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Abstract 

We explore the memory properties of catchments for predicting the likelihood of floods basing on 

observations of average flows in pre-flood seasons. Our approach assumes that flood formation is 10 

driven by the superimposition of short and long term perturbations. The former is given by the short 

term meteorological forcing leading to infiltration and/or saturation excess, while the latter is originated 

by higher-than-usual storage in the catchment. To exploit the above sensitivity to long term 

perturbations, a Meta-Gaussian model and a data assimilation approach is implemented for updating the 

flood frequency distribution a season in advance. Accordingly, the peak flow in the flood season is 15 

predicted in probabilistic terms by exploiting its dependence on the average flow in the antecedent 

seasons. We focus on the Po River at Pontelagoscuro and the Danube river at Bratislava. We found that 

the shape of the flood frequency distribution is noticeably impacted by higher-than-usual flows 

occurring up to several months earlier. The proposed technique may allow one to reduce the uncertainty 

associated to the estimation of flood frequency.  20 

1 Introduction 

The physical, chemical and ecological state of processes leading to the formation and quality of river 

flow is characterized by persistence at several different time scales (Koutsoyiannis, 2014). In fact, 

anomalous conditions for such processes, such as those generated by extreme meteorological events, 

may produce a long-lasting impact on the river flow, depending on climatic and catchment behaviors 25 

(Lo and Famiglietti, 2010). For instance, flood generation is impacted by the initial soil moisture 
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condition of the catchment, which may be in turn impacted by groundwater levels that are related to 

global catchment storage (Massari et al., 2014). Persistence can be exploited to improve river flow 

forecasting at seasonal-to-interannual time scale. Furthermore, persistence provides useful indications to 

better understand the functioning of a catchment and the dynamics of the water cycle. 

Indeed, the study of persistence is one of the most classical research endeavors in hydrology, since the 5 

early works by Rippl (1883) and Hazen (1914) on the estimation of the optimal storage for reservoirs. 

Hurst (1951) investigated the Nile River flows while working at the design of the Aswan Dam and 

postulated that geophysical records may be affected by a complex form of persistence that may last for a 

long time (O’ Connell et al., 2015). Later on, Thomas and Fiering (1962) and Yevjevich (1963) 

introduced autoregressive models for annual and seasonal streamflow simulation therefore stimulating 10 

the development of subsequent models of increasing complexity for simulating hydrological 

persistence. 

Recently, the attention has been focused on long term persistence (LTP), which is associated with the 

Hurst-Kolmogorov behavior (Koutsoyiannis, 2011). LTP manifests itself through a power-law decay of 

the autocorrelation function of the process, which implies that the summation of the autocorrelation 15 

coefficients diverges to infinity (Montanari et al., 1997). LTP implies the possible presence of long term 

cycles (Beran, 1994), which in turn means that perturbations of hydrological processes may last for a 

long time, therefore providing a possible explanation for the occurrence of clusters of extreme 

hydrological events, such as floods and droughts (Montanari, 2012). LTP also has implications in the 

study of climate change, as it is connected with an enhanced natural variability of climatic processes 20 

(Koutsoyiannis and Montanari, 2007). 

While LTP has been long studied, limited attempts have been made to exploit LTP in data assimilation 

procedures for improving streamflow forecasting. The motivation probably is that LTP is recognized to 

exert a noticeable impact on the river flow volume over long time scales, while its effect on the 

magnitude of single events is less noticeable. Nevertheless, the presence of LTP and seasonal 25 

correlation necessarily affects flood frequency, to an extent that has been poorly explored. 

The present contribution aims to enhance our understanding of the persistence properties of river flows 

to improve seasonal river flow forecasting. By taking inspiration from the idea that the probability of 
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extreme floods may be increased by long term stress, like higher than usual rainfall lasting for several 

months, the research question that we address here can be stated as follows: Can higher than usual river 

discharges in the previous season be associated to a higher probability of floods in the subsequent high 

flow season? The quantification of the effect of antecedent flows for different time lags on the 

occurrence of floods would help to assess how long a river remembers its past (Aguilar et al., 2016). 5 

From a technical point of view, we aim to propose a technique for updating a season in advance the 

flood frequency distribution estimated for a given river, through a data assimilation approach, by 

exploiting the information provided by river flows in the pre-flood seasons.  

It is interesting to highlight that the state of a catchment, and in particular its storage, is affected by 

previous precipitation. Therefore, it would be reasonable to exploit the information provided by 10 

previous rainfall rather than previous flows for the sake of updating the flood frequency distribution. 

However, areal rainfall estimation for catchments with large extension and complex orography is 

affected by large uncertainty (Moulin et al., 2009). Therefore, we utilize here flows during pre-flood 

seasons as a proxy for catchment storage instead of rainfall. While the above assumption may be 

reasonable, one should consider that it may not hold when the river flows are impacted by massive 15 

regulation. 

2 Study sites and data sources 

We focus our attention on two large basins, namely, the Po river basin at Pontelagoscuro (Italy) and the 

Danube river basin at Bratislava (Slovakia). The Po River is the longest river entirely flowing in the 

Italian Peninsula (Fig. 1) with a catchment area of about 71000 km2 at the delta. The average annual 20 

precipitation in the catchment is 78 km3 in volume, of which 60% reaches the closure river cross-section 

at Pontelagoscuro. The hydrological behavior of the Po River is described in detail in recent studies 

(Zanchettin et al., 2008; Montanari, 2012; Zampieri et al., 2015). The discharge pattern at 

Pontelagoscuro presents a mean annual flow of about 1470 m3s-1 and shows a typical pluvial regime, 

and thus a strong seasonality with two flood seasons in spring and autumn (Fig. 2). An intense 25 

exploitation of water resources for irrigation, hydro-power production, civil and industrial use is found 
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in the catchment. Even though water resources management is currently sustainable on average, critical 

situations are experienced during drought periods (Montanari, 2012).  

The upper Danube basin drains from the northern side of the Alps and the southern area of the central 

European Highlands into Bratislava in a 131331 km2 catchment area where the mean annual flow is 

about 2053 m3s-1. The hydrological behavior of the upper Danube basin can be found in detail in the 5 

literature (Nester et al., 2011; Blöschl et al., 2013). The average annual precipitation in the catchment is 

123 km3 and the discharge pattern shows a typical alpine regime and thus a strong seasonality with one 

flood season in the summer (Fig. 2).  

Daily discharge and monthly precipitation and temperature data for the Po and Danube river basins 

were analyzed in this study. The observation periods as well as descriptive statistics of the different time 10 

series are shown in Table 1.  Discharge time series at Pontelagoscuro for the Po River and Bratislava for 

the Danube River were provided, respectively, by the Regional Agency for Environmental Protection 

(ARPA)— Emilia Romagna, Hydro-meteorological Office and by Global Runoff Data Center (GRDC, 

2011). The series are not affected by missing values. They correspond to a time span of 90 and 107 

years for Po and Danube, respectively. 15 

The Po river is regulated by the presence of several dams as reservoirs for hydroelectricity production, 

which are mainly located in the Alpine region. Also, the outflow from the lakes Como, Garda, Iseo, Idro 

and Maggiore is regulated (Zanchettin et al., 2008). These regulations do not noticeably impact the 

trend and the low-frequency variability of the peak flows, while they may affect the low flows at daily 

and sub-daily time scale (Zampieri et al., 2015). The upper part of the Danube has been ideal for 20 

building hydropower plants and up to 59 dams are found along the river’s first 1000 km. As stated in 

the Danube River Basin Management Plan, stretches in the very upper part of the river may present 

noticeably altered flows. (Maps 7a, b, c in DRBM, 2009). The effect of regulation on peak flows in 

Slovakia is deemed to be negligible, while low and average flows may be noticeably impacted. 

Precipitation and temperature time series were calculated based on weather data sets obtained from the 25 

HISTALP project (Auer et al., 2007). Only weather stations where sufficiently long data sets are 

available were used (Table 1). The study period was conditioned by the availability of discharge data 
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even though both meteorological variables were available for a longer historical period. For each study 

site, catchment area average precipitation and temperature time series were constructed using Thiessen 

polygons. 

3 Methodology 

In order to address the research question outlined in Section 1, namely, to verify the opportunity of 5 

updating the flood frequency distribution a season in advance by exploiting the information provided by 

the river flow in a given pre-flood season, we perform an analysis of the memory properties of the 

hydrological cycle in the considered catchments. We first focus on meteorological variables, namely, 

temperature and mean areal rainfall to check whether a memory pattern is detectable in the weather. 

Rainfall and temperature are considered as they are the main drivers of river flow, with temperature 10 

being particularly influential on the lower values. Then, we turn to the direct analysis of river flows.  

We first estimate the Hurst exponent (H) for the considered time series, to verify whether the hypothesis 

of the presence of LTP is supported by data evidence. Then, we turn to the analysis of the statistical 

dependence between the peak flow in the flood season and the average flow during the previous season, 

to empirically check whether updating the flood frequency distribution produces useful results. Results 15 

from the latter analysis are assessed in view of the LTP estimation. 

3.1 Estimation of long term persistence 

Assessment of long term persistence for hydrological data has been presented by several contributions 

(see, for instance, Szolgayova et al., 2014; and Zampieri et al., 2015 for analyses carried out for the 

river flows of the Danube and Po River, respectively). Time series with long-term memory or 20 

persistence exhibit a power-law decay of the autocorrelation function (Beran, 1994), that is: 

ρ " ~	%&	∙ "()*(					" → ∞		          (1) 

where r(k) is the autocorrelation function of the process at lag k, ck is a constant and H Î [0 1] is the 

Hurst exponent or the intensity of the LTP (Montanari et al., 1997). For a stationary process, H is 
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constrained in the range [0.5,1). A value equal to 0.5 means absence of LTP; the higher the H, the 

higher the intensity of LTP. 

In this work, H was estimated by using different heuristic methods. In detail, we applied the rescaled 

range (R/S) analysis, the aggregated variance method (climacogram; see Dimitriadis and Koutsyiannis, 

2015), and the differenced variance method. An extended description of numerous methodologies to 5 

assess the persistence properties of time series to provide support to the possible presence of the Hurst-

Kolmogorov behavior can be found in Taqqu et al. (1995), Montanari et al. (1996, 1997, 2000) and 

Koutsoyiannis (2003). 

A strong seasonal component in the different hydrological variables in both study time series has been 

reported by the literature (e.g. Montanari, 2012; Szolgayova et al., 2014; Zampieri et al, 2015). It is well 10 

known that a strong seasonality often implies the presence of periodic deterministic components in the 

data that can introduce a bias in LTP estimation (Montanari et al., 1997, 2000). Also, the presence of 

slowly decaying or increasing trends may induce a bias as well. Thus, prior to long-term memory 

assessments, all time series were detrended and deseasonalized. For each time series, a 366-term (for 

daily data) and 13-term (monthly data) moving average for a trend approximation was applied, followed 15 

by a stable seasonal filter for removing of the seasonal cycle (Brockwell et al., 2002).  

3.2 Analysis of the peak flow dependence on average flows during pre-flood seasons 

In order to analyze the stochastic connection between the average river flows in the antecedent seasons 

and the average and peak flow in the flood season, a bivariate probability distribution function was 

fitted. In what follows, random variables and their outcomes are identified with bold and un-bold 20 

characters, respectively. The yearly variables analyzed in this study were:  

-The monthly mean flow in the given pre-flood season (independent or explanatory variable), Qm. 

-The peak flow in the flood season or annual maximum daily flow (dependent variable), Qp. 

-The mean daily flow in the flood season (dependent variable), Qmf.  
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A meta-Gaussian model (Kelly and Krzysztofowicz, 1997; Montanari and Brath, 2004) is used to model 

the joint probability distribution between the selected explanatory and dependent variables. The method 

involves the following steps. 

First, the time series Qm(t), Qp(t) and Qmf(t) with sample size n, where n is the number of years in the 

observation period, are extracted from the observed datasets. Then, the Normal Quantile Transform 5 

(NQT) is applied in order to make their marginal probability distributions Gaussian, therefore obtaining 

the normalized observations NQm(t) and NQp(t) and NQmf(t). 

The NQT is a non parametric transformation that can be applied to normalize any arbitrarily distributed 

random variable. There are numerous applications of the NQT in hydrological studies, to generate flow 

samples from specified marginal distributions (Moran, 1970; Hosking and Wallis, 1988), to perform 10 

Bayesian updating of prior distributions (Kelly and Krzysztofowicz, 1994), to model bivariate 

distributions with arbitrary marginal distribution (Krzysztofowicz et al., 1994; Aguilar et al., 2016). The 

NQT is adopted within the Bayesian Forecasting System for river flows (Krzysztofowicz and Kelly, 

2000; Krzysztofowicz and Herr, 2001; Krzysztofowicz and Maranzano 2004a, b; Maranzano and 

Krzysztofowicz 2004). It was also applied for assessing the uncertainty of rainfall-runoff simulations 15 

(Montanari and Brath, 2004; Montanari and Grossi, 2008; Bogner et al., 2012), to deseasonalise 

hydrological time series (Montanari, 2005). Being free of any distributional assumption, the NQT 

allows one to avoid the selection of a suitable parametric model for the distribution of the considered 

hydrological variable. 

The NQT involves the following steps when we take Qm as an example: (1) Sorting the sample of Qm(t) 20 

from the smallest to the largest observation, Qm1, ..., Qmn; (2) estimating the cumulative frequency FQmi 

by using the Weibull plotting position (Stedinger et al., 1993); (3) for each FQmi the standard normal 

quantile NQmi is computed as NQmi =G-1(FQmi), with G denoting the standard normal distribution and 

G-1 its inverse, and associated with the corresponding Qmi. Thus, a discrete mapping of Qmi to its 

transformed counterpart NQmi is obtained. In order to apply the inverse of the NQT for any NQmi, linear 25 

interpolation is applied to connect the points of the discrete mapping previously obtained. Bogner et al. 

(2012) propose different parametric and non-parametric approaches for the extrapolation of extreme 
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values. In this study, the region beyond the maximum and the minimum available NQmi values is 

covered by linear extrapolation. 

Finally, the meta-Gaussian model (Kelly and Krzysztofowicz, 1997; Montanari and Brath, 2004) is 

fitted between the random explanatory variable and each random dependent variable in their canonical 

form in the Gaussian domain. In what follows, we specify the equations for the peak flow as the 5 

dependent variable. We assume: (1) stationarity and ergodicity of both NQm and NQp; and (2) that the 

cross dependence between both NQm and NQp can be represented by the normal linear equation:  

NQ#(t) = ρ()*+, )*-) ∙ NQ/(t) + Nε(t)		        (2) 

where r(NQm, NQp) is the Pearson’s cross-correlation coefficient between NQm and NQp, and Ne is an 

outcome of the stochastic process NQ, which is independent, homoscedastic, stochastically independent 10 

of NQm and normally distributed with zero mean and variance 1-r2(NQm, NQp). The parameters of the 

bivariate probability distribution function are the mean (µ(NQm)=0 and µ(NQp)=0), the standard 

deviation (s(NQm)=1 and s(NQp)=1) of the normalized series, and the Pearson’s cross-correlation 

coefficient between both normalized series, r(NQm, NQp). In the presence of dependence between NQm 

and NQp, the correlation coefficient will be significantly different from zero. The bivariate Gaussian 15 

distribution implies that, for an arbitrary (observed) NQm(t), the probability distribution function of NQp 

is Gaussian, with parameters (Eq. 3 and 4): 

!(#$%) = ρ(#$), #$%) ∙ NQ.(t)           (3) 

!(#$%) = 1 − ρ+ #$,, #$%
..0

           (4) 

Then, by taking the inverse of the NQT one can infer the updated probability distribution of Qp 20 

conditioned to the observed outcome Qm(t).  

In order to verify the validity of the linear model (Eq. 2), an evaluation based on the behavior of the 

residuals is applied. Following the graphical approach proposed by Cook and Weisberg (1994), the 

residual plot of Ne(t) versus r(NQm, NQp)×NQm(t) should not show any systematic trend under the 
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target model. Curve trends or fan shape trends indicate non-linear cross dependence and variability of 

the variance of NQ, respectively (Montanari and Brath, 2004).  

The same methodology was applied for the other dependent variable considered in this study, Qmf. 

Therefore, once the parameters of each distribution are computed, the probability distribution function 

of both the peak flow and the mean flow in the flood season can be updated after observing the mean 5 

flow in the considered pre-flood season. 

The proposed methodology involves uncertainty in the estimated flood frequency distributions which is 

mainly given by two sources: the first is uncertainty in the NQT, namely, uncertainty in the estimation 

of the marginal probability distribution of independent and dependent variables in the regression. The 

second source of uncertainty is related to the estimation of the cross-correlation coefficient between 10 

dependent and independent variables in the Gaussian domain. The NQT is a non-parametric 

transformation and therefore its uncertainty cannot be determined quantitatively (Maranzano and 

Krzytofowicz, 2004; Montanari and Brath, 2004). To reduce uncertainty, it is advisable that NQT is 

estimated by using long records encompassing a wide range of meteorological and hydrological 

conditions. Uncertainty in the cross-correlation coefficient can be quantified for a given confidence 15 

level and again depends on the length of the records. A quantitative estimation of uncertainty for the 

cross-correlation coefficient was carried out in both study sites. Uncertainty bounds at the 95% 

confidence level are computed by first computing the Fisher’s transformation, 

z NQ$, NQ& = 0.5 ∙ ,- 1 + ρ NQ$, NQ& ∙ 1 − 2 NQ$, NQ&
-4

      (5) 

where the random variable z is approximately normally distributed with a standard deviation of: 20 

 σ " = $-3 -' (-)             (6) 

Therefore, confidence bands for z NQ$, NQ&    can be computed at a given confidence level which can 

be converted to the confidence bands for ρ(#$%, #$')   by taking Fisher' s inverse transformation. If a 

negative (positive) value for the lower (upper) confidence limit is obtained for a positive (negative) 
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estimated value of ρ "#$,"#&    then we reset the lower (upper) limit to 0. Finally, the limiting flood 

frequency distributions can be obtained for the lower and upper value of ρ(#$%, #$')  . 

In order to infer the actual impact of the dependence between peak flows and mean flow in the flood 

season with the mean flow in the pre-flood seasons, the unconditioned flood frequency distribution and 

the updated distributions inferred for several higher-than-average values of mean flow (e.g. 70%, 80% 5 

and 95% quantiles) in a given pre-flood season were compared. We assume that peak flows can be 

adequately modeled through the Extreme Value Type 1 (EV1) distribution and we present a comparison 

between the unconditioned peak flows frequency distribution and the updated peak flows frequency 

distributions. 

Finally, a leave-one-out validation analysis was carried out to emulate a real-world application. We 10 

removed from the analysis the data observed in the year with the wettest pre-flood season (1977 in the 

Po and 1944 in the Danube) and then we estimated the probability distribution for the peak flow in the 

flood season for that year. Uncertainty was estimated for this application. 

 

3.2.1 Identification of the flood season 15 

According to previous studies in the literature, directional statistics (Mardia, 1972) represents an 

effective method for identifying the timing of hydrological extreme events (e.g. Castellarin et al., 2001; 

Cunderlik and Burn, 2002; Baratti et al., 2012). Following Bayliss and Jones (1993), the date of 

occurrence of an event i (e.g. maximum annual daily flow) can be transformed into a directional statistic 

by converting the Julian date of occurrence, Jdi, into an angular measure, qi, through Eq. (7): 20 

!" = $%" ∙ 2π ∙ 365-- 		           (7) 

Each date of occurrence can then be written in polar coordinates by means of a vector with a unit 

magnitude and the direction specified by Eq. (7). Therefore, the xp and yp coordinates of the mean of the 

sample of n dates of occurrence can be computed with Eq. (8): 

!" = $-& ∙ cos	(-.)0
.1& 						2" = $-& ∙ sin	(-.)0

.1& 		       (8) 25 
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The direction, !  , and magnitude, r, of the mean in polar coordinates can then be obtained by Eq. (9) and 

Eq. (10) respectively. Equation (9) gives a measure of the mean timing of the event for the sample of 

dates, and can be converted back to a mean Julian date, MD, through Eq. (7). Equation (10) indicates the 

regularity or seasonality of the phenomenon. Values of r close to one imply a strong regularity in the 

dates of occurrence of the event considered. In contrast, values of r close to zero indicate a great 5 

dispersion and thus, a great inter-annual variability in the dates of occurrence of the event throughout 

the year. 

! = arctan () ∙ +,-. 		           (9) 

! = x$ + y$ -$		           (10) 

Finally, the limits of the occurrence of the phenomenon can quantitatively be identified by adding and 10 

subtracting to !  , the standard deviation in radians, s, given by Eq. (11): 

! = -2 ∙ ln ( -)		           (11) 

We applied directional statistics to the following variables in order to identify the flood season in each 

study site: 1) annual maximum series of daily flows (AMD); 2) high flow events defined from 

frequency analysis as those events when the daily discharge exceeds the 95th percentile, Q95, for longer 15 

than 15 days. Results are shown in a circle plot where each date of occurrence of the variables analyzed 

in the data set are visible along the perimeter. The month of occurrence of each of the variables can be 

easily identified. Also, the proximity to the center of the circle of the global value indicates the 

regularity of the phenomenon with the highest regularity found in the perimeter of the circle.   

4 Results and discussion 20 

4.1 Long term persistence estimation 

The application of the heuristic methods for LTP estimation to deseasonalized and detrended time series 

is displayed in Table 2. H values above 0.5 were obtained for the mean daily river flows in both rivers 

and thus, all three heuristic methods detect the presence of noticeable LTP. The intensity of LTP seems 

to be more or less the same for monthly flow data. Similarly, H values in monthly temperature data of 25 
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0.64 and 0.61 in Po and Danube, respectively, suggest the presence of LTP in both records. In contrast, 

the estimated H values in the monthly rainfall datasets are not sensibly higher than 0.5. 

In general, these results agree with previous outcomes of long term persistence studies for the daily 

discharge of the Po at Pontelagoscuro (Montanari, 2012) as well as with previous studies in the daily 

river flows in an upstream tributary of the Po (H=0.71-0.81) and in the monthly rainfall registered at 5 

certain weather stations within the watershed (Montanari et al., 1996; 1997). Also, H values of the same 

order of magnitude were found by Szolgayova et al. (2014) for the rainfall (H=0.43-0.50) and 

temperature (H=0.65-0.72) monthly time series in the upper Danube watershed at Bratislava. 

4.2 Meta-Gaussian model for updating the flood frequency distribution    

4.2.1 Flood season identification 10 

Figure 3 shows the results of the directional statistics applied to the extreme events in both rivers. In the 

Po river, we can see a very low regularity (r»0.1) and high dispersion (4 months) in the annual 

maximum daily flows (AMD in Fig. 3) due to their possible occurrence in any of the two high flow 

seasons, spring and autumn, as depicted in Fig. 2. The seasonality increases to r values close to 0.8 for 

high flow events that mostly take place in autumn as already reported in previous studies (Zanchettin et 15 

al., 2008; Montanari, 2012).  

In the Danube, we find a considerable regularity in high flow events (r»0.8) but a certain decrease in the 

annual maximum flows (with r values of 0.4). Nevertheless, the 2-month dispersion in the date of 

occurrence is lower than in the Po river and corresponds to the length of the high flow season reported 

in Fig.2. In view of these results we set October-November and May-July as the main flood seasons in 20 

the Po and Danube respectively.  

As pre-flood season, we consider a 1-month period, which is long enough in order to reduce the effect 

of river regulation. We first set the month preceding the flood season (i.e., September and April for Po 

and Danube, respectively) as pre-flood season. Then, we repeat the analysis by making reference to the 

previous months, with the expectation that the statistical dependence decreases as the pre-flood season 25 

is moved back in the past. 
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4.2.2 Estimation of the Meta-Gaussian model 

Table 3 shows the cross-correlation coefficients r(NQm,NQp) and r(NQm,NQmf), along with their 

confidence bands, between the normalized dependent variables (NQp and NQmf in both study sites) and 

the explanatory variable (NQm) at each study site. In detail, we assumed that Qm is given by the 

monthly mean flow in each of the 9 months preceding the floods season (from September to January in 5 

the Po river and from April to August in the antecedent year in the upper Danube). Table 3 shows that 

the correlation coefficient decreases as the considered pre-flood season moves backwards, as we 

expected. Besides, we always found noticeably higher coefficients with the mean flow in the flood 

season (r(NQm, NQmf)), than with the annual maximum daily flows (r(NQm, NQp)) in both rivers. For 

example, a cross-correlation coefficient of 0.24 was obtained between NQp and NQm in the Po when the 10 

pre-flood season considered is September, compared to 0.39 between NQmf and the same explanatory 

variable, NQm. Moreover, a continuous decreasing cross-correlation coefficient is found as we move 

further apart the flood season and negative correlation in the Po river appears from May-June 

backwards. These negative correlations put in evidence that low flows in the winter season may be 

related to higher flows in the summer season and therefore higher peak flows in the fall season. The 15 

latter outcome could be explained by a higher storage during the winter months in the form of increased 

snowpack, which may be related to the frequency and memory properties of temperature and 

precipitation data. 

The only anomalous correlation is found when considering the Qm in March as the explanatory variable 

for both dependent variables in the Danube. This month corresponds with both the peak in the snowmelt 20 

annual cycle in the catchment (Zampieri et al., 2015) and the steepest rising slope in the hydrograph 

(Fig. 2). Therefore, the use of monthly mean flow might not be representative given the high variability 

in the daily flows along this month and the complexity of the processes that are affecting the streamflow 

(complex contribution from subsurface flow or from the runoff generated from snowmelt/precipitation).  

An evaluation was carried out for the Meta-Gaussian model by using residuals plots (Montanari and 25 

Brath, 2004). Fig. 4 shows the residuals for a time span of 4-months backwards the flood season at each 

study site. The residuals look homoscedastic, therefore confirming that the model assumptions about the 

residuals behavior are justified.  
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4.2.3 Flood frequency distribution updating 

In order to decipher the technical benefit that can be gained by updating the flood frequency distribution 

through the proposed data assimilation procedure, we assumed that above average river flows are 

observed in the month preceding the flood season and then applied the Meta-Gaussian model to 5 

estimate the updated probability distribution. In detail, we assume that, in average, monthly flow 

corresponding to the 70%, 80% and 95% quantile is observed in September for the Po River and April 

for the Danube River. 

Fig. 5 and 6 show the unconditioned and updated probability density functions (pdf) of the normalized 

peak flow (i.e., the peak flow transformed to the canonical Gaussian distribution). As one would expect, 10 

the results show that the higher the cross-correlation value, the lower the variability in the distribution 

of the normalized dependent variable and the higher the mean value. For example, in the Po River for 

the occurrence of the 95th quantile value in the normalized mean flow in September, the pdf is centered 

around a mean vaue of 0.4 and presents a standard deviation of 0.97 (Fig. 5). In contrast, if one attempts 

to estimate the probability distribution of NQp conditioned to the occurrence of the 95th quantile of the 15 

normalized mean flow in July, no noticeable change is found in the estimate with respect to the 

unconditioned distribution. In fact, the resulting probability density function (pdf) for NQp is centered 

around a mean value of 0.09 with a standard deviation of 0.998. The same behavior is found in the 

probability distribution of the other dependent variable in its normalized form, NQmf, where the higher 

correlation coefficients (Table 3) determine even a greater displacement with respect to the 20 

unconditioned distribution. In fact, the pdf of NQmf conditioned to the occurrence of the 95th quantile 

value in the normalized mean flow in September is centered around a mean vaue of 0.64 and presents a 

standard deviation of 0.92 (Fig. 5). 

In the upper Danube a similar scheme is found with the mean of the probability distribution of NQp and 

NQmf conditioned to the occurrence of the 95th quantile of the normalized mean flow in April, displaced 25 

to 0.32 and 0.82 respectively (Fig. 6 and Table 3).  

Figure 7 shows the comparison between the unconditioned flood frequency distribution and the updated 

distributions in the untransformed domain when the flow in the previous month (September for the Po 
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River, April for the Danube River) is higher than usual (70%, 80% and 95% quantile). For example, in 

the Po river, the unconditioned flood for a return period of 200 years, which results equal to 12507 

m3s-1, increases up to 13790 m3s-1 (about 10% increase) when the mean flow in September corresponds 

to its 95% quantile. Similarly, in the upper Danube the unconditioned peak flow for a return period of 

200 years, 10075 m3s-1, increases up to 10861 m3s-1 (about 8% increase) when the mean flow in April 5 

corresponds to its 95% quantile. The differences show that the average flow during the pre-flood 

seasons may indeed provide useful indications to update the flood frequency distribution. 

After removing from the analysis the observations of the years 1977 for the Po River and 1944 for the 

Danube River, which are the previous flood season wettest years in record, an emulation of a one-

month-ahead real time prediction of the probability distribution of the flood flows in the next flood 10 

season was developed, along with uncertainty estimation as described in Section 3.2. Figure 8 shows, 

for both Po and Danube rivers, the unconditioned flood frequency distribution along with the updated 

one. 95% confidence bands for the latter are also shown. It can be seen that the proposed procedure 

allows one to obtain an effective update in real world applications. 

 15 

5 Conclusions 

The analysis of the observed mean daily flow values suggests the existence of LTP in both study sites 

with H values above 0.71. Such persistence is exploited to improve streamflow forecasting in the flood 

season in terms of the mean monthly flow of the pre-flood seasons. To this end, we automatically detect 

the flood season through directional statistics and we fit a bivariate Gaussian distribution function to 20 

model the above dependence. A 10% and 8% increase in the 200-yr return period peak flows are found 

in the Po and Danube, respectively, when the average flows during the previous month corresponds to 

its 95% quantile. The above results show that the Meta-Gaussian model applied to the streamflow 

records can be used for updating a season in advance the flood frequency distribution estimated for a 

given river, through a data assimilation approach by using the mean monthly flow of the pre-flood 25 

seasons.  
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The methodology herein proposed can be applied to any other study site once the parameters of the 

Meta-Gaussian model confirm the presence of the above stochastic dependence. Like in any time series 

analysis method, records that encompass a wide range of meteorological and hydrological conditions 

should be used to minimize uncertainty, which is in this case related to the estimation of the correlation 

coefficient and standardization of the regression variables. Finally, other explanatory variables (e.g. 5 

rainfall, snowmelt, etc.) can be incorporated to profit from additional stochastic dependence among 

peak flows and the state of the catchment and external forcings.  

The findings presented in this paper highlight that river memory has an impact on flood formation and 

should then be properly considered for real time management of flood risk mitigation and resilience of 

societal settings to floods. The procedure herein described can provide useful information in those cases 10 

where the memory of the catchment is supposed to persist for a long time. These conditions may occur 

when the precipitation-runoff transformation is characterized by a slow development. Memory is 

frequently found to be related to the storage capacity of the catchment and the complexity of the river 

network. Therefore, they may be indicators of potential useful results from the proposed approach. 
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Figure 1: Study sites. Danube river basin at Bratislava and Po river basin at Pontelagoscuro. 
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Figure 2: Daily mean value µQ (m3s-1) and daily standard deviation σQ (m3s-1) of the daily flows in the observation periods: 1920-
2009 in the Po at Pontelagoscuro, 1901-2007 in the Danube at Bratislava  

  

 5 
Figure 3. Seasonality space representation of the annual maximum daily flows (AMD) and high flow events. Dots around the 
global value indicate the dispersion. 
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Figure 4. Residual plot of the linear regression of NQm on NQp and NQmf in the Po river (left) and upper Danube (right)  
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Figure 5. Probability distribution functions of the normalized dependent variables (NQp and NQmf) conditioned to the occurrence 
of the 70th, 80th and 95th percentiles of the normalized variables in the pre-flood season in the Po river. 

 5 
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Figure 6. Probability distribution functions of the normalized dependent variables (NQp and NQmf) conditioned to the occurrence 
of the 70th, 80th and 95th percentiles of the normalized variables in the pre-flood season in the upper Danube.  5 
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Figure 7. Peak flows in the flood season (Oct-Nov in the Po, May-July in the upper Danube) vs return period modeled through the 
EV1 distribution function.  Quantiles refer to mean flows higher than usual in the previous month 5 

 
Figure 8. Leave-one-out cross validation. Unconditioned EV1 probability distribution of peak flows for the year with the wettest 
pre-flood season (1977 in the Po, 1944 in the upper Danube) along with conditioned distributions with related 95% confidence 
bands.  
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Table 1. Data description of observed time series. Descriptive statistics are given for non-deseasonalized data. 

  Po Danube 

Observation period 1920-2009 1901-2007 

   

Daily discharge   

Gauge location Pontelagoscuro Bratislava 

Catchment area (km2) 71 000 131 331 

Mean (m3 s-1) 1470 2053 

Standard deviation (m3 s-1) 1007 973 

Fluvial regime Pluvial regime. Two peak 

periods 

Alpine regime. One peak in the 

summer 

Monthly precipitation    

Number of weather 

stations 

18 16 

Mean (mm/month) 72 73 

Standard deviation 

(mm/month) 

17 37 

   

Monthly temperature    

Number of weather 

stations 

12 11 

Mean (°C) 12.9 7.9 

Standard deviation (°C) 7.5 7.2 

 

 5 
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Table 2. Estimated H values on deseasonalized data series applying R/S statistic (R/S), Aggregated Variance Method (AV), and 
Differenced Variance Method (DV) 

 R/S AV DV 

Po (Pontelagoscuro)    

Daily Q 0.81 0.74 0.94 

Monthly Q 0.76 0.62 0.80 

Monthly P 0.61 0.59 0.60 

Monthly T 0.64 0.80 0.90 

 

Danube (Bratislava) 

   

Daily Q 0.80 0.71 0.86 

Monthly Q 0.75 0.54 0.79 

Monthly P 0.56 0.36 0.56 

Monthly T 0.61 0.76 0.70 

 
Table 3. Pearson’s cross-correlation coefficient and its 95% confidence interval between both, NQp and NQmf , and NQm for 
varying antecedent monthly flow. Flood season in Po: October-November. Flood season in Danube: May-July 5 

Po Danube 

Month r(NQm, NQp) r(NQm, NQmf) Month r(NQm, NQp) r(NQm, NQmf) 

September  0.24 (0.04, 0.43)  0.39 (0.20, 0.55) April  0.20 (0.01, 0.38)  0.50 (0.34, 0.63) 

August   0.18 (0, 0.37)  0.27 (0.07, 0.45) March  0.06 (0, 0.25)  0.26 (0.07, 0.43) 

July  0.06 (0, 0.26)  0.13 (0, 0.33) February  0.16 (0, 0.34)  0.32 (0.14, 0.48) 

June  0.02 (0, 0.23) -0.02 (-0.23, 0) January  0.07 (0, 0.26)  0.25 (0.06, 0.42) 

May -0.06 (-0.26, 0) -0.05 (-0.25, 0) December -0.002 (-0.19, 0)  0.17 (0, 0.35) 

April -0.13 (-0.33, 0) -0.07 (-0.27, 0) November  0.05 (0, 0.24)  0.09 (0, 0.27) 

March -0.18 (-0.37, 0) -0.12 (-0.32, 0) October  0.13 (0, 0.31)  0.10 (0, 0.28) 

February -0.04 (-0.25, 0) -0.05 (-0.25, 0) September -0.07 (-0.26, 0) -0.08(-0.27, 0) 

January -0.07 (-0.27, 0) -0.07 (-0.27, 0) August -0.21 (-0.38, -0.02)  0.09 (0, 0.27) 

 


