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Dear editor, 

Thank you for your consideration of the paper. Based on the comments by the three reviewers on the 
first version of the manuscript we have revised the manuscript regarding explanation of methods, 
explanation of results and English writing. We have added Fig. 5 and additional background figures in 
a supplement. The revised manuscript is uploaded. 

This document contains a point-by-point reply to the comments and a marked-up manuscript. Page 
and line numbers refer to the first version of the manuscript. We have updated revised texts in the 
point-by-point reply with the text in the uploaded revised manuscript (minor changes compared to 
the responses on 18 March 2017). In the cases that our response to a comment has changed compared 
to 18 March 2017, we have indicated this by keeping the original reply (18 March 2017) and adding 
an additional reply below it (8 May 2017).  

 

 

 

 

 

  



Response to Interactive comment Anonymous Referee #1 
General comments 

Comment: This manuscript presents an interesting analyse of the performance of hydrological ensemble 
predictions. The skills are screened according the regime (low and high streamflow) and the generating processes 
(snow melt, short rain, long rain floods etc.). This study further disentangles hydrological model errors and errors 
from meteorological forcing. The methodology is applied to a mountainous catchment. The combination of 
existing methodologies is pertinent and is worth being published in HESS. 

However the reading is not easy and a major revision is necessary. Some information is redundant in the 
introduction, methodology and results sections and long lists of references are not always necessary. The focus 
should be made on the main contribution of the paper i.e. the analysis of the skill for different hydro-
meteorological conditions and skip or shorten secondary experiments. Some validation methodologies are 
described but their results are not shown. A balance should be found: either shorten the description or include 
those results. Some suggestions are given in the specific comments. The English should be improved. 

Reply: We thank the reviewer for the assessment. We appreciate the reviewer’s opinion about the 
study and the valuable suggestions provided to improve the manuscript. Below are our responses to 
the comments and points raised.  

The reviewer’s suggestion to improve the flow of the paper is valuable, and the specific comments 
contain many relevant points for this.  

With respect to the comment to increase the focus of the paper on the main scientific innovation, we 
will leave out the additional updating experiment, which has also not been used because it was 
unsuccessful (P5 Line 31 – P6 Line 2, P11 Line 3 – P11 Line 5).  

Regarding the experiments on pre- and post-processing of the ensemble forecasts we consider this 
important and propose not to remove it from the paper. The procedure is common, so removing it 
will presumably result in doubts about why we have not applied a correction procedure. The results 
of this experiment are quite striking and we will add a figure with CRPS values for the different pre-
and post-processing strategies showing this finding (see Figure 1).  

Further replies to this comment follow below in response to the specific comments.  



 
Figure 1: CRPS of the post-processing strategies over the validation period 2008-2011 

 

Comment: The authors are using ensemble predictions from ECMWF from 2007 to 2013 with a training of the 
pre- and post-processing during two water years between 2011 and 2013. They associate the failure of the 
quantile mapping for post-processing method to the short time series of forecasts for training and to the 
inconsistency of the bias between the training and the validation period. They forget that the ensemble prediction 
system has undergone many changes during this period including spatial resolution changes. This is why 
retrospective forecasts are available since long and provide samples of 18 to 20 years back for post-processing 
purposes. Re-forecasts have been widely used and reported in the literature. These meteorological re-forecasts 
have also been used for the preparation of hydrological re-forecasts for the statistical postprocessing of 
hydrological ensemble predictions. 

Reply: It is correct that we used meteorological forecasts from a system that has undergone changes.  
The TIGGE data portal contains the operational forecasts from meteorological forecast centres. We 
agree that this affects the pre-processing and post-processing results and we thank the reviewer for 
this suggestion. We will add a statement to Page 15 Line 15-16 that the joint distribution of 
measurements and forecasts is nonhomogeneous in time, because the meteorological forecast 
system has undergone changes during our analysis period (Mladek, 2016):  

https://software.ecmwf.int/wiki/display/TIGGE/Model+upgrades#Modelupgrades-ECMWF  

Comment: Figure 5 to 9 are the core of the paper. They will gain value if the plots are associated with confidence 
intervals. 

Reply: CRPS and CRPSS are the main evaluation scores that we used. In recent literature these scores 
are commonly applied without associated confidence intervals or statistical tests, by Demargne et al. 
(2010), Hersbach (2000), Pappenberger et al. (2015), Renner et al. (2009), Verkade et al. (2013), and 
Ye et al. (2014). We agree to the suggestion that confidence intervals around the CRPS values would 
add value to the figures, but we consider establishing such confidence intervals outside the focus of 
this paper.  



Comment: The use of the term “perfect forecast” is questioned because it is neither a forecast nor perfect and, 
would the future meteorological forcing be known, predictions with the model would include growing errors due 
to initial conditions as somehow shown in Table 5. 

Reply: We appreciate the comment. The term “perfect forecast” was introduced by Olsson and 
Lindström (2008), but the term is somewhat misleading. For the same concept, Renner et al. (2009) 
used the term “baseline simulation”, Demargne et al. (2010) used the term “simulated flow”, Verkade 
et al. (2013) used the term “simulated streamflow” and Bennett et al. (2014) used the term “perfect-
rainfall-forced forecasts”. We propose to use “observed meteorological input forecasts”.  

 

Specific comments 

Comment: P1, L20-24 Should be rephrased e.g. too many occurrence of “improve”. 

Reply: We agree to the comment and will change it to:  

“To improve the performance of the forecasting system for high streamflow events, in particular the 
meteorological forecasts require improvementare crucial. For low streamflow forecasts, It is 
recommended to calibrate the hydrological model specifically on low streamflow conditions and high 
streamflow conditions. the hydrological model should be improved. The study It is further 
recommendeds improving that the reliability dispersion (reliability) of the ensemble streamflow 
forecasts is enlarged by including the uncertainties in hydrological model parameters and initial 
conditions, and by improving enlarging the dispersion of the meteorological input forecasts.” 

Comment: P3 L23-P4, L3 How do you correct measurement? Do you correct each station for the difference 
between the elevation of the station and the average of the elevation in the area defined by the intersection of 
the Thiessen polygon corresponding to the station and the watershed? Then average the corrected values of the 
stations using their relative contribution to the catchment area as weights? 

Reply: The assumption of the reviewer is correct: this is the procedure that we used. We will revise 
the text to make this clear: 

“Precipitation and, temperature and streamflow measurement series are available from five 
meteorological stations and streamflow measurement series are available from one discharge gauging 
station, at a daily time interval for the period 1 January 1971 to 31 October 2013, and provided by the 
Polish Institute of Meteorology and Water Management. Precipitation and temperature data from 5 
measurement stations (Fig. 1) have been selected because of their distribution over the catchment 
and data series completeness. The data are spatially interpolated based on Thiessen polygons (Fig. 1) 
to represent catchment averages. Given that meteorological stations are mostly located in valleys and 
precipitation and temperature vary with elevation, the catchment averages are may be biased 
(Panagoulia, 1995; Sevruk, 1997). Following Akhtar et al. (2009), precipitation measurements are 
corrected using relative correction factors (in %), whereas temperature measurements are corrected 
using absolute correction factors (in °C). The precipitation correction factorgradient differs 
considerably between months. For December–February the mean precipitation gradient is 
10.5 % 100 m-1, while for March–November the mean precipitation gradient is 5.4 % 100 m-1. 
Although the number of stations is limited small to accurately determine precipitation and 
temperature gradients, the calculated precipitation gradients are used because of the clear difference 
between the two periods. The temperature gradient does not vary much over the year and therefore 
the global standard temperature lapse rate of 0.65 °C 100 m-1 is applied. The measurements from each 
station are corrected for the difference between the elevation of the station and the mean elevation 
its respective Thiessen polygon. To represent catchment averages, the corrected measurements are 



weighted based on the relative coverage of their Thiessen polygon (Fig. 1). By the corrections the 
annual mean precipitation increases from 741.2 mm to 768.4 mm and the annual mean potential 
evapotranspiration decreases from 695.3 mm to 674.4 mm.” 

Comment: P5, L20-21 Equations would be appropriate here in order to define Y, NS and E_RV. 

Reply: We hesitate to add the equations since Y, NS and ERV are defined in the given references.  

Comment: P5, L28 preceding the first forecast day. 

Reply: We agree. We will change it to: “the day preceding the forecast issuing day” (from comment 
on P11, L21). 

Comment: P5, L32-P6, L2 I would suggest to skip this experiment or, if impossible to skip, tell already that it failed 
(according to P11, L3-5). This is to lighten the methodologies to keep in mind until the result section. 

Reply: We agree to leave this out. Also see the response to the first general comment.  

Comment: P6, L31-P7, L11 Some information (and references) is redundant with the sub-sections. 

Reply: We agree. Also looking at comment 3 by Reviewer 3 we will omit general information about 
the evaluation scores, but focusing on what aspect on forecast quality each score evaluates and citing 
the relevant references.  

Comment: P7, L1 Three properties of probabilistic forecast quality … 

Reply: We do not understand this comment.  

Comment: P7, L8 “The histograms accompanying ...” the histograms of what? 

Reply: We will change this sentence to:  

“The histograms accompanying reliability diagrams are used to evaluate sharpness. To evaluate 
sharpness, we employ the histograms that show the sample size of the forecast probability bins used 
to establish the reliability diagrams (Ranjan, 2009; Renner et al., 2009; WMO, 2015).” 

Comment: P7, L20-21 “CRPS approaches the average value of the evaluated variable” What do you mean with 
“approaches”? 

Reply: We will change “approaches” to “converges to”. 

Comment: P7, L24-27 “and compares the forecasts with a relevant alternative forecast” somehow redundant 
with the beginning of the sentence. 

Reply: We will change this sentence to:  

“Normalizing the CRPS against the CRPS of alternative forecasts eliminates the effect of the magnitude 
of the investigated variable and compares the forecasts with a relevant alternative forecast (i.e. skill), 
used by e.g. Bennett et al. (2014), Demargne et al. (2010), Renner et al. (2009), Velázquez et al. (2010) 
and Verkade et al. (2013). 

To eliminate the magnitude of the investigated variable we normalize the CRPS against the CRPS of a 
relevant alternative forecast, a principle which is also used by Bennett et al. (2014), Demargne et al. 
(2010), Renner et al. (2009), Velázquez et al. (2010) and Verkade et al. (2013) to evaluate forecast 
skill.” 



Comment: P8, L1-2 “... argue that this” choice … these two lines should be rephrased. I would prefer a positive 
phrasing saying that the choice of another alternative forecast may result in a more robust estimation of forecast 
skill. 

Reply: We propose to delete P7 Line 30 – P8 Line 2, because it is not really relevant to explain the 
procedure that we followed. It explains why we have not applied hydrological persistency or 
hydrological climatology as alternative forecast set, but we can focus the text on what we have done: 
using the forecast set with the lowest CRPS values as alternative forecast set, because this set is most 
difficult to beat in performance.   

Comment: P8, L22-23 Either provide an equation for the “numerical indicator delta” if it adds to the 
understanding of the adopted methodology or skip any reference to delta. 

Reply: We will remove the reference to delta.  

Comment: P8, L30-31 “... contain a random element ...” explain how it works for the flatness coefficient. 

Reply: We will add further explanation about the random element:   

“In this case, a random rank is assigned to the measurement from the pool of ensemble members and 
the measurement that have the same value.”  

Comment: P9, L3 “... for a certain event ...” It would be useful to define “event” and refer to sub-section 3.4 or 
Table 1. 

Reply: We will specify “certain event” as “for low streamflow events and high streamflow events 
(defined in Sect. 3.4)”.  

Comment: P9, L24-28 Almost the same thing is repeated. 

Reply 18 March 2017: We will delete P9 Line 24-26. 

Reply 8 May 2017: On second thought we consider P9 Line 24-26 valuable in the text. The first 
sentence explains that the streamflow measurement error and the hydrological model error are 
eliminated by evaluation against observed meteorological input forecasts, whereas the second 
sentence explains how this is used to investigate the contribution of error sources.  

Comment: P9, L29 At a first reading, it was tempting to replace this ratio with a CRPSS of sim against meas but 
the purpose is different and since it is a major tool in this paper, this paragraph should be written with much 
care. 

Reply: We will add the equation below (see also comment 8 by Reviewer 3):  

𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠

~ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓+ℎ𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑦𝑦𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓

  

If this ratio is low, the hydrological model errors are dominant and if this ratio is high, the 
meteorological forecast errors are dominant. 

Comment: P10, L11-12 Are the rules given also by Merz and Blöschl or defined for this catchment based for 
instance on data from both simulation and observations during the training period? 

Reply: The study by Merz and Blöschl (2003) is used to characterize the high streamflow generating 
processes in Table 2. The rules for classification are defined specifically for the study catchment and 
are based on observations and model simulations. We will change the text to:  

“Various runoff contributing generating processes can result in high flows. Table 2 defines the 
processes and classification rules for classification we use in this study, based on the processes Merz 



and Blöschl (2003) distinguish. The rules for classification are based on rainfall observations and 
snowpack model simulations; at one day before the event because of the time step used in the HBV 
model.” 

Comment: P10, L16 Do you mean that the distribution of the generating processes shown in the figure is like we 
can expect for this region? 

Reply: The reviewer’s interpretation is correct. We will change this to:  

“Figure 4a presents the distribution of high streamflow generating processes over the year following 
the classification rules for classification in Table 2. The figure shows an expected distribution of 
processes for this region. The distribution of processes is typical for this region.” 

Likewise we will change P10 Line 20-21.  

Comment: P10, L19, Table 3 What is the rule for precipitation deficit? 

Reply: The rule used for classifying an event as a precipitation deficit generated low streamflow is that 
if there is a low streamflow event and if there is no snowpack present (based on model simulations) 
we assume that the low streamflow event is caused by a precipitation deficit. We think that the 
definition in Table 3 is clear.  

Comment: P11, L21 “preceding day” the day before the forecast issuing day. 

Reply: We agree and we will change “preceding day” to “day preceding the forecast issuing day” 
accordingly in the paper (also see comment P5 Line 28).  

Comment: P11, L28-29 “not shown in the paper ” therefore, going back to section 3.1.3, the methodology 
description should be simpler and not encumber with strategy numbers. 

Reply: This comment is discussed in the response to the first comment.  

Comment: P10 L20 What do you mean by “reliable distribution”? 

Reply: See response to comment P10, L16.  

Comment: P12, L13 with more skill instead of “skilful” 

Reply: Skill is defined as the performance of the streamflow forecast relative to the performance of 
alternative forecasts. Here we do not mean ‘with more skill’, but skilful relative to the alternative 
forecasts.  

Comment: P12, L16 “functional” what do you mean? 

Reply: We will change “functional” to “plausible”.  

Comment: P12, L28 “... are in general less predictable by historical measurements ...” please re-phrase 

Reply: P12 Line 28-29 is partly a repetition of the preceding sentence, so this sentence will be deleted. 
We will change P12 Line 27-29 to: 

“In addition, these events are  high streamflow events will be less well captured in by historical 
measurements, and thus in the alternative forecasts will have lower quality for these events. This is 
because high streamflow periods are in general less predictable by historical measurements, in 
particular in small catchments.” 



Comment: P12, L32 “not shown” a figure is missing with the rank histograms for the low streamflow forecasts 
and for the high streamflow forecasts, two lead times. Apparently, for high flow, the rank histogram is not exactly 
U-shaped but skewed according to P13, L12-13. 

Reply: To keep the paper short we chose not to include these figures in the paper. However, we think 
that the results are relevant and therefore we described them in words. We agree that this makes 
reading of the paper difficult and the results nontransparent. We could make the figures available by 
a supplement to the paper.   

Comment: P13 L10-13 Difficult to figure out … Please add a figure with the reliability diagrams and 
corresponding sharpness histograms for the low streamflow forecasts and for the high streamflow forecasts two 
lead times. 

Reply: See response to comment P12 L32.  

Comment: P13 L15-17 Note that good sharpness without reliability is useless. 

Reply: We agree. We will emphasize this in the conclusion (bullet 1).  

Comment: P13, L18 reference already given, please re-phrase. 

Reply 18 March 2017: We agree. We will change this to:  

“All AUC values are above 0.85, whereas Buizza et al. (1999) consider 0.8 as indicative for good 
prediction systems which indicates a good resolution of the streamflow forecast system.” 

Reply 8 May 2017: The explanation of evaluation scores in Sect. 3.2 is shortened and the reference is 
omitted there. Therefore we keep the reference in this section.  

Comment: P14, L11-13 “… the below zero skill ... do not result in positive skill …”  

Reply 18 March 2017: We agree that this sentence is not well written. We will change the sentence 
to:  

“The below 0 skill of long-rain and snowmelt flood forecasts indicate that the meteorological forecasts 
at small lead times do not result in positive skill as compared to forecasts based on historical 
meteorological measurements. 

For long-rain floods and snowmelt floods, the meteorological forecasts at small lead times do not 
result in positive skill as compared to forecasts based on historical meteorological measurements.”  

Reply 8 May 2017: We remove this sentence, because at this point in the paper it is clear that skill is 
generated by the ECMWF meteorological forecasts compared to historical meteorological 
measurements.  

Comment: P14, L23 What is the amount of this fake drizzle? 

Reply: This is an interesting question, but we consider this to be out of the focus of this paper.  

Comment: P14, L24-26 Re-phrase: “... meteorological forecasts accumulated in the forecasting system are better 
model inputs ...” 

Reply: We agree that this sentence is not well written. We will change the sentence to:  

 “The skill increases for larger lead times, so for larger lead times ECMWF meteorological forecasts 
accumulated in the forecasting system are better model inputsgive better predictions than historical 
meteorological measurements for larger lead times.” 



Comment: P15, L8 & Figure 10 I would skip this figure which highlights the weakness of drawing such a detailed 
profile with just a water-year data. The legend is missing for the thin plain lines. 

Reply: We hesitate to skip this figure, because it illustrates why the pre- and post-processing 
procedures are not working: the training period and validation period show different bias 
distributions, because of the short time series.  

The thin plain lines are showed in the legend as “Single years 2007-2013”. We will add an explanation 
to the caption that each thin line refers to a single year between 2007 and 2013.  

Comment: P16, L8-10 Do you have evidence that such coincidence occurs and is the main explanation for the 
high ratio for short-rain floods? 

Reply 18 March 2017: This is an interesting question and we will investigate how often this occurs.  

Reply 8 May 2017: We have further investigated this question. There are two possible cases if the 
ensemble forecast is closer to the measured streamflow than to the observed meteorological input 
forecasts: 1. the observed meteorological input forecast is closer to the measured streamflow 
(example in Fig. 1), and 2. the ensemble forecast is closer to the measured streamflow (example in 
Fig. 2). The second case indicates a hydrological model deficiency: in the rainfall-runoff relation or in 
the flood peak timing. Table 1 lists the numbers associated with both cases, based on CRPS calculations 
for each day classified as high streamflow.   

 

 
Figure 2: Example in which ensemble forecast set is closer to the measured streamflow than to the observed meteorological 
input forecast 



 
Figure 3: Example in which the ensemble forecast is closer to the measured streamflow than to the observed meteorological 
input forecast due to a shifted peak  

Table 1: Numbers of days that observed meteorological input forecast is closer to measured streamflow and number of days 
that ensemble forecast is closer to measured streamflow, in case the ensemble forecast is closer to the measured 
streamflow than to the observed meteorological input forecast. This is based on CRPS calculations.  

Lead time # Observed meteorological input 
forecast closer to measured 
streamflow 

# Ensemble forecast closer to 
measured streamflow 

0 0 0 
1 59 96 
2 75 114 
3 81 142 
4 85 165 
5 94 173 
6 96 173 
7 95 169 
8 105 159 
9 115 152 
10 130 132 

 

As mentioned in the paper one cause of the ensemble forecasts being closer to the observed 
streamflow than to the measured streamflow is: 

“The precipitation peak in the measurements and the precipitation peak in the meteorological 
forecasts can be shifted one day with respect to each other and this can cause that the timing of the 
peak of the streamflow forecasts better corresponds to the streamflow measurements than to the 
peak of the perfect streamflow forecasts.” (Page 16, Line 8-10) 

We have further investigated this by comparing the days of the peak streamflow of the observed 
streamflow series, observed meteorological input forecast series and the mean of the ensemble 
forecasts. Days of peak streamflow are defined as days with the highest streamflow in periods of 5 



days and the peaks must be separated by at least 4 days in between, resulting in 97 peak streamflow 
days. Table 2 lists the results.  

Table 2: Peak day correspondence between observed streamflow, observed meteorological input forecasts and ensemble 
forecasts. The total number of peak days is 97. 

Lead time # Peak day observed 
meteorological input 
forecast matches to peak day 
observed streamflow 

# Peak day mean ensemble 
forecast matches to peak 
day observed streamflow 

# Peak day observed 
meteorological input forecast 
does not match to peak day 
observed streamflow, but peak 
day ensemble forecast matches 
to peak day observed streamflow 

0 47 47 0 
1 47 42 17 
2 49 28 12 
3 52 26 8 
4 55 23 9 
5 53 28 13 
6 55 20 6 
7 54 26 13 
8 54 20 9 
9 53 22 9 
10 54 19 8 

 

These examples and the numbers illustrate that hydrological model deficiencies have a large effect 
on both the observed meteorological input forecasts and the ensemble forecasts. To improve the 
ensemble forecast system, the study outcomes show that the hydrological model needs to be 
improved, with a special attention to flood peak timing. We will change the text in the paper 
accordingly:  

“The results in Fig. 8b 9b show that the ratio between the CRPS against perfect forecastsobserved 
meteorological input forecasts and the CRPS against streamflow measurements is above 100% for 
short-rain floodshigh streamflows, and short-rain floods in particular. This means that these 
forecasts are closer to the measurements than to the perfect forecastsobserved meteorological 
input forecasts.  The precipitation peak in the measurements and the precipitation peak in the 
meteorological forecasts can be shifted one day with respect to each other and this can cause that 
the timing of the peak of the streamflow forecasts better corresponds to the streamflow 
measurements than to the peak of the perfect streamflow forecasts.Analyses show that on high 
streamflow days on which the forecasts are closer to the measurements than to the observed 
meteorological input forecasts (28% at lead time of 1 day to 48% of the days at lead time of 10 days), 
depending on lead time, on 50% to 66% of the days the forecasts are closer to the measurement 
than the observed meteorological input forecast. This indicates a hydrological model deficiency, 
either from the rainfall-runoff relation or the flood peak timing. The precipitation peak in the 
measurements and the precipitation peak in the meteorological forecasts can be shifted one day 
with respect to each other and this canmay cause that the timing of the peak of the streamflow 
forecasts better corresponds to the streamflow measurements than to the peak of the perfect 
streamflow forecasts. Of the 97 separate peak streamflow days, on 6 days (lead time of 6 days) to 17 
days (lead time of 1 day) the flood peak day of the observed meteorological input forecasts does not 
match to the peak day of the measurement but the peak day of the mean of the ensemble forecast 
does match to the peak day of the measurements. This illustrates that hydrological model 
deficiencies have a considerable effect on the observed meteorological input forecasts and the 
ensemble forecasts.” 



In the conclusion at bullet 2 we will add:  

“Also the hydrological model performance on high streamflow must be improved, by specific 
calibration on streamflow during high streamflow events and flood peak timing.” 

Comment: P17, L13-15 “longer time series of forecasts”, “longer forecasts datasets” see general comments; 
“more sophisticated” and first of all more robust. 

Reply: We had to deal with the limitations of available data and to focus on the objective of the study 
we made choices in the development of the ensemble forecasting system. In the responses to the 
general comments and in the responses to Reviewer 2 and Reviewer 3 these choices are further 
explained.  
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Response to Interactive comment Anonymous Referee #2 
General comments: 

This paper summarizes the application of the widely used HBV hydrologic model to streamflow forecasting in a 
Polish mountain river. The project uses ECMRWF ensemble weather forecasts to drive the streamflow model, and 
explores both pre- and post-processing of the ensembles for bias correction. Useful results are obtained, and the 
study has significant potential. I recommend that the paper is accepted pending major revisions. 

We thank the reviewer for the assessment. We appreciate the reviewer’s opinion about the potential 
of the study and the valuable suggestions to improve the manuscript. Below are our responses to the 
comments and points raised.  

 

Detailed comments: 

Comment: 1. The paper repeatedly refers to HBV as a spatially lumped model. This isn’t just terminology, as 
around lines 20-25 of page 15, the manuscript seems to imply that the model assumes a snowpack to be present 
(or absent) across the entire model domain. There are a few versions of HBV, but it’s normally viewed as semi-
distributed, using (at a minimum) elevation bands. 

Reply: We appreciate the comment but see little opportunity to soundly add more detail in 
representing elevation bands. We have chosen to apply a lumped version of the HBV model, without 
elevation bands, because the available measurement data does not justify to enter multiple bands. 
For the area only five meteorological stations are available, which cannot be used to represent 
multiple elevation bands over the complete elevation distribution of the catchment. Following a first 
analysis on streamflow simulation results, there was no clear signal that model performance is largely 
affected by lumping so we considered it plausible to rely on the lumped model approach. If requested 
by the reviewers we could add a comment to Sect. 3.1.1 to address these considerations.  

Comment: 2. The manuscript makes a good point on lines 29-30 of page 1 about socio-economic development 
increasing the impacts of extreme hydrometeorological events. It also probably bears mentioning that climate 
changes, both natural and anthropogenic, may further exacerbate these impacts. See Perkins, Pagano, and 
Garen, “Innovative operational seasonal water supply forecasting technologies,” Journal of Soil and Water 
Conservation, 2009; and Fleming, “Demand modulation of water scarcity sensitivities to secular climatic 
variation: theoretical insights from a computational maquette,“ Hydrological Sciences Journal, 2016. 

Reply: We thank the reviewer for the comment and refer to P1 Line 29-30: 

 “Accurate forecasting becomes increasingly more important, since because frequency and magnitude 
of low and high streamflow events are projected to increase in many areas in the world as a result of 
climate change (IPCC, 2014). Due to socio-economic development also the impacts of extreme events 
further increase (Bouwer et al., 2010; Fleming, 2016; Rojas et al., 2013; Wheater and Gober, 2015).” 

The first sentence aims to mention that climate change exacerbate both low and high streamflow 
events. Following the reviewer’s comment we will add “as a result of climate change” to make the 
statement more explicit. The paper by Fleming (Hydrological Sciences Journal, 2016) is a good 
reference for the second sentence.  

Comment: 3. Terms could stand to a little better defined. For example, most flood and water supply forecasters 
who I know would regard “short-term” forecasts as having lead times of 0-10 days, and “long-term” forecasts as 
having lead times of weeks to months. So what the authors refer to here as “medium-term” would be referred to 
as “short-term” by many if not most others working in the field. And no effort is made here to distinguish medium-



term from short-term hydrologic forecasting. More broadly, some of the wording throughout the manuscript 
would benefit from a re-think for better clarity and precision. 

Reply: To be consistent with respect to forecast windows, we explicitly define “medium-range” 
forecasts and follow the definition for “medium-range” by the World Meteorological Organization, 
which is also followed by ECMWF (ECMWF, 2012). WMO defines medium-range as forecasts with lead 
times from 3 days to 10 days, and we also refer to Olsson and Lindström (2008), Renner et al. (2009), 
and Roulin and Vannitsem (2005). We note that Bennett et al. (2014) refer to this range of lead times 
as “short-term” forecasts, so there is ambiguity. We opt to keep the term “medium-range” instead of 
changing it to “short-range”, to remain consistent with definitions commonly used in meteorology.  

In this paper the term “medium-range” is just used as a generic term to characterize the forecasting 
system. We do not explicitly distinguish short-range forecasts and medium-range forecasts, because 
in the analyses there is always referred to specific lead times.  

Comment: 4. Why is only meteorological forecast uncertainty incorporated into the ensemble model? It’s 
commonplace in the research literature for forecast models to include both meteorological uncertainty (NWP 
ensemble) and hydrologic model parameterization uncertainty (ensemble of hydrologic parameter values). This 
work is starting to make its way into operational practice too. Providing some justification for this choice might 
be a good idea. 

Reply: We agree to the comment, but argue that only meteorological forecast uncertainty is 
incorporated because this study aims to identify effects of the ECMWF meteorological forecasts on 
the quality and skill of streamflow forecasts. Additionally incorporating hydrological model 
uncertainty, parameter uncertainty and initial condition uncertainty would (partly) obscure this 
relation. In addition, Bennett et al. (2014), and Cloke and Pappenberger (2009) state that uncertainties 
in meteorological forecasts are the largest source of uncertainty beyond 2-3 days, and that only 
uncertainty in meteorological forecasts is incorporated in many studies (Bennett et al., 2014). We will 
add the above in Sect. 3.1.  

Comment: 5. The description of the model implementation isn’t quite adequate. What was the calibration-testing 
split, and what were the model performances during both phases? And it’s stated that the objective function 
selected for calibration is “Y”, which apparently combines the Nash-Sutcliffe efficiency with a volumetric error 
measure. Objective function selection is a key step in model calibration, and more information needs to be 
provided, starting with an explicit mathematical definition for “Y”. 

Reply: We refer to P5 Line 16-23 where the calibration procedure is explained. The equations for Y, 
NS and ERV are directly accessible in the cited references and we therefore hesitate to add the 
equations. The calibration and validation performances are listed in Table 4 and referred to on P10 
Line 25-28.  

Comment: 6. The updating of initial states was performed here for the slow-runoff and fast-runoff reservoirs. 
That’s interesting and useful, but why was SWE not selected as the object of this data assimilation exercise? It 
seems like it would be a more rewarding, and certainly more conventional, choice in this northern continental 
European mountain catchment. 

Reply: We thank the reviewer for this thoughtful comment. If the catchment would have exclusively 
or mainly a snow regime, we would agree that updating of the snow storage would be a more logical 
choice. However, the catchment does not have an exclusive snow regime, but it has a mixture of 
regimes (also represented in Figure 4). Moreover, essential to the success of the updating procedure 
is the availability and quality of data on snow cover, and we consider this investigation to be out of 
the focus of this paper.  



We have used streamflow measurements on the day preceding the forecast issuing day to update the 
slow and fast runoff reservoirs. This is possible because in the HBV model there is a direct connection 
between these reservoirs and discharge. Such a direct connection does not exist with the snow storage 
reservoir. Daily streamflow measurements commonly have a high autocorrelation, so it can be 
expected that observed streamflow on day t-1 provides information about the storage in the slow 
runoff reservoir and fast runoff reservoir on day t. We expect that the correlation between snow water 
equivalent on day t and streamflow on day t-1 will be much lower, and therefore updating of the snow 
storage using streamflow measurements will be less effective. 

Comment: 7, The literature review of ensemble hydrologic forecasting, pre- and post-processing for bias 
corrections, and data assimilation and model updating, is a good start but seems a little light. Citing more work 
would provide valuable context to the paper. A reasonable place to start might be recent work by Dominique 
Bourdin at the University of British Columbia and Hamid Moradkhani at Portland State University. 

Reply 18 March 2017: We thank the reviewer for suggesting these sources of additional relevant 
literature, especially the work by Moradkhani about pre- and post-processing (Khajehei and 
Moradkhani, 2017; Madadgar et al., 2014) and updating and data assimilation (e.g. Liu et al., 2012; 
Pathiraja et al., 2015; Yan and Moradkhani, 2016), and the work by Bourdin which contains recent 
developments in ensemble streamflow forecasting (Bourdin et al., 2012; Bourdin and Stull, 2013). We 
will further study the papers by Moradkhani and Bourdin and use this to further extend the context 
of the paper on ensemble streamflow forecasting, pre- and post-processing and updating procedures. 

Reply 8 May 2017: To extend the context of the paper on ensemble streamflow forecasting, pre- and 
post-processing and updating procedures, we have added references to Bourdin and Stull (2013) and 
Krzysztofowicz (2001), Bennett et al. (2014), Khajehei and Moradkhani (2017), Verkade et al. (2013), 
Hashino et al. (2007), Clark et al. (2004), Boé et al. (2007) and Wetterhall et al. (2012), and Houser et 
al. (2012) and Liu et al. (2012), respectively.  

Comment: 8. Some of the specific conclusions seem a little surprising. That’s great, but it also means they’d 
benefit from additional discussion. In particular, the paper concludes in section 4.2.1 that the quality of the 
forecasts at lead times of less than 3 days is dominated by hydrologic initial conditions, and the weather forecasts 
become the dominant source of predictive skill after that. This would be a reasonable conclusion for a large or 
flat basin, but for a small, steep mountain river it seems a little surprising – these are typically flashy systems 
that respond to rain or snowmelt inputs within a day or so. Indeed, a few pages later near the end of section 5, 
the paper states that “in the hydrological model the lag time between a rainfall event and the streamflow peak 
is set to 1 day.” It also seems that conclusions like this, which attempt to attribute predictive skill (and therefore 
also predictive error) to various different sources, might be difficult to make convincingly without using a more 
statically sophisticated and exhaustive data assimilation procedure, incorporating ensembles of hydrologic 
models and/or model parameters, etc. 

Reply: We thank the reviewer for this comment and will further explain the observations of the 
reviewer. Regarding the comment that “the quality of the forecasts at lead times of less than 3 days 
is dominated by hydrologic initial conditions, and the weather forecasts become the dominant source 
of predictive skill after that” is “a little surprising”: our results show that this depends on the 
streamflow category and the streamflow generating process. Short-rain generated high streamflows, 
snowmelt generated high streamflows and snow accumulation generated low flows are skillfully 
forecasted by the meteorological forecasts after 1 or 2 days, which could be expected for these fast 
processes and confirms the expectations of the reviewer. For long-rain generated high streamflows, 
medium streamflows and precipitration deficit generated low streamflows the maximum skill is 
observed at larger lead times, because for these processes both the forecasts and the alternative 
forecasts are dominated by the initial conditions at small lead times.  
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Response to Interactive comment Anonymous Referee #3 
The authors proposed a methodology to give insight in the performance of ensemble streamflow forecasting 
systems in three streamflow categories (low, medium and high) and related runoff generating processes from 
lead times of 1 day to 10 day with a case study in a mountainous river catchment of less than 1000 sqr km in 
Poland. The quantitative precipitation forecasts and temperature forecasts extracted from the European Centre 
for Medium-Range Weather Forecasts (ECMWF) are averaged with catchment as input of a lumped hydrological 
(HBV) to generate ensemble streamflow. Several intensively used verification measures (CRPS, CRPSS, Rank 
histogram, Reliability diagram and ROC) are selected to evaluate the ensemble forecasts. Additionally, the pre-
processing, post processing and updating of model initial states are adopted to improve the behavior of the 
system.  

Generally speaking, the study gave an interesting investigation on the assessment of hydrological ensemble 
prediction system on different runoff processes including snowmelt, short-rain flood and so on, and a further 
analysis was made on the uncertainty source of these varied hydrometeorological conditions. There I suggest 
accept this manuscript after a moderate revision. 

We thank the reviewer for the assessment. We appreciate the reviewer’s opinion about the study and 
the valuable suggestions to improve the manuscript. Below are our responses to the comments and 
points raised.  

 

There are a few issues list below that the authors should address:  

Comment: 1) The logic in Paragraph 2 and 3 of Section 1 needs to be perfect. Some irrelevant statements can be 
removed, eg. SOME CONTENTS from Line 10 to Line 15 in Page 2 about EFAS are unnecessary to some degree.  

Reply: We agree with this comment. The text below is a revised version of paragraph 2 and 3 of 
Sect.  1.  

“A number of studies investigated the performance of ensemble forecasting systems for 
different lead times, e.g. Ye et al. (2014) for the European Centre for Medium-Range Weather 
Forecasts (ECMWF) medium-range ensemble precipitation forecasts, Alfieri et al. (2014) for the 
European Flood Awareness System (EFAS), and Bennett et al. (2014), Olsson and Lindström (2008), 
Renner et al. (2009) and Roulin and Vannitsem (2005) for several catchments varying in size and other 
characteristics. These studiesy all found a deterioration of performance with increasing lead time.  
EFAS serves to provide high streamflow forecasts in large European river catchments for lead times 
between 3 and 10 days (Thielen et al., 2009). Relative to hydrological persistency the system skilfully 
forecasts high streamflow events for all lead times up to 10 days, with increasing skill for larger 
upstream areas (Alfieri et al., 2014). In EFAS critical flood warning thresholds are based on simulated 
streamflow, because model results and streamflow measurements can largely deviate (Thielen et al., 
2009). EFAS is aimed at providing early warnings of possible flooding, instead of providing specific river 
streamflow forecasts (Demeritt et al., 2013). However, mMost studies on medium-range ensemble 
streamflow forecasting focused either on flood forecasts (e.g. Alfieri et al., 2014; Bürger et al., 2009; 
Komma et al., 2007; Olsson and Lindström, 2008; Roulin and Vannitsem, 2005; Thielen et al., 2009; 
Zappa et al., 2011) or low streamflow forecasts (Demirel et al., 2013; Fundel et al., 2013), . in contrast 
toThe studies onto general non-specific ensemble streamflow forecasting systems (Bennett et al., 
2014; Demargne et al., 2010; Renner et al., 2009; Verkade et al., 2013) did not evaluate the 
performance for different streamflow categories (i.e. for low streamflow and high streamflow events). 
Moreover, previous studies did not assess effects of runoff processes, like snowmelt and extreme 
rainfall events, on the performance of ensemble forecasts. The only study we found that touches on 
this is the study by Roulin and Vannitsem (2005). This study concluded that the developed high 



streamflow forecasting system is more skilful for the winter period than for the summer period. For 
two Belgium catchments the high streamflow forecasting system of Roulin and Vannitsem (2005) is 
more skilful for the winter period than the summer period. Previous studies did not assess effects of 
runoff processes, like snowmelt and extreme rainfall events, on the performance of the ensemble 
forecasts. 

Next to an assessment of performance, Iinformation on the relative importance of uncertainty 
sources in forecasts is helpful essential to improve the forecasts effectively (Yossef et al., 2013). A 
number of studies report on how errors in the meteorological forecasts and the hydrological model 
contribute to errors in medium-range hydrological forecasts. Demargne et al. (2010) show that 
hydrological model uncertainties (initial conditions, model parameters and model structure) are most 
significant at short lead times. The extentis also depends on the streamflow category:. hHydrological 
model uncertainties significantly degrade the evaluation score up to a lead time of 7 days for all flows, 
and whereas only up to a lead time of 2 days for the very high streamflow events. Renner et al. (2009) 
found an underprediction of low forecast probabilities (few ensemble members over a high 
streamflow threshold), which they attribute to the meteorological forecasts (having insufficient 
variability). On the other handContrarily, the high forecast probabilities (low threshold) are 
overpredicted, which Renner et al. (2009) attribute to both the hydrological model and the 
meteorological input data. Olsson and Lindström (2008) found an underestimationunderdispersion of 
the spread of ensemble flood forecasts, to an extent thatwhich decreases with lead time. They 
conclude that the The meteorological forecasts and the hydrological model have a comparable 
contribution to this underestimation. In addition, Olsson and Lindström (2008) show overprediction 
of forecast probabilities over high thresholds, which they mainly primarily attribute to the 
meteorological forecasts. Regarding low streamflow forecasts, Demirel et al. (2013) concluded that 
uncertainty of hydrological model parameters has the largest effect, whereas meteorological input 
uncertainty has the smallest effect on low streamflow forecasts. Based on those studies we can say 
that for high streamflow forecasts uncertainties in the meteorological forecasts are dominant, 
whereas for low streamflow forecasts the uncertainties in the hydrological model become are more 
important.” 

Comment: 2) Lines18-20 Page 6: A further explanation is expected why the training period is defined from 2011-
2013 while the years previous to 2011 is used to validation.  

Reply: Our approach was triggered by practical considerations. We have serious doubts about the 
quality of the observation data in 2007: for the hydrological year 2007 (1 Nov 2006 – 31 Oct 2007) the 
agreement between observed discharge and simulated discharge with observed precipitation and 
temperature is poor (see table below). Therefore the hydrological year 2007 was excluded from 
further analysis.  

The performance of the hydrological model for the hydrological year 2008 also raised some doubts 
about the quality of the observation data during this year. For this reason we started the pre- and 
post-processing with 2012-2013 (just two hydrological years to have a sufficiently long evaluation 
period left) as the training period, and we validated the pre- and post-processing procedures on both 
2008-2011 and 2009-2011. There was no significant difference in validation performance of the pre- 
and post-processing procedures between these two periods and also the hydrographs of observations 
and simulations do not indicate poor quality of observation data for 2008, so in the end we included 
2008 in the validation period.  

 



Table 3: Validation performance per hydrological year 
Hydrological year NS ERV [%] Y 
2007 -1.34 43.41 -0.94 
2008 0.22 17.14 0.19 
2009 0.53 -4.67 0.51 
2010 0.93 0.07 0.93 
2011 0.59 6.20 0.55 
2012 0.62 19.47 0.52 
2013 0.46 12.79 0.41 

 

We noticed that the validation performance numbers in Table 4 of the paper do include the 
hydrological year 2007. We will recalculate these numbers after excluding 2007.  

Comment: 3) In Section 3.2, it is not necessary to introduce all the evaluation scores in details, for the CRPS, 
CRPSS, Reliability diagram and ROC can be regarded as "industry standards" in ensemble forecasting, so simply 
citing the relevant references.  

Reply: We agree to the comment and will omit general information about the evaluation scores (P7 
Line 13-15, Line 18-20, P8 Line 14-21, P9 Line 2-5, Line 12-15, Line 16-18). In Sect. 3.2 we will address 
what aspect of forecast quality a score evaluates and refer to other studies for further details.  

Comment: 4) In Section 4.1.2, it is confusing that since the QM pre-processing brings improvement to the 
precipitation and temperature forecasts, why the conclusion is that the strategy 0 results in the best CRPS.  

Reply: We agree to the reviewer that this is a remarkable result. The results indicate that the slight 
improvement of the meteorological forecasts by the pre-processing procedure loses its effect after 
propagating through the hydrological model. We will add this finding to the conclusion of the paper 
(P17 Line 12).  

Comment: 5) The figures about rank histograms and reliability diagrams are missing or not shown intentionally?  

Reply: The figures about rank histograms, reliability diagrams and ROC curves are not shown by 
intention to keep the paper short. However, we think that these results are relevant and therefore we 
described them in words. We agree that this makes reading of the paper difficult and the results 
nontransparent. We could make the figures available by a supplement to the paper. 

Comment: 6) The catchment area is less than 1000km2 and the data used are daily. For flood forecasting in such 
catchment area, is it daily data too coarse? Perhaps 3h or 6h subdaily data are more useful for flood forecasting 
in such area. Please make it an elaborate story.  

Reply: We thank the reviewer for the comment but note that discharge measurements are available 
at a daily resolution. For this reason we applied and evaluated the forecasting system at a daily time 
step. When focusing on short-range forecasts (lead times of 0-2 days), we agree that smaller time 
steps are preferred for a mountainous catchment of about 1000 km2 like the Biala Tarnowska 
catchment. We focus on medium-range forecasts (0-10 days), for which the very quick streamflow 
response is less important.  

Comment: 7) For flood forecasting, flood peak, volume and peak time are all important. Can these be analyzed 
in the study?  

Reply: We agree with the reviewer that, in addition to discharge, the peak streamflow, volume and 
peak time are important, particularly for operational high streamflow forecasting systems. Despite the 
relevance, we propose not to include the analyses of these aspects in the paper. Looking at the 



number of pages the paper already has we must be selective in what we can include. Moreover, 
essential to the topic of the paper is that next to high streamflows we also evaluate the streamflow 
forecasting system on low streamflows and medium streamflows. In view of the paper length already 
we cannot evaluate low streamflows, medium streamflows and high streamflows on all relevant 
aspects, such as duration and discharge deficits regarding low streamflows.   

Comment: 8) Page 9: It is not very clear how the errors are contributed in Section 3.3. Why can 
CRPSsim/CRPSmeans represent the error contribution? Please add more details. 

Reply: Evaluation against observed discharge (CRPSmeas) is affected by errors from the meteorological 
forecasts, the hydrological model and measurement errors. By evaluation against simulated discharge 
based on observed precipitation and temperature (CRPSsim), the ensemble streamflow forecasts and 
the reference streamflow contain similar hydrological model errors and no streamflow measurement 
errors, so these are eliminated. If we neglect measurement errors we get: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠

~ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓+ℎ𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑦𝑦𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓

  

If this ratio is low the hydrological model errors are dominant and if this ratio is high the 
meteorological forecast errors are dominant. The same approach is used by Demargne et al. (2010), 
Olsson and Lindström (2008) and Renner et al. (2009).  

To clarify this explanation we will add the equation above.  
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Abstract. The paper presents a methodology to give insight in the performance of ensemble streamflow forecasting systems. 

We have developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern 

Poland, and analysed the performance for lead times ranging from 1 day to 10 days for low, medium and high streamflow 

and related different runoff generating processeshydrometeorological conditions. Precipitation and temperature forecasts 15 

from the European Centre for Medium-Range Weather Forecasts serve as inputs to a deterministic lumped hydrological 

(HBV) model. Due to an inconsistent bias, the best streamflow forecasts were obtained without pre- and post-processing of 

the meteorological and streamflow forecasts is not effective. The bBest forecast skill, relative to alternative forecasts based 

on historical meteorological measurements of precipitation and temperature, is shown for high streamflow and for snow 

accumulation low streamflow events. Forecasts of medium streamflow events and low streamflow events generated by a 20 

precipitation deficit show less skill. To improve the performance of the forecasting system for high streamflow events, in 

particular the meteorological forecasts require improvementare crucial. For low streamflow forecasts, It is recommended to 

calibrate the hydrological model specifically on low streamflow conditions and high streamflow conditions. the hydrological 

model should be improved. The study It is further recommendeds improving that the reliability dispersion (reliability) of the 

ensemble streamflow forecasts is enlarged by including the uncertainties in hydrological model parameters and initial 25 

conditions, and by improving enlarging the dispersion of the meteorological input forecasts.  

1 Introduction 

Accurate flood forecasting (Cloke and Pappenberger, 2009; Penning-Rowsell et al., 2000; Werner et al., 2005) and low 

streamflow forecasting (Demirel et al., 2013a; Fundel et al., 2013) are important to mitigate the negative effects of extreme 

events by enabling early warning. Accurate forecasting becomes increasingly more important, since because frequency and 30 

magnitude of low and high streamflow events are projected to increase in many areas in the world as a result of climate 
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change (IPCC, 2014). Due to socio-economic development also the impacts of extreme events further increase (Bouwer et 

al., 2010; Fleming, 2016; Rojas et al., 2013; Wheater and Gober, 2015).  

Hydrological forecasting systems are often implemented as ensemble forecasting systems (Cloke and Pappenberger, 

2009). Ensemble forecasts provide information about the possibility that an event occurs (Krzysztofowicz, 2001; Thielen et 

al., 2009), and allow quantification of the forecast uncertainty (Krzysztofowicz, 2001; Zappa et al., 2011). Uncertainties in 5 

streamflow forecasts originate from meteorological inputs, and hydrological model parameters, initial conditions and model 

structure (Bourdin and Stull, 2013; Cloke and Pappenberger, 2009; Demirel et al., 2013a; Zappa et al., 2011).  

A number of studies investigated the performance of ensemble forecasting systems for different lead times, e.g. Ye 

et al. (2014) for the European Centre for Medium-Range Weather Forecasts (ECMWF) medium-range ensemble 

precipitation forecasts, Alfieri et al. (2014) for the European Flood Awareness System (EFAS), and Bennett et al. (2014), 10 

Olsson and Lindström (2008), Renner et al. (2009) and Roulin and Vannitsem (2005) for several catchments varying in size 

and other characteristics. These studiesy all found a deterioration of performance with increasing lead time.  EFAS serves to 

provide high streamflow forecasts in large European river catchments for lead times between 3 and 10 days (Thielen et al., 

2009). Relative to hydrological persistency the system skilfully forecasts high streamflow events for all lead times up to 10 

days, with increasing skill for larger upstream areas (Alfieri et al., 2014). In EFAS critical flood warning thresholds are 15 

based on simulated streamflow, because model results and streamflow measurements can largely deviate (Thielen et al., 

2009). EFAS is aimed at providing early warnings of possible flooding, instead of providing specific river streamflow 

forecasts (Demeritt et al., 2013). However, mMost studies on medium-range ensemble streamflow forecasting focused either 

on flood forecasts (e.g. Alfieri et al., 2014; Bürger et al., 2009; Komma et al., 2007; Olsson and Lindström, 2008; Roulin and 

Vannitsem, 2005; Thielen et al., 2009; Zappa et al., 2011) or low streamflow forecasts (Demirel et al., 2013a; Fundel et al., 20 

2013), . in contrast toThe studies onto general non-specific ensemble streamflow forecasting systems (Bennett et al., 2014; 

Demargne et al., 2010; Renner et al., 2009; Verkade et al., 2013) did not evaluate the performance for different streamflow 

categories (i.e. for low streamflow and high streamflow events). Moreover, previous studies did not assess effects of runoff 

processes, like snowmelt and extreme rainfall events, on the performance of ensemble forecasts. The only study we found 

that touches on this is the study by Roulin and Vannitsem (2005). This study concluded that the developed high streamflow 25 

forecasting system is more skilful for the winter period than for the summer period. For two Belgium catchments the high 

streamflow forecasting system of Roulin and Vannitsem (2005) is more skilful for the winter period than the summer period. 

Previous studies did not assess effects of runoff processes, like snowmelt and extreme rainfall events, on the performance of 

the ensemble forecasts. 

Next to an assessment of performance, Iinformation on the relative importance of uncertainty sources in forecasts is 30 

helpful essential to improve the forecasts effectively (Yossef et al., 2013). A number of studies report on how errors in the 

meteorological forecasts and the hydrological model contribute to errors in medium-range hydrological forecasts. Demargne 

et al. (2010) show that hydrological model uncertainties (initial conditions, model parameters and model structure) are most 

significant at short lead times. The extentis also depends on the streamflow category:. hHydrological model uncertainties 
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significantly degrade the evaluation score up to a lead time of 7 days for all flows, and whereas only up to a lead time of 2 

days for the very high streamflow events. Renner et al. (2009) found an underprediction of low forecast probabilities (few 

ensemble members over a high streamflow threshold), which they attribute to the meteorological forecasts (having 

insufficient variability). On the other handContrarily, the high forecast probabilities (low threshold) are overpredicted, which 

Renner et al. (2009) attribute to both the hydrological model and the meteorological input data. Olsson and Lindström (2008) 5 

found an underestimationunderdispersion of the spread of ensemble flood forecasts, to an extent thatwhich decreases with 

lead time. They conclude that the The meteorological forecasts and the hydrological model have a comparable contribution 

to this underestimation. In addition, Olsson and Lindström (2008) show overprediction of forecast probabilities over high 

thresholds, which they mainly primarily attribute to the meteorological forecasts. Regarding low streamflow forecasts, 

Demirel et al. (2013a) concluded that uncertainty of hydrological model parameters has the largest effect, whereas 10 

meteorological input uncertainty has the smallest effect on low streamflow forecasts. Based on those studies we can say that 

for high streamflow forecasts uncertainties in the meteorological forecasts are dominant, whereas for low streamflow 

forecasts the uncertainties in the hydrological model become are more important.  

The objective of this study is to investigate the performance and limitations of ECMWF meteorological forecasts 

based ensemble streamflow forecasting for lead times up to 10 days for low, medium and high streamflow in a catchment 15 

with seasonal variation in runoff generating processes. We aim to evaluate whether performance of the forecasting system 

can be related to specific runoff generating processes based on hydrometeorological conditions. Further, we assess whether 

the main source of forecast error relates to the meteorological inputs or to deficiencies of the hydrological model, for the 

different streamflow categories and runoff generating processes.  

2 Study catchment and data 20 

2.1 Study area and measurement data 

The Biała Tarnowska catchment in Poland serves as study area. This catchment is selected because of its large variation in 

streamflow, with and seasonal variation in runoff generating processes. The catchment (Fig. 1) is located in a mountainous 

part of southern Poland. Napiorkowski et al. (2014) further describe the catchment. The River Biała Tarnowska River 

discharges into the River Dunajec River, which is a tributary of the River Vistula River. The length of the river is 101.8 km 25 

with a catchment area of 956.9 km2. The mean streamflow discharge (1972–2013) is 9.4 m3 s-1 (1972–2013). Streamflow is 

characterized by large variation and extreme high flows with highest measured streamflow of 611 m3 s-1. The highest 

measured streamflow is 611 m3 s-1. During winter and spring snow(melt) plays an important role. Comparison of the time 

series of precipitation and streamflow reveals shows that the lag time between intense precipitation events and related peaks 

in streamflow varies between 1 and 3 days.  30 

Precipitation and, temperature and streamflow measurement series are available from five meteorological stations 

and streamflow measurement series are available from one discharge gauging station, at a daily time interval for the period 1 



4 
 

January 1971 to 31 October 2013, and provided by the Polish Institute of Meteorology and Water Management. Precipitation 

and temperature data from 5 measurement stations (Fig. 1) have been selected because of their distribution over the 

catchment and data series completeness. The data are spatially interpolated based on Thiessen polygons (Fig. 1) to represent 

catchment averages. Given that meteorological stations are mostly located in valleys and precipitation and temperature vary 

with elevation, the catchment averages are may be biased (Panagoulia, 1995; Sevruk, 1997). Following Akhtar et al. (2009), 5 

precipitation measurements are corrected using relative correction factors (in %), whereas temperature measurements are 

corrected using absolute correction factors (in °C). The precipitation correction factorgradient differs considerably between 

months. For December–February the mean precipitation gradient is 10.5 % 100 m-1, while for March–November the mean 

precipitation gradient is 5.4 % 100 m-1. Although the number of stations is limited small to accurately determine 

precipitation and temperature gradients, the calculated precipitation gradients are used because of the clear difference 10 

between the two periods. The temperature gradient does not vary much over the year and therefore the global standard 

temperature lapse rate of 0.65 °C 100 m-1 is applied. The measurements from each station are corrected for the difference 

between the elevation of the station and the mean elevation its respective Thiessen polygon. To represent catchment 

averages, the corrected measurements are weighted based on the relative coverage of their Thiessen polygon (Fig. 1). By the 

corrections the annual mean precipitation increases from 741.2 mm to 768.4 mm and the annual mean potential 15 

evapotranspiration decreases from 695.3 mm to 674.4 mm.   

2.2 Meteorological forecast data 

The meteorological ensemble forecasts data from by ECMWF are used, because of the good performance compared to other 

meteorological ensemble forecast sets (Buizza et al., 2005; Tao et al., 2014) and because these ECMWF forecasts are 

frequently used in hydrological ensemble forecasting (Cloke and Pappenberger, 2009). Persson and Andersson (2013) and 20 

ECMWF (2012) describe how ECMWF generates the meteorological ensemble forecasts. The ensemble forecasts consist of 

one control forecast (no perturbation) and 50 ensemble members. The ensemble members should represent initial condition 

and meteorological model uncertainty (Leutbecher and Palmer, 2008; Persson and Andersson, 2013).  

The THORPEX Interactive Grand Global Ensemble (TIGGE) project, developed by The Observing System 

Research and Predictability Experiment (THORPEX), provides historical meteorological forecast data from 1 October 2006 25 

onwards (Bougeault et al., 2010). The resolution of the ensemble and control forecasts is 32 km × 32 km (ECMWF, 2012). 

Using the TIGGE data portal we interpolated the forecasts to a regular grid (Bougeault et al., 2010) with a resolution of  

0.25° × 0.25° (~17.9 km × 27.8 km at this latitude). In this study a maximum lead time of 10 days is used, following the 

World Meteorological Organization (WMO) that defines medium-range as forecasts with lead times from 3 days to 10 days 

(ECMWF, 2012). We also refer to Alfieri et al. (2014), Bennett et al. (2014), Demirel et al. (2013a), Olsson and Lindström 30 

(2008), Renner et al. (2009), Roulin and Vannitsem (2005) and Verkade et al. (2013) that use 9 or 10 days as maximum lead 

time for hydrological forecasting. Because we use a lumped hydrological model with a daily time step (Sect. 3.1.1), we 

averaged daily ECMWF forecasts according to the relative area coverage of the seven grid cells that overlay the catchment.  
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According to Persson and Andersson (2013) ECMWF forecasts may apply to a land elevation that significantly 

differs from the actual elevation in a grid and this can lead to biases. In this study cCorrection for such elevation errors is 

ignored, since because any systematic bias is accounted for in the pre-processing step (Sect. 3.1.3). ECMWF provides 

temperature forecasts at 00:00 hr. or 12:00 hr. This means that temperature forecasts cannot be considered as representative 

for one day. To obtain representative daily average temperature forecasts, we weight the temperature forecasts at 00:00 hr., 5 

12:00 hr and 24:00 hr by 25%, 50% and 25% respectively.  

3 Methodsology 

3.1 The ensemble streamflow forecasting system 

The ensemble streamflow forecasting system consists of multiple components, presented shown in Fig. 2. Uncertainties in 

meteorological forecasts, model parameters, model initial conditions and model structure affect ensemble streamflow 10 

forecasts (Bourdin and Stull, 2013; Cloke and Pappenberger, 2009; Demirel et al., 2013a; Zappa et al., 2011). To capture the 

full range of predictive uncertainty, uncertainties arising from all sources of error must be incorporated (Bourdin and Stull, 

2013; Krzysztofowicz, 2001; Zappa et al., 2011). Bennett et al. (2014) and Cloke and Pappenberger (2009) describe that 

uncertainties in meteorological forecasts are the largest source of uncertainty beyond 2–3 days, and therefore only 

meteorological forecast uncertainty is incorporated in many studies (Bennett et al., 2014). We only include uncertainty in the 15 

meteorological forecasts to focus on the effect of ensemble meteorological forecasts on streamflow forecasts. As a 

consequence, underdispersion of the streamflow forecasts may be expected. By considering only uncertainty of the 

meteorological forecasts we focus on the effect of ensemble meteorological forecasts on streamflow forecasts.  

3.1.1 Hydrological model 

The hydrological model we use is a lumped Hydrologiska Byråns Vattenbalansavdelning (HBV) model that we run at daily 20 

time step by available hydrometeorological time series data for streamflow, gauged precipitation and temperature, and 

ECMWF meteorological forecasts. The model has 14 parameters and includes a snow accumulation and melting routine 

(Lindström et al., 1997; Osuch et al., 2015). Daily potential evapotranspiration rates are based on air temperature following 

using the method of Hamon (Lu et al., 2005). The HBV model has wide application in studies on ensemble streamflow 

forecasting (e.g. Cloke & Pappenberger, 2009; Demirel et al., 2013a, 2015; Kiczko et al., 2015; Olsson & Lindström, 2008; 25 

Renner et al., 2009; Verkade et al., 2013). The choice for a lumped model with a daily time step is basically the result of the 

spatial and temporal resolution of the available data. The available measurements of precipitation and temperature from five 

meteorological stations and streamflow from one discharge gauging station do not justify application of a spatially 

distributed hydrological model. The River Rhine forecasting suite also adopts the HBV model at a daily time step that is 

applied as a semi-distributed model to 134 sub catchments (Renner et al., 2009). The catchment area of Biała Tarnowska 30 

(~1000 km2) is comparable to the area of the sub catchments in the River Rhine forecasting suite.  
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The HBV model is calibrated using the differential evolution with global and local neighbourhoods (DEGL) 

methodTo calibrate the HBV model we used Differential Evolution with Global and Local neighbourhoods (DEGL), 

described by Das et al. (2009). The settings that we used are adopted from the best performing variant of Das et al. (2009) 

(maximum number of model runs is set to 50000). The model is calibrated over the period 1 November 1971 to 31 October 

2000 with the time series of precipitation and temperature as input and streamflow measurements as reference output. The 5 

validation period is 1 November 2000 to 31 October 2013. The model parameters were drawn uniformly from predefined 

parameter ranges (Osuch et al., 2015). The objective function selected for calibration is Y, which combines the Nash–

Sutcliffe coefficient (NS) and the relative volume error (ERV) (Akhtar et al., 2009; Rientjes et al., 2013). According to 

Rientjes et al. (2013), values of Y below 0.6 indicate poor to satisfactory performance. The model is calibrated over the 

period 1 November 1971 to 31 October 2000, with the time series of precipitation and temperature as inputs and streamflow 10 

measurements as reference output. The validation period is 1 November 2000 to 31 October 2013. Initialization periods of 

10 months and 1 year respectively ensure realistic initial conditions at the first day of the calibration and the validation 

period. The model parameters were drawn uniformly from predefined parameter ranges (Osuch et al., 2015).  

3.1.2 Updating of initial states 

Hydrological forecasting often relies on the updating of hydrological model storages to best represent the hydrological 15 

conditions in the catchment at the forecast day (e.g. . To best represent the hydrological conditions in the catchment at the 

forecast issuing day, hydrological forecasting system often rely on the updating of hydrological model storages by 

combining simulations with real-time data (Demirel et al., 2013a; Liu et al., 2012; Werner et al., 2005; Wöhling et al., 2006). 

A number of sophisticated techniques have been developed for data assimilation and model state updating (Houser et al., 

2012; Liu et al., 2012). We apply the fairly simple and direct storage updating procedure introduced by Demirel et al. 20 

(2013a), which relies on the autocorrelation of streamflow to update model storages. For storage updating we follow Demirel 

et al. (2013a) and apply a procedure based on measured streamflow on the day preceding the forecast day. The measured 

streamflow of the day preceding the forecast issuing day is divided in a fast and a slow runoff component to update the fast 

runoff reservoir and the slow runoff reservoir in of the HBV model. To determine the ratio between the fast and slow runoff 

components, a relationship between total simulated streamflow and the fraction of fast runoff is established based on 25 

historical simulations. However, this relationship contains large uncertainty. For example, for a total simulated streamflow of 

10 m3 s-1 the fraction varies between 0 and 0.6 and for a streamflow of 20 m3 s-1 it varies between 0.3 and 0.7. To reduce 

uncertainty in the fraction of fast runoff the storage of the fast runoff HBV reservoir and net inflow in the fast runoff 

reservoir are both tested as an additional descriptor of the relationship between streamflow and the fraction of fast runoff.  

3.1.3 Pre- and post-processing 30 

Errors in the meteorological forecasts as well as and in the hydrological models introduce biases in the mean and errors in 

the spread of ensemble streamflow forecasts (Cloke and Pappenberger, 2009; Khajehei and Moradkhani, 2017; Verkade et 
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al., 2013). Several studies suggest that post-processing of streamflow forecasts is more effective to improve the forecast skill 

quality than pre-processing of meteorological input data (Kang et al., 2010; Verkade et al., 2013; Zalachori et al., 2012). 

Verkade et al. (2013) and Zalachori et al. (2012) found that corrections made to meteorological forecasts lose their effect 

when propagated through a hydrological model (Verkade et al., 2013; Zalachori et al., 2012). Results by Zalachori et al. 

(2012) indicate that combined pre- and post-processing results in the best forecast quality. In this study both pre-processing 5 

of the meteorological input forecasts and post-processing of the streamflow forecasts are tested. 

Many studies used (conditional) quantile mapping (QM) for pre-processing (Boé et al., 2007; Déqué, 2007; Kang et 

al., 2010; Kiczko et al., 2015; Verkade et al., 2013; Wetterhall et al., 2012) and post-processing (Hashino et al., 2007; Kang 

et al., 2010; Madadgar et al., 2014; Shi et al., 2008) to correct for bias and dispersion errors. According to Kang et al. (2010), 

QM generally performs well in both pre- and post-processing. Hashino et al. (2007) advise to use QM, because of the good 10 

performance regarding sharpness and discrimination and the simplicity of the method. The principle of QM is thatWith QM 

the cumulative distribution function (CDF) of the forecasts over a control training period is matched to the CDF of the 

measurements over the same period, after which a correction function is generated (Boé et al., 2007). This means that the 

correction is conditional on the value of the forecasted variable itself. Boé et al. (2007), Déqué (2007) and Madadgar et al. 

(2014) further explain QM. The empirical CDFs of the measurements and forecasts are established on the training period 1 15 

November 2011 to 31 October 2013 (two hydrological years) and validated over on the period 1 November 2007 to 31 

October 2011.  

Distributions can may be different for different lead times and weather patterns or seasons (Boé et al., 2007; 

Wetterhall et al., 2012), so three QM set-ups are tested with or and without distinguishing different lead times and seasons. 

Combining the options for pre-processing and post-processing results in four processing strategies. In strategy 0, no pre- and 20 

post-processing are applied. In strategy 1 and 2, QM is applied to pre-process the meteorological forecasts, respectively 

without post-processing and with post-processing respectively. In strategy 2, the post-processing is performed based on the 

correction between ‘perfect forecastsobserved meteorological input forecasts’ (streamflow simulations with inputs from 

meteorological measurements) and streamflow measurements to account for hydrological model uncertainties (Verkade et 

al., 2013). In strategy 3, only post-processing is applied, based on the correction between streamflow forecasts generated 25 

with uncorrected meteorological forecasts and measured streamflow. In this strategy meteorological and hydrological model 

uncertainties are treated together (Verkade et al., 2013).  

3.2 Evaluation scores of the ensemble forecasts 

To measure the overall performance, we employ the frequently-used Continuous Ranked Probability Score (CRPS) (Bennett 

et al., 2014; Demargne et al., 2010; Hamill et al., 2000; Hersbach, 2000; Khajehei and Moradkhani, 2017; Pappenberger et 30 

al., 2015; Velázquez et al., 2010; Verkade et al., 2013). To evaluate forecast skill, we use the Continuous Ranked Probability 

Skill Score (CRPSS), which is the CRPS of the forecasts relative to the CRPS of alternative forecasts. The alternative 

forecast set is selected in Sect. 3.2.1. To measure general quality and skill of the streamflow forecasts, the continuous ranked 
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probability score (CRPS) and the continuous ranked probability skill score (CRPSS) are used. According to Demargne et al. 

(2010) and Hamill et al. (2000) a single evaluation score is inadequate to evaluate the overall performance of a forecasting 

system. Three properties of forecast quality are reliability, sharpness and resolution (Wilks, 2006; WMO, 2015).  

Reliability refers to the statistical consistency between measurements and simulations (Candille & Talagrand, 2005; 

Velázquez et al., 2010) and whether uncertainty is correctly represented in the forecasts (Bennett et al., 2014). We evaluate 5 

reliability by rank histograms (Sect. 3.2.2) and reliability diagrams (Bröcker and Smith, 2007; Ranjan, 2009; Wilks, 2006; 

WMO, 2015). The five forecast probability bins that we use to establish the reliability diagrams are 0%–20%, 20%–40%, … 

and 80%–100%, which were also used by Demirel et al. (2013a) and Bennett et al. (2014), and the low streamflow and high 

streamflow thresholds considered are defined in Sect. 3.4.  

Sharpness is defined as the tendency to forecast probabilities of occurrence near 0 or 1, as opposed to values 10 

clustered around the mean (climatological) probability (Ranjan, 2009; Wilks, 2006; WMO, 2015). If an ensemble forecasting 

system always forecasts an event probability of occurrence close to climatological probability, instead of close to 0 or close 

to 1, this the forecasting system is not useful, although it might be well calibrated (Ranjan, 2009; Wilks, 2006). To evaluate 

sharpness, we employ the histograms that show the sample size of the forecast probability bins used to establish the 

reliability diagrams (Ranjan, 2009; Renner et al., 2009; WMO, 2015). The histograms accompanying reliability diagrams are 15 

used to evaluate sharpness.  

Resolution is the ability  of the forecast model to correctly forecast the occurrence or and nonoccurrence of events 

(Demirel et al., 2013a; Martina et al., 2006). We employ relative Relative operating Operating Ccharacteristics (ROC) 

curves to evaluate resolution (Fawcett, 2006; Khajehei and Moradkhani, 2017; Velázquez et al., 2010; Wilks, 2006; WMO, 

2015). The Area Under the ROC Curve (AUC) provides a single score of performance regarding resolution (Fawcett, 2006; 20 

Wilks, 2006). A perfect ensemble forecasting system has an area of 1 under the ROC curve (100% hit rate, 0% false alarm 

rate for all probability thresholds), while a forecasting system with zero skill has a diagonal ROC curve with an area of 0.5 

(coincides with diagonal) (Fawcett, 2006; Velázquez et al., 2010; WMO, 2015)..  

3.2.1 Continuous ranked probability score 

The CRPS is an overall, single-number score for judging the quality of probabilistic forecasts (Hamill et al., 2000). CRPS 25 

measures the error of the ensemble forecasts by integrating the squared distance between the CDFs of the forecasts and a 

reference streamflow (Bennett et al., 2014; Demargne et al., 2010; Verkade et al., 2013). The score is frequently used in 

atmospheric (Velázquez et al., 2010) and hydrological sciences (Bennett et al., 2014; Pappenberger et al., 2015; Velázquez et 

al., 2010) and in most cases it is the recommended evaluation score for ensemble forecasts (Pappenberger et al., 2015). 

CRPS is sensitive to the entire range of the variable of interest and it does not require the introduction of predefined classes 30 

(Hersbach, 2000). A CRPS of 0 indicates a perfect simulation, which can only be achieved in the case of a perfect 

deterministic forecast (Hersbach, 2000). Because in practice CRPS approaches the average value of the evaluated variable 
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(with the same unit), the score cannot directly be compared among different areas, seasons or streamflow categories (Ye et 

al., 2014). Comparison between different lead times is possible, as average streamflow values do not change with lead time.  

3.2.2 1 Continuous ranked probability skill scoreAlternative forecast set 

Because in practice the CRPS converges to the average value of the evaluated variable (with the same unit), the score cannot 

be compared among different areas, seasons or streamflow categories (Ye et al., 2014). To eliminate the magnitude of the 5 

investigated variable, we normalize the CRPS against the CRPS of a relevant alternative forecast, a principle which is also 

used by Bennett et al. (2014), Demargne et al. (2010), Renner et al. (2009), Velázquez et al. (2010) and Verkade et al. (2013) 

to evaluate forecast skill. Normalizing the CRPS against the CRPS of alternative forecasts eliminates the effect of the 

magnitude of the investigated variable and compares the forecasts with a relevant alternative forecast (i.e. skill), used by e.g. 

Bennett et al. (2014), Demargne et al. (2010), Renner et al. (2009), Velázquez et al. (2010) and Verkade et al. (2013). The 10 

CRPSS is defined as:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓

 ,          (1) 

A system with perfect skill results in a CRPSS of 1 and a negative CRPSS indicates that the forecasting system performs 

worse than the alternative forecasts (Demargne et al., 2010; Ye et al., 2014). To evaluate skill of the forecasting system we 

define the alternative forecast set as forecasts that are generated without using meteorological forecasts.Forecasts that are 15 

generated without meteorological forecasts provide the alternative forecast set.  It is common practice to apply hydrological 

persistency or hydrological climatology as alternative forecast set (Bennett et al., 2014). However, Pappenberger et al. 

(2015) argue that this can result in an overestimation of forecast skill because other alternative forecast sets might be more 

difficult to beat in performance. Following Bennett et al. (2013), Bennett et al. (2014) and Pappenberger et al. (2015) the 

most appropriate alternative forecast set is selected based on their CRPS results. We use a single alternative forecast set for 20 

all streamflow categories, so one CRPSalternative is calculated. It is common practice to apply hydrological persistency or 

hydrological climatology as alternative forecast set (Bennett et al., 2014). With hydrological persistency the most recent 

streamflow measurement available (i.e., from the day preceding the forecast issuing day) serves as forecast for all lead times. 

Regarding hydrological climatology, the average measured streamflow, after a smoothing window of 31 days, on the same 

calendar day over the last 20 years is used, following Bennett et al. (2013). For streamflow forecasts based on an ensemble 25 

of historical meteorological measurements of precipitation and temperature, measurements on the same calendar day over 

the past 20 years are used, after Pappenberger et al. (2015).  

The alternative forecast set with the lowest CRPS will serve as alternative forecast set to evaluate skill (Bennett et 

al., 2013, 2014; Pappenberger et al., 2015). We use a single alternative forecast set for all streamflow categories, so one 

CRPSalternative is calculated. The results in Fig. 3 indicate show that the forecasts based on meteorological climatology result 30 

in the best CRPS scores and thus imply to be the most appropriate alternative streamflow forecasts, as also found in the 

studies of the Bennett et al. (2013), Bennett et al. (2014) and Pappenberger et al. (2015).  
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3.2..3 2 Rank histogram 

Rank histograms enable to diagnose average errors in the mean and spread (under- or overdispersion) of the ensemble 

forecasts (Hamill, 2001; Hamill et al., 2000) and according to Wilks (2006) they are commonly used to evaluate the 

reliability (or consistency) of ensemble forecasts. The consistency condition states that the reference streamflow is just one 

more member of the ensemble and it should be statistically indistinguishable from the ensemble forecast (Wilks, 2006).  To 5 

construct a rank histogram, the reference streamflow is added to the ensemble forecast set and the histogram is constructed 

from the ranks of the reference streamflow (Velázquez et al., 2010). In an ensemble forecasting system with perfect spread 

each ensemble member is equally likely, so all reference streamflow ranks are equally likely and the rank histogram is 

uniform (Hamill, 2001; Hersbach, 2000; Wilks, 2006; WMO, 2015; Zalachori et al., 2012). For backgrounds of the rank 

histogram, readers are referred to Hamill (2001), Wilks (2006), Velázquez et al. (2010), WMO (2015) and Zalachori et al. 10 

(2012). To indicate the flatness of rank histograms Candille and Talagrand (2005) propose a numerical indicator δ. Because 

δ is proportional to the length of the time series (Velázquez et al., 2010), we We use the Mean Absolute Error as flatness 

coefficient ε of the rank histogram, with the uniform distribution as reference::  

𝜀𝜀 = 1
𝑛𝑛+1

∑ |𝑓𝑓(𝑧𝑧) − 𝑦𝑦|𝑧𝑧=𝑛𝑛+1
𝑧𝑧=1  ,          (2) 

𝑓𝑓(𝑧𝑧) = Relative frequency of reference streamflow in rank z [-] 15 

𝑦𝑦 = 1
𝑛𝑛+1

= Theoretical relative frequency (uniform distribution) [-] 

𝑛𝑛 = Number of ensemble members [-] 

In a perfectly consistent forecasting system the relative frequency in each rank is equal to the relative frequency 

according to uniform distribution. This gives an optimum value of ε equal The rank histogram and flatness coefficient 

contain a random element if multiple ensemble members and the measurement have the same value, like 0 mm precipitation 20 

(Hamill and Colucci, 1998). In this case, a random rank is assigned to the measurement from the pool of ensemble members 

and the measurement that have the same value.  

3.2.4 Reliability diagram 

The reliability diagram is a common way to summarize and evaluate reliability of probabilistic forecasting systems (Bröcker 

and Smith, 2007). The diagram plots observed relative frequency against the predicted probability for a certain event 25 

(Bröcker and Smith, 2007; Demirel et al., 2013a). For a well calibrated forecasting system the reliability diagram is close to 

the 1:1 diagonal (Ranjan, 2009; WMO, 2015). The five forecast probability bins that we use are 0%–20%, 20%–40%, … and 

80%–100%, which were also used by Demirel et al. (2013a) and Bennett et al. (2014). Following Bröcker and Smith (2007) 

the observed frequencies are plotted against the average of forecast probabilities per bin instead of the bin centre %. Plotting 

against bin centres (so 10%, 30%, etc.) can cause substantial deviations from the diagonal.  30 

The histogram showing sample size in each probability bin indicates the sharpness of forecasts (Ranjan, 2009; 

Renner et al., 2009; WMO, 2015).  
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3.2.5 Relative operating characteristic 

Contingency tables and ROC curves analyze whether the forecast model correctly forecasts the occurrence and 

nonoccurrence of events. To establish the ROC a set of contingency tables is made, one for each examined probability 

threshold and these form a hit rate/false alarm rate graph for one predefined flow threshold (Atger, 2001; Buizza et al., 1999; 

Fawcett, 2006; WMO, 2015). The area under the ROC curve (AUC) can be used to obtain a single score for performance 5 

(Fawcett, 2006; Wilks, 2006). A perfect ensemble forecasting system has an area of 1 under the ROC curve (100% hit rate, 

0% false alarm rate for all probability thresholds), while a forecasting system with zero skill has a diagonal ROC curve with 

an area of 0.5 (coincides with diagonal) (Fawcett, 2006; Velázquez et al., 2010; WMO, 2015). Buizza et al. (1999) state that 

it is common practice to consider an area of more than 0.7 as indicative for useful prediction systems and 0.8 for good 

prediction systems. 10 

3.3 Investigation of error contributorsContribution of error sources 

The evaluation of ensemble streamflow forecasts is affected by errors from the meteorological forecasts, the hydrological 

model (including errors in the initial conditions) and errors in the measurements that serve as reference streamflow (Renner 

et al., 2009). By evaluation against perfect forecastsobserved meteorological input forecasts, the streamflow measurement 

error and the hydrological model error are eliminated, because both the ensemble streamflow forecasts and the reference 15 

streamflows contain these errors (Demargne et al., 2010; Olsson and Lindström, 2008; Renner et al., 2009). If we neglect 

measurement errors, evaluation against streamflow measurements (CRPSmeas) contains errors from the meteorological 

forecasts and the hydrological model and evaluation against perfect streamflowobserved meteorological input forecasts 

(CRPSsim) exclusively contains errors from the meteorological forecasts (Demargne et al., 2010; Olsson and Lindström, 

2008; Renner et al., 2009). If the ratio in Eq. (3) is low, the hydrological model errors are dominant, and if this ratio is high, 20 

the meteorological forecast errors are dominant. 
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑓𝑓𝑎𝑎𝑠𝑠
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓

~ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓+ℎ𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑦𝑦𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓

 ,       (3) 

A low CRPSsim / CRPSmeas ratio means that the hydrological model errors are dominant and a high ratio means that the 

meteorological errors are dominant.  

3.4 Evaluation of streamflow categories 25 

We evaluate the forecasting system for the different streamflow categories as that are defined in Table 1. A low streamflow 

threshold of Q75 (exceedance probability of 75%) guarantees that a sufficient number of events are considered in the 

evaluation of this streamflow category, while streamflow below this threshold still affects river functions (Demirel et al., 

2013b). Similarly, we used Q25 as high streamflow threshold.  
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3.5 Evaluation of runoff generating processes 

The high streamflow forecasts and low streamflow forecasts are evaluated for the various hydrometeorological 

conditionsspecific runoff processes that can generate these events, based on hydrometeorological conditions. Medium flows 

are not evaluated for different runoff generating processes since ,because these events commonly result from a combination 

of runoff generating processes under non-extreme hydrometeorological conditions.  5 

3.5.1 High streamflow generating processes 

Various runoff contributing generating processes can result in high flows. Table 2 defines the processes and classification 

rules for classificationwe use in this study, based on the processes Merz and Blöschl (2003) distinguish. The rules for 

classification are based on rainfall observations and snowpack model simulations; at one day before the event because of the 

time step used in the HBV model. The classification rules are based on fluxes and storages at one day before the event, 10 

because in the HBV model it takes one modelling time step before the rainfall and snowmelt fluxes end up in the fast runoff 

and slow runoff reservoirs and can form runoff.  

Figure 4a presents shows the distribution of high streamflow generating processes over the year following the 

classification rules for classification listed in Table 2. The figure shows an expected distribution of processes for this region. 

The distribution of processes is typical for this region.  15 

3.5.2 Low streamflow generating processes 

Processes that result in low flows are snow accumulation and the combination of low rainfall and high evapotranspiration 

over a period (precipitation deficit). Table 3 further characterizes and defines these processes.  

Figure 4b shows that these classification rules for classification result in a distribution of low streamflow generating 

processes over the year that is typical for this region.  20 

result in a reliable distribution of low streamflow generating processes over the year for this region.  

4 Results 

4.1 Ensemble streamflow forecasting system 

4.1.1 Calibration and validation of the hydrological model 

In Table 4 lists the calibration and validation results.  The hydrological model performs better with corrected input data as 25 

compared to uncorrected input data. This implies that the systematic underestimation of precipitation and systematic 

overestimation of temperature (Sect. 2.1) are not fully captured in the calibration. The validation performance is satisfactory, 

indicating that the lumped model approach is plausible in this case. The updating of initial states of the fast runoff reservoir 

and slow runoff reservoir (Sect. 3.1.2) results in an improvement of Y from 0.75 to 0.82 over the validation period. This 
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effect decreases with lead time, but it is still noticeable at a lead time of 10 days. Relating the fraction of fast runoff 

additionally to the storage of the fast runoff reservoir storage or net inflow does not result in a significant improvement of Y 

compared to the original updating model. Therefore the original updating model, introduced by Demirel et al. (2013a), is 

used.  

Simultaneous measurements and ECMWF forecasts are available over for the period 1 November 2006 to 31 5 

October 2013. In the hydrological year 2007 (1 November 2006 to 31 October 2007) the agreement between streamflow 

measurements and simulations is poor. Also with another model (data Data based Based mechanistic Mechanistic 

methodology (DBM)), with the same measurement data the performance was worse during this year (Kiczko et al., 2015). 

This is must be the result of measurement errors and/or human influence, because it is unlikely that in this period different 

hydrological processes are taking place that are not captured well by both the HBV model and the DBM model. Therefore, 10 

the period 1 November 2006 to 31 October 2007 is excluded from the evaluation period. 

Table 5 presents the performance of the hydrological model for different lead times and streamflow categories, 

including the Relative Mean Absolute Error (ERMA). The NS values for the low and medium streamflow categories are 

negative, meaning that the averages of streamflow measurements in these categories are a better approximation of the 

measurements than the simulations. All measures The scores highlight that the calibration is skewed to high streamflow 15 

situationsconditions, which is the result of the selected objective function that includes NS (Gupta et al., 2009). Gupta et al. 

(2009) also found that model calibration with NS tends to underestimate the low and high streamflow peaks. 

The results in Table 5 improve considerably as a result of the updating of initial storages, especially for the low 

streamflow simulations. The effectiveness of the updating procedure depends on the autocorrelation of daily streamflow, 

because the updating is based on streamflow measurements of the preceding day. In low streamflow periods there is usually 20 

a high autocorrelation of daily streamflow, in contrast to high streamflow periods.  

4.1.2 Pre- and post-processing strategy results 

The best precipitation forecasts are obtained when if QM is applied separately to each lead time, whereas the best 

temperature forecasts are obtained if, in addition, separate relationships for the summer and winter season are applied. The 

CRPS and Relative Mean Absolute Error (ERMA) of the precipitation and temperature forecasts improve slightly and the 25 

flatness coefficients improve considerably as a result of the pre-processing.  

However, for Regarding the combined pre- and post-processing strategies, the results (not shown in the paper)the 

results in Fig. 5 show indicate that strategy 0 (no pre- and post-processing) results in the best CRPS and flatness coefficients 

of streamflow simulations.  
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4.2 Forecast performance 

4.2.1 Forecast skill 

The streamflow forecasts are evaluated over the period 1 November 2007 to 31 October 2013, for lead times from 1 day to 

10 days and for the different streamflow categories (defined in Table 1). The results are presented shown in Fig. 56. The 

CRPS increases with lead time for all streamflow categories (Fig. 5a6a), so the performance of the streamflow forecasts 5 

forecasting system deteriorates with lead time. For all streamflows together aggregated, the CRPSS is positive for all lead 

times (Fig. 5b6b), so on average the streamflow forecasts are better than the alternative forecasts. This forecast skill is 

generated by the ECMWF forecasts compared to historical meteorological measurements.  

Fig. 5b 6b shows that the forecast skill is very different for the low, medium and high streamflow forecasts. The low 

skill of low streamflow forecasts, especially for small lead times, can be explained by the important role of the initial 10 

hydrological conditions in the hydrological model. In low streamflow situations runoff is mainly generated by available 

resources in the catchment instead of precipitation input. Since the same initial model conditions are used to simulate the 

alternative forecasts, it is difficult to generate skilful the result is that low streamflow forecasts cannot skilfully be forecasted 

for small lead times (<3 days). Also the origin of the alternative forecasts plays a role. Since low streamflow events normally 

occur in the same period of the year due to climatic seasonality, it can be expected that historical meteorological 15 

measurements of precipitation and temperature on the same calendar day provide functional plausible inputs. After all, the 

performance of the meteorological forecasts preceding these events contributes to the low skill. The negative skill at small 

lead times indicates that historical meteorological measurements of precipitation and temperature are even better forecasts 

than the meteorological ensemble forecasts from by ECMWF for this category of flows. From a lead time of 3 days the 

accumulated effects of the meteorological forecasts are more skilful than historical meteorological measurements.  20 

The medium streamflow forecasts do not have clear positive skill for all lead times. This can be explained by the 

fact that historical streamflow measurements are is most often around close to the medium streamflow, so forecasts based on 

historical meteorological measurements of precipitation and temperature will be a good approximation for these flows.  

The system has a high positive skill in forecasting high streamflow. In general initial conditions are relatively less important 

in for these events, because of the amount of water usually added to the system. However, we note that this depends on the 25 

responsible runoff generating process (see results in Sect. 4.4.1). As a result the streamflow forecasts and reference forecasts 

can easier deviate. In addition, these high streamflow events will beare less well captured in by historical meteorological 

measurements, and thus in the alternative forecasts will have lower quality for these events. 

. This is because high streamflow periods are in general less predictable by historical measurements, in particular in small 

catchments.  30 
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4.2.2 Forecast quality 

Figure. 6 7 presents shows the flatness coefficients. The high values indicate that the rank histograms are far from flat, 

especially for small lead times and low streamflow events. The rank histograms (in supplement Fig. S1) are U-shaped, which 

indicates underdispersion and/or conditional bias in the streamflow forecasts (Hamill, 2001). The rank histograms of the 

meteorological forecasts show that tThe ECMWF forecasts are also underdispersed, so this is one cause why the streamflow 5 

forecasts are underdispersed. In Sect. 5 the consequences of neglecting ignoring uncertainties in the hydrological model and 

initial conditions are further discussed.  

The rank histograms of the different streamflow categories (Fig. S2) show that the streamflow forecasts contain a 

conditional bias. In general, high streamflow is underestimated by the forecasting system and this underestimation increases 

with lead time. On the other hand, low Low streamflow is generally overestimated. This Both observations can be the result 10 

of too coarse spatial and temporal model resolution. Using a lumped model and aggregating the meteorological inputs 

spatially over the catchment and temporarily over the day flattens the extreme flow events.  

Also the reliability diagrams (Fig. S3) indicate low reliability of the streamflow forecasts, especially for small lead 

times. It appears that for low streamflow forecasts the observed relative frequencies are underestimated. Regarding the high 

streamflow forecasts the observed relative frequencies are overestimated, although whereas the rank histograms indicate that 15 

high streamflow is underestimated. This is possible because in a the rank histogram the measurements and forecasts are 

compared directly, whereas in a the reliability diagram the measurements and forecasts are compared to a streamflow 

threshold.  

Histograms showing the sample size in each probability bin of the reliability diagrams indicate that the sharpness of 

the forecasts is good, because forecast probabilities of low and high streamflow are most often close to 0 or 1, instead of 20 

forecast probabilities close to the mean probability. The sharpness decreases with lead time. 

All AUC values are above 0.85, whereas Buizza et al. (1999) consider 0.8 as indicative for good prediction 

systemswhich indicates a good resolution of the streamflow forecasting system. Buizza et al. (1999) state that, for 

meteorological forecast systems, it is common practice to consider an area of more than 0.7 as indicative for useful 

prediction systems and 0.8 for good prediction systems. The ROC curves are included in Fig. S4.  25 

4.3 Dominant error contributors 

Figure. 7 8 shows that the relative contribution of meteorological forecast errors increases and the relative contribution of 

hydrological model errors decreases with lead time, although the performance of the hydrological model also deteriorates 

with lead time (see Table 5). Two effects contribute to this. In the first placeFirst, the meteorological forecasts get worse 

with lead time (Fig. 5) and errors in the meteorological forecasts accumulate in the hydrological forecasting system with lead 30 

time. In the second placeSecond, the effect of the initial hydrological conditions in the hydrological model at the forecast 

issuing day becomes smaller at larger lead times, because more water is added to the system.  
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In For high streamflow forecasts the contribution of meteorological forecast errors is relatively more important, 

while in low streamflow forecasts the contribution of hydrological model errors is relatively more important. Initial 

conditions have relatively less influence on high streamflow (discussed in Sect. 4.2.1). In addition, the hydrological model 

performs better for high streamflow than for low streamflow situations conditions (Table 5), so meteorological forecast 

errors are relatively more important in high streamflow situationsconditions. 5 

4.4 Forecast skill for the runoff generating processes 

4.4.1 High streamflow generating processes 

The highest skill is obtained for short-rain floods (Fig. 8a9a), at small lead times (1-5 days). Two effects explain this 

observationcontribute to this. First, long-rain floods and snowmelt floods are essentially driven by the water storage 

conditions in the catchment whereas in for short-rain floods meteorological input has more influence. Figure 8b 9b confirms 10 

the relative importance of meteorological forecasts in these events. This results in higher potential to generate forecast skill, 

already at small lead times. At larger lead times the accumulation of rainfall in the forecasting system becomes important, 

which is confirmed by the increasing contribution of meteorological forecast errors in long-rain floods and snowmelt floods. 

Long-rain floods are skilfully forecasted from a lead time of 3 days and snowmelt floods are skilfully forecasted from a lead 

time of 2 days. Second, the short and heavy rain events preceding short-rain floods are will be less well captured in historical 15 

meteorological measurements than the longer term processes underlying generating long-rain floods and snowmelt floods. 

Long-rain floods are skilfully forecasted from a lead time of 3 days and snowmelt floods are skilfully forecasted from a lead 

time of 2 days. The below 0 skill of long-rain and snowmelt flood forecasts indicate that the meteorological forecasts at 

small lead times do not result in positive skill as compared to forecasts based on historical meteorological measurements. 

The forecast skills of short-rain floods and snowmelt floods decrease considerably again at larger lead times from lead times 20 

of 6 days and 9 days respectively. This is the result of a decreased performance of the meteorological forecasts preceding 

these events. The skill of short-rain flood forecasts decreases the most and at the shortest lead time.  

4.4.2 Low streamflow generating processes 

Figure 9a 10a shows that the low forecast skill of low streamflow is caused by the precipitation deficit process, whereas the 

forecast skill of low streamflow events that are generated by snow accumulation is rather high. The low forecast skill of the 25 

low streamflow events generated by precipitation deficit precipitation deficit generated low streamflow events can be 

explained by the fact that low rainfall periods often occur in the same period of the year, due to climatic seasonality, and are 

therefore well captured by historical meteorological measurements. Also the performance of meteorological forecast models 

may play a role. Meteorological models tend to forecast drizzle instead of zero precipitation (Boé et al., 2007; Piani et al., 

2010) and pre-processing has not been applied to correct for this. The skill increases for larger lead times, so for larger lead 30 

times the ECMWF meteorological forecasts accumulated in the forecasting system give better predictions than historical 



17 
 

meteorological measurements. are better model inputs than historical measurements for larger lead times. The fact that the 

contribution of initial hydrological conditions at the forecast issuing day decreases for larger lead times (also seereflected in 

Fig. 9b10b) adds to this skill.  

The forecast skill for both snowmelt floods and snow accumulation generated low streamflow events decreases 

from a lead time of 8 days, which indicates a decreasing skill of ECMWF temperature forecasts for large lead times.  5 

For low streamflow generated by snow accumulation and precipitation deficits, errors from the HBV model and 

initial conditions make up a large part of the total error (Fig. 9b).  

5 Discussion 

The developed methodology of analysing an ensemble streamflow forecasting system has been applied to the Biała 

Tarnowska catchment for a 6 year period. By this, findings by of this study do not allow direct generalisation but serve 10 

ongoing discussions on improving streamflow forecasting. Also, a longer evaluation period would allow evaluation of more 

extreme definitions of high and low streamflow.  

The best streamflow forecasts are obtained without pre- and post-processing. The effectiveness of QM depends on 

whether during the validation period the same bias is present between the CDF of the measurements and the CDF of the 

forecasts as during the training period. Figure 10 11 shows large differences in biases between different years and between 15 

the training period and the validation period, suggesting that bias is affected by randomness. The relatively short time series 

of forecasts constrains the pre- and post-processing procedures, because different weather patterns cannot be well identified 

and with a longer period a more consistent bias distribution could be obtained. In addition, limitations of QM, as described 

by Boé et al. (2007) and Madadgar et al. (2014), are expected to play a role in the ineffectiveness of the pre- and post-

processing. In spite of the limitations of QM, over the training period the pre- and post-processing strategies result in an 20 

improvement of the evaluation scores (strategy 3 with seasonal distinction gives the best performance), which indicates the 

potential of processing with QM if a consistent bias is present. A problem in pre- and post-processing in generalof forecasts 

is that the joint distribution of measurements and forecasts is often nonhomogeneous in time bydue to, for example, an 

improvement of forecasting systems over time (Verkade et al., 2013). The ECMWF meteorological forecasts in TIGGE, 

containing historical operational forecasts, have also undergone changes (Mladek, 2016).  25 

Uncertainties in the hydrological model and model initial conditions have been ignored in the forecasting system. 

Considering the rank histogram results this may have affected affects the reliability of streamflow forecasts of short lead 

times and low streamflow in particular. Regarding the main effect on short lead times, Bennett et al. (2014) and Pagano et al. 

(2013) discuss similar findings. The lower flatness coefficients of high streamflow forecasts compared to low streamflow 

forecasts reflect that for high streamflow forecasts the meteorological inputs isare relatively more important.  30 

The classification of low and high streamflow generating processes is based on hydrometeorological information 

that is available from the HBV model and measurement data series. This provides more insight in the performance of the 
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forecasting system than a seasonal characterisation. However, sSome assumptions must be kept in mind when interpreting 

the results. It is assumed that snow accumulation before an event is embedded in the snowpack storage of the HBV model. If 

a snowpack is present the event is classified as snowmelt flood or snow accumulation low streamflow. The lumped model 

causes a simplification here, because when there is a snowpack present in the model there is not necessarily a snowpack that 

covers the whole catchment. If no snowpack is present, it is assumed that the low streamflow event or high streamflow event 5 

is caused by low or high rainfall. The threshold of 10 mm day-1 (see Table 2) is an unrefined simplification to distinguish 

between short-rain floods and long-rain floods. The simple character of the classification rules especially has consequences 

for the classification of events that are caused by a combination of processes, which often occur in practice and result in the 

highest floods. Another point is that only short-term information (from the day preceding the forecast issuing day) is used to 

classify the processes. The lag time between precipitation peaks and streamflow peaks does not necessarily match with the 10 

HBV model calculation time step and the classification rules used. Consequently, a streamflow at the day following a high 

rainfall event is classified as a short-rain flood, whereas the real streamflow peak might come one day later.  

In the hydrological model the lag time between a rainfall event and the streamflow peak is set to 1 day. However, 

the timing of a rainfall event during theon a day is very will be important, especially in a small catchment. Evaluation of 

forecast performance in this paper indicates that the lag time is critical in the forecasting system, especially for short-rain 15 

floods. The results in Fig. 8b 9b show that the ratio between the CRPS against perfect forecastsobserved meteorological 

input forecasts and the CRPS against streamflow measurements is above 100% for short-rain floodshigh streamflows, and 

short-rain floods in particular. This means that these forecasts are closer to the measurements than to the perfect 

forecastsobserved meteorological input forecasts.  The precipitation peak in the measurements and the precipitation peak in 

the meteorological forecasts can be shifted one day with respect to each other and this can cause that the timing of the peak 20 

of the streamflow forecasts better corresponds to the streamflow measurements than to the peak of the perfect streamflow 

forecasts.Analyses show that on high streamflow days on which the forecasts are closer to the measurements than to the 

observed meteorological input forecasts (28% at lead time of 1 day to 48% of the days at lead time of 10 days), depending on 

lead time, on 50% to 66% of the days the forecasts are closer to the measurement than the observed meteorological input 

forecast. This indicates a hydrological model deficiency, either from the rainfall-runoff relation or the flood peak timing. The 25 

precipitation peak in the measurements and the precipitation peak in the meteorological forecasts can be shifted one day with 

respect to each other and this canmay cause that the timing of the peak of the streamflow forecasts better corresponds to the 

streamflow measurements than to the peak of the perfect streamflow forecasts. Of the 97 separate peak streamflow days, on 

6 days (lead time of 6 days) to 17 days (lead time of 1 day) the flood peak day of the observed meteorological input forecasts 

does not match to the peak day of the measurement but the peak day of the mean of the ensemble forecast does match to the 30 

peak day of the measurements. This illustrates that hydrological model deficiencies have a considerable effect on the 

observed meteorological input forecasts and the ensemble forecasts. 

It is not trivial to compare the CRPS results to results in other studies, because the value depends on the magnitude 

of the evaluated variable (Ye et al., 2014). A similarity between the results in this study and previous studies is that the 
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performance of the streamflow forecasts decreases with lead time. Since Because Bennett et al. (2014) use the same 

alternative forecast set, the CRPSS results can be compared. Although Bennett et al. (2014) use a very different forecasting 

system and apply it to different situationsconditions, the forecast skills are comparable to the forecast skills obtained in this 

study. 

6 Conclusions 5 

We developed a methodology to analyse an ensemble streamflow forecasting system. For the case study of the Biała 

Tarnowska catchment we conclude: 

• There are large differences in forecast skill,  compared to alternative forecasts based on historical meteorological 

measurements, for different runoff generating processes, compared to alternative forecasts based on historical 

measurements of precipitation and temperature. The system skilfully forecasts high streamflow events, although the 10 

skill depends on the runoff generating process and lead time. Also low streamflow events that are generated by 

snow accumulation are skilfully forecasted. Since the hit rates are high compared to the false alarm rates, the system 

has potential to generate forecasts for these streamflow categories. Sharpness of the forecasts is good, although it 

decreases with lead time. Medium streamflow events and low streamflow events that are generated by a 

precipitation deficit are not skilfully forecasted.  15 

• When this or any other forecasting system is (further) developed with the objective to generate more accurate high 

streamflow forecasts, it is recommended to focus on improving the meteorological forecast inputs because errors 

from the meteorological forecasts are dominant in high streamflow forecasts. This can be achieved by improving 

the meteorological forecasts (e.g. using the higher resolution forecasts from COSMO-LEPS (Renner et al., 2009)) 

or by improving the pre-processing step. Also the hydrological model performance on high streamflow must be 20 

improved, by specific calibration on flood peak timing and high streamflow conditions. To improve low streamflow 

forecasts, it is recommended to focus first on the hydrological model performance. In this study the calibration of 

the hydrological model is skewed to high streamflow situationsconditions. An easy improvement of the forecasts 

can be achieved by calibrating the hydrological model specifically on low streamflow eventsconditions. Besides 

improvement of the hydrological model, further research should be done to improve the meteorological forecasts, 25 

especially the precipitation forecasts (problem of forecasting of drizzle). When the forecasting system is applied 

exclusively on low or high streamflow forecasts, the alternative forecast set should be reconsidered.  

• The ensemble streamflow forecasting system shows good resolution and sharpness, but the reliability of the 

streamflow forecasts must be improved. Therefore, To improve the reliability of the ensemble streamflow forecasts 

it is recommended to include uncertainties in hydrological model parameters and initial conditions in the forecasting 30 

system. Particularly for low streamflow forecasts this is essential. The uncertainty in the relationship between the 

fraction of fast runoff and total streamflow to update initial states might be utilized to incorporate initial condition 
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uncertainty. Since Because the precipitation and temperature forecasts are also underdispersed, we recommend to 

investigate how the reliability of the precipitation and temperature forecasts can be improved, potentially by adding 

meteorological forecasts from other forecasting systems (‘super-ensembles’) (Bennett et al., 2014; Bougeault et al., 

2010; Fleming et al., 2015; He et al., 2009) or by improved pre-processing.  

• Pre-processing with QM slightly improves the meteorological forecasts, but this loses its effect after propagating 5 

through the hydrological model. Post-processing of streamflow forecasts was not effective either.  and post-

processing with QM was not effective. In the discussion several limitations of QM have been described. A longer 

time series of forecasts and a retrospective forecast set would possibly promote the success of pre- and post-

processing. Moreover, techniques such as a Bayesian joint probability approach (Bennett et al., 2014; Khajehei and 

Moradkhani, 2017), regression techniques (Verkade et al., 2013; Hashino et al. 2007), Schaake shuffle to ascribe 10 

realistic space-time variability (Clark et al., 2004), and weather typing (Boé et al., 2007; Wetterhall et al., 2012) or 

hydrological process typing, can improve the effectiveness of pre- and post-processing procedures.  

• It is recommended to extend the study to other catchments and (if possible) with longer forecast datasets, to 

investigate the generality of the results and to test more extreme high and low streamflow thresholds.  

The findings only apply to the study catchment and the developed system set-up, but the presented methodology of analysing 15 

an ensemble streamflow forecasting system is generally applicable. The methodology provides valuable information about 

the forecasting system, in which situations conditions it can be used, and how the system can be improved effectively.  
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Figures 

 
Figure 1: Location and overview of the Biała Tarnowska catchment 
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Figure 2: Structure of the ensemble streamflow forecasting system 

 

 
Figure 3: CRPS of three alternative forecast sets, evaluation period 2008-2013 5 
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Figure 4: a. High streamflow generating processes over the year b. Low streamflow generating processes over the 
year, 1-11-2007 to 31-10-2013 

 

 5 
Figure 5: CRPS of streamflow forecasts over the validation period 2008-2011, by applying the post-processing strategies that are 
introduced in Sect. 3.1.3.  
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Figure 6: a. Streamflow forecasts evaluated against streamflow measurements b. Skill of the streamflow forecasts, 
defined in Eq. (1) 

 5 
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Figure 7: Rank histogram flatness coefficients. The flatness coefficients of the precipitation and temperature forecasts 
refer to the preceding day. 

 

 5 
Figure 8: Ratio of errors in meteorological forecasts (CRPSsim) to meteorological forecast + model errors (CRPSmeas) 
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Figure 9: a. Forecast skill of high streamflow generating processes b. Ratio of errors in meteorological forecasts 
(CRPSsim) to meteorological forecast + model errors (CRPSmeas). 
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Figure 10: a. Forecast skill of low streamflow generating processes b. Ratio of errors in meteorological forecasts 
(CRPSsim) to meteorological forecast + model errors (CRPSmeas). 
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Figure 11: Difference between CDFs of the measurements and CDFs of the uncorrected streamflow forecasts per 
hydrological year (upper panel cumulative probability 0 – 0.95 and lower panel 0.95 – 1.0). Each thin line refers to a 
single year between 2007 and 2013. This figure is for a lead time of 5 days. 

 5 
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Tables 

Table 1: Definition of streamflow categories 

Streamflow category Thresholds 
Streamflow (from measurements 1-11-2007 to 

31-10-2013) 

Low streamflow 𝑄𝑄𝑚𝑚𝑜𝑜𝑓𝑓 ≤ 𝑄𝑄75 𝑄𝑄𝑚𝑚𝑜𝑜𝑓𝑓 ≤ 2.76 𝑚𝑚3/𝑠𝑠 

Medium streamflow 𝑄𝑄75 < 𝑄𝑄𝑚𝑚𝑜𝑜𝑓𝑓 ≤ 𝑄𝑄25 2.76 𝑚𝑚3/𝑠𝑠 < 𝑄𝑄𝑚𝑚𝑜𝑜𝑓𝑓 ≤ 10.35 𝑚𝑚3/𝑠𝑠 

High streamflow 𝑄𝑄25 < 𝑄𝑄𝑚𝑚𝑜𝑜𝑓𝑓 10.35 𝑚𝑚3/𝑠𝑠 < 𝑄𝑄𝑚𝑚𝑜𝑜𝑓𝑓 

 

 

Table 2: Characterization of the high streamflow generating processes 5 

Process Characterization Rules for classification 

Snowmelt flood Snowmelt floods and rain-on-snow floods (explained 

by Merz and Blöschl (2003)) are considered as one 

category. All high streamflow events where snow is 

involved are characterized as snowmelt floods, 

because the snowpack and/or frozen soil underneath 

play an important role in the runoff process.  

• Snowpack (HBV) at forecast day-1 

Short-rain flood Short-rain floods and flash floods (characterized by 

Merz and Blöschl (2003)) are combined. Flash floods 

are classed in this category as well, because only 

daily measurements and forecasts are available.  

• No snowpack (HBV) at forecast day-1 

• Rainfall at forecast day-1 above 10 mm: 

With small initial storage in the catchment 

(HBV), precipitation of 10 mm day-1 at the 

day preceding the streamflow event causes 

a streamflow event above the high 

streamflow threshold. 

Long-rain flood Long-rain flood processes are explained by Merz and 

Blöschl (2003). This category applies when a 

streamflow event is not directly generated by 

snowmelt or high precipitation. 

• No snowpack (HBV) at forecast day-1 

• Rainfall at forecast day-1 below 10 mm 
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Table 3: Characterization of the low streamflow generating processes 

Process Characterization Rules for classification 

Snow accumulation If precipitation is snow and does not melt directly, 

accumulation occurs.  

• Snowpack (HBV) at forecast day-1 

Precipitation deficit When low rainfall and high evapotranspiration 

last over a prolonged period the catchment will 

dry out.  

• No snowpack (HBV) at forecast day-1 

 

 

 

Table 4: Calibration and validation performances of the model 5 

Run 

Calibration (1-11-1971 to 31-10-2000) Validation (1-11-2000 to 31-10-2013, 

excluding 2007) 

Y NS ERV Y NS ERV 

Calibration with uncorrected 

input data 

0.78 0.78 0% 0.69 0.74 6.5% 

Calibration run with input 

data corrected for elevation 

0.81 0.81 0% 0.7275 0.7778 6.74.8% 

With updating at lead time  

0 days 

- - - 0.82 0.83 1.3% 

With updating at lead time 

10 days 

- - - 0.75 0.79 4.4% 
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Table 5: Performance over the evaluation period 2008-2013, for low, medium and high streamflow simulations (perfect 
forecastsobserved meteorological input forecasts). The initial states are updated at the lead time of 0 days.  

Lead time 

[days] 

ERV [%] NS [-] ERMA [-] 

Low 

flows 

Medium 

flows 

High 

flows 

Low 

flows 

Medium 

flows 

High 

flows 

Low 

flows 

Medium 

flows 

High 

flows 

No updating 43.3 7.29 1.81 -10.9 -2.36 0.82 0.71 0.43 0.33 

0 3.23 4.69 2.16 0.34 -0.14 0.86 0.11 0.16 0.25 

1 6.44 7.16 2.64 -0.64 -0.53 0.84 0.19 0.21 0.29 

2 8.55 8.80 2.48 -1.12 -0.88 0.83 0.23 0.25 0.31 

3 11.5 9.60 2.30 -2.09 -1.07 0.83 0.29 0.28 0.32 

4 13.6 10.1 2.17 -2.76 -1.15 0.83 0.33 0.30 0.32 

5 15.9 10.4 2.04 -3.50 -1.33 0.83 0.37 0.31 0.32 

6 18.2 10.4 1.98 -4.36 -1.43 0.83 0.41 0.32 0.32 

7 19.2 10.5 2.01 -4.56 -1.53 0.83 0.43 0.34 0.32 

8 20.6 10.3 2.07 -4.88 -1.62 0.83 0.45 0.35 0.32 

9 22.9 10.1 2.09 -5.73 -1.70 0.83 0.49 0.35 0.32 

10 24.0 10.0 2.13 -6.09 -1.77 0.83 0.50 0.36 0.32 

 


