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Abstract. The paper presents a methodology that gives insight into the performance of ensemble streamflow forecasting sys-

tems. We have developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern

Poland, and analysed the performance for lead times ranging from 1 day to 10 days for low, medium and high streamflow

and different hydrometeorological conditions. Precipitation and temperature forecasts from the European Centre for Medium-

Range Weather Forecasts served as inputs to a deterministic lumped hydrological (HBV) model. Due to a non-homogeneous5

bias in time, pre- and post-processing of the meteorological and streamflow forecasts are not effective. The best forecast skill,

relative to alternative forecasts based on meteorological climatology, is shown for high streamflow and snow accumulation low

streamflow events. Forecasts of medium streamflow events and low streamflow events under precipitation deficit conditions

show less skill. To improve performance of the forecasting system for high streamflow events, the meteorological forecasts are

most important. Besides, it is recommended that the hydrological model be calibrated specifically on low streamflow condi-10

tions and high streamflow conditions. Further, it is recommended that the dispersion (reliability) of the ensemble streamflow

forecasts is enlarged by including the uncertainties in the hydrological model parameters and the initial conditions, and by

enlarging the dispersion of the meteorological input forecasts.

Copyright statement. TEXT

1 Introduction15

Accurate flood forecasting (Cloke and Pappenberger, 2009; Penning-Rowsell et al., 2000; Werner et al., 2005) and low stream-

flow forecasting (Demirel et al., 2013a; Fundel et al., 2013) are important in mitigating the negative effects of extreme events,

by enabling early warning. Accurate forecasting is becoming increasingly more important, because the frequency and mag-

nitude of low and high streamflow events are projected to increase in many areas in the world as a result of climate change
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(IPCC, 2014). In addition, due to socio-economic development the impacts of extreme events increase further (Bouwer et al.,

2010; Fleming, 2016; Rojas et al., 2013; Wheater and Gober, 2015).

Hydrological forecasting systems are often implemented as ensemble forecasting systems (Cloke and Pappenberger, 2009).

Ensemble forecasts provide information on the possibility that an event will occur (Krzysztofowicz, 2001; Thielen et al.,

2009), and allow a quantification of the forecast uncertainty (Krzysztofowicz, 2001; Zappa et al., 2011). Uncertainties in5

streamflow forecasts originate from the meteorological inputs, and the hydrological model parameters, initial conditions and

model structure (Bourdin and Stull, 2013; Cloke and Pappenberger, 2009; Demirel et al., 2013a; Zappa et al., 2011).

A number of studies have investigated the performance of ensemble forecasting systems, e.g. Alfieri et al. (2014) for the

European Flood Awareness System, and Bennett et al. (2014), Olsson and Lindström (2008), Renner et al. (2009) and Roulin

and Vannitsem (2005) for several catchments varying in size and other characteristics. These studies demonstrated a deterio-10

ration of performance with increasing lead time. However, most studies focused either on flood forecasts (e.g. Alfieri et al.,

2014; Bürger et al., 2009; Komma et al., 2007; Olsson and Lindström, 2008; Roulin and Vannitsem, 2005; Thielen et al., 2009;

Zappa et al., 2011) or low streamflow forecasts (Demirel et al., 2013a; Fundel et al., 2013). Studies on non-specific ensemble

streamflow forecasting systems (Bennett et al., 2014; Demargne et al., 2010; Renner et al., 2009; Verkade et al., 2013) did not

evaluate the performance for different streamflow categories (i.e. for low streamflow and high streamflow events). Moreover,15

previous studies did not assess the effects of runoff processes, such as snowmelt and extreme rainfall events, on the perfor-

mance of ensemble forecasts. The only study we found that bears on this is the study by Roulin and Vannitsem (2005), who

concluded that their high streamflow forecasting system is more skilful for the winter period than for the summer period. Next

to an assessment of performance, information on the relative importance of uncertainty sources in the forecasts is essential in

improving the forecasts effectively (Yossef et al., 2013). A number of studies have reported on how errors in the meteorologi-20

cal forecasts and the hydrological model contribute to errors in medium-range hydrological forecasts. Demargne et al. (2010)

showed that hydrological model uncertainties (model parameters, initial conditions, and model structure) are most significant

at short lead times. The extent depends on the streamflow category: hydrological model uncertainties significantly degrade

the evaluation score up to a lead time of 7 days for all flows, whereas this is only up to a lead time of 2 days for very high

streamflow events. Renner et al. (2009) found an underprediction of low forecast probabilities (few ensemble members over25

a high streamflow threshold), which they attributed to the meteorological forecasts having insufficient variability. In contrast,

the high forecast probabilities (low threshold) are overpredicted, which Renner et al. (2009) attributed to both the hydrological

model and the meteorological input data. Olsson and Lindström (2008) found an underdispersion of ensemble flood forecasts,

which decreases with lead time. The meteorological forecasts and the hydrological model have a comparable contribution to

this. In addition, Olsson and Lindström (2008) showed overprediction of forecast probabilities over high thresholds, which30

they primarily attributed to the meteorological forecasts. Demirel et al. (2013a) concluded that the uncertainty of the hydro-

logical model parameters has the largest effect and meteorological input uncertainty has the smallest effect on low streamflow

forecasts. Based on those studies, we can say that for high streamflow forecasts uncertainties in the meteorological forecasts

are dominant, whereas for low streamflow forecasts the uncertainties in the hydrological model are more important.
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The objective of this study is to investigate the performance and limitations of ECMWF’s meteorological forecasts based

ensemble streamflow forecasting, for lead times up to 10 days for low, medium and high streamflow, in a catchment with

seasonal variation in the runoff generating processes. We aim to evaluate whether the performance of the forecasting system

relates to runoff generating processes, based on hydrometeorological conditions. Further, we assess whether the main source

of forecast error is the meteorological inputs or deficiencies in the hydrological model, for the different streamflow categories5

and runoff generating processes.

2 Study catchment and data

2.1 Study area and measurement data

The mountainous Biała Tarnowska Catchment in southern Poland serves as study area (Fig. 1). Napiorkowski et al. (2014)

describe the catchment. The Biała Tarnowska River discharges into the Dunajec River, which is a tributary of the Vistula10

River. The length of the river is 101.8 km, with a catchment area of 956.9 km2. We selected this catchment because of its large

variation in streamflow and seasonal variation in runoff generating processes. The mean streamflow is 9.4m3 s−1 (1972–2013).

The highest measured streamflow is 611m3 s−1. During winter and spring, snow(melt) plays an important role. A comparison

of the time series of precipitation and streamflow shows that the lag time between intense precipitation events and related peaks

in streamflow varies between 1 and 3 days.15

Approximate location Fig. 1

Precipitation and temperature measurement series are available from five meteorological stations and streamflow measure-

ment series are available from one discharge gauging station, at a daily time interval for the period 1 January 1971 to 31 October

2013. The measurement series were provided by the Polish Institute of Meteorology and Water Management. Given that mete-

orological stations are mostly located in valleys and precipitation and temperature vary with elevation, the catchment averages20

may be biased (Panagoulia, 1995; Sevruk, 1997). Following Akhtar et al. (2009), we corrected the precipitation measurements

using relative correction factors (in %), whereas we corrected the temperature measurements using absolute correction factors

(in ◦C). The precipitation gradient differs considerably between months. For December–February the mean precipitation gra-

dient is 10.5%100m−1, while for March–November the mean precipitation gradient is 5.4%100m−1. Although the small

number of stations limits the accuracy of the precipitation and temperature gradients, we used the calculated precipitation gra-25

dients because of the apparent difference between the two periods. The temperature gradient is rather constant over the year

and therefore we applied the global standard temperature lapse rate of 0.65 ◦C100m−1. The measurements from each station

were corrected for the difference between the elevation of the station and the mean elevation of its respective Thiessen polygon.

Subsequently, to represent the catchment averages, the corrected measurements were weighted based on the relative coverage

of their Thiessen polygon (Fig. 1). With the corrections, the annual mean precipitation increases from 741.2mm to 768.4mm30

and the annual mean potential evapotranspiration decreases from 695.3mm to 674.4mm.
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2.2 Meteorological forecast data

The meteorological ensemble forecasts by ECMWF are used, because of the good performance compared to other meteoro-

logical ensemble forecast sets (Buizza et al., 2005; Tao et al., 2014) and because the ECMWF forecasts are frequently used in

hydrological ensemble forecasting (Cloke and Pappenberger, 2009). Persson and Andersson (2013) and ECMWF (2012) de-

scribe how ECMWF generates the meteorological ensemble forecasts. The ensemble forecasts consist of one control forecast5

(no perturbation) and 50 ensemble members. The ensemble members should represent the initial condition and meteorological

model uncertainty (Leutbecher and Palmer, 2008; Persson and Andersson, 2013).

The THORPEX Interactive Grand Global Ensemble (TIGGE) project, developed by The Observing System Research

and Predictability Experiment (THORPEX), provides historical meteorological forecast data from 1 October 2006 onwards

(Bougeault et al., 2010). The resolution of the ensemble and control forecasts is 32 km × 32 km (ECMWF, 2012). Using the10

TIGGE data portal we interpolated the forecasts to a regular grid (Bougeault et al., 2010) with a resolution of 0.25◦ × 0.25◦

(17.9 km × 27.8 km at this latitude). In this study the maximum lead time is 10 days, following the World Meteorological

Organization (WMO) that defines medium-range as forecasts with lead times from 3 days to 10 days (ECMWF, 2012). We

also refer to Alfieri et al. (2014), Bennett et al. (2014), Demirel et al. (2013a), Olsson and Lindström (2008), Renner et al.

(2009), Roulin and Vannitsem (2005) and Verkade et al. (2013) who used 9 or 10 days as maximum lead times for hydrological15

forecasting. Because we use a lumped hydrological model with a daily time step (Sect. 3.1.1), we averaged the daily ECMWF

forecasts according to the relative area coverage of the seven grid cells that overlay the catchment.

According to Persson and Andersson (2013) ECMWF forecasts may apply to a land elevation that significantly differs

from the actual elevation in a grid and this may lead to biases. We ignored correction for such elevation errors, because any

systematic bias is accounted for in the pre-processing step (Sect. 3.1.3). ECMWF provides temperature forecasts at 00:00 hr.20

or 12:00 hr. This means that temperature forecasts cannot be considered as representative for one day. To obtain representative

daily average temperature forecasts, we weighted the temperature forecasts at 00:00 h, 12:00 h and 24:00 h by 25%, 50% and

25% respectively.

3 Methods

3.1 The ensemble streamflow forecasting system25

The ensemble streamflow forecasting system consists of multiple components, shown in Fig. 2. Uncertainties in the mete-

orological forecasts, the model parameters, the model initial conditions and the model structure affect streamflow forecasts

(Bourdin and Stull, 2013; Cloke and Pappenberger, 2009; Demirel et al., 2013a; Zappa et al., 2011). To capture the full range

of predictive uncertainty, uncertainties arising from all these sources must be incorporated (Bourdin and Stull, 2013; Krzyszto-

fowicz, 2001; Zappa et al., 2011). Bennett et al. (2014) and Cloke and Pappenberger (2009) stated that uncertainties in the30

meteorological forecasts are the largest source of uncertainty beyond 2–3 days, and therefore only meteorological forecast un-

certainty is incorporated in many studies (Bennett et al., 2014). We only include the uncertainty in the meteorological forecasts
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to focus on the effect of ensemble meteorological forecasts on streamflow forecasts. Consequently, an underdispersion of the

streamflow forecasts may be expected.

Approximate location Fig. 2

3.1.1 Hydrological model

The hydrological model we use is a lumped Hydrologiska Byråns Vattenbalansavdelning (HBV) model that we run at a daily5

time step. The model has 14 parameters and includes a snow accumulation and melting routine (Lindström et al., 1997; Osuch

et al., 2015). Daily potential evapotranspiration rates were based on air temperature using the method of Hamon (Lu et al.,

2005). The HBV model has wide application in studies on ensemble streamflow forecasting (e.g. Cloke and Pappenberger,

2009; Demirel et al., 2013a, 2015; Kiczko et al., 2015; Olsson and Lindström, 2008; Renner et al., 2009; Verkade et al., 2013).

The choice for a lumped model with a daily time step is the result of the spatial and temporal resolution of the available data. The10

measurements of precipitation and temperature available from five meteorological stations and streamflow from one discharge

gauging station do not justify the application of a spatially distributed hydrological model. The River Rhine forecasting suite

also adopts the HBV model at a daily time step as a semi-distributed model to 134 sub catchments (Renner et al., 2009). The

catchment area of Biała Tarnowska is comparable to the area of the sub catchments in the River Rhine forecasting suite.

To calibrate the HBV model we used the differential evolution with global and local neighbourhoods (DEGL) algorithm,15

described by Das et al. (2009). The settings were adopted from the best performing variant of Das et al. (2009) and the

maximum number of model runs is set at 50000. The model parameters were drawn uniformly from predefined parameter

ranges (Osuch et al., 2015). The objective function selected for calibration is Y , which combines the Nash-Sutcliffe coefficient

(NS) and the relative volume error (ERV) (Akhtar et al., 2009; Rientjes et al., 2013). According to Rientjes et al. (2013),

values of Y below 0.6 indicate a poor to satisfactory performance. The model was calibrated using the period 1 November20

1971 to 31 October 2000, with the time series of precipitation and temperature as inputs and streamflow measurements as the

reference output. The validation period was 1 November 2000 to 31 October 2013. Initialization periods of 10 months and 1

year, respectively, ensure realistic initial conditions on the first day of the calibration and the validation period.

3.1.2 Updating of initial states

To best represent the hydrological conditions in the catchment on the forecast issuing day, a hydrological forecasting system25

often relies on the updating of the hydrological model states, by combining simulations with real-time data (Demirel et al.,

2013a; Liu et al., 2012; Werner et al., 2005; Wöhling et al., 2006). A number of sophisticated techniques have been developed

for data assimilation and model state updating (Houser et al., 2012; Liu et al., 2012). We applied the fairly simple and direct

state updating procedure introduced by Demirel et al. (2013a), which relies on the autocorrelation of streamflow to update

model states. The measured streamflow of the day preceding the forecast issuing day is divided into a fast and a slow runoff30

component to update the fast runoff reservoir and the slow runoff reservoir of the HBV model. To determine the ratio between
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these components, a relation between the total simulated streamflow and the fraction of fast runoff is established based on

historical simulations.

3.1.3 Pre- and post-processing

Errors in the meteorological forecasts and in the hydrological models introduce biases in the mean and errors in the dispersion

of ensemble streamflow forecasts (Cloke and Pappenberger, 2009; Khajehei and Moradkhani, 2017; Verkade et al., 2013).5

Several studies have suggested that post-processing of streamflow forecasts is more effective in improving the forecast quality

than pre-processing of meteorological input data (Kang et al., 2010; Verkade et al., 2013; Zalachori et al., 2012). Verkade et al.

(2013) and Zalachori et al. (2012) found that corrections made to meteorological forecasts lose their effect when propagated

through a hydrological model. Zalachori et al. (2012) concluded that combined pre- and post-processing results in the best

forecast quality. In this study both pre-processing of the meteorological input forecasts and post-processing of the streamflow10

forecasts were tested.

Many studies have used (conditional) quantile mapping (QM) for pre-processing (Boé et al., 2007; Déqué, 2007; Kang

et al., 2010; Kiczko et al., 2015; Verkade et al., 2013; Wetterhall et al., 2012) and post-processing (Hashino et al., 2007; Kang

et al., 2010; Madadgar et al., 2014; Shi et al., 2008) to correct for bias and dispersion errors. According to Kang et al. (2010),

QM generally performs well in both pre- and post-processing. Hashino et al. (2007) have advised the use of QM, because of15

the good performance regarding sharpness and discrimination and the simplicity of the method. QM matches the cumulative

distribution function (CDF) of the forecasts over a training period to the CDF of the measurements over the same period, after

which a correction function is generated (Boé et al., 2007). This means that the correction is conditional on the value of the

forecasted variable itself. Boé et al. (2007), Déqué (2007) and Madadgar et al. (2014) further explained QM. The empirical

CDFs of the measurements and forecasts were established on the training period 1 November 2011 to 31 October 2013 (two20

hydrological years) and validated on the period 1 November 2007 to 31 October 2011.

Distributions may be different for different lead times and weather patterns or seasons (Boé et al., 2007; Wetterhall et al.,

2012), so we tested three QM set-ups both with and without distinguishing lead times and seasons. Combining the options

for pre-processing and post-processing results in four processing strategies. Strategy 0 applies no pre- and post-processing.

Strategy 1 and 2 applies QM to pre-process the meteorological forecasts, without and with post-processing respectively. In25

strategy 2, the post-processing is performed on the basis of the difference between ‘observed meteorological input forecasts’

(streamflow simulations with inputs from the meteorological measurements) and streamflow measurements to account for

hydrological model uncertainties (Verkade et al., 2013). Strategy 3 applies only post-processing, on the basis of the correction

between measured streamflow and streamflow forecasts generated with uncorrected meteorological forecasts. This strategy

treats meteorological and hydrological model uncertainties together (Verkade et al., 2013).30

3.2 Evaluation scores of the ensemble forecasts

To measure the overall performance, we employed the frequently-used continuous ranked probability score (CRPS) (Bennett

et al., 2014; Demargne et al., 2010; Hamill et al., 2000; Hersbach, 2000; Khajehei and Moradkhani, 2017; Pappenberger et al.,

6



2015; Velázquez et al., 2010; Verkade et al., 2013). To evaluate forecast skill, we used the continuous ranked probability skill

score (CRPSS), which is the CRPS of the forecasts relative to the CRPS of alternative forecasts (Sect. 3.2.1). According to

Demargne et al. (2010) and Hamill et al. (2000), a single evaluation score is inadequate to evaluate the performance of a

forecasting system. Three properties of forecast quality are reliability, sharpness and resolution (Wilks, 2006; WMO, 2015).

Reliability refers to the statistical consistency between measurements and simulations (Candille and Talagrand, 2005;5

Velázquez et al., 2010) and whether uncertainty is correctly represented in the forecasts (Bennett et al., 2014). We evalu-

ated reliability by rank histograms (Sect. 3.2.2) and reliability diagrams (Bröcker and Smith, 2007; Ranjan, 2009; Wilks, 2006;

WMO, 2015). The five forecast probability bins that we used to establish the reliability diagrams are 0%–20%, 20%–40%,

... and 80%–100%, which were also used by Demirel et al. (2013a) and Bennett et al. (2014). The low streamflow and high

streamflow thresholds are defined in Sect. 3.4.10

Sharpness is the tendency to forecast probabilities of occurrence near 0 or 1, as opposed to values clustered around the mean

(climatological) probability (Ranjan, 2009; Wilks, 2006; WMO, 2015). If an ensemble forecasting system always forecasts a

probability of occurrence close to the climatological probability, instead of close to 0 or close to 1, the forecasting system is

not useful, although it might be well calibrated (Ranjan, 2009; Wilks, 2006). To evaluate sharpness, we employed histograms

that show the sample size of the forecast probability bins of the reliability diagrams (Ranjan, 2009; Renner et al., 2009; WMO,15

2015).

Resolution is the ability to correctly forecast the occurrence and nonoccurrence of events (Demirel et al., 2013a; Martina

et al., 2006). We employed relative operating characteristics (ROC) curves to evaluate resolution (Fawcett, 2006; Khajehei and

Moradkhani, 2017; Velázquez et al., 2010; Wilks, 2006; WMO, 2015). The area under the ROC Curve (AUC) provides a single

score of performance regarding resolution (Fawcett, 2006; Wilks, 2006). A perfect ensemble forecasting system has an area20

of 1 under the ROC curve (100% hit rate, 0% false alarm rate for all probability thresholds), while a forecasting system with

zero skill has a diagonal ROC curve with an area of 0.5 (coincides with the diagonal) (Fawcett, 2006; Velázquez et al., 2010;

WMO, 2015).

3.2.1 Alternative forecast set

The CRPS converges to the average value of the evaluated variable (with the same unit), so the score cannot be compared among25

different areas, seasons or streamflow categories (Ye et al., 2014). To eliminate the magnitude of the investigated variable, we

normalized the CRPS against the CRPS of a relevant alternative forecast, a principle which has also been used by Bennett et al.

(2014), Demargne et al. (2010), Renner et al. (2009), Velázquez et al. (2010) and Verkade et al. (2013) to evaluate forecast

skill. The CRPSS is defined as:

CRPSS = 1− CRPSforecasts

CRPSalternative
(1)30

A system with perfect skill results in a CRPSS of 1 and a negative CRPSS indicates that the forecasting system performs

worse than the alternative forecasts (Demargne et al., 2010; Ye et al., 2014). Commonly, hydrological persistency, hydrolog-

ical climatology or meteorological climatology are implemented as the alternative forecast set (Bennett et al., 2013, 2014;
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Pappenberger et al., 2015). For hydrological persistency the most recent streamflow measurement available (i.e., from the day

preceding the forecast issuing day) serves as the forecast for all lead times. For hydrological climatology, the average measured

streamflow, after a smoothing window of 31 days, on the same calendar day over the last 20 years is used, following Bennett

et al. (2013). For meteorological climatology, meteorological measurements on the same calendar day over the past 20 years

are used, after Pappenberger et al. (2015).5

The alternative forecast set with the lowest CRPS serves as the alternative forecast set to evaluate skill (Bennett et al., 2013,

2014; Pappenberger et al., 2015). We used a single alternative forecast set for all streamflow categories. The forecasts based on

meteorological climatology result in the best CRPS scores (Fig. 3) and thus are implied to be the most appropriate alternative

streamflow forecasts, as also found by Bennett et al. (2013), Bennett et al. (2014) and Pappenberger et al. (2015).

Approximate location Fig. 310

3.2.2 Rank histogram

The consistency condition states that the reference streamflow (the measurement) is just one more member of the ensemble and

should be statistically indistinguishable from the ensemble forecast (Wilks, 2006). In an ensemble forecast set with a perfect

dispersion all reference streamflow ranks are equally likely and the rank histogram is uniform (Hamill, 2001; Hersbach, 2000;

Wilks, 2006; WMO, 2015; Zalachori et al., 2012). For more background on the rank histogram, readers are referred to Hamill15

(2001), Wilks (2006), Velázquez et al. (2010), WMO (2015) and Zalachori et al. (2012). We used the mean absolute error as

flatness coefficient ε of the rank histogram, with the uniform distribution as reference:

ε= 1
n+1

∑z=n+1
z=1 |f(z)− y| (2)

f(z) = Relative frequency of the reference streamflow at rank z [-]

y = 1
n+1 = Theoretical relative frequency (uniform distribution) [-]20

n= Number of ensemble members [-]

The rank histogram and flatness coefficient contain a random element if multiple ensemble members and the measurement

have the same value, such as 0mm precipitation (Hamill and Colucci, 1998). In this case, a random rank was assigned to the

measurement from the pool of ensemble members and the measurement that have the same value.

3.3 Contribution of error sources25

The evaluation of ensemble streamflow forecasts is affected by errors from the meteorological forecasts, the hydrological

model (including errors in the initial conditions) and the measurements that serve as the reference streamflow (Renner et al.,

2009). By evaluation against observed meteorological input forecasts, the streamflow measurement error and the hydrological

model errors are eliminated, because both the ensemble streamflow forecasts and the reference streamflows contain these errors

(Demargne et al., 2010; Olsson and Lindström, 2008; Renner et al., 2009). If we neglect measurement error, the evaluation30
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against streamflow measurements (CRPSmeas) contains errors from the meteorological forecasts and the hydrological model

and the evaluation against observed meteorological input forecasts (CRPSsim) exclusively contains errors from the meteoro-

logical forecasts (Demargne et al., 2010; Olsson and Lindström, 2008; Renner et al., 2009). If the ratio in Eq. (3) is low, the

hydrological model errors are dominant, and if this ratio is high, the meteorological forecast errors are dominant.

CRPSsim

CRPSmeas
∼ meteorological forecast errors

meteorological forecast errors + hydrological model errors (3)5

3.4 Evaluation of streamflow categories

We evaluated the forecasts for the different streamflow categories that are defined in Table 1. A low streamflow threshold

of Q75 (exceedance probability of 75%) guarantees that a sufficient number of events is considered in the evaluation of this

streamflow category, while a streamflow at this threshold still affects river functions (Demirel et al., 2013b). Similarly, we use

Q25 as the high streamflow threshold.10

Approximate location Table 1

3.5 Evaluation of runoff generating processes

The high streamflow forecasts and low streamflow forecasts were evaluated for the specific runoff processes that can gener-

ate these events, based on hydrometeorological conditions. Medium flows were not evaluated for different runoff generating

processes, because these events commonly result from a combination of runoff generating processes under non-extreme hy-15

drometeorological conditions.

3.5.1 High streamflow generating processes

Various runoff generating processes can result in high flows. Table 2 defines the processes and rules for classification. The rules

for classification are based on rainfall observations and snowpack model simulations; at one day before the event because of

the time step used in the HBV model. The distribution of processes over the year (Fig. 4a) is typical for this region.20

Approximate location Table 2

3.5.2 Low streamflow generating processes

Processes that result in low flows are snow accumulation and the combination of low rainfall and high evapotranspiration over

a period (precipitation deficit). Table 3 further characterizes and defines these processes. These rules for classification result in

a distribution of processes over the year (Fig. 4b) that is typical for this region.25

Approximate location Table 3

Approximate location Fig. 4
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4 Results

4.1 Ensemble streamflow forecasting system

4.1.1 Calibration and validation of the hydrological model

The calibration and validation performances of the hydrological model (Table 4) are satisfactory, which indicates that the

lumped model approach is plausible. The updating of the initial states of the fast runoff reservoir and slow runoff reservoir5

(Sect. 3.1.2) results in an improvement of Y from 0.75 to 0.82 over the validation period. This effect decreases with lead time,

but it is still noticeable at a lead time of 10 days.

Measurements and ECMWF forecasts are simultaneously available for the period 1 November 2006 to 31 October 2013.

In the hydrological year 2007 (1 November 2006 to 31 October 2007) the agreement between streamflow measurements and

simulations is poor. Also with a data based mechanistic (DBM) model, the performance was worse for this year (Kiczko et al.,10

2015). This must be the result of measurement errors and/or human influence, because it is unlikely that in this period different

hydrological processes were taking place that are not captured well by both the HBV and DBM models. Therefore, we excluded

the period 1 November 2006 to 31 October 2007 from the evaluation period.

Approximate location Table 4

Table 5 lists the performance of the hydrological model for different lead times and streamflow categories, including the15

relative mean absolute error (ERMA). The NS values for the low and medium streamflow categories are negative, which means

that the averages of streamflow measurements in these categories are a better approximation of the measurements than the

simulations. The scores highlight that the calibration was skewed to high streamflow conditions, which is the result of the

selected objective function that includes NS (Gupta et al., 2009). Gupta et al. (2009) also found that model calibration with NS

tends to underestimate the low and high streamflow peaks.20

Approximate location Table 5

The performance of the hydrological model improves considerably as a result of the updating of initial states, especially for

the low streamflow simulations. The effectiveness of the updating procedure depends on the autocorrelation of daily streamflow.

In low streamflow periods there is usually a high autocorrelation of daily streamflow, in contrast to high streamflow periods.

4.1.2 Pre- and post-processing strategy results25

The best precipitation forecasts are obtained if QM is applied separately to each lead time, whereas the best temperature

forecasts are obtained if, in addition, separate relations for the summer and winter seasons are applied. The CRPS and ERMA

of the precipitation and temperature forecasts improve slightly and the flatness coefficients improve considerably as a result of

the pre-processing. However, for the combined pre- and post-processing strategies, the results in Fig. 5 show that strategy 0

(no pre- and post-processing) results in the best CRPS. The slight improvement of the meteorological forecasts loses its effect30
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after propagating through the hydrological model. This is the result of hydrological model deficiencies and was also shown by

Verkade et al. (2013) and Zalachori et al. (2012).

Approximate location Fig. 5

4.2 Forecast performance

4.2.1 Forecast skill5

The streamflow forecasts were evaluated over the period 1 November 2007 to 31 October 2013, for lead times from 1 day to

10 days and for the different streamflow categories (Table 1). The CRPS increases with lead time for all streamflow categories

(Fig. 6a), so the performance of the streamflow forecasting system deteriorates with lead time. For all streamflow categories

aggregated, the CRPSS is positive for all lead times (Fig. 6b), so on average the streamflow forecasts are better than the alter-

native forecasts. This forecast skill is generated by the ECMWF forecasts compared to historical meteorological measurements10

on the same calendar day.

Fig. 6b shows that the forecast skill is very different for the low, medium and high streamflow forecasts. The low skill of

low streamflow forecasts, especially for small lead times, can be explained by the important role of the initial hydrological

conditions. In low streamflow situations, runoff is mainly generated by available water storage in the catchment instead of

precipitation input. Since the same initial model conditions were used to produce the alternative forecasts, the low streamflow15

forecasts cannot skilfully be forecasted for small lead times (<3 days). In addition, the origin of the alternative forecasts plays a

role. Low streamflow events normally occur in the same period of the year due to climatic seasonality, so historical meteorolog-

ical measurements on the same calendar day provide plausible inputs. After all, the performance of the meteorological forecasts

preceding these events contributes to the low skill. The negative skill at small lead times indicates that historical meteorological

measurements are even better forecasts than the meteorological forecasts by ECMWF for this category of flows. From a lead20

time of 3 days the accumulated meteorological forecasts are more skilful than the historical meteorological measurements.

Approximate location Fig. 6

The medium streamflow forecasts do not have clear positive skill for all lead times. Streamflow is most often close to

the medium streamflow, so forecasts based on historical meteorological measurements will be a good approximation for this

category of flows.25

The system has a high positive skill in forecasting high streamflow. In general, initial conditions are less important for these

events, because of the amount of water usually added to the system. However, we note that this depends on the responsible

runoff generating process (see results in Sect. 4.4.1). As a result, the streamflow forecasts and the alternative forecasts can

more easily deviate. In addition, high streamflow events will be less well captured by historical meteorological measurements,

and thus the alternative forecasts will have lower quality for these events.30
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4.2.2 Forecast quality

The high values of the flatness coefficients (Fig. 7) indicate that the rank histograms are far from flat, especially for small lead

times and low streamflow events. The rank histograms (in supplementary Fig. S1) are U-shaped, which indicates an underdis-

persion and/or conditional bias in the streamflow forecasts (Hamill, 2001). The ECMWF forecasts are also underdispersed, so

this is one cause for the streamflow forecasts being underdispersed. In Sect. 5 the consequences of ignoring uncertainties in the5

hydrological model and initial conditions are further discussed.

Approximate location Fig. 7

The rank histograms for the streamflow categories (Fig. S2) show that the streamflow forecasts contain a conditional bias.

In general, high streamflow is underestimated by the forecasting system and this increases with lead time. Low streamflow is

generally overestimated. Both observations can be the result of a too coarse spatial and temporal model resolution. Using a10

lumped model, and aggregating the meteorological inputs spatially over the catchment and temporarily over one day flattens

the extreme flow events.

Also the reliability diagrams (Fig. S3) show the low reliability of the streamflow forecasts, especially for small lead times.

It appears that for the low streamflow forecasts the observed relative frequencies are underestimated, whereas for the high

streamflow forecasts the observed relative frequencies are overestimated. The latter observation does not contradict the rank15

histograms, because in the rank histogram the measurements and forecasts are compared directly, whereas in the reliability

diagram the measurements and forecasts are compared to a streamflow threshold.

The histograms containing the sample size in the probability bins of the reliability diagrams (Fig. S3) indicate that the

sharpness of the forecasts is good, because forecast probabilities of low and high streamflow are mostly close to 0 or 1, instead

of close to the mean probability. The sharpness decreases with lead time.20

All AUC values are above 0.85 (Fig. S4), which indicates a good resolution of the streamflow forecasting system. Buizza

et al. (1999) state that, for meteorological forecast systems, it is common practice to consider an area of more than 0.7 as

indicative of useful prediction systems and 0.8 of good prediction systems.

4.3 Dominant error contributors

Figure 8 shows that the relative contribution of meteorological forecast errors increases and the relative contribution of hydro-25

logical model errors decreases with lead time, although the performance of the hydrological model also deteriorates with lead

time (Table 5). Two effects contribute to this. First, the meteorological forecasts get worse with lead time (Fig. 5) and errors in

the meteorological forecasts accumulate in the hydrological forecasting system. Second, the effect of the initial hydrological

conditions at the forecast issuing day becomes smaller at larger lead times.

For high streamflow forecasts the contribution of the meteorological forecast errors is more important, whereas for low30

streamflow forecasts the contribution of the hydrological model errors is more important. Initial conditions have less influence

on high streamflow (discussed in Sect. 4.2.1). In addition, the hydrological model performs better for high streamflow than for

low streamflow conditions (Table 5), making the contribution of the meteorological forecast errors larger.
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Approximate location Fig. 8

4.4 Forecast skill for the runoff generating processes

4.4.1 High streamflow generating processes

The highest skill is obtained for short-rain floods (Fig. 9a), at small lead times (1–5 days). Two effects contribute to this.

First, long-rain floods and snowmelt floods are essentially driven by the water storage conditions in the catchment whereas for5

short-rain floods the meteorological input has more influence. Figure 9b confirms the relative importance of meteorological

forecasts for this category. This results in a higher potential to generate forecast skill, already at small lead times. The increasing

contribution of meteorological forecast errors in long-rain floods and snowmelt floods demonstrates that at larger lead times

the accumulation of rainfall during the forecast period becomes important. Second, the short and heavy rain events preceding

short-rain floods will be less well captured in historical meteorological measurements than the longer term processes generating10

long-rain floods and snowmelt floods. Long-rain floods are skilfully forecast from a lead time of 3 days and snowmelt floods

are skilfully forecast from a lead time of 2 days. The forecast skills of short-rain floods and snowmelt floods decrease from lead

times of 6 days and 9 days respectively. This is the result of a decreased performance of the meteorological forecasts preceding

these events. The skill of short-rain flood forecasts decreases the most.

Approximate location Fig. 915

4.4.2 Low streamflow generating processes

Figure 10a shows that the low forecast skill of low streamflow originates from the forecasts of the events under the precipitation

deficit conditions, whereas the forecast skill of low streamflow events under snow accumulation conditions is rather high.

The low forecast skill of the low streamflow events under precipitation deficit conditions can be explained by the fact that

precipitation deficits often occur in the same period of the year, due to climatic seasonality, and are therefore well captured20

by historical meteorological measurements. In addition, the performance of meteorological forecast models may play a role.

Meteorological models tend to forecast drizzle instead of zero precipitation (Boé et al., 2007; Piani et al., 2010) and pre-

processing has not been applied to correct for this. The skill increases for larger lead times, so for larger lead times the

ECMWF meteorological forecasts accumulated in the forecasting system give better predictions than historical meteorological

measurements. The fact that the contribution of initial hydrological conditions at the forecast issuing day decreases for larger25

lead times (reflected in Fig. 10b) adds to this skill.

The forecast skill for both snowmelt floods and snow accumulation generated low streamflow events decreases from a lead

time of 8 days, which indicates a decreasing skill of ECMWF temperature forecasts for large lead times.

Approximate location Fig. 10
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5 Discussion

The methodology was applied to an ensemble streamflow forecasting system of the Biała Tarnowska Catchment, for a 6

year period. In this, findings of this study do not allow a direct generalisation but they contribute to ongoing discussions on

improving streamflow forecasting. Also, a longer evaluation period would allow an evaluation of more extreme definitions of

high and low streamflow.5

The effectiveness of QM in pre- and post-processing depends on whether during the validation period the same bias exists

between the CDF of the measurements and the CDF of the forecasts as exists during the training period. Figure 11 shows the

large differences in the biases between the different years and between the training period and the validation period, which

suggests that the bias is affected by randomness. The relatively short time series of the forecasts constrains the effectiveness

of the pre- and post-processing, because different weather patterns cannot be well identified and with a longer period a more10

consistent bias distribution could be obtained. A problem in the pre- and post-processing of forecasts is that the joint distri-

bution of measurements and forecasts is often non-homogeneous in time due to, for example, an improvement of forecasting

systems over time (Verkade et al., 2013). The ECMWF meteorological forecasts in TIGGE, containing historical operational

forecasts, have also undergone changes (Mladek, 2016). In addition, the limitations of QM, as described by Boé et al. (2007)

and Madadgar et al. (2014), are expected to play a role in the ineffectiveness of the pre- and post-processing. In spite of the15

limitations of QM, over the training period the pre- and post-processing strategies result in an improvement of the evaluation

scores (strategy 3 with seasonal distinction gives the best performance), which indicates the potential of processing with QM

if a consistent bias is present.

Approximate location Fig. 11

The rank histogram results show that ignoring uncertainties in the hydrological model and the model initial conditions20

affects the reliability of streamflow forecasts for short lead times and low streamflow in particular. Regarding the effect on

short lead times, Bennett et al. (2014) and Pagano et al. (2013) reported similar findings. The lower flatness coefficients of high

streamflow forecasts compared to low streamflow forecasts reflect the fact that for high streamflow forecasts the meteorological

inputs are more important.

The classification of low and high streamflow generating processes is based on hydrometeorological information that is25

available from the measurement series and the HBV model (Table 2 and Table 3). Using this information provides more

insight into the performance of the forecasting system than a seasonal characterisation. However, some assumptions must

be kept in mind when interpreting the results. The assumption that snow accumulation before an event is embedded in the

snowpack storage of the lumped HBV model neglects the fact that only part of the catchment may be covered by snow. If

a snowpack is present, the event was classified as snowmelt flood or snow accumulation low streamflow. If no snowpack30

is present, it was assumed that the low streamflow event or high streamflow event is caused by low or high rainfall. The

threshold of 10mmday−1 is a simple rule to distinguish between short-rain floods and long-rain floods. The simple character

of the classification rules especially has consequences for the classification of events that were caused by a combination

of processes, which often occur in practice and result in the most extreme low and high streamflow events. Another point
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is that only information from the day preceding the forecast issuing day was used to classify the processes. The lag time

between the precipitation events and the streamflow events does not always match the HBV model calculation time step and

the classification rules used. Consequently, the streamflow on the day following a high rainfall event was classified as a short-

rain flood, whereas the real streamflow peak might come one day later.

In the hydrological model the lag time between a rainfall event and the streamflow event was set at 1 day. However, the5

timing of a rainfall event on a day is important, particularly in a small catchment. The lag time is a critical aspect in the

study’s forecasting system, especially for short-rain floods. The ratio between the CRPS against observed meteorological

input forecasts and the CRPS against streamflow measurements is above 100% for high streamflows, and short-rain floods

in particular (Fig. 9b). This indicates that forecasts are closer to the measurements than to the observed meteorological input

forecasts. On 28% of the high streamflow days at a lead time of 1 day to 48% of the high streamflow days at a lead time of10

10 days, the ensemble forecasts are closer to the measurements than to the observed meteorological input forecasts. On 50%

to 66% of these days, the ensemble forecasts are closer to the measurements than the observed meteorological input forecasts

are. This indicates a hydrological model deficiency in high streamflow conditions, either from simulating the rainfall-runoff

relation or the flood peak timing. The precipitation peak in the measurements and the precipitation peak in the meteorological

forecasts can be shifted one day with respect to each other and this may cause that the timing of the peak of the streamflow15

forecasts better corresponds to the streamflow measurements. Of the 97 separate peak streamflow days, on 6 days (lead time

of 6 days) to 17 days (lead time of 1 day) the flood peak day of the observed meteorological input forecasts does not match to

the peak day of the measurements, while the peak day of the mean of the ensemble forecasts does match to the peak day of the

measurements. This illustrates that the hydrological model deficiency regarding flood peak timing has a considerable effect on

the observed meteorological input forecasts and the ensemble forecasts.20

It is not trivial to compare the CRPS results to other studies, because the value depends on the magnitude of the evalu-

ated variable (Ye et al., 2014). A similarity between the results in this study and previous studies is that the performance of

the streamflow forecasts decreases with lead time. Because Bennett et al. (2014) used the same alternative forecast set, the

CRPSS results can be compared. Although Bennett et al. (2014) used a different forecasting system and applied it to different

conditions, the forecast skills are comparable to the forecast skills obtained in this study.25

6 Conclusions

We have developed a methodology that gives insight into the performance of an ensemble streamflow forecasting system. For

the case study of the Biała Tarnowska Catchment we conclude:

– There are large differences in forecast skill, compared to alternative forecasts based on meteorological climatology, for

different runoff generating processes. The system skilfully forecasts high streamflow events, although the skill depends30

on the runoff generating process and the lead time. Also low streamflow events that are generated by snow accumulation

are skilfully forecasted. Since the hit rates are high compared to the false alarm rates, the system has potential to generate
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forecasts for these streamflow categories. The sharpness of the forecasts is also good, although it decreases with lead time.

Medium streamflow events and low streamflow events under precipitation deficit conditions are not skilfully forecasted.

– When this or any other forecasting system is (further) developed with the objective of generating more accurate high

streamflow forecasts, it is recommended that the focus is on improving the meteorological forecast inputs because errors

from the meteorological forecasts are dominant in high streamflow forecasts. This can be achieved by better meteoro-5

logical forecasts (e.g. using the higher resolution forecasts from COSMO-LEPS (Renner et al., 2009)) or by improved

pre-processing . The hydrological model performance on high streamflow conditions can be improved by specific calibra-

tion on flood peak timing and high streamflow conditions. To improve the low streamflow forecasts, it is recommended

to focus on the hydrological model performance first. In this study, the calibration of the hydrological model was skewed

to high streamflow conditions. An improvement of the low streamflow forecasts can be achieved by calibrating the hy-10

drological model specifically on low streamflow conditions. Besides improvement of the hydrological model, further

research should be done to improve the meteorological forecasts as input to low streamflow forecasts, especially to the

precipitation forecasts (problem of forecasting of drizzle). When the forecasting system is applied exclusively on low or

high streamflow forecasts, the alternative forecast set must be reconsidered.

– The ensemble streamflow forecasting system shows good resolution and sharpness, but the reliability must be improved,15

particularly for the small lead times and the low streamflow forecasts. It is recommended to include the uncertainties

in the hydrological model parameters and the initial conditions in the forecasting system. Because the precipitation and

temperature forecasts are also underdispersed, we recommend an investigation into how the reliability of the precipita-

tion and temperature forecasts can be improved, potentially by adding meteorological forecasts from other forecasting

systems (i.e. creating ‘super-ensembles’) (Bennett et al., 2014; Bougeault et al., 2010; Fleming et al., 2015; He et al.,20

2009) or by improved pre-processing.

– Pre-processing with QM slightly improves the meteorological forecasts, but this loses its effect after propagating through

the hydrological model. Post-processing of streamflow forecasts is not effective either. A longer time series of forecasts

would promote the success of pre- and post-processing. ECMWF provides a homogeneous retrospective forecast set,

consisting of twice-weekly forecasts with one control and 10 ensemble members over a period of 20 years, that is gen-25

erated by the current operational system (Hagedorn, 2008; Vannitsem and Hagedorn, 2011; Vitart, 2017). Moreover,

techniques such as a Bayesian joint probability approach (Bennett et al., 2014; Khajehei and Moradkhani, 2017), regres-

sion techniques (Verkade et al., 2013; Hashino et al., 2007), Schaake shuffle to ascribe realistic space-time variability

(Clark et al., 2004), and weather typing (Boé et al., 2007; Wetterhall et al., 2012) or hydrological process typing, may

improve the effectiveness of pre- and post-processing procedures.30

– It is recommended that the study be extended to other catchments and (if possible) with longer forecast datasets, to

investigate the generality of the results and to test more extreme high and low streamflow thresholds.
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The findings apply to the study catchment and the developed system set-up only, but the methodology of analysing an ensemble

streamflow forecasting system is generally applicable. The methodology provides valuable information about a forecasting

system: in which conditions it can be used and how the system can be improved effectively.

Data availability. ECMWF meteorological forecast data for the period 1 October 2006 to 31 October 2013 were obtained from the TIGGE
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Figure 2. Structure of the ensemble streamflow forecasting system
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Table 1. Definition of streamflow categories

Streamflow category Thresholds Streamflow (from measurements 1-11-2007 to 31-10-2013)

Low streamflow Qobs ≤Q75 Qobs ≤ 2.76m3 s−1

Medium streamflow Q75 <Qobs ≤Q25 2.76m3 s−1 <Qobs ≤ 10.35m3s−1

High streamflow Q25 <Qobs 10.35m3 s−1 <Qobs
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Table 2. Characterization of the high streamflow generating processes

Process Characterization Rules for classification

Snowmelt flood Snowmelt floods and rain-on-snow floods (explained

by Merz and Blöschl (2003)) are considered as one

category. All high streamflow events where snow is in-

volved are characterized as snowmelt floods, because

the snowpack and/or frozen soil underneath play an im-

portant role in the runoff process.

Snowpack (HBV) at forecast day−1

Short-rain flood Short-rain floods and flash floods (characterized by

Merz and Blöschl (2003)) are combined. Flash floods

are classed in this category as well, because only daily

measurements and forecasts are available.

No snowpack (HBV) at forecast day−1

Rainfall at forecast day−1 above 10mm: With small

initial storage in the catchment (HBV), precipitation

of 10mmday−1 at the day preceding the streamflow

event causes a streamflow event above the high

streamflow threshold.

Long-rain flood Long-rain flood processes are explained by Merz and

Blöschl (2003). This category applies when a stream-

flow event is not directly generated by snowmelt or

high precipitation.

No snowpack (HBV) at forecast day−1

Rainfall at forecast day−1 below 10mm
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Table 3. Characterization of the low streamflow generating processes

Process Characterization Rules for classification

Snow accumulation If precipitation is snow and does not melt directly, ac-

cumulation occurs.

Snowpack (HBV) at forecast day−1

Precipitation deficit When low rainfall and high evapotranspiration last

over a prolonged period, the catchment will dry out.

No snowpack (HBV) at forecast day−1
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Table 4. Calibration and validation performances of the model

Run
Calibration

(1-11-1971 to 31-10-2000)

Validation

(1-11-2000 to 31-10-2013, excluding 2007)

Y [-] NS [-] ERV [%] Y [-] NS [-] ERV [%]

Calibration run with input data cor-

rected for elevation

0.81 0.81 0 0.75 0.78 4.8

With updating, at lead time 0 days - - - 0.82 0.83 1.3

With updating, at lead time 10 days - - - 0.75 0.79 4.4
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Table 5. Performance over the evaluation period 2008–2013, for low, medium and high streamflow simulations (observed meteorological

input forecasts). The initial states are updated at the lead time of 0 days.

Lead time

[days]

ERV [%] NS [-] ERMA [-]

Low Medium High Low Medium High Low Medium High

No updating 43.3 7.29 1.81 −10.9 −2.36 0.82 0.71 0.43 0.33

0 3.23 4.69 2.16 0.34 −0.14 0.86 0.11 0.16 0.25

1 6.44 7.16 2.64 −0.64 −0.53 0.84 0.19 0.21 0.29

2 8.55 8.80 2.48 −1.12 −0.88 0.83 0.23 0.25 0.31

3 11.5 9.60 2.30 −2.09 −1.07 0.83 0.29 0.28 0.32

4 13.6 10.1 2.17 −2.76 −1.15 0.83 0.33 0.30 0.32

5 15.9 10.4 2.04 −3.50 −1.33 0.83 0.37 0.31 0.32

6 18.2 10.4 1.98 −4.36 −1.43 0.83 0.41 0.32 0.32

7 19.2 10.5 2.01 −4.56 −1.53 0.83 0.43 0.34 0.32

8 20.6 10.3 2.07 −4.88 −1.62 0.83 0.45 0.35 0.32

9 22.9 10.1 2.09 −5.73 −1.70 0.83 0.49 0.35 0.32

10 24.0 10.0 2.13 −6.09 −1.77 0.83 0.50 0.36 0.32
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