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Abstract. The paper presents a methodology to give insight in the performance of ensemble streamflow forecasting systems. 

We developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern Poland, 

and analysed the performance for lead times from 1 day to 10 days for low, medium and high streamflow and related runoff 

generating processes. Precipitation and temperature forecasts from the European Centre for Medium-Range Weather 15 

Forecasts serve as input to a deterministic lumped hydrological (HBV) model. Due to inconsistent bias, the best streamflow 

forecasts were obtained without pre- and post-processing of the meteorological and streamflow forecasts. Best forecast skill, 

relative to alternative forecasts based on historical measurements of precipitation and temperature, is shown for high 

streamflow and for snow accumulation low streamflow events. Forecasts of medium streamflow events and low streamflow 

events generated by precipitation deficit show less skill. To improve the performance of the forecasting system for high 20 

streamflow events, in particular the meteorological forecasts require improvement. For low streamflow forecasts, the 

hydrological model should be improved. The study recommends improving the reliability of the ensemble streamflow 

forecasts by including the uncertainties in hydrological model parameters and initial conditions, and by improving the 

dispersion of the meteorological input forecasts.  

1 Introduction 25 

Accurate flood forecasting (Cloke and Pappenberger, 2009; Penning-Rowsell et al., 2000; Werner et al., 2005) and low 

streamflow forecasting (Demirel et al., 2013a; Fundel et al., 2013) are important to mitigate the negative effects of extreme 

events by enabling early warning. Accurate forecasting becomes increasingly more important since frequency and magnitude 

of low and high streamflow events are projected to increase in many areas in the world (IPCC, 2014). Due to socio-economic 

development also the impacts of extreme events increase (Bouwer et al., 2010; Rojas et al., 2013; Wheater and Gober, 2015).  30 
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Hydrological forecasting systems are often implemented as ensemble forecasting systems (Cloke and Pappenberger, 2009). 

Ensemble forecasts provide information about the possibility that an event occurs (Thielen et al., 2009), and allow 

quantification of the forecast uncertainty (Zappa et al., 2011). Uncertainties in streamflow forecasts originate from 

meteorological input, and hydrological model parameters, initial conditions and model structure (Cloke and Pappenberger, 

2009; Demirel et al., 2013a; Zappa et al., 2011).  5 

A number of studies investigated the performance of ensemble forecasting systems for different lead times, e.g. Ye 

et al. (2014) for the European Centre for Medium-Range Weather Forecasts (ECMWF) medium-range ensemble 

precipitation forecasts, Alfieri et al. (2014) for the European Flood Awareness System (EFAS), and Bennett et al. (2014), 

Olsson and Lindström (2008), Renner et al. (2009) and Roulin and Vannitsem (2005) for several catchments varying in size 

and other characteristics. They all found a deterioration of performance with increasing lead time. EFAS serves to provide 10 

high streamflow forecasts in large European river catchments for lead times between 3 and 10 days (Thielen et al., 2009). 

Relative to hydrological persistency the system skilfully forecasts high streamflow events for all lead times up to 10 days, 

with increasing skill for larger upstream areas (Alfieri et al., 2014). In EFAS critical flood warning thresholds are based on 

simulated streamflow, because model results and streamflow measurements can largely deviate (Thielen et al., 2009). EFAS 

is aimed at providing early warnings of possible flooding, instead of providing specific river streamflow forecasts (Demeritt 15 

et al., 2013). Most studies on medium-range ensemble streamflow forecasting focused either on flood forecasts (e.g. Alfieri 

et al., 2014; Bürger et al., 2009; Komma et al., 2007; Olsson and Lindström, 2008; Roulin and Vannitsem, 2005; Thielen et 

al., 2009; Zappa et al., 2011) or low streamflow forecasts (Demirel et al., 2013a; Fundel et al., 2013), in contrast to studies to 

general ensemble streamflow forecasting systems (Bennett et al., 2014; Demargne et al., 2010; Renner et al., 2009; Verkade 

et al., 2013). For two Belgium catchments the high streamflow forecasting system of Roulin and Vannitsem (2005) is more 20 

skilful for the winter period than the summer period. Previous studies did not assess effects of runoff processes, like 

snowmelt and extreme rainfall events, on the performance of the ensemble forecasts. 

Information on the relative importance of uncertainty sources in forecasts is helpful to improve the forecasts 

effectively (Yossef et al., 2013). A number of studies report on how errors in the meteorological forecasts and the 

hydrological model contribute to errors in medium-range hydrological forecasts. Demargne et al. (2010) show that 25 

hydrological model uncertainties (initial conditions, model parameters and model structure) are most significant at short lead 

times. This also depends on the flow category. Hydrological model uncertainties significantly degrade the evaluation score 

up to a lead time of 7 days for all flows and up to a lead time of 2 days for the very high streamflow events. Renner et al. 

(2009) found an underprediction of low forecast probabilities (few ensemble members over a high streamflow threshold), 

which they attribute to the meteorological forecasts (insufficient variability). On the other hand the high forecast 30 

probabilities (low threshold) are overpredicted, which Renner et al. (2009) attribute to both the hydrological model and the 

meteorological input data. Olsson and Lindström (2008) found an underestimation of the spread of ensemble flood forecasts, 

to an extent that decreases with lead time. They conclude that the meteorological forecasts and the hydrological model have 

a comparable contribution to this underestimation. In addition Olsson and Lindström (2008) show overprediction of forecast 
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probabilities over high thresholds, which they mainly attribute to the meteorological forecasts. Regarding low streamflow 

forecasts, Demirel et al. (2013a) concluded that uncertainty of hydrological model parameters has the largest effect, whereas 

meteorological input uncertainty has the smallest effect. Based on those studies we can say that for high streamflow forecasts 

uncertainties in the meteorological forecasts are dominant, whereas for low streamflow the uncertainties in the hydrological 

model become more important.  5 

The objective of this study is to investigate the performance and limitations of ECMWF based ensemble streamflow 

forecasting for lead times up to 10 days for low, medium and high streamflow in a catchment with seasonal variation in 

runoff generating processes. We aim to evaluate whether performance of the forecasting system can be related to specific 

runoff generating processes based on hydrometeorological conditions. Further, we assess whether the main source of 

forecast error relates to the meteorological input or to deficiencies of the hydrological model for the different streamflow 10 

categories and runoff generating processes.  

2 Study catchment and data 

2.1 Study area and measurement data 

The Biała Tarnowska catchment in Poland serves as study area. This catchment is selected because of its large variation in 

streamflow, with seasonal variation in runoff generating processes. The catchment (Fig. 1) is located in a mountainous part 15 

of southern Poland. Napiorkowski et al. (2014) further describe the catchment. The River Biała Tarnowska discharges into 

the River Dunajec, which is a tributary of the River Vistula. The length of the river is 101.8 km with catchment area 

956.9 km2. The mean streamflow discharge (1972–2013) is 9.4 m3 s-1. Streamflow is characterized by large variation and 

extreme high flows with highest measured streamflow of 611 m3 s-1. During winter and spring snowmelt plays an important 

role. Comparison of the time series of precipitation and streamflow reveals that the lag time between intense precipitation 20 

events and related peaks in streamflow varies between 1 and 3 days.  

Precipitation, temperature and streamflow measurement series are available at a daily time interval for the period 1 

January 1971 to 31 October 2013, provided by the Polish Institute of Meteorology and Water Management. Precipitation and 

temperature data from 5 measurement stations (Fig. 1) have been selected because of their distribution over the catchment 

and data series completeness. The data are spatially interpolated based on Thiessen polygons (Fig. 1) to represent catchment 25 

averages. Given that stations are mostly located in valleys and precipitation and temperature vary with elevation, the 

catchment averages are biased (Panagoulia, 1995; Sevruk, 1997). Following Akhtar et al. (2009), precipitation measurements 

are corrected using relative correction factors (in %) whereas temperature measurements are corrected using absolute 

correction factors (in °C). The precipitation correction factor differs considerably between months. For December–February 

the mean precipitation gradient is 10.5 % 100 m-1, while for March–November the mean precipitation gradient is 30 

5.4 % 100 m-1. Although the number of stations is limited to accurately determine precipitation and temperature gradients, 

the calculated precipitation gradients are used because of the clear difference between two periods. The temperature gradient 
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does not vary much over the year and therefore the global standard temperature lapse rate of 0.65 °C 100 m-1 is applied. By 

the corrections the annual mean precipitation increases from 741.2 mm to 768.4 mm and the annual mean potential 

evapotranspiration decreases from 695.3 mm to 674.4 mm.   

2.2 Meteorological forecast data 

The meteorological ensemble forecast data from ECMWF are used, because of the good performance compared to other 5 

meteorological ensemble forecast sets (Buizza et al., 2005; Tao et al., 2014) and because these forecasts are frequently used 

in hydrological ensemble forecasting (Cloke and Pappenberger, 2009). Persson and Andersson (2013) and ECMWF (2012) 

describe how ECMWF generates the meteorological ensemble forecasts. The ensemble forecasts consist of one control 

forecast (no perturbation) and 50 ensemble members. The ensemble members should represent initial condition and 

meteorological model uncertainty (Leutbecher and Palmer, 2008; Persson and Andersson, 2013).  10 

The THORPEX Interactive Grand Global Ensemble (TIGGE) project, developed by The Observing System 

Research and Predictability Experiment (THORPEX), provides historical forecast data from 1 October 2006 onwards 

(Bougeault et al., 2010). The resolution of the ensemble and control forecasts is 32 km × 32 km (ECMWF, 2012). Using the 

TIGGE data portal we interpolated the forecasts to a regular grid (Bougeault et al., 2010) with a resolution of  0.25° × 0.25° 

(~17.9 km × 27.8 km at this latitude). In this study a maximum lead time of 10 days is used, following the World 15 

Meteorological Organization (WMO) that defines medium-range as forecasts with lead times from 3 days to 10 days 

(ECMWF, 2012). We also refer to Alfieri et al. (2014), Bennett et al. (2014), Demirel et al. (2013a), Olsson and Lindström 

(2008), Renner et al. (2009), Roulin and Vannitsem (2005) and Verkade et al. (2013) that use 9 or 10 days as maximum lead 

time. Because we use a lumped hydrological model with a daily time step (Sect. 3.1.1), we averaged daily ECMWF forecasts 

according to the relative area coverage of the seven grid cells that overlay the catchment.  20 

According to Persson and Andersson (2013) ECMWF forecasts may apply to a land elevation that significantly 

differs from the actual elevation in a grid and this can lead to biases. In this study correction for such elevation errors is 

ignored since any systematic bias is accounted for in the pre-processing step (Sect. 3.1.3). ECMWF provides temperature 

forecasts at 00:00 hr. or 12:00 hr. This means that temperature forecasts cannot be considered as representative for one day. 

To obtain representative daily average temperature forecasts we weight the temperature forecasts at 00:00 hr., 12:00 hr and 25 

24:00 hr by 25%, 50% and 25% respectively.  

3 Methodology 

3.1 The ensemble streamflow forecasting system 

The ensemble streamflow forecasting system consists of multiple components, presented in Fig. 2. Uncertainties in 

meteorological forecasts, model parameters, model initial conditions and model structure affect ensemble streamflow 30 

forecasts (Cloke and Pappenberger, 2009; Demirel et al., 2013a; Zappa et al., 2011). Bennett et al. (2014) and Cloke and 
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Pappenberger (2009) describe that uncertainties in meteorological forecasts are the largest source of uncertainty beyond 2–3 

days, and therefore only meteorological forecast uncertainty is incorporated in many studies (Bennett et al., 2014). By 

considering only uncertainty of the meteorological forecasts we focus on the effect of ensemble meteorological forecasts on 

streamflow forecasts.  

3.1.1 Hydrological model 5 

The hydrological model we use is a lumped Hydrologiska Byråns Vattenbalansavdelning (HBV) model that we run at daily 

time step by available hydrometeorological time series data for streamflow, gauged precipitation and temperature, and 

ECMWF meteorological forecasts. The model has 14 parameters and includes a snow accumulation and melting routine 

(Lindström et al., 1997; Osuch et al., 2015). Daily potential evapotranspiration rates are based on air temperature following 

the method of Hamon (Lu et al., 2005). The HBV model has wide application in studies on ensemble streamflow forecasting 10 

(e.g. Cloke & Pappenberger, 2009; Demirel et al., 2013a, 2015; Kiczko et al., 2015; Olsson & Lindström, 2008; Renner et 

al., 2009; Verkade et al., 2013). The choice for a lumped model with a daily time step is basically the result of the spatial and 

temporal resolution of the available data. The River Rhine forecasting suite also adopts the HBV model at a daily time step 

that is applied as semi-distributed model to 134 sub catchments (Renner et al., 2009). The catchment area of Biała 

Tarnowska (~1000 km2) is comparable to the area of the sub catchments in the River Rhine forecasting suite.  15 

The HBV model is calibrated using the differential evolution with global and local neighbourhoods (DEGL) 

method, described by Das et al. (2009). The settings that we used are adopted from the best performing variant of Das et al. 

(2009) (maximum number of model runs is 50000). The model is calibrated over the period 1 November 1971 to 31 October 

2000 with the time series of precipitation and temperature as input and streamflow measurements as reference output. The 

validation period is 1 November 2000 to 31 October 2013. The objective function selected for calibration is Y, which 20 

combines the Nash–Sutcliffe coefficient (NS) and the relative volume error (ERV) (Akhtar et al., 2009; Rientjes et al., 2013). 

According to Rientjes et al. (2013) values of Y below 0.6 indicate poor to satisfactory performance. The model parameters 

were drawn uniformly from predefined parameter ranges (Osuch et al., 2015).  

3.1.2 Updating of initial states 

Hydrological forecasting often relies on the updating of hydrological model storages to best represent the hydrological 25 

conditions in the catchment at the forecast day (e.g. Demirel et al., 2013a; Werner et al., 2005; Wöhling et al., 2006). For 

storage updating we follow Demirel et al. (2013a) and apply a procedure based on measured streamflow on the day 

preceding the forecast day. The measured streamflow of the day preceding the forecast day is divided in a fast and a slow 

runoff component to update the fast runoff reservoir and the slow runoff reservoir in the HBV model. To determine the ratio 

between the fast and slow components a relationship between total simulated streamflow and the fraction of fast runoff is 30 

established. However, this relationship contains large uncertainty. For example, for a total simulated streamflow of 10 m3 s-1 

the fraction varies between 0 and 0.6 and for a streamflow of 20 m3 s-1 it varies between 0.3 and 0.7. To reduce uncertainty 
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in the fraction of fast runoff the storage of the fast runoff HBV reservoir and net inflow in the fast runoff reservoir are both 

tested as an additional descriptor of the relationship between streamflow and the fraction of fast runoff.  

3.1.3 Pre- and post-processing 

Errors in meteorological forecasts as well as in hydrological models introduce biases (Cloke and Pappenberger, 2009; 

Verkade et al., 2013). Several studies suggest that post-processing of streamflow forecasts is more effective to improve the 5 

forecast skill than pre-processing of meteorological input data (Kang et al., 2010; Verkade et al., 2013; Zalachori et al., 

2012). Verkade et al. (2013) and Zalachori et al. (2012) found that corrections made to meteorological forecasts lose their 

effect when propagated through a hydrological model (Verkade et al., 2013; Zalachori et al., 2012). Results by Zalachori et 

al. (2012) indicate that combined pre- and post-processing results in best forecast quality. In this study both pre-processing 

of the meteorological input forecasts and post-processing of the streamflow forecasts are tested. 10 

Many studies used (conditional) quantile mapping (QM) for pre-processing (Boé et al., 2007; Déqué, 2007; Kang et 

al., 2010; Kiczko et al., 2015; Verkade et al., 2013; Wetterhall et al., 2012) and post-processing (Hashino et al., 2007; Kang 

et al., 2010; Madadgar et al., 2014; Shi et al., 2008) to correct for bias and dispersion errors. According to Kang et al. (2010) 

QM generally performs well in both pre- and post-processing. Hashino et al. (2007) advise to use QM, because of the good 

performance regarding sharpness and discrimination and the simplicity of the method. The principle of QM is that the 15 

cumulative distribution function (CDF) of the forecasts over a control period is matched to the CDF of the measurements 

over the same period, after which a correction function is generated (Boé et al., 2007). This means that the correction is 

conditional on the value of the forecasted variable itself. Boé et al. (2007), Déqué (2007) and Madadgar et al. (2014) further 

explain QM. The empirical CDFs of the measurements and forecasts are established on the training period 1 November 2011 

to 31 October 2013 (two hydrological years) and validated over the period 1 November 2007 to 31 October 2011.  20 

Distributions can be different for different lead times and weather patterns or seasons (Boé et al., 2007; Wetterhall 

et al., 2012), so three QM set-ups are tested with or without distinguishing different lead times and seasons. Combining pre-

processing and post-processing results in four processing strategies. In strategy 0 no pre- and post-processing are applied. In 

strategy 1 and 2 QM is applied to pre-process the meteorological forecasts, respectively without post-processing and with 

post-processing. In strategy 2 the post-processing is performed based on the correction between ‘perfect forecasts’ 25 

(streamflow simulations with input from measurements) and streamflow measurements to account for hydrological model 

uncertainties (Verkade et al., 2013). In strategy 3 only post-processing is applied, based on the correction between 

streamflow forecasts generated with uncorrected meteorological forecasts and measured streamflow. In this strategy 

meteorological and hydrological model uncertainties are treated together (Verkade et al., 2013).  

3.2 Evaluation scores of the ensemble forecasts 30 

To measure general quality and skill of the streamflow forecasts, the continuous ranked probability score (CRPS) and the 

continuous ranked probability skill score (CRPSS) are used. According to Demargne et al. (2010) and Hamill et al. (2000) a 
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single evaluation score is inadequate to evaluate the overall performance of a forecasting system. Three properties of forecast 

quality are reliability, sharpness and resolution (WMO, 2015). Reliability refers to the statistical consistency between 

measurements and simulations (Candille & Talagrand, 2005; Velázquez et al., 2010) and whether uncertainty is correctly 

represented in the forecasts (Bennett et al., 2014). We evaluate reliability by rank histograms and reliability diagrams. 

Sharpness is defined as the tendency to forecast probabilities of occurrence near 0 or 1, as opposed to values clustered 5 

around the mean (climatological) probability (Ranjan, 2009; WMO, 2015). If an ensemble forecasting system always 

forecasts an event probability close to climatological probability, instead of close to 0 or close to 1, this forecasting system is 

not useful, although it might be well calibrated (Ranjan, 2009; Wilks, 2006). The histograms accompanying reliability 

diagrams are used to evaluate sharpness. Resolution is the ability of the forecast model to correctly forecast the occurrence or 

nonoccurrence of events (Demirel et al., 2013a; Martina et al., 2006). We employ relative operating characteristics (ROC) 10 

curves to evaluate resolution.  

3.2.1 Continuous ranked probability score 

The CRPS is an overall, single-number score for judging the quality of probabilistic forecasts (Hamill et al., 2000). CRPS 

measures the error of the ensemble forecasts by integrating the squared distance between the CDFs of the forecasts and a 

reference streamflow (Bennett et al., 2014; Demargne et al., 2010; Verkade et al., 2013). The score is frequently used in 15 

atmospheric (Velázquez et al., 2010) and hydrological sciences (Bennett et al., 2014; Pappenberger et al., 2015; Velázquez et 

al., 2010) and in most cases it is the recommended evaluation score for ensemble forecasts (Pappenberger et al., 2015). 

CRPS is sensitive to the entire range of the variable of interest and it does not require the introduction of predefined classes 

(Hersbach, 2000). A CRPS of 0 indicates a perfect simulation, which can only be achieved in the case of a perfect 

deterministic forecast (Hersbach, 2000). Because in practice CRPS approaches the average value of the evaluated variable 20 

(with the same unit), the score cannot directly be compared among different areas, seasons or streamflow categories (Ye et 

al., 2014). Comparison between different lead times is possible, as average streamflow values do not change with lead time.  

3.2.2 Continuous ranked probability skill score 

Normalizing the CRPS against the CRPS of alternative forecasts eliminates the effect of the magnitude of the investigated 

variable and compares the forecasts with a relevant alternative forecast (i.e. skill), used by e.g. Bennett et al. (2014), 25 

Demargne et al. (2010), Renner et al. (2009), Velázquez et al. (2010) and Verkade et al. (2013). The CRPSS is defined as:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓

 ,          (1) 

A system with perfect skill results in a CRPSS of 1 and a negative CRPSS indicates that the forecasting system performs 

worse than the alternative forecasts (Demargne et al., 2010; Ye et al., 2014). To evaluate skill of the forecasting system we 

define the alternative forecast set as forecasts that are generated without using meteorological forecasts. It is common 30 

practice to apply hydrological persistency or hydrological climatology as alternative forecast set (Bennett et al., 2014). 
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However, Pappenberger et al. (2015) argue that this can result in an overestimation of forecast skill because other alternative 

forecast sets might be more difficult to beat in performance. Following Bennett et al. (2013), Bennett et al. (2014) and 

Pappenberger et al. (2015) the most appropriate alternative forecast set is selected based on their CRPS results. We use a 

single alternative forecast set for all streamflow categories, so one CRPSalternative is calculated. With hydrological persistency 

the most recent streamflow measurement (i.e., from the day preceding the forecast day) serves as forecast for all lead times. 5 

Regarding hydrological climatology, the average measured streamflow, after a smoothing window of 31 days, on the same 

calendar day over the last 20 years is used, following Bennett et al. (2013). For streamflow forecasts based on an ensemble 

of historic measurements of precipitation and temperature, measurements on the same calendar day over the past 20 years are 

used, after Pappenberger et al. (2015).  

The results in Fig. 3 indicate that forecasts based on meteorological climatology result in the best CRPS scores and 10 

thus imply to be the most appropriate alternative streamflow forecasts, as also found in the studies of the Bennett et al. 

(2013), Bennett et al. (2014) and Pappenberger et al. (2015).  

3.2.3 Rank histogram 

Rank histograms enable to diagnose average errors in the mean and spread (under- or overdispersion) of the ensemble 

forecasts (Hamill, 2001; Hamill et al., 2000) and according to Wilks (2006) they are commonly used to evaluate the 15 

reliability (or consistency) of ensemble forecasts. The consistency condition states that the reference streamflow is just one 

more member of the ensemble and it should be statistically indistinguishable from the ensemble forecast (Wilks, 2006). To 

construct a rank histogram, the reference streamflow is added to the ensemble forecast set and the histogram is constructed 

from the ranks of the reference streamflow (Velázquez et al., 2010). In an ensemble forecasting system with perfect spread 

each ensemble member is equally likely, so all reference streamflow ranks are equally likely and the rank histogram is 20 

uniform (Hamill, 2001; Hersbach, 2000; Wilks, 2006; WMO, 2015; Zalachori et al., 2012). 

To indicate the flatness of rank histograms Candille and Talagrand (2005) propose a numerical indicator δ. Because 

δ is proportional to the length of the time series (Velázquez et al., 2010), we use the Mean Absolute Error as flatness 

coefficient ε:  

𝜀𝜀 = 1
𝑛𝑛+1

∑ |𝑓𝑓(𝑧𝑧) − 𝑦𝑦|𝑧𝑧=𝑛𝑛+1
𝑧𝑧=1  ,          (2) 25 

𝑓𝑓(𝑧𝑧) = Relative frequency of reference streamflow in rank z [-] 

𝑦𝑦 = 1
𝑛𝑛+1

= Theoretical relative frequency (uniform distribution) [-] 

𝑛𝑛 = Number of ensemble members [-] 

In a perfectly consistent forecasting system the relative frequency in each rank is equal to the relative frequency according to 

uniform distribution. This gives an optimum value of ε equal to 0. The rank histogram and flatness coefficient contain a 30 

random element if multiple ensemble members and the measurement have the same value, like 0 mm precipitation (Hamill 

and Colucci, 1998).  
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3.2.4 Reliability diagram 

The reliability diagram is a common way to summarize and evaluate reliability of probabilistic forecasting systems (Bröcker 

and Smith, 2007). The diagram plots observed relative frequency against the predicted probability for a certain event 

(Bröcker and Smith, 2007; Demirel et al., 2013a). For a well calibrated forecasting system the reliability diagram is close to 

the 1:1 diagonal (Ranjan, 2009; WMO, 2015). The five forecast probability bins that we use are 0%–20%, 20%–40%, … and 5 

80%–100%, which were also used by Demirel et al. (2013a) and Bennett et al. (2014). Following Bröcker and Smith (2007) 

the observed frequencies are plotted against the average of forecast probabilities per bin instead of the bin centre %. Plotting 

against bin centres (so 10%, 30%, etc.) can cause substantial deviations from the diagonal.  

The histogram showing sample size in each probability bin indicates the sharpness of forecasts (Ranjan, 2009; 

Renner et al., 2009; WMO, 2015).  10 

3.2.5 Relative operating characteristic 

Contingency tables and ROC curves analyze whether the forecast model correctly forecasts the occurrence and 

nonoccurrence of events. To establish the ROC a set of contingency tables is made, one for each examined probability 

threshold and these form a hit rate/false alarm rate graph for one predefined flow threshold (Atger, 2001; Buizza et al., 1999; 

Fawcett, 2006; WMO, 2015). The area under the ROC curve (AUC) can be used to obtain a single score for performance 15 

(Fawcett, 2006; Wilks, 2006). A perfect ensemble forecasting system has an area of 1 under the ROC curve (100% hit rate, 

0% false alarm rate for all probability thresholds), while a forecasting system with zero skill has a diagonal ROC curve with 

an area of 0.5 (coincides with diagonal) (Fawcett, 2006; Velázquez et al., 2010; WMO, 2015). Buizza et al. (1999) state that 

it is common practice to consider an area of more than 0.7 as indicative for useful prediction systems and 0.8 for good 

prediction systems. 20 

3.3 Investigation of error contributors 

The evaluation of ensemble streamflow forecasts is affected by errors from the meteorological forecasts, the hydrological 

model (including errors in the initial conditions) and errors in the measurements that serve as reference streamflow (Renner 

et al., 2009). By evaluation against perfect forecasts the streamflow measurement error and the hydrological model error are 

eliminated, because both the ensemble streamflow forecasts and the reference streamflow contain these errors (Demargne et 25 

al., 2010; Olsson and Lindström, 2008; Renner et al., 2009). If we neglect measurement errors, evaluation against 

streamflow measurements (CRPSmeas) contains errors from the meteorological forecasts and the hydrological model and 

evaluation against perfect streamflow forecasts (CRPSsim) exclusively contains errors from the meteorological forecasts 

(Demargne et al., 2010; Olsson and Lindström, 2008; Renner et al., 2009). A low CRPSsim / CRPSmeas ratio means that the 

hydrological model errors are dominant and a high ratio means that the meteorological errors are dominant.  30 
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3.4 Evaluation of streamflow categories 

We evaluate the forecasting system for different streamflow categories as defined in Table 1. A low streamflow threshold 

Q75 (exceedance probability of 75%) guarantees that a sufficient number of events are considered in the evaluation of this 

streamflow category while streamflow below this threshold still affects river functions (Demirel et al., 2013b). Similarly, we 

used Q25 as high streamflow threshold.  5 

3.5 Evaluation of runoff generating processes 

The high streamflow forecasts and low streamflow forecasts are evaluated for the various hydrometeorological conditions 

that can generate these events. Medium flows are not evaluated for different runoff generating processes since these events 

commonly result from a combination of runoff generating processes under non-extreme hydrometeorological conditions.  

3.5.1 High streamflow generating processes 10 

Various runoff contributing processes can result in high flows. Table 2 defines the processes and classification rules we use 

in this study, based on the processes Merz and Blöschl (2003) distinguish. The classification rules are based on fluxes and 

storages at one day before the event, because in the HBV model it takes one modelling time step before the rainfall and 

snowmelt fluxes end up in the fast runoff and slow runoff reservoirs and can form runoff.  

Figure 4a presents the distribution of high streamflow generating processes following the classification rules in 15 

Table 2. The figure shows an expected distribution of processes for this region.  

3.5.2 Low streamflow generating processes 

Processes that result in low flows are snow accumulation and the combination of low rainfall and high evapotranspiration 

over a period (precipitation deficit). Table 3 further characterizes these processes.  

Figure 4b shows that these classification rules result in a reliable distribution of low streamflow generating 20 

processes over the year for this region.  

4 Results 

4.1 Ensemble streamflow forecasting system 

4.1.1 Calibration and validation of the hydrological model 

In Table 4 calibration and validation results are presented. The hydrological model performs better with corrected input data 25 

as compared to uncorrected input data. This implies that the systematic underestimation of precipitation and systematic 

overestimation of temperature (Sect. 2.1) are not fully captured in the calibration.  
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The updating of initial states of the fast runoff reservoir and slow runoff reservoir (Sect. 3.1.2) results in an 

improvement of Y from 0.72 to 0.81 over the validation period. This effect decreases with lead time, but it is still noticeable 

at a lead time of 10 days (Y = 0.730 against Y = 0.718). Relating the fraction of fast runoff additionally to the storage of the 

fast runoff reservoir storage or net inflow does not result in a significant improvement of Y compared to the original updating 

model. Therefore the original updating model, introduced by Demirel et al. (2013a), is used.  5 

Simultaneous measurements and ECMWF forecasts are available over the period 1 November 2006 to 31 October 

2013. In the hydrological year 2007 (1 November 2006 to 31 October 2007) the agreement between streamflow 

measurements and simulations is poor. Also with another model (data based mechanistic methodology (DBM)), with the 

same measurement data the performance was worse during this year (Kiczko et al., 2015). This is the result of measurement 

errors and/or human influence, because it is unlikely that in this period different hydrological processes are taking place that 10 

are not captured well by the HBV model and the DBM model. Therefore the period 1 November 2006 to 31 October 2007 is 

excluded from the evaluation period. 

Table 5 presents the performance of the hydrological model for different lead times and streamflow categories. The 

NS values for the low and medium streamflow categories are negative, meaning that the averages of streamflow 

measurements in these categories are a better approximation of the measurements than the simulations. All measures 15 

highlight that the calibration is skewed to high streamflow situations, which is the result of the selected objective function 

that includes NS (Gupta et al., 2009). Gupta et al. (2009) also found that model calibration with NS tends to underestimate 

the low and high streamflow peaks. 

The results in Table 5 improve considerably as a result of the updating of initial storages, especially for the low 

streamflow simulations. The effectiveness of the updating procedure depends on the autocorrelation of daily streamflow, 20 

because the updating is based on streamflow measurements of the preceding day. In low streamflow periods there is usually 

a high autocorrelation of daily streamflow, in contrast to high streamflow periods.  

4.1.2 Pre- and post-processing strategy results 

The best precipitation forecasts are obtained when QM is applied separately to each lead time, whereas the best temperature 

forecasts are obtained if, in addition, separate relationships for the summer and winter season are applied. The CRPS and 25 

Relative Mean Absolute Error (ERMA) of the precipitation and temperature forecasts improve slightly and the flatness 

coefficients improve considerably as a result of the pre-processing.  

Regarding the combined pre- and post-processing strategies, the results (not shown in the paper) indicate that 

strategy 0 results in the best CRPS and flatness coefficients of streamflow simulations.  
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4.2 Forecast performance 

4.2.1 Forecast skill 

The streamflow forecasts are evaluated over the period 1 November 2007 to 31 October 2013 for lead times from 1 day to 10 

days and for the different streamflow categories (defined in Table 1). The results are presented in Fig. 5. The CRPS increases 

with lead time for all streamflow categories (Fig. 5a), so the performance of the streamflow forecasts deteriorates with lead 5 

time. For all streamflow together the CRPSS is positive for all lead times (Fig. 5b), so on average the streamflow forecasts 

are better than the alternative forecasts. This forecast skill is generated by the ECMWF forecasts compared to historical 

meteorological measurements.  

Fig. 5b shows that the forecast skill is very different for the low, medium and high streamflow forecasts. The low 

skill of low streamflow forecasts, especially for small lead times, can be explained by the important role of the initial 10 

conditions in the hydrological model. In low streamflow situations runoff is mainly generated by available resources in the 

catchment instead of precipitation input. Since the same initial model conditions are used to simulate the alternative 

forecasts, it is difficult to generate skilful low streamflow forecasts for small lead times (<3 days). Also the origin of the 

alternative forecasts plays a role. Since low streamflow events normally occur in the same period of the year due to climatic 

seasonality, it can be expected that historical measurements of precipitation and temperature on the same calendar day 15 

provide functional input. After all, the performance of the meteorological forecasts preceding these events contributes to the 

low skill. The negative skill at small lead times indicates that historical measurements of precipitation and temperature are 

even better forecasts than the meteorological ensemble forecasts from ECMWF for this category of flows. From a lead time 

of 3 days the accumulated effects of the meteorological forecasts are more skilful than historical meteorological 

measurements.  20 

The medium streamflow forecasts do not have clear positive skill for all lead times. This can be explained by the 

fact that historical streamflow measurements are most often around the medium streamflow, so forecasts based on historical 

measurements of precipitation and temperature will be a good approximation for these flows.  

The system has a high positive skill in forecasting high streamflow. In general initial conditions are relatively less important 

in these events, because of the amount of water usually added to the system. However, we note that this depends on the 25 

responsible runoff generating process (see results in Sect. 4.4.1). As a result the streamflow forecasts and reference forecasts 

can easier deviate. In addition, these events are less well captured in historical measurements and thus in the alternative 

forecasts. This is because high streamflow periods are in general less predictable by historical measurements, in particular in 

small catchments.  

4.2.2 Forecast quality 30 

Fig. 6 presents the flatness coefficients. The high values indicate that the rank histograms are far from flat, especially for 

small lead times and low streamflow events. The rank histograms (not shown in the paper) are U-shaped, which indicates 
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underdispersion and/or conditional bias in the streamflow forecasts (Hamill, 2001). The rank histograms of the 

meteorological forecasts show that the ECMWF forecasts are also underdispersed, so this is one cause why the streamflow 

forecasts are underdispersed. In Sect. 5 the consequences of neglecting uncertainties in the hydrological model and initial 

conditions are further discussed.  

The rank histograms of the different streamflow categories show that the streamflow forecasts contain a conditional 5 

bias. In general, high streamflow is underestimated by the forecasting system and this underestimation increases with lead 

time. On the other hand, low streamflow is generally overestimated. This can be the result of too coarse spatial and temporal 

model resolution. Using a lumped model and aggregating the meteorological input over the catchment flattens the extreme 

flow events.  

Also the reliability diagrams indicate low reliability of the streamflow forecasts, especially for small lead times. It 10 

appears that for low streamflow forecasts the observed relative frequencies are underestimated. Regarding the high 

streamflow forecasts the observed relative frequencies are overestimated, although the rank histograms indicate that high 

streamflow is underestimated. This is possible because in a rank histogram the measurements and forecasts are compared 

directly, whereas in a reliability diagram the measurements and forecasts are compared to a streamflow threshold.  

Histograms showing the sample size in each probability bin of the reliability diagrams indicate that the sharpness of 15 

the forecasts is good, because forecast probabilities of low and high streamflow are most often close to 0 or 1, instead of 

forecast probabilities close to the mean probability. The sharpness decreases with lead time. 

All AUC values are above 0.85, whereas Buizza et al. (1999) consider 0.8 as indicative for good prediction systems.  

4.3 Dominant error contributors 

Fig. 7 shows that the relative contribution of meteorological forecast errors increases and the relative contribution of 20 

hydrological model errors decreases with lead time, although the performance of the hydrological model also deteriorates 

with lead time (see Table 5). Two effects contribute to this. In the first place the meteorological forecasts get worse with lead 

time and the meteorological forecasts accumulate in the hydrological forecasting system with lead time. In the second place 

the effect of the initial conditions in the hydrological model at the forecast day becomes smaller at larger lead times, because 

more water is added to the system.  25 

In high streamflow forecasts the contribution of meteorological forecast errors is relatively more important, while in 

low streamflow forecasts the contribution of hydrological model errors is relatively more important. Initial conditions have 

relatively less influence on high streamflow (discussed in Sect. 4.2.1). In addition the hydrological model performs better for 

high streamflow than for low streamflow situations (Table 5), so meteorological forecast errors are relatively more important 

in high streamflow situations. 30 
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4.4 Forecast skill for the runoff generating processes 

4.4.1 High streamflow generating processes 

The highest skill is obtained for short-rain floods (Fig. 8a), at small lead times. Two effects explain this observation. First, 

long-rain floods and snowmelt floods are essentially driven by the water storage conditions in the catchment whereas in 

short-rain floods meteorological input has more influence. Figure 8b confirms the relative importance of meteorological 5 

forecasts in these events. This results in higher potential to generate forecast skill, already at small lead times. At larger lead 

times the accumulation of rainfall in the forecasting system becomes important, which is confirmed by the increasing 

contribution of meteorological forecast errors in long-rain floods and snowmelt floods. Long-rain floods are skilfully 

forecasted from a lead time of 3 days and snowmelt floods are skilfully forecasted from a lead time of 2 days.  

Second, the short and heavy rain events preceding short-rain floods are less well captured in historical 10 

meteorological measurements than the longer term processes underlying long-rain floods and snowmelt floods. The below 0 

skill of long-rain and snowmelt flood forecasts indicate that the meteorological forecasts at small lead times do not result in 

positive skill as compared to forecasts based on historical meteorological measurements. The forecast skills of short-rain 

floods and snowmelt floods decrease again at larger lead times. This is the result of a decreased performance of the 

meteorological forecasts preceding these events. The skill of short-rain flood forecasts decreases the most and at the shortest 15 

lead time.  

4.4.2 Low streamflow generating processes 

Figure 9a shows that the low forecast skill of low streamflow is caused by the precipitation deficit process, whereas the 

forecast skill of low streamflow events that are generated by snow accumulation is rather high. The low forecast skill of the 

precipitation deficit generated low streamflow events can be explained by the fact that low rainfall periods often occur in the 20 

same period of the year, due to climatic seasonality, and are therefore well captured by historical meteorological 

measurements. Also the performance of meteorological forecast models may play a role. Meteorological models tend to 

forecast drizzle instead of zero precipitation (Boé et al., 2007; Piani et al., 2010) and pre-processing has not been applied to 

correct for this. The skill increases for larger lead times, so ECMWF meteorological forecasts accumulated in the forecasting 

system are better model inputs than historical measurements for larger lead times. The fact that the contribution of initial 25 

conditions at the forecast day decreases for larger lead times (also see Fig. 9b) adds to this skill.  

The forecast skill for both snowmelt floods and snow accumulation generated low streamflow events decreases 

from a lead time of 8 days, which indicates a decreasing skill of ECMWF temperature forecasts for large lead times.  

For low streamflow generated by snow accumulation and precipitation deficits, errors from the HBV model and 

initial conditions make up a large part of the total error (Fig. 9b).  30 
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5 Discussion 

The developed methodology of analysing an ensemble streamflow forecasting system has been applied to the Biała 

Tarnowska catchment for a 6 year period. By this, findings by this study do not allow direct generalisation but serve ongoing 

discussions on improving streamflow forecasting. Also, a longer evaluation period would allow evaluation of more extreme 

definitions of high and low streamflow.  5 

The best streamflow forecasts are obtained without pre- and post-processing. The effectiveness of QM depends on 

whether during the validation period the same bias is present between the CDF of the measurements and the CDF of the 

forecasts as during the training period. Figure 10 shows large differences in biases between different years and between the 

training period and the validation period, suggesting that bias is affected by randomness. The relatively short time series of 

forecasts constrains pre- and post-processing procedures, because different weather patterns cannot be well identified and 10 

with a longer period a more consistent bias distribution could be obtained. Limitations of QM, as described by Boé et al. 

(2007), might also play a role in the ineffectiveness of pre- and post-processing. In spite of the limitations of QM, over the 

training period the pre- and post-processing strategies result in an improvement of the evaluation scores (strategy 3 with 

seasonal distinction gives the best performance), which indicates the potential of processing with QM if a consistent bias is 

present. A problem in pre- and post-processing in general is that the joint distribution of measurements and forecasts is often 15 

nonhomogeneous in time by, for example, an improvement of forecasting systems over time (Verkade et al., 2013).  

Uncertainties in the hydrological model and model initial conditions have been ignored in the forecasting system. 

Considering the rank histogram results this may have affected the streamflow forecasts of short lead times and low 

streamflow in particular. Regarding the main effect on short lead times Bennett et al. (2014) and Pagano et al. (2013) discuss 

similar findings. The lower flatness coefficients of high streamflow forecasts compared to low streamflow forecasts reflect 20 

that for high streamflow forecasts meteorological input is relatively more important.  

The classification of low and high streamflow generating processes is based on information that is available from 

the HBV model and measurement data series. This provides more insight in the performance of the forecasting system than a 

seasonal characterisation. Some assumptions must be kept in mind when interpreting the results. It is assumed that snow 

accumulation before an event is embedded in the snowpack storage of the HBV model. If a snowpack is present the event is 25 

classified as snowmelt flood or snow accumulation low streamflow. The lumped model causes a simplification here, because 

when there is a snowpack present in the model there is not necessarily a snowpack that covers the whole catchment. If no 

snowpack is present, it is assumed that the low streamflow event or high streamflow event is caused by low or high rainfall. 

The threshold of 10 mm day-1 (see Table 2) is an unrefined simplification to distinguish between short-rain floods and long-

rain floods. The simple character of the classification rules especially has consequences for the classification of events that 30 

are caused by a combination of processes, which often occur in practice and result in the highest floods. Another point is that 

only short-term information (from the day preceding the forecast day) is used to classify the processes. The lag time between 

precipitation peaks and streamflow peaks does not necessarily match with the HBV model calculation time step and the 
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classification rules use. Consequently, a streamflow at the day following a high rainfall event is classified as a short-rain 

flood, whereas the real streamflow peak might come one day later.  

In the hydrological model the lag time between a rainfall event and the streamflow peak is set to 1 day. However, 

the timing of a rainfall event during the day is very important, especially in a small catchment. Evaluation of forecast 

performance in this paper indicates that the lag time is critical in the forecasting system, especially for short-rain floods. The 5 

results in Fig. 8b show that the ratio between the CRPS against perfect forecasts and the CRPS against streamflow 

measurements is above 100% for short-rain floods. This means that these forecasts are closer to the measurements than to the 

perfect forecasts. The precipitation peak in the measurements and the precipitation peak in the meteorological forecasts can 

be shifted one day with respect to each other and this can cause that the timing of the peak of the streamflow forecasts better 

corresponds to the streamflow measurements than to the peak of the perfect streamflow forecasts.  10 

It is not trivial to compare the CRPS results to results in other studies, because the value depends on the magnitude 

of the evaluated variable. A similarity between the results in this study and previous studies is that performance of the 

streamflow forecasts decreases with lead time. Since Bennett et al. (2014) use the same alternative forecast set, the CRPSS 

results can be compared. Although Bennett et al. (2014) use a very different forecasting system and apply it to different 

situations, the forecast skills are comparable to the forecast skills obtained in this study. 15 

6 Conclusions 

We developed a methodology to analyse an ensemble streamflow forecasting system. For the case study of the Biała 

Tarnowska catchment we conclude: 

• There are large differences in forecast skill for different runoff generating processes, compared to alternative 

forecasts based on historical measurements of precipitation and temperature. The system skilfully forecasts high 20 

streamflow events, although the skill depends on the runoff generating process and lead time. Also low streamflow 

events that are generated by snow accumulation are skilfully forecasted. Since the hit rates are high compared to the 

false alarm rates, the system has potential to generate forecasts for these streamflow categories. Sharpness of the 

forecasts is good, although it decreases with lead time. Medium streamflow events and low streamflow events that 

are generated by a precipitation deficit are not skilfully forecasted.  25 

• When this or any other forecasting system is (further) developed with the objective to generate more accurate high 

streamflow forecasts, it is recommended to focus on improving the meteorological forecast input because errors 

from the meteorological forecasts are dominant in high streamflow forecasts. This can be achieved by improving 

the meteorological forecasts (e.g. using the higher resolution forecasts from COSMO-LEPS (Renner et al., 2009)) 

or by improving the pre-processing step. To improve low streamflow forecasts it is recommended to focus first on 30 

the hydrological model performance. In this study the calibration of the hydrological model is skewed to high 

streamflow situations. An easy improvement of the forecasts can be achieved by calibrating the hydrological model 
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specifically on low streamflow events. Besides improvement of the hydrological model, further research should be 

done to improve the meteorological forecasts, especially the precipitation forecasts (problem of forecasting of 

drizzle). When the forecasting system is applied exclusively on low or high streamflow forecasts the alternative 

forecast set should be reconsidered.  

• To improve the reliability of the ensemble streamflow forecasts it is recommended to include uncertainties in 5 

hydrological model parameters and initial conditions. Particularly for low streamflow forecasts this is essential. The 

uncertainty in the relationship between the fraction of fast runoff and total streamflow to update initial states might 

be utilized to incorporate initial condition uncertainty. Since the precipitation and temperature forecasts are also 

underdispersed, we recommend to investigate how the reliability of the precipitation and temperature forecasts can 

be improved, by adding meteorological forecasts from other forecasting systems (‘super-ensembles’) (Bennett et al., 10 

2014; Bougeault et al., 2010; Fleming et al., 2015; He et al., 2009) or by improved pre-processing.  

• Pre- and post-processing with QM was not effective. In the discussion several limitations of QM have been 

described. With a longer time series of forecasts and other (more sophisticated) techniques the meteorological and 

hydrological forecasts could potentially be improved.  

• It is recommended to extend the study to other catchments and (if possible) with longer forecast datasets, to 15 

investigate the generality of the results and to test more extreme high and low streamflow thresholds.  

The findings only apply to the study catchment and the developed system set-up, but the presented methodology of analysing 

an ensemble streamflow forecasting system is generally applicable. The methodology provides valuable information about 

the forecasting system, in which situations it can be used, and how the system can be improved effectively.  
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Figures 

 
Figure 1: Location and overview of the Biała Tarnowska catchment 
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Figure 2: Structure of the ensemble streamflow forecasting system 

 
Figure 3: CRPS of three alternative forecast sets, evaluation period 2008-2013 

24 
 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-584, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 17 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



 
Figure 4: a. High streamflow generating processes over the year b. Low streamflow generating processes over the 
year, 1-11-2007 to 31-10-2013 
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Figure 5: a. Streamflow forecasts evaluated against streamflow measurements b. Skill of the streamflow forecasts, 
defined in Eq. 1 

 
Figure 6: Rank histogram flatness coefficients. The flatness coefficients of the precipitation and temperature forecasts 5 
refer to the preceding day. 
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Figure 7: Ratio of errors in meteorological forecasts (CRPSsim) to meteorological forecast + model errors (CRPSmeas) 

 
Figure 8: a. Forecast skill of high streamflow generating processes b. Ratio of errors in meteorological forecasts 
(CRPSsim) to meteorological forecast + model errors (CRPSmeas). 5 
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Figure 9: a. Forecast skill of low streamflow generating processes b. Ratio of errors in meteorological forecasts 
(CRPSsim) to meteorological forecast + model errors (CRPSmeas). 
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Figure 10: Difference between CDFs of the measurements and CDFs of the uncorrected streamflow forecasts per 
hydrological year (upper panel cumulative probability 0 – 0.95 and lower panel 0.95 – 1.0). This figure is for a lead 
time of 5 days. 

Tables 5 

Table 1: Definition of streamflow categories 

Streamflow category Thresholds Streamflow (from measurements 1-11-2007 to 31-10-2013) 

Low streamflow 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑄𝑄75 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 2.76 𝑚𝑚3/𝑠𝑠 

Medium streamflow 𝑄𝑄75 < 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝑄𝑄25 2.76 𝑚𝑚3/𝑠𝑠 < 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 10.35 𝑚𝑚3/𝑠𝑠 

High streamflow 𝑄𝑄25 < 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 10.35 𝑚𝑚3/𝑠𝑠 < 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 

 

 

 

 10 
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Table 2: Characterization of the high streamflow generating processes 

Process Characterization Rules for classification 

Snowmelt flood Snowmelt floods and rain-on-snow floods (explained 

by Merz and Blöschl (2003)) are considered as one 

category. All high streamflow events where snow is 

involved are characterized as snowmelt floods, 

because the snowpack  and/or frozen soil underneath 

play an important role in the runoff process.  

• Snowpack (HBV) at forecast day-1 

Short-rain flood Short-rain floods and flash floods (characterized by 

Merz and Blöschl (2003)) are combined. Flash floods 

are classed in this category as well, because only 

daily measurements and forecasts are available.  

• No snowpack (HBV) at forecast day-1 

• Rainfall at forecast day-1 above 10 mm: 

With small initial storage in the catchment 

(HBV), precipitation of 10 mm day-1 at the 

day preceding the streamflow event causes 

a streamflow event above the high 

streamflow threshold. 
Long-rain flood Long-rain flood processes are explained by Merz and 

Blöschl (2003). This category applies when a 

streamflow event is not directly generated by 

snowmelt or high precipitation. 

• No snowpack (HBV) at forecast day-1 

• Rainfall at forecast day-1 below 10 mm 

 

 

Table 3: Characterization of the low streamflow generating processes 

Process Characterization Rules for classification 

Snow accumulation If precipitation is snow and does not melt directly, 

accumulation occurs.  

• Snowpack (HBV) at forecast day-1 

Precipitation deficit When low rainfall and high evapotranspiration 

last over a prolonged period the catchment will 

dry out.  

• No snowpack (HBV) at forecast day-1 

 5 
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Table 4: Calibration and validation performances of the model 

Calibration run 
Calibration (1-11-1971 to 31-10-2000) Validation (1-11-2000 to 31-10-2013) 

Y NS ERV Y NS ERV 

Calibration with uncorrected 

input data 

0.78 0.78 0% 0.69 0.74 6.5% 

Calibration with input data 

corrected for elevation  (see 

Sect. 2.1) 

0.81 0.81 0% 0.72 0.77 6.7% 

 

 

Table 5: Performance over the evaluation period 2008-2013, for low, medium and high streamflow simulations (perfect forecasts). 
The initial states are updated at the lead time of 0 days.  5 

Lead time 

[days] 

ERV [%] NS [-] ERMA [-] 

Low 

flows 

Medium 

flows 

High 

flows 

Low 

flows 

Medium 

flows 

High 

flows 

Low 

flows 

Medium 

flows 

High 

flows 

No updating 43.3 7.29 1.81 -10.9 -2.36 0.82 0.71 0.43 0.33 

0 3.23 4.69 2.16 0.34 -0.14 0.86 0.11 0.16 0.25 

1 6.44 7.16 2.64 -0.64 -0.53 0.84 0.19 0.21 0.29 

2 8.55 8.80 2.48 -1.12 -0.88 0.83 0.23 0.25 0.31 

3 11.5 9.60 2.30 -2.09 -1.07 0.83 0.29 0.28 0.32 

4 13.6 10.1 2.17 -2.76 -1.15 0.83 0.33 0.30 0.32 

5 15.9 10.4 2.04 -3.50 -1.33 0.83 0.37 0.31 0.32 

6 18.2 10.4 1.98 -4.36 -1.43 0.83 0.41 0.32 0.32 

7 19.2 10.5 2.01 -4.56 -1.53 0.83 0.43 0.34 0.32 

8 20.6 10.3 2.07 -4.88 -1.62 0.83 0.45 0.35 0.32 

9 22.9 10.1 2.09 -5.73 -1.70 0.83 0.49 0.35 0.32 

10 24.0 10.0 2.13 -6.09 -1.77 0.83 0.50 0.36 0.32 
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