ML (GAM-ML) framework (Coles, 2001; Katz, 2013) has also been used

to obtain the joint estimate ofH,µ∗,σ∗, and ξ∗ through the introduction of the duration as model covariate (e.g. Blanchet et al.,10

2016).

3 Data and study region

Four station datasets were used for the construction of intensity Annual Maxima Series (AMS) AMSR3 at different durations:

the Daily Maxima Precipitation Data (DMPD) and the Hourly Canadian Precipitation Data (HCPD) datasets provided by

Environment and Climate Change Canada (ECCC) and the MDDELCC [in french Ministère du Développement Durable, de15

l’Environnement et de la Lutte contre les Changements Climatiques] for Canada, and the Hourly Precipitation Data (HPD) and

15-Min Precipitation Data (15PD) datasets made available by the National Oceanic and Atmospheric Administration (NOAA)

agency [http://www.ncdc.noaa.gov/data-access/land-based-station-data] for United States. The total number of stations was

approximately 3400, with roughly 2200 locations having both DMPD and HCPD series, or both HPD and 15PD series. The

majority of stations are located in the United States and in the southern and most densely populated areas of Canada. In north-20

ern regions the station network is sparse and the record length does not generally exceed 15 or 20 years. Moreover, for most of

DMPD and HCPD stations, the annual recording period does not cover the winter season and available series generally include

precipitation measured from May to October. For this reason, the year from which the annual maxima was sampled was limited

to the recording season going from June to September for northern stations [stations located north of the 52nd Parallel] and

from June to September for the southern stations. As a result, 122 days a year were used for northern stations and 184 days a25

year for remaining stations.

For this reason, the year was defined as the period from June to September for the stations located north of the 52nd Parallel

[122 days a year were used], while the period from May to October was used for remaining stations [184 days a year].R1

Data were collected through a variety of instruments [e.g., standard, tipping-bucket, and Fischer-Porter rain gauges] and precip-

itation values were processed and quality-controlled checkedR1 using both automated and manual methods (CSA, 2012, HPD30

and 15PD online documentation). Most often, observations were recorded by tipping-bucket gauges with tip resolution from

0.1 mm to 2.54 mm (CSA, 2012; Devine and Mekis, 2008). 15 min series usually present the coarser instrument resolution,

with a minimum non-zero value of 2.54 mm, observed for about 80.5% of 15PD stations. The effects of such a coarse instru-

6

http://www.ncdc.noaa.gov/data-access/land-based-station-data


ment resolution on simple scaling estimates could be important leading to empirical Xd cdfs becoming step-wise functions

with a low number of steps. Some preliminary analyses aiming at evaluating these effects on SS estimates are presented in

the supplementary material [see Fig. S2 and S3]. However, the 15PD dataset is important considering the associated network

density and its fine temporal resolution, and thus it has been retained for our study. The main characteristics of the available

datasets are summarized in Table 1.5

The scaling AMS datasets were constructed according to the following steps:

(i) Three duration sets were defined: a) 15 min to 6 h with a 15min step; b) 1 h to 24 h with a 1h step; c) 6 h to 168 h (7

days) with a 6h step. These duration sets are hereinafter referred to as Short-Duration (SD), Intermediate-Duration (ID), and

Long-Duration (LD) datasets, respectively [see Figure 1 (a)]R3.

(ii) Meteorological stations that were included in each final dataset were selected according to the following criteria: 1) precip-10

itation series must have at least 85% of valid observations for each May to October (or June to September) periodeach yearR1,

otherwise the correspondingR1 year was considered as missing; 2) each station must have at least 15 valid years; 3) for each

station, it was possible to compute AMS for all durations considered in the scaling dataset (e.g., HCPD and HPD stations were

not included in the SD dataset because only hourly durations were available). Note that, in order to exclude outliers possibly

associated with recording or measurement errors, extremely large observations were discarded and assimilated to missing data.15

In particular, as in some previous studies (e.g., Papalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013), an iterative

procedure was applied prior to step (ii)-1) to discard observations larger than 10 times the second largest value of the series.

(iii) A moving window was applied to 15PD, HCPD, and HPD series to estimate aggregated series at each duration. For

DMPD series, a quality check was also implemented in order to guarantee that precipitation intensities recorded each day at

different durations were consistent with each other. For instance finstanceR1, each pair of DMPD intensity (xd1 ,xd2) observed20

at durations d1 < d2 must respect the condition xd2/xd1 ≥ d1/d2 the conditions xd2/xd1 ≤ 1 and d1xd1 ≤ d2xd2R1 derived

from the definitions of daily maximummaxima rainfall intensity and depth; otherwise all DMPD values recorded that day were

discarded and assimilated to missing data.

(iv) For each selected station, annual maxima were extracted for each valid year and duration. For stations having both DMPD

and HCPD series, or 15PD and HPD series, for each year, the annual maxima extracted from these two series were compared25

and the maximum value was retained as the annual maximum for that year.

Major characteristics of each scaling AMS dataset are reported in Table 2.

4 SS estimation through Moment Scaling Analysis (MSA)

Moment Scaling Analysis (MSA) for the SD, ID, and LD datasets was carried out to empirically validate the use of SS models

for modeling AMS empirical distributions for intensity AMSR1. Assessing the validity of the SS hypothesis for various duration30

intervals also aimed at determining the presence of different scaling regimes for precipitation intensity distributions.
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In order to identify possible changes in the SS properties of AMS distributions, various scaling intervals scaling intervalsR1

were defined for the MSA. In particular, all possible subsets with 6, 12, 18 and 24 contiguous durations were considered within

each dataset. Figure 2 and Figure 3 show the 136 scaling intervals thereby defined: 40 scaling intervals for SD and ID ISR2, and

56 scaling intervals for LD. For instance, the top left matrix the first matrix on the leftR2 of Fig. 2(a) presents the 6-duration

scaling intervals 15 min - 1 h 30 min, 30 min - 1 h 45 min, . . . 4 h 45 min - 6 h15min - 1.5h, 30min- 1.75h, . . . , 4.75 h - 6 hR15

defined for the SD dataset [i.e. the 19 scaling intervals containing six contiguous durations defined with a 15min increment]

.,R3 More schematically, Fig. 1(b) shows an example of the first five 6-duration scaling intervals for the ID dataset [i.e. 1h -

6h, 2h - 7h, . . . , 5h - 10h, containing six contiguous durations defined with an increment of 1h]. while Fig. 2(d) shows an

example of the first four 6-duration scaling intervals for the ID dataset [i.e. 1h - 6h, 2h - 7h, 3h - 8h, and 4h - 9h, containing six

contiguous durations defined with an increment of 1h].R1 This procedure was defined in order to evaluate the sensitivity of the10

SS estimates to changes in the first duration d1 of the scaling interval and in the interval length [i.e. the number of durations

included in the scaling interval].

For each scaling interval (for simplicity, their index has been omitted), the validity of the SS hypothesis was verified according

to the following steps:

1. MSA regression: for eachR1 q = 0.2,0.4, . . . ,2.8,3, the slopes Kq of the log-log linear relationships between the empirical15

q−moments 〈Xq
d〉 of Xd1 ,Xd2 , . . . , XdD and the corresponding durations d1,d2, . . . ,dD in the scaling interval [d1,dD] were

estimated by Ordinary Least Squares (OLS) [see Fig. 1 (c) for a graphic example]R1. Order q ≥ 3 were not considered because

of the possible biases affecting empirical high order moment estimates.

2. Slope test: to verify the SS assumption that the estimatedKq exponents vary linearly with the moment order q, i.e.Kq ≈Hq,

an OLS regression between the MSA slopes Kq and q was applied [see Fig. 1 (d)]. For the regression line Kq = ĥ0 + ĥ1 q, a20

Student’s t-test was then used to test the null hypothesis H0: ĥ1 =K1. Regressing the MSA slopes Kq on q, the hypothesis

that the estimated Kq-exponents vary linearly with the order of moment q was verified. To this end, a Student’s t-test was used

to test the null hypothesis H0: β1 =K1, where β1 is the slope coefficient of the simple regression model Kq = β0 +β1q.R1 If

H0 was not rejected at the significance level α= 0.05, the SS assumption was considered appropriate for the scaling interval

and the simple scaling exponent H =K1 was retained.25

3. Goodness-of-Fit (GOF) test: for each duration d, the goodness of fit of the Xd distribution under SS was tested using

the Anderson-Darling (AD) and the Kolmogorov-Smirnov (KS) tests. These tests aim at validating the appropriateness of

the scale invariance property for approximating the Xd cdf by the distribution of Xd,ss = d−HXd∗ . To this end, each AMS,

xdj =
(
xdj ,1,xdj ,2, . . . ,xdj ,i, . . .xdj ,n

)
, recorded at duration dj was rescaled at the reference duration d∗ by inverting Eq.

(2):R130

x∗dj =
(
dj
Hxdj ,1,dj

Hxdj ,2, . . . ,dj
Hxdj ,i, . . .dj

Hxdj ,n

)
(8)
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where n represents the number of observations (years) in xdj . Then, the pooled sample, xd∗ , of the D rescaled AMS, x∗dj ,

was used to define Xd∗ under the SS assumption:R1

xd∗ =
(
x∗d1 , . . . ,x

∗
dj , . . . , x

∗
dD

)
(9)

Since, in Eq. (9), D represents the number of durations dj in the scaling interval, n×D rescaled observations were included

in xd∗5

To this end, the pooled sample

xd∗ =
(
x′d1 , . . . ,x

′
dj , . . . ,x

′
dD

)
(8)

of the D rescaled AMS, x′dj , was used to define Xd∗ under the SS assumption, considering all the durations dj , with

j = 1, . . . ,D, in the scaling interval. Each rescaled sample x′dj of the annual maxima xdj ,i, i= 1, . . . ,n, observed for the

duration dj was obtained by simply inverting Eq. (2) for d∗:10

x′dj =
(
dj
Hxdj ,1,dj

Hxdj ,2, . . . ,dj
Hxdj ,i, . . . dj

Hxdj ,n

)
(9)

where n represents the number of observations (years) available for each duration. In this way, n×D rescaled observations

were included in xd∗
R1.

As in previous applications (e.g., Panthou et al., 2014), the AD and KS tests were then applied at significance level α= 0.05

to compare the empirical distributions (Cunnane plotting formula, Cunnane, 1973) of the SS sample, xd,ss = d−Hxd∗ , and the15

non-SS sample, xd. In fact, despite the low power of KS and AD tests for small sample tests, they represent the only suitable

solution to the problem of comparing empirical cdfs when the data do not follow a normal distribution. Because both AD

and KS are affected by the presence of ties in the samples (e.g., repeated values due to rounding or instrument resolution), a

permutation test approach (Good, 2013) was used to estimate test p-values. According to this approach, data in xd and xd,ss

were pooled and randomly reassigned to two samples having same sizes as the SS and non-SS samples. Then, the test statistic20

distribution under the null hypothesis of equality of the Xd,ss and Xd distributions was approximated by computing its value

over a large set of random samples. Finally, the test p-value was obtained as the proportion of random samples presenting a

test statistic value larger than the value observed for the original sample.

The SS model validity and the mean error resulting from approximating the Xd distribution by the SS model were then eval-

uated in a cross-validation setting. For this analysis, each duration was iteratively excluded from each scaling interval and the25

scaling model re-estimated at each station by repeating steps 1 to 3 [MSA regression, Slope test, and GOF tests]. The mean

error resulting from approximating the Xd distribution by the SS model was then evaluated in a cross-validations setting. For

this analysis, each duration was iteratively excluded from each scaling interval and the scaling model re-estimated at each

station. R1 Predictive ability indices, such as the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE)

between empirical and SS distribution quantiles, were then estimated for highest quantiles for valid SS stations.. In particular,30

to focus on return periods of practical interest for IDF estimation, only quantiles larger than the median were considered (i.e.,

only return periods greater than 2 years).
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For each station s, the normalized RMSE, εxd,s
, was estimated: R1

εxd,s
=
εxd,s

xd,s
(10)

where εxd,s
and xd,s are, respectively, the RMSE and the mean value of all Xd quantiles of order p > 0.5. Then, the average

over all stations of the normalized RMSE, εxd
, was computed for each scaling interval and duration: R1

εxd
=

1

ns

ns∑
s=1

εxd,s
(11)5

where ns is the number of valid SS stations in the dataset. Note that εxd
is a measure of error, meaning that values of εxd,s

closer to 0 correspond to a better fit than larger values.

The average over all stations of the normalized RMSE, εxd
, for each scaling interval and duration was used:

εxd
=

1

ns

nS∑
s=1

εxd,s
(10)

where ns is the number of valid SS stations in the dataset,10

εxd,s
=
εxd,s

xd,s
(11)

and εxd,s
and xd,s are, respectively, the RMSE and the mean value of allXd quantiles of order p > 0.5 at station s. Note that the

normalized RMSE is a measure of error, meaning that values of εxd,s
closer to 0 correspond to a better fit than larger values.R1

4.1 Model estimation and validation

Figure 2 presents the results of steps 1 to 3 of the methodology for evaluating the SS validityof points 1 to 3 of the procedure15

for the evaluation of the SS validity.R1 For all the three scaling datasets, no particular pattern was observed for slope test results,

and at most 2% of the stations within each scaling interval displaying a non linear evolution of the scaling exponent with the

moment order. For this reason, Fig. 2(a)-(c) show, for each scaling interval and duration, the proportion of valid SS stations

without differentiating for slope or GOF test results.It shows, for each scaling interval and duration, the proportion of valid SS

stations [Fig. 2(a)-(c)].R1 As showed in Fig. 1(e)the example in Fig. 2(e)R1, for each scaling interval, valid SS stations were20

defined as stations having not rejected both the Slope test for the scaling interval and the GOF tests for each duration included

in this scaling interval.

As expected, the proportion of valid SS stations decreased when the number of durations within the scaling interval increased

and with decreasing d1. This is particularly evident for short d in SD and ID datasets. More GOF test rejections were observed

for longer scaling intervals [not shown]R1, due to the higher probability of observing large differences between xd and xd,ss25

quantiles when xd,ss had larger sample size and included data from more distant durations. However, several factors can impact

GOF test results when shorter d1 are considered. First, GOF tests are particularly sensitive to the presence of very large values in

short-duration samplesthe SS hypothesis could be rejected due to the presence of very large values in short-duration samples,

to which GOF tests are particularly sensitiveR3. Second, when considering durations close to the temporal resolution of the

recorded series [i.e., 15 min in SD and 1 h in ID and LD], stronger underestimations could affect the measure of precipitation30

because intense rainfall events are more likely to be split between two consecutive time steps. Finally, preliminary analyses
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[Fig. S2 and S3 in the supplementary material] showed that the largest GOF test rejections could also be connected to the coarse

instrument resolution of 15PD series, which, similar to the temporal resolution effect, induces larger measurement errors in

the shortest duration series. Note that comparable resolution issues were previously reported by some authors while estimating

fractal and intermittency properties of rainfall processes (e.g., Veneziano and Iacobellis, 2002; Mascaro et al., 2013) and IDF

(e.g., Blanchet et al., 2016).5

Valid SS station proportions between 0.99 and 1 were always observed for GOF tests in ID and LD datasets, except for some

durations shorter than 3 h (ID dataset) or 6 h (LD dataset). For all three datasets, no particular pattern was observed for slope

test results [not shown], with at most 2% of the stations within each scaling interval displaying a non linear evolution of the

scaling exponent with the moment order.R1 When considering both GOF and Slope test, with the exception of some durations

≤1 hour, the proportion of stations satisfying SS was higher than 0.9, and the majority of scaling intervals [65%, 90%, and 98%10

of the scaling intervals in SD, ID, and LD, respectively] included at least 95% of valid SS stations. For each scaling interval,

only valid SS stations were considered in the rest of the analysis.

These findings were also confirmed by cross-validation experiments. The proportion of valid SS stations resulting from cross-

validation Slope and GOF tests were similar, event if slightly lower, to proportions displayed in Fig. 2 [see Fig. S4 of the

supplementary material].R215

Figure 3 presents, for each scaling interval and duration, the station average, εxd
, of the normalized RMSE. These graphics show

that mean relative errors on intensity quantiles did not generally exceed 5% of the precipitation estimates for 6-duration scaling

intervals [Fig. 3, first col.]. Greater errors were observed for durations at the border of the scaling intervals. Not surprisingly, this

result underlines that, in a cross-validation setting, both the MSA estimation ofH and theXd,ss approximation are less sensitive

to the exclusion of an inner duration of the scaling interval than to the exclusion of d1 or dD. Conversely, the extrapolation20

under SS of the Xd distribution is generally less accurate for durations at the boundaries or outside the scaling interval if d

is outside the range of durationsR1 used to estimate H . Moreover, as for the valid SS station proportion, the performances of

the model deteriorated with decreasing d1 and with increasing scaling interval length, especially for durations at the border of

the scaling intervalsR1. However, for more that 70% of 12-, 18-, and 24-duration scaling intervals, εxd
≤ 0.1 for each duration

included in the scaling interval. εxd
≥ 0.25 were observed for 15 min in 12-duration or longer scaling intervals, pointing out25

the weaknesses of the model in approximating short duration extremes when the scaling interval included durations ≥ 3 h.

4.2 Estimated scaling exponents and their variability

In order to evaluate the sensitivity of SS to the considered scaling interval, the variability ofH with d1 has been analyzed. Then,

the spatial distribution of the scaling exponents for each scaling interval was studied to assess the uncertainty in H estimation

and the dependence of SS exponents on local geoclimatic characteristics.30

Investigating the variability of the scaling exponent with the scaling interval is particularly important since, if SS is assumed

to be valid between some range of durations, one should expect that H remains almost unchanged over the various scaling

intervals included in this range. For this reason, the variation ∆H(j)
of the scaling exponents computed for overlapping scaling
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intervals having the same d1 but different lengths was analyzed. For each station and each d1, ∆H(j)
was defined as:

∆H(j)
=H(j)−H(6) (12)

where j = 12,18, or 24 represents the number of durations considered in the specified scaling interval, H(j) is the correspond-

ing scaling exponent, and H(6) is the scaling exponent estimated for the corresponding 6-duration scaling interval (i.e., the

6-duration scaling interval having the same d1 ). If SS is appropriate over a range of durations, ∆H(j)
is expected to be small5

for scaling intervals defined within this range.

Figures 4(ii)-(iv) show for all relevant scaling intervals the median, Interquantile Range (IQR), and quantiles of order 0.1 and

0.9 of the ∆H(j)
distribution over valid SS stations.The median, Interquantile Range (IQR), and quantiles of order 0.1 and 0.9

of the H distribution across stations, are presented in Fig. 4(i) for each 6-duration scaling interval. Figures 4(ii)-(iv) show the

distribution over valid SS stations of ∆H(j)
for all relevant scaling intervals.R1 Adding new durations to the scaling intervals,10

the median ∆H(j)
, as well as its IQR, increased for all d1.Median ∆H(j)

, as well as its IQR, increased with the number of

durations added to the scaling interval for all d1. Nonetheless, the median scaling exponent variation was generally smaller

than 0.05, except for a relatively small proportion of stations. Equally important, |∆H(j)
| was generally centered on 0 and for

all d1 ≥ 1 h more than 50% of stations had |∆H(12)
| ≤ 0.025 (SD dataset) and |∆H(18)

| ≤ 0.03 (ID dataset) [Fig. 4 (ii)-(iii)].

For some stations, a dramatic difference could exist in IDF estimations obtained with the different definitions of the scaling15

interval. R1 For instance, for the 24-duration scaling interval "1h - 24h" (ID dataset), the median ∆H(24)
was equal to 0.047.for

instance,median ∆H(24)
= 0.047 was observed. [Fig. 4(iv) b)]R1 For the interval "15min - 6h" (SD dataset), ∆H(24)

was even

larger, with a median scaling exponent variation approximately equal to 0.087 and with 25% of stations having ∆H(24)
≥ 0.11

[Fig. 4(iv) a)]R1. Finally, changes in H values were also important when comparing 6- and 12-duration scaling intervals when

d1 ≤ 1 h (SD and ID datasets) and in LD dataset [Fig. 4 (ii)].R1 These results indicate that, for some stations, a dramatic20

difference could exist in IDF estimations obtained with the different definitions of the scaling interval. Changes in H values

were also important when comparing 6- and 12-duration scaling intervals when d1 ≤ 1 h (SD and ID datasets) and in LD

dataset [Fig. 4 (ii)].

Nonetheless the median scaling exponent variation was generally smaller than 0.05, except for a relatively small proportion of

stations. Equally important, |∆H(j)
| was generally centered on 0 and for all d1 ≥ 1 h more than 50% of stations had |∆H(12)

| ≤25

0.025 (SD dataset) and |∆H(18)
| ≤ 0.03 (ID dataset) [Fig. 4 (ii)-(iii)].R1

The median, Interquantile Range (IQR), and quantiles of order 0.1 and 0.9 of the H distribution across stations, are presented

in Fig. 4(i) for each 6-duration scaling interval.R1 The smallest medianH values were observed for the shortest d1 ≤ 30 min d1

(d1 ≤ 30 min) in Fig. 4 (a-i), and for the longest d1s in Fig. 4 (c-i). Scaling intervals beginning at 15 and 30 min also displayed

the smallest variability across stations. Although fewer stations were available for these intervals (only 15PD stations were used30

and the number of valid SS stations was smaller), this result is consistent with previous reports in the literature demonstrating

that H values are spatially more homogeneous for short durations.

A larger dispersion of H values was observed when d1 ranged between approximately 1 h and 5 h, in particular in the SD

dataset, for which the 10th-90th percentile difference almost covered the entire range of observed H values [Fig. 4 (i)]. This
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result could be partially explained by the use of scaling intervals having equally spaced durations. This implies that the mean

distance between the logarithms of durations in the scaling interval decreases as d1 increases. Hence, the OLS estimator of H

used in the MSA regression may have larger variance for longer d1, especially when scaling intervals include few durations.

Larger uncertainty may thus have an impact on theH estimation for the longest d1 scaling intervals of SD. However, as showed

in next sections, H spatial distribution may also explain the greater variability of the scaling exponent for d1 greater than a few5

hours. R1 This result could be in part explained by the fact that, if the scaling interval length is fixed, then the variance V [ln(d)]

of the MSA regression covariate decreases as d1 increases. In fact, the use of a logarithmic scale for the MSA regression implies

that the mean distance between durations in the scaling interval decreases as d1 increases Thus, regression errors of the same

magnitude in short and long d1 scaling intervals differently affect the OLS variance of H , especially when scaling intervals are

short. This may result in larger uncertainty of H for longer d1 scaling intervals of SD. Moreover, as showed in next sections,10

H variability across stations may be effectively larger due to the greater spatial variability of the scaling exponent for d1 longer

than a few hours. R1

Largest median H were observed for d1 greater than 10 hours [Fig. 4 (b-i)] and lower than 2 days [Fig. 4 (c-i)], with approxi-

mately half of the stations havingH ≥ 0.8. This means that a stronger scaling (i.e., largerH values) is needed to relate extreme

precipitation distributions at approximately 12-hours to distributions at daily and longer scales. It may therefore be expected15

that the stations characterized byH closer to 1 are located in geographical areas where differences in precipitation distributions

are important among temporal scales included in these scaling intervals.

Examples of the spatial distributions of the scaling exponent are given in Fig. 5 and 6 for the first and last d1 for each interval

length and dataset, respectively. Since only one 24-duration scaling interval was defined for both the SD and ID datasets, only

scaling intervals containing 6, 12, and 24 (Fig. 5) or 18 (Fig. 6) durations are presented. This avoids the redundancy of showing20

twice the "15min - 6h" (SD dataset) and "1h - 24h" (ID dataset) scaling intervals.

Generally, the scaling exponent displayed a strong spatial coherence and varied smoothly in space, although a more scattered

distribution of H characterizes maps in Fig. 6. In this last figure, the local variability of H may be attributed to the larger

estimation uncertainties affecting longer d1 scaling intervals, as previously mentioned. Meaningful spatial variability and clear

spatial patterns emerged for d1 ≥ 1 h. In fact, for stations located in the interior and southern areas of the continent, a shift25

from weaker scaling regimes (smaller H) to higher H values was observed as d1 increases [e.g., second and third rows of Fig.

5]. On the contrary, a smoother evolution of H over the scaling intervals characterized the northern coastal areas, especially in

north-western regions, and the Rockies, where H > 0.75 values were rarely observed even for greater d1 values.

5 Regional analysis

Regional differences in scaling exponents were investigated. Only the results for the 6-duration scaling intervals are presented,30

similar results having been obtained for longer scaling intervals [see the supplementary material, Fig. S6S5R1 and S7S6R1

for 12- and 18-duration scaling intervals]. Stations were pooled into six climatic regions based on thea previous classification

suggested by Bukovsky (2012) [see Fig. 7]. Stations outside the domain covered by the Bukovsky regions were attributed to
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the nearest region. Regions with less than 10 stations were not considered (regions without colored borders in Fig. 7) ; regions

A1 (W_Tun) and A2 (NW_Pac) were kept separated since and region A1 (W_Tun) was kept separated from region A2

(NW_Pac) becauseR3 only 14 stations were available in region A1 (W_Tun) for ID and LD datasets.

To provide deeper insights about regional features of precipitation associated with specific scaling regimes two variables related

to the precipitation events observed within AMS were also analyzed: the mean number of events per year, N̄eve, and the mean5

wet time per event, T̄wet, contributing to AMS within each scaling interval. For a given year and station, annual maxima

associated to different durations of a given scaling interval were considered to belong to the same precipitation event if the

time intervals over which they occurred overlapped. The mean wet time per event contributing to AMS, T̄wet, was defined as

the mean number of hours with non-zero precipitation within each event. Details on the calculation of N̄eve, T̄wet, and the

corresponding results are presented in the supplementary material [Sect. S2 and Fig. S5 and S6 S4 and S5R1].10

5.1 Regional variation of the scaling exponents.

Figure 8 shows the distribution of H within each region. Three types of curves can be identified. First, curves in Fig. 8 (a) to

(c) have a characteristic smooth S shape. Conversely, Fig. 8 (d) displays a rapid increase of H for scaling intervals defined

in ID and LD datasets until d1 = 2 days, preceded and followed by two plateaus : one plateau, oneR3 for the longest d1 with

remarkably high H values, and one for the shortest d1 with small H values. Finally, an inverse-U-shaped curve can be seen in15

Fig. 8 (e) and (f), with globally high H values already reached at sub-daily durations in dry regions (E).

For d1 ≤ 24 h, Fig. 8 (a) displays lower values of H than Fig. 8 (e)-(f), meaning that smaller variation in AMS moments are

observed in A1 and A2 when the scale is changed. This difference The difference between Fig. 8 (a) and (e)-(f)R1 can be par-

tially explained by the weaker impact of convection processes in generating very short duration extremes in North-West coastal

regions regions A1 and A2 with respect to southern areas (regions E and F). For northern regions, in fact,R1 the transition be-20

tween short and long duration precipitation regimes may be smoothed out by cold temperatures which moderate short-duration

convective activity, especially for W_Tun (region A1). The topography characterizing the northern pacific coast may thenR1

explain the smoothing effect for the curve of region NW_Pac (A2). In this case, in fact, the:R1 precipitation rates at daily and

longer scales are enhanced by the orographic effect acting on synoptic weather systems coming from the Pacific Ocean (Wallis

et al., 2007).25

Similarly, mountainous regions in C [Fig. 8 (c)] displayed the smallest variations of H over d1, indicating that analogous scal-

ing regimes characterize both short- and long-duration scaling intervals. Again, this may be related to the important orographic

effects of precipitation in these regions that are involved in the generation of extremes for both sub-daily and multi-daily time

scales. The mean number of events per year in regions A and C was higher than in regions E-F, in particular for SD scaling

intervals, and displayed steeper decreases with increasing d1 [Fig. S5 S4R1 (a) and (c) in the supplementary material].30

Main differences between regions B and A were the stronger scaling regimes observed in B, which were mainly due to contri-

butions from stations located in the south-eastern part of the E_Bor region (not shown). For scaling intervals in the ID dataset,

region B was also characterized by the highest mean number of events per year, with most of the stations presenting N̄eve > 2

for d1 = 1 h and d1 = 2 h and sharp decreases of N̄eve with increasing d1 [Fig. S5S4R1 (b) in the supplementary material].
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Moreover, a remarkably large range of N̄eve was observed for 1 h ≤ d1 ≤ 6 h, suggesting that B may be highly heterogeneous.

Two distinct scaling regimes can be observed for SW_Pac (region D) at, respectively, d1 ≤ 3 h (SD dataset) and d1 ≥ 2 days

(ID dataset) [region D in Fig. 8 (d)]. These plateaus may be interpreted by recalling that 1−H =Hdepth. On the one hand, the

low and constant H observed for d1 ≤ 3 h indicates that the average precipitation depth increases with duration at the same

growth rate for all these intervals. On the other hand, H approximately equal to 0.9 at daily and longer durations demonstrates5

that the average precipitation depth associated with long-duration annual maxima remained roughly unchanged when the dura-

tion increased from 1.5 to 7 days (λHdepth ≈ 1 in Eq. (3)). This, along with the fact that the scaling exponent increased almost

monotonically for 1 h ≤ d1 ≤ 24 h (ID and LD datasets), suggests that extremes at durations shorter than ∼ 3 h (SD dataset)

drive annual maxima precipitation rates at longer scales, with the rapid and continuous decay in mean intensity caused by the

increasing size of the temporal scale of observation.10

For SW_Pac (region D), the relative absence of long-lasting weather systems able to produce important extremes for long

durations, was confirmed by the analysis of N̄eve and T̄wet [see Fig. S5 and S6S4 and S5R1 of the supplementary material]. In

fact, the mean number of events per year was relatively high for short durations (the median N̄eve is equal to 1.82 for d1 = 15

min and to 1.4 for d1 = 1h), while it rapidly decreased below 1.1 events per year for d1 ≥ 6 h (ID dataset) and for d1 ≥ 18 h

(LD dataset). With the exception of d1 = 6 h (LD dataset), at least 90% of SW_Pac stations had N̄eve ≤ 1.25 for all d1 > 315

h. In other regions, median N̄eve were never smaller than 1.1 for the SD and ID datasets, except for d1 ≥ 12h in region E.

These results suggests that both the distinctive topography of the west coast and the characteristic large-scale circulation of the

south-west areas of the continent are crucial factors determining the transition between the two scaling regimes in region D.

Median H values displayed inverse-U shapes for the remaining regions with very small IQR, despite the high number of valid

SS stations: a slow transition from lower to higher H is observed approximately between 1 h and 12 h (region E) or 30 h20

(region F). The strongest scaling regimes were observed for 1 h ≤ d1 ≤ 2 days in arid western regions [Fig. 8 (e)], while

median H values greater than 0.8 were only observed for approximately 6 h ≤ d1 ≤ 2 days in more humid areas [8 (f)]. In

both region E and F, very short-duration extremes are typically driven by convective processes, while a transition to different

precipitation regimes may be expected between 1 h and a few hours. However, H shows a smoother increase in Fig. 7 (f)

with respect to Fig. 7(e). This may indicate that in eastern areas [region F] sub-daily duration extremes are more likely asso-25

ciated to embedded convective and stratiform systems, or to mesoscale convective systems, which are less active in western

dry areas of region EHowever, the smoother increase of H visible in Fig. 8 (f) with respect to (e) may also indicate that, in

eastern areas, the occurrence of sub-daily duration extremes are more likely associated to embedded convective and stratiform

systems, or to mesoscale convective systems less active in western dry areasR1 (Kunkel et al., 2012). On the contrary, differ-

ences between short- and long-duration extreme precipitation intensity seem stronger for south-western dry regions [Fig. 8 (e)],30

where less intense summer extremes are expected compared to eastern areas [see supplementary material, Fig. S1]. In partic-

ular, H tended to scatter in a range of higher values for approximately 1 h ≤ d1 ≤ 12 h indicating that precipitation intensity

moments strongly decrease as the duration increases. On the contrary, for south-western dry regions [Fig. 8 (e)], where less

intense summer extremes are expected compared to eastern areas [see supplementary material, Fig. S1], differences between

short- and long-duration extreme precipitation intensity seem stronger since H tended to scatter in a range of higher values:35
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precipitation intensity moments strongly decrease as the duration increases for approximately 1 h ≤ d1 ≤ 12 hR1.

In summary, these results suggest that both local geographical characteristics, such as topography or coastal effects, and gen-

eral circulation patterns may influence precipitation scaling at a regional scale. In summary, these results suggest a regional

effect on precipitation scaling of both local geographical characteristics, such as topography or coastal effects, and general

circulation patterns.R1 In general, the weakest scaling regimes were observed for short d1 and along the west coast of the5

continent and seem to be connected to scaling intervals and climatic areas characterized by homogeneous weather processes.

Low H values correspond in fact to small variations in AMS distribution moments. On the contrary stronger scaling regimes

were observed for longer d1 in the other regions of the study area. This indicates that important changes occur in AMS mo-

ments across duration and, thus, in extreme precipitation features., stronger scaling regimes, which indicate important changes

occurring in AMS moments across duration and, thus, in extreme precipitation features, were observed for longer d1 in the10

other regions of the study area.R3 According to these results, it would be important to take into account the climatological

information included in the scaling exponent to improve SS and IDF estimation. Even more important, these results give useful

guidelines for modeling the spatial distribution of H , which could help for the definition of IDF relationships at non-sampled

locations.Even more important, these results could help for the definition of IDF relationships at non-sampled locations by the

construction of spatial models for the IDF parameter HR1.15

6 Simple Scaling GEV etimation
6 SS GEV estimationR3

Results presented in this section are limited to a descriptive analysis of GEV parameter estimates for 6-duration scaling

intervals. Similar results were generally obtained for 12-, 18-, and 24-duration intervals [see supplementary material, Fig. S10

to S16]. An assessment of the potential improvements carried out by Simple Scaling GEV (SS GEV) models with respect to20

non-SS GEV models is also presented. ,and to an assessment of the potential improvements carried out by SS GEV (SS GEV)

models with respect to PWM estimates of non-SS GEV models, for 6-duration scaling intervals. Similar results were generally

obtained 12-, 18-, and 24-duration intervals [see supplementary material, Fig. S9 to S15]R3.

In our study, the Probability Weighted Moment (PWM) PWMR3 procedure was applied to estimate SS-GEV parameters µ∗,

σ∗, and ξ∗ [Eq. (7)] from xd∗ [Eq. (9)]. For each duration d, PWM were also used to estimate non-SS parameters µd, σd, and ξd25

from each of the non-SS samples xd. Preliminary comparisons of various estimation methods [PWM, classical ML estimators,

and GAM-ML; see Sect.2.2], showed that PWM slightly outperformed the other methods.

Quantiles estimated from the SS and the non-SS GEV were compared with empirical quantiles. Global performance measures,

such as RMSE, were computed to evaluate the overall fit of the estimated GEV to the empirical Xd distributions. In particular,

mean errors between SS and non-SS quantile estimates and empirical quantiles were compared using the relative total RMSE30

ratio, Rrmse, defined as:

Rrmse =
[Rss−Rnon−ss]

Rnon−ss
(13)
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where

Rmod =

D∑
d=d1

εd,mod
x̄d

(14)

represents the normalized mean square difference between model and empirical quantiles of order p > 0.5 for all the durations

included in the scaling interval. See Eq. 10 for the definition of εd,mod for each station.R1

6.1 Estimated SS GEV parameters5

Figure 9 presents the distributions over valid SS stations of the SS GEV parameters rescaled at d∗ = 1 h [Fig. 9 (a) and (b)]

and d∗ = 24 h [Fig. 9 (c)].

For the SD dataset, even for scaling intervals which did not include the reference duration d∗, the µ∗ and σ∗ distributions

appeared to be similar to the non-SS µd and σd distributions [Figure 9, first row]. Similarly, for 6 h ≤ d1 ≤ 2 days in the

LD dataset, the SS location and scale parameter distributions are in relatively close agreement with the corresponding non-SS10

parameter distributions. Conversely, for the ID dataset, Conversely, in the ID and LD datasets,R1 both µ∗ and σ∗ distributions

arewere more positively skewed than the corresponding non-SS distributions. Finally, for d1 ≥ 2 days in the LD dataset, µ∗ and

σ∗ had distributions shifted toward lower values than µ24h and σ24h.R1 Moreover, the relative differences ∆µ = (µ∗−µd)/µd
and ∆σ = (σ∗−σd)/σd were estimated for each station, duration, and scaling interval. Two important results came out of

this analysis [see Figures S11 and S12S10 and S11R1 of the supplementary material]. On the one hand, median values of ∆µ15

and ∆σ were generally smaller than ±5% and ±10%, respectively. On the other hand, ∆σ showed large positive values when

ξd = 0 (i.e. Gumbel distributions), while small ∆σ < 0 were estimated when ξd 6= 0 [not shown for conciseness]. These results

are interesting since the estimation of the scale parameter σ of a GEV distribution may be biased when the shape parameter

is spuriously set to zero (ξ = 0). Hence, R1 while non-SS µd values can beare generally considered to be accurate estimates

of the Xd location parameter, small uncertainties should beare expected for the scale parameter only when the ξd value is20

correctly assessed. In fact, the scale parameter σd may be strongly biased when the shape parameter is spuriously set to zero

(ξd = 0).R1 In addition, µ∗ and σ∗ displayed aR3 strong spatialR3 coherence . Theirin theirR3 spatial distributions , whichR3

were characterized by an obvious North-West to South-East gradient [Fig. 10 shows examples for the scaling intervals 15min

- 1.5h, 1h - 6h, and 6h - 36h].

Notable differences between SS GEV and non-SS GEV estimates were observed for the shape parameter [Fig. 9, third col.,25

and Fig. 11]. Firstly, for cases having shape parameters strictly different from zero [third column of Fig. 9], ξ∗ absolute values

were smaller than non-SS ξd absolute values. Secondly, the distributions of ξ∗ across stations were generally more peaked

around their median value than the corresponding non-SS distributions. [third column of Fig. 9]. Firstly, SS ξ∗ were closer to

0 than non-SS ξd, for both positive and negative shape values. Secondly, ξ∗ distributions were generally more peaked around

their median value than non-SS estimates.R1 Finally, for the non SS model the majority of stations had shape parameter ξd30

non-significantly different from zero, while the fraction of SS GEV shape parameters ξ∗ 6= 0 was always greater than 39%

[asymptotic test for PWM GEV estimators applied at level 0.05; Hosking et al., 1985]. Note that, the majority of stations

had non-SS shape parameters ξd non-significantly different from zero according to asymptotic test proposed by Hosking et al.
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[1985] for PWM GEV estimators applied at level 0.05.R1 In particular, for each duration, non-SS models estimated light-tailed

distributions (i.e., ξd = 0) for more than 85% of the stations, except that for d= 15 min and d= 30 min [Fig. 11, first col.].

Conversely, for all scaling intervals with d1 > 15 min, SS GEV shape parameters were significantly different from zero for

40% to 45% of valid SS stations [Fig. 11, second col.]. Moreover, when using scaling intervals of 12 durations or more, the

proportion of ξ∗ > 0 was always important [( greater than 35% ) for all 18- and 24-duration scaling intervals ; [ see the supple-5

mentary material, Fig. S10S9R1].

The previous results suggest that pooling data from several durations may effectively reduce the sampling effects impacting

the estimation of ξ, allowing more evidence of non-zero shape parameters, and, in many cases, of heavy tailed (ξ > 0) AMS

distributions. This conclusion is consistent with previous reports, namely that 100- to 150-year series are necessary to unam-

biguously assess the heavy-tailed character of precipitation distributions (e.g., Koutsoyiannis, 2004b; Ceresetti et al., 2010).10

These studies typically reported values of ξ ≈ 0.15 (e.g., Koutsoyiannis, 2004b), which are close to ξ∗ values estimated in

the present analysis for cases with ξ∗ > 0. In general, typical values of ξ ≈ 0.15, close to the estimated ξ∗ for cases in which

ξ∗ > 0, have also been reported (e.g., Koutsoyiannis, 2004b).R1

However, uncertainties on ξ∗ estimates remain important. Support for this comes from the spatial distribution of ξ∗, which was

still highly heterogeneous, with local variability dominating at small scales [e.g., Fig. 10, third col.].15

6.2 Improvement with respect to Non-SS models

The proportion of series for which the SS model RMSE, εd,ss, was smaller than the non-SS GEV RMSE, εd,non−ss, was

analyzed [see the supplementary material, Fig. S14S12R1]. For cases with non-zero ξ∗, more than 60% of stations have

εd,ss < εd,non−ss over most scaling intervals and durations. the fraction of stations with εd,ss < εd,non−ss was higher than

60% for most of the scaling intervals and durations. The 6-duration scaling intervals "15 min - 1 h 30 min" (SD dataset) and20

"1 h - 6 sih" (ID dataset) showed the largest fractions of stations with increasing errors. R1 On the contrary, increasing errors

(εd,ss > εd,non−ss) were observed for all scaling intervals and durations for most stations (generally more than 70%) having

ξ∗ = 0.εd,ss > εd,non−ss was observed for the majority of stations (generally more than 70%) with ξ∗ = 0.R1

Figure 12 presents the Rrmse distribution over valid SS stations. When the SS distribution shape parameters were not signif-

icantly different from zero [Fig. 12, second col.], the relative increases in total RMSE were usually smaller than 0.1 in SD25

dataset and only scaling intervals with d1 < 1 h had greater Rrmse., with only scaling intervals with d1 < 1 h having greater

Rrmse
R3. For the ID and LD datasets, the medians of the total relative RMSE ratio distributions were smaller than 0.05 for

d1 ≥ 4 h and d1 ≥ 24 h, respectively. Furthermore, more than 90% of stations had Rrmse < 0.125 for d1 ≥ 6 h (ID dataset)

and d1 ≥ 30 h (LD dataset). When ξ∗ 6= 0, an increase of the mean error in high order quantile estimates was observed for d1 =

15 min (SD dataset) and d1 = 1 h (ID dataset) for at least half of the stations [Fig. 12, first col.; note the different scale on the30

y-axis]. However, for all other d1, negative Rrmse values were observed for the majority of stations for all scaling intervals,

with a median reduction up to 30% of the mean error. Note that also for 12- and 18-duration scaling intervals the median

Rrmse where generally negative for d1 > 1 h and ξ∗ 6= 0 [Fig. S14 and S15S13 and S14R1 of the supplementary material].
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Conversely, Rrmse increased for the majority of stations in all 24-duration scaling intervals having d1 < 12 h [Fig. S16S15R1

of the supplementary material]. Note also that no particular spatial pattern characterized the Rrmse estimates.

7 Discussion and conclusion

This study investigated simple scaling properties of extreme precipitation intensity across Canada and the United States. The

ability of SS models to reproduce extreme precipitation intensity distributions over a wide range of sub-daily to weekly dura-5

tions was evaluated. The final objective was to identify duration intervals and geographical areas for which the SS model can

be used for an efficienttheR3 production of IDF curves.

The validity of SS models was empirically confirmed for the majority of the scaling intervals. In particular, based on the com-

parison of SS distributions to empirical quantiles, the hypothesis of a scale-invariant shape of the Xd distribution held for all

duration intervals spanning from 1 h to 7 days based on the comparison of SS distributions to empirical quantiles. Less con-10

vincing results were obtained for durations shorter than 1 h, especially for the longest scaling intervals (24-duration intervals).

One possible explanation is that the coarse instrument resolution of the available 15 min series may strongly impact both the

validation tools (for instance, GOF tests) and SS estimates. These results provide important operative indications concerning

the inner and outer cut-off durations for AMS scaling and show the importance of a deeper analysis to evaluate the impact of

dataset characteristics (e.g., their temporal and measurement resolutions, or the series length) on the scale invariant properties15

of extreme precipitation.

The majority of the estimated scaling exponents ranged between 0.35 and 0.95, showing a smooth evolution over the scaling

intervals and a well-defined spatial structure. Six geographical regions, initially defined according to a climatological classifi-

cation of North America into 20 regions, displayed different features in terms of scaling exponent values. Specifically, distinct

median values of H were observed for the various geographical regions, each characterized by a different precipitation regime.20

This is consistent with results reported in the literature for some specific regions and smaller observational datasets (e.g., Borga

et al., 2005; Nhat et al., 2007; Ceresetti et al., 2010; Panthou et al., 2014, and references therein). Moreover, while small

and smooth changes of H over the scaling intervals were observed in regions containing the majority of stations, one region,

SW_Pac, displayed two dramatically distinct scaling regimes separated by a steep transition occurring between a few hours

and 24 h. These results limit the applicability of SS models in SW_Pac, and were connected to the local features of intense25

precipitation events by the analysis of the mean number of events per year and the mean wet time of these events.

Weak scaling regimes, characterized by relatively small H values (H close to 0.5), were generally observed for scaling in-

tervals containing very short durations (e.g, less than 2 h) and for regions on the west coast of the continent [regions A1, A2,

and D; see Fig. 8]. For these scaling intervals and regions, we can expect that extreme precipitation events observed at various

durations will have similar statistical characteristics, being governed by homogeneous weather processes.30

The interpretation of high H values (e.g., H > 0.8), observed between 1 and several days, depending on the region, is more

complex. These scaling regimes correspond to mean precipitation depth that varies little with duration. This suggests an impor-

tant change in precipitation regimes occurring at some durations included in the scaling interval. One interesting example was
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region SW_Pac (region D) for scaling intervals of durations longer than 1 day. In this case, the analysis of the mean number of

events per year sampled in AMS suggested that very few long-duration extreme events were produced by large-scale dynamic

precipitation systems.

For scaling intervals of durations longer than 4 days, scaling exponents seemed to converge to approximately 0.7 for all regions,

except west coast regions (regions A1, A2, and D).5

These results suggest that SS represents a reasonable working hypothesis for the development of more accurate IDF curves.

This may have important implications for infrastructure design and risk assessment for natural ecosystems, which would ben-

efit from a more accurate estimation of precipitation return levelsR3. Besides, the spatial distribution of the scaling exponent

and its dependency on climatology should be taken into account when defining SS duration intervals for practical estimation

of IDF. Thesince theR3 accuracy of the SS approximation may in factR3 depend on the range of considered temporal scales.10

Equally critical, estimated H values were found to gradually evolve with the considered scaling intervals. In this respect, in-

teresting extensions of the analysis should consider methods for the quantification of the uncertainty in H estimations as well

as the possibility of modeling the scaling exponent as a function of both the observational duration and the AMS distribution

quantile/moment order, i.e. by the use of a multiscaling (MS) framework for IDFs. Equally important, the events sampled by

the AMS also showed different statistical features within different geographical regions and some specific results [e.g., for the15

SW_Pac region] stimulate the interest for an analysis of the scaling property of extreme precipitation by the use of a temporal

stochastic scaling approach.

The evaluation of SS model performances under the assumption of GEV distributions for AMS intensity was then performed.

Results indicate that the proposed SS GEV models may lead to a more reliable statistical inference of extreme precipitation

intensity than that based on the conventional non-SS approach. In particular, a better assessment of the GEV shape parameter20

seems possible when pooling data from several durations under the scaling hypothesis. The use of the SS approximation may

introduce biases in high quantile estimates when AMS distributions move drastically away from perfect scale invariance (short

durations and/or longest scaling intervals). Nonetheless, decreases in the SS GEVRMSE with respect to non-SS GEV models

for d1 longer than a few hours and/or scaling intervals shorter than 24 durations indicate that quantile errors in IDF estimates

can be generally reduced.25

Caution is advised when interpreting these results due to the fact that high order empirical quantiles were used as reference

estimates of true Xd quantiles, which could be a misleading assumption especially when available AMS are short. More-

over, a more comprehensive assessment of the scaling exponent uncertain and of the influence of dataset characteristics on

the estimation of AMS simple scaling is recommended. R3 Considering thesethisR3 limitationsR3 and our general results, any

future extension of this study should investigate the possibility of introducing spatial information in scaling models as well as30

improvements of scaling GEV estimation procedures.
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8 Data availability

The 15-Min Precipitation Data (15PD) and Hourly Precipitation Data (HPD) were freely obtained from NOAA/Climate

Prediction Center (CPC) [http://www.ncdc.noaa.gov/data-access/land-based-station-data]. Houly Canadian Precipitation Data

(HCPD) and Maximum Daily Precipitation Data (DMPC) for Canada were acquired from Environment and Climate Change

Canada (ECCC) and from the MDDELCC of Québec [data available upon request by contacting Info-Climat@mddelcc.gouv.qc.ca].5
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Table 1. List of available datasets and their main characteristics.

Dataset Region
N. of Operational Temporal Prevalentc

stations periodb resolution resolution [mm]

Daily Maxima Prec. Dataa (DMPC) Canada 370 1964-2007 1, 2, 6, 12 h 0.1 (82.25%)

Hourly Canadian Prec. Data (HCPD) Canada 665 1967-2003 1 h 0.1 (70%)

Hourly Prec. Data (HPD) USA 2531 1948-2013 1 h 0.254 (82.5%)

15-Min Prec. Data (15PD) USA 2029 1971-2013 15 min 2.54 (80.42%)

a Daily maxima depth series over a 24-hour window beginning at 8:00 AM.
b Main station network operational period corresponding to 25th percentile of the first recording year and the 75th percentile of the last

recording year of the stations.
c Prevalent instrument resolution, estimated by the lowest non-zero value for each series, and corresponding percentage of stations with this

resolution.
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Table 2. Final datasets used in scaling analysis and corresponding AMS characteristics.

Scaling
Durations

N. of Mean series Max series

dataset Stations length [yr] length [yr]

SDa 15min, 30min, ..., 6h 1083 20 36

ID 1h, 2h, ...,24h 2719 37.4 66

LD 6h, 12h, ..., 168h 2719 37.4 66

a Only 15PD series.
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Figure 1. Methodology steps: a) Definition of the SD, ID and LD scaling datasets. b) Identification of durations and scaling intervals within

each matrix of Fig. 2 and 3; c) Moment Scaling Analysis (MSA) regression for the estimation of the slope coefficients Kq; d) Slope test:

regression of Kq on the moment order q and Student’s t-test for the null hypothesis H0: ĥ1 =K1; e) Examples of valid and non-valid SS

stations according to the Slope and GOF tests; f) Example of valid SS station proportion values and Normalized RMSE values, rxd , as

represented, in Fig. 2 and 3.
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Figure 2. a) - c)R1 Proportion of stations satisfying both the Slope and GOF tests applied at the 0.95 confidence level, for each duration

(vertical axis) and scaling interval (horizontal axis) for the SD, ID, and LD datasets [row a), b), and c) respectively]. White circles indicate

proportions between 0.25 and 0.90. See Fig. 1 (b) and (f) for the identification of durations and scaling intervals within each matrix. Example

of valid SS station proportion values and identification of durations and scaling intervals within each matrix; e) Examples of valid and

non-valid SS stations.R1

Figure 3. Cross-Validation Normalized RMSE averaged over all valid SS stations (rxd ) for each duration (vertical axis) and scaling interval

(horizontal axis) in the SD, ID, and LD datasets [row a), b), and c) respectively]. White circles indicate values between 0.15 and 0.3. See Fig.

1 (d) and (f) for the identification of durations and scaling intervals within each matrix.R1

Figure 4. Col. (i): Median and relevant quantiles of the scaling exponent distribution over all valid SS stations for each 6-duration scaling

interval. Col. (ii)-(iv): Median and relevant quantiles of the distribution of the scaling exponent deviation ∆H(j)
[defined in Eq. (12)]. The

average number of valid SS stations over the scaling intervals (identified by their first duration, d1 ) is indicated at the top of each graph.

Figure 5. Spatial distribution of the scaling exponent for the first (i.e. with minimum d1) 6-, 12-, and 24-duration scaling intervals (first,

second, and third col., respectively) for SD, ID, and LD datasets (first, second, and third row, respectively). These scaling intervals correspond

to the first column of matrices in Fig. 2 and 3.

Figure 6. Spatial distribution of the scaling exponent for the last (i.e. with maximum d1) 6-, 12-, and 18-duration scaling intervals (first,

second, and third col., respectively) for SD, ID, and LD datasets (first, second, and third row, respectively). These scaling intervals correspond

to the last column of matrices in Fig. 2 and 3.

Figure 7. Climatic regions of Bukovsky (2012) [grey borders] and regions defined for this analysis [regions A1 to F in the legend; colored

borders]. Abbreviations for each region are in parenthesis.

Figure 8. Median and Interquantile Range (IQR) of the scaling exponent distribution over valid SS stations within each region of Fig. 7 for

6-duration scaling intervals for the SD (left curve), ID (central curve), and LD (right curve) datasets. For each region, the mean number of

valid SS stations over the scaling intervals is indicated in brackets in the legend. See Fig. 7 for region definition.

Figure 9. Distribution over valid SS stations of SS GEV parameters (gray and black lines) for 6-duration scaling intervals and non-SS GEV

parameters (red solid and dashed lines) parameters for reference durations. for 6-duration scaling intervals. Location and scale parameters

(first and second col., respectively) are scaled at d∗ = 1h (SD and ID datasets) and d∗ = 24h (LD dataset). Distributions for the shape

parameter (third col.) are presented for ξ > 0 and ξ < 0, excluding cases where ξ = 0 (Gumbel distribution).
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Figure 10. Spatial distribution over valid SS stations of SS GEV position (first col.), scale (second col.), and shape (3rd col.; gray symbols

indicate Gumbel distributions, ξ∗ = 0) parameters scaled at d∗ = 1h for the first 6-duration scaling interval (i.e. interval with minimum d1)

of: SD (a), ID (b), and LD (c) datasets.

Figure 11. Stacked histograms of the fractions of valid SS stations with ξ < 0 (in red), ξ = 0 (in grey), and ξ > 0 (in blue) resulting from the

Hosking test applied at the 0.95 confidence level for each duration (non-SS GEV, first col.) and each 6-duration scaling interval (SS GEV,

second col.) for: SD (a), ID (b), and LD (c) datasets.

Figure 12. Distribution of the relative total RMSE ratio, Rrmse, for ξ∗ < 0 (first col.), ξ∗ = 0 (second col.), and ξ∗ > 0 (third col.) for 6-

duration scaling intervals in SD (a), ID (b), and LD (c) datasets. The average number of valid SS station over the scaling intervals is indicated

in the right-top corner of each graph.
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