10

15

20

25

Real time updating of the flood frequency distribution through data
assimilation

Cristina Aguilarl, Alberto Montanari’, Maria José Polo'

'Fluvial dynamics and hydrology research group, Andalusian Institute of Earth System Research, University of Cordoba,
Cordoba, 14071, Spain
*Department DICAM, University of Bologna, Bologna, 40136, Italy

Correspondence to: Cristina Aguilar (caguilar@uco.es, formerly: caguilar@ugr.es)

Abstract

We explore the memory properties of catchments for predicting the likelihood of floods basing on
observations of average flows in pre-flood seasons. Our approach assumes that flood formation is
driven by the superimposition of short and long term perturbations. The former is given by the short
term meteorological forcing leading to infiltration and/or saturation excess, while the latter is originated
by higher-than-usual storage in the catchment. To exploit the above sensitivity to long term
perturbations, a Meta-Gaussian model and a data assimilation approach is implemented for updating the
flood frequency distribution a season in advance. Accordingly, the peak flow in the flood season is
predicted in probabilistic terms by exploiting its dependence on the average flow in the antecedent
seasons. We focus on the Po River at Pontelagoscuro and the Danube river at Bratislava. We found that
the shape of the flood frequency distribution is noticeably impacted by higher-than-usual flows
occurring up to several months earlier. The proposed technique may allow one to reduce the uncertainty

associated to the estimation of flood frequency.

1 Introduction

The physical, chemical and ecological state of processes leading to the formation and quality of river
flow is characterized by persistence at several different time scales (Koutsoyiannis, 2014). In fact,
anomalous conditions for such processes, such as those generated by extreme meteorological events,
may produce a long-lasting impact on the river flow, depending on climatic and catchment behaviors

(Lo and Famiglietti, 2010). For instance, flood generation is impacted by the initial soil moisture
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condition of the catchment, which may be in turn impacted by groundwater levels that are related to
global catchment storage (Massari et al., 2014). Persistence can be exploited to improve river flow
forecasting at seasonal-to-interannual time scale. Furthermore, persistence provides useful indications to
better understand the functioning of a catchment and the dynamics of the water cycle.

Indeed, the study of persistence is one of the most classical research endeavors in hydrology, since the
early works by Rippl (1883) and Hazen (1914) on the estimation of the optimal storage for reservoirs.
Hurst (1951) investigated the Nile River flows while working at the design of the Aswan Dam and
postulated that geophysical records may be affected by a complex form of persistence that may last for a
long time (O’ Connell et al., 2015). Later on, Thomas and Fiering (1962) and Yevjevich (1963)
introduced autoregressive models for annual and seasonal streamflow simulation therefore stimulating
the development of subsequent models of increasing complexity for simulating hydrological
persistence.

Recently, the attention has been focused on long term persistence (LTP), which is associated with the
Hurst-Kolmogorov behavior (Koutsoyiannis, 2011). LTP manifests itself through a power-law decay of
the autocorrelation function of the process, which implies that the summation of the autocorrelation
coefficients diverges to infinity (Montanari et al., 1997). LTP implies the possible presence of long term
cycles (Beran, 1994), which in turn means that perturbations of hydrological processes may last for a
long time, therefore providing a possible explanation for the occurrence of clusters of extreme
hydrological events, such as floods and droughts (Montanari, 2012). LTP also has implications in the
study of climate change, as it is connected with an enhanced natural variability of climatic processes
(Koutsoyiannis and Montanari, 2007).

While LTP has been long studied, limited attempts have been made to exploit LTP in data assimilation
procedures for improving streamflow forecasting. The motivation probably is that LTP is recognized to
exert a noticeable impact on the river flow volume over long time scales, while its effect on the
magnitude of single events is less noticeable. Nevertheless, the presence of LTP and seasonal
correlation necessarily affects flood frequency, to an extent that has been poorly explored.

The present contribution aims to enhance our understanding of the persistence properties of river flows

to improve seasonal river flow forecasting. By taking inspiration from the idea that the probability of
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extreme floods may be increased by long term stress, like higher than usual rainfall lasting for several
months, the research question that we address here can be stated as follows: Can higher than usual river
discharges in the previous season be associated to a higher probability of floods in the subsequent high
flow season? The quantification of the effect of antecedent flows for different time lags on the
occurrence of floods would help to assess how long a river remembers its past (Aguilar et al., 2016).
From a technical point of view, we aim to propose a technique for updating a season in advance the
flood frequency distribution estimated for a given river, through a data assimilation approach, by
exploiting the information provided by river flows in the pre-flood seasons.

It is interesting to highlight that the state of a catchment, and in particular its storage, is affected by
previous precipitation. Therefore, it would be reasonable to exploit the information provided by
previous rainfall rather than previous flows for the sake of updating the flood frequency distribution.
However, areal rainfall estimation for catchments with large extension and complex orography is
affected by large uncertainty (Moulin et al., 2009). Therefore, we utilize here flows during pre-flood
seasons as a proxy for catchment storage instead of rainfall. While the above assumption may be
reasonable, one should consider that it may not hold when the river flows are impacted by massive

regulation.

2 Study sites and data sources

We focus our attention on two large basins, namely, the Po river basin at Pontelagoscuro (Italy) and the
Danube river basin at Bratislava (Slovakia). The Po River is the longest river entirely flowing in the
Italian Peninsula (Fig. 1) with a catchment area of about 71000 km” at the delta. The average annual
precipitation in the catchment is 78 km® in volume, of which 60% reaches the closure river cross-section
at Pontelagoscuro. The hydrological behavior of the Po River is described in detail in recent studies
(Zanchettin et al., 2008; Montanari, 2012; Zampieri et al., 2015). The discharge pattern at
Pontelagoscuro presents a mean annual flow of about 1470 m’s™ and shows a typical pluvial regime,
and thus a strong seasonality with two flood seasons in spring and autumn (Fig. 2). An intense

exploitation of water resources for irrigation, hydro-power production, civil and industrial use is found
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in the catchment. Even though water resources management is currently sustainable on average, critical

situations are experienced during drought periods (Montanari, 2012).

The upper Danube basin drains from the northern side of the Alps and the southern area of the central
European Highlands into Bratislava in a 131331 km” catchment area where the mean annual flow is
about 2053 m’s™. The hydrological behavior of the upper Danube basin can be found in detail in the
literature (Nester et al., 2011; Bloschl et al., 2013). The average annual precipitation in the catchment is
123 km® and the discharge pattern shows a typical alpine regime and thus a strong seasonality with one

flood season in the summer (Fig. 2).

Daily discharge and monthly precipitation and temperature data for the Po and Danube river basins
were analyzed in this study. The observation periods as well as descriptive statistics of the different time
series are shown in Table 1. Discharge time series at Pontelagoscuro for the Po River and Bratislava for
the Danube River were provided, respectively, by the Regional Agency for Environmental Protection
(ARPA)— Emilia Romagna, Hydro-meteorological Office and by Global Runoff Data Center (GRDC,
2011). The series are not affected by missing values. They correspond to a time span of 90 and 107

years for Po and Danube, respectively.

The Po river is regulated by the presence of several dams as reservoirs for hydroelectricity production,
which are mainly located in the Alpine region. Also, the outflow from the lakes Como, Garda, Iseo, Idro
and Maggiore is regulated (Zanchettin et al., 2008). These regulations do not noticeably impact the
trend and the low-frequency variability of the peak flows, while they may affect the low flows at daily
and sub-daily time scale (Zampieri et al., 2015). The upper part of the Danube has been ideal for
building hydropower plants and up to 59 dams are found along the river’s first 1000 km. As stated in
the Danube River Basin Management Plan, stretches in the very upper part of the river may present
noticeably altered flows. (Maps 7a, b, ¢ in DRBM, 2009). The effect of regulation on peak flows in

Slovakia is deemed to be negligible, while low and average flows may be noticeably impacted.

Precipitation and temperature time series were calculated based on weather data sets obtained from the
HISTALP project (Auer et al., 2007). Only weather stations where sufficiently long data sets are
available were used (Table 1). The study period was conditioned by the availability of discharge data

4
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even though both meteorological variables were available for a longer historical period. For each study
site, catchment area average precipitation and temperature time series were constructed using Thiessen

polygons.

3 Methodology

In order to address the research question outlined in Section 1, namely, to verify the opportunity of
updating the flood frequency distribution a season in advance by exploiting the information provided by
the river flow in a given pre-flood season, we perform an analysis of the memory properties of the
hydrological cycle in the considered catchments. We first focus on meteorological variables, namely,
temperature and mean areal rainfall to check whether a memory pattern is detectable in the weather.
Rainfall and temperature are considered as they are the main drivers of river flow, with temperature
being particularly influential on the lower values. Then, we turn to the direct analysis of river flows.

We first estimate the Hurst exponent (H) for the considered time series, to verify whether the hypothesis
of the presence of LTP is supported by data evidence. Then, we turn to the analysis of the statistical
dependence between the peak flow in the flood season and the average flow during the previous season,
to empirically check whether updating the flood frequency distribution produces useful results. Results

from the latter analysis are assessed in view of the LTP estimation.

3.1 Estimation of long term persistence

Assessment of long term persistence for hydrological data has been presented by several contributions
(see, for instance, Szolgayova et al., 2014; and Zampieri et al., 2015 for analyses carried out for the
river flows of the Danube and Po River, respectively). Time series with long-term memory or

persistence exhibit a power-law decay of the autocorrelation function (Beran, 1994), that is:

p(k)~ ¢ - k*172 k> o0 (D)
where p(k) is the autocorrelation function of the process at lag &, ¢ is a constant and H € [0 1] is the

Hurst exponent or the intensity of the LTP (Montanari et al., 1997). For a stationary process, H is
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constrained in the range [0.5,1). A value equal to 0.5 means absence of LTP; the higher the H, the
higher the intensity of LTP.

In this work, H was estimated by using different heuristic methods. In detail, we applied the rescaled
range (R/S) analysis, the aggregated variance method (climacogram; see Dimitriadis and Koutsyiannis,
2015), and the differenced variance method. An extended description of numerous methodologies to
assess the persistence properties of time series to provide support to the possible presence of the Hurst-
Kolmogorov behavior can be found in Taqqu et al. (1995), Montanari et al. (1996, 1997, 2000) and
Koutsoyiannis (2003).

A strong seasonal component in the different hydrological variables in both study time series has been
reported by the literature (e.g. Montanari, 2012; Szolgayova et al., 2014; Zampieri et al, 2015). It is well
known that a strong seasonality often implies the presence of periodic deterministic components in the
data that can introduce a bias in LTP estimation (Montanari et al., 1997, 2000). Also, the presence of
slowly decaying or increasing trends may induce a bias as well. Thus, prior to long-term memory
assessments, all time series were detrended and deseasonalized. For each time series, a 366-term (for
daily data) and 13-term (monthly data) moving average for a trend approximation was applied, followed

by a stable seasonal filter for removing of the seasonal cycle (Brockwell et al., 2002).

3.2 Analysis of the peak flow dependence on average flows during pre-flood seasons

In order to analyze the stochastic connection between the average river flows in the antecedent seasons
and the average and peak flow in the flood season, a bivariate probability distribution function was
fitted. In what follows, random variables and their outcomes are identified with bold and un-bold

characters, respectively. The yearly variables analyzed in this study were:
-The monthly mean flow in the given pre-flood season (independent or explanatory variable), Qm.
-The peak flow in the flood season or annual maximum daily flow (dependent variable), Q,.

-The mean daily flow in the flood season (dependent variable), Q.
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A meta-Gaussian model (Kelly and Krzysztofowicz, 1997; Montanari and Brath, 2004) is used to model
the joint probability distribution between the selected explanatory and dependent variables. The method
involves the following steps.

First, the time series Om(t), Op(t) and Omi(t) with sample size n, where n is the number of years in the
observation period, are extracted from the observed datasets. Then, the Normal Quantile Transform
(NQT) is applied in order to make their marginal probability distributions Gaussian, therefore obtaining

the normalized observations NQm(t) and NQ,(t) and NQmg(t).

The NQT is a non parametric transformation that can be applied to normalize any arbitrarily distributed
random variable. There are numerous applications of the NQT in hydrological studies, to generate flow
samples from specified marginal distributions (Moran, 1970; Hosking and Wallis, 1988), to perform
Bayesian updating of prior distributions (Kelly and Krzysztofowicz, 1994), to model bivariate
distributions with arbitrary marginal distribution (Krzysztofowicz et al., 1994; Aguilar et al., 2016). The
NQT is adopted within the Bayesian Forecasting System for river flows (Krzysztofowicz and Kelly,
2000; Krzysztofowicz and Herr, 2001; Krzysztofowicz and Maranzano 2004a, b; Maranzano and
Krzysztofowicz 2004). It was also applied for assessing the uncertainty of rainfall-runoff simulations
(Montanari and Brath, 2004; Montanari and Grossi, 2008; Bogner et al., 2012), to deseasonalise
hydrological time series (Montanari, 2005). Being free of any distributional assumption, the NQT
allows one to avoid the selection of a suitable parametric model for the distribution of the considered

hydrological variable.

The NQT involves the following steps when we take Qn as an example: (1) Sorting the sample of On(t)
from the smallest to the largest observation, Oni, ..., Omn; (2) estimating the cumulative frequency FQp;
by using the Weibull plotting position (Stedinger et al., 1993); (3) for each FQu; the standard normal
quantile NQy,; is computed as NQui =G (FQui), with G denoting the standard normal distribution and
G its inverse, and associated with the corresponding Q. Thus, a discrete mapping of Op; to its
transformed counterpart NQp; is obtained. In order to apply the inverse of the NQT for any NQu, linear
interpolation is applied to connect the points of the discrete mapping previously obtained. Bogner et al.

(2012) propose different parametric and non-parametric approaches for the extrapolation of extreme
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values. In this study, the region beyond the maximum and the minimum available NQu; values is

covered by linear extrapolation.

Finally, the meta-Gaussian model (Kelly and Krzysztofowicz, 1997; Montanari and Brath, 2004) is
fitted between the random explanatory variable and each random dependent variable in their canonical
form in the Gaussian domain. In what follows, we specify the equations for the peak flow as the
dependent variable. We assume: (1) stationarity and ergodicity of both NQpn and NQp; and (2) that the
cross dependence between both NQy, and NQ,, can be represented by the normal linear equation:

NQ, () = p(NQm,NQ,) - NQ,, (1) + Ne(t) ()
where p(NQm, NQy) is the Pearson’s cross-correlation coefficient between NQy and NQ,p, and Ne is an
outcome of the stochastic process N®, which is independent, homoscedastic, stochastically independent
of NQp, and normally distributed with zero mean and variance 1-p*(NQp, NQ,). The parameters of the
bivariate probability distribution function are the mean (W(NQm)=0 and p(NQ,)=0), the standard
deviation (6(NQm)=1 and o(NQp)=1) of the normalized series, and the Pearson’s cross-correlation
coefficient between both normalized series, p(NQm, NQp). In the presence of dependence between NQm
and NQ,, the correlation coefficient will be significantly different from zero. The bivariate Gaussian
distribution implies that, for an arbitrary (observed) NQm(t), the probability distribution function of NQ,

is Gaussian, with parameters (Eq. 3 and 4):

H(NQp) = p(NQu, NQ,) - NQy, (1) (3)

o(NQ,) = (1 - p*(NQw,NQ,)) @

Then, by taking the inverse of the NQT one can infer the updated probability distribution of Q)

conditioned to the observed outcome On(t).

In order to verify the validity of the linear model (Eq. 2), an evaluation based on the behavior of the
residuals is applied. Following the graphical approach proposed by Cook and Weisberg (1994), the
residual plot of Ne(t) versus p(NQm, NQp)-NQmu(t) should not show any systematic trend under the
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target model. Curve trends or fan shape trends indicate non-linear cross dependence and variability of

the variance of N@, respectively (Montanari and Brath, 2004).

The same methodology was applied for the other dependent variable considered in this study, Qms.
Therefore, once the parameters of each distribution are computed, the probability distribution function
of both the peak flow and the mean flow in the flood season can be updated after observing the mean

flow in the considered pre-flood season.

The proposed methodology involves uncertainty in the estimated flood frequency distributions which is
mainly given by two sources: the first is uncertainty in the NQT, namely, uncertainty in the estimation
of the marginal probability distribution of independent and dependent variables in the regression. The
second source of uncertainty is related to the estimation of the cross-correlation coefficient between
dependent and independent variables in the Gaussian domain. The NQT is a non-parametric
transformation and therefore its uncertainty cannot be determined quantitatively (Maranzano and
Krzytofowicz, 2004; Montanari and Brath, 2004). To reduce uncertainty, it is advisable that NQT is
estimated by using long records encompassing a wide range of meteorological and hydrological
conditions. Uncertainty in the cross-correlation coefficient can be quantified for a given confidence
level and again depends on the length of the records. A quantitative estimation of uncertainty for the
cross-correlation coefficient was carried out in both study sites. Uncertainty bounds at the 95%

confidence level are computed by first computing the Fisher’s transformation,

2(NQum,NQ,) = 0.5 - In ((1 + p(NQu, NQp)) : (1 — p(NQu, NQp))-1> (5)

where the random variable z is approximately normally distributed with a standard deviation of:

o(z) = ((n-3)1)*" (6)
Therefore, confidence bands for z(NQ,,, NQ,) can be computed at a given confidence level which can
be converted to the confidence bands for p(NQm, NQ,) by taking Fisher' s inverse transformation. If a

negative (positive) value for the lower (upper) confidence limit is obtained for a positive (negative)
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estimated value of p(NQp,, NQ, ) then we reset the lower (upper) limit to 0. Finally, the limiting flood

frequency distributions can be obtained for the lower and upper value of p(NQ,, NQ,).

In order to infer the actual impact of the dependence between peak flows and mean flow in the flood
season with the mean flow in the pre-flood seasons, the unconditioned flood frequency distribution and
the updated distributions inferred for several higher-than-average values of mean flow (e.g. 70%, 80%
and 95% quantiles) in a given pre-flood season were compared. We assume that peak flows can be
adequately modeled through the Extreme Value Type 1 (EV1) distribution and we present a comparison
between the unconditioned peak flows frequency distribution and the updated peak flows frequency
distributions.

Finally, a leave-one-out validation analysis was carried out to emulate a real-world application. We
removed from the analysis the data observed in the year with the wettest pre-flood season (1977 in the

Po and 1944 in the Danube) and then we estimated the probability distribution for the peak flow in the

flood season for that year. Uncertainty was estimated for this application.

3.2.1 Identification of the flood season

According to previous studies in the literature, directional statistics (Mardia, 1972) represents an
effective method for identifying the timing of hydrological extreme events (e.g. Castellarin et al., 2001;
Cunderlik and Burn, 2002; Baratti et al., 2012). Following Bayliss and Jones (1993), the date of
occurrence of an event i (e.g. maximum annual daily flow) can be transformed into a directional statistic

by converting the Julian date of occurrence, Jgi, into an angular measure, 6, through Eq. (7):

0, = J4; - (2m-36571) (7)
Each date of occurrence can then be written in polar coordinates by means of a vector with a unit
magnitude and the direction specified by Eq. (7). Therefore, the x, and y, coordinates of the mean of the

sample of n dates of occurrence can be computed with Eq. (8):

Xp = nt- XL, cos (6;) Yp = nt- XL, sin (6)) ®)

10
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The direction, €, and magnitude, », of the mean in polar coordinates can then be obtained by Eq. (9) and

Eq. (10) respectively. Equation (9) gives a measure of the mean timing of the event for the sample of
dates, and can be converted back to a mean Julian date, Mp, through Eq. (7). Equation (10) indicates the
regularity or seasonality of the phenomenon. Values of 7 close to one imply a strong regularity in the
dates of occurrence of the event considered. In contrast, values of » close to zero indicate a great

dispersion and thus, a great inter-annual variability in the dates of occurrence of the event throughout

the year.
6 = arctan(y, - x;') 9)
r=(x2+y?)? (10)

Finally, the limits of the occurrence of the phenomenon can quantitatively be identified by adding and

subtracting to 8, the standard deviation in radians, o, given by Eq. (11):

o=(-2-n(r)” (11)

We applied directional statistics to the following variables in order to identify the flood season in each
study site: 1) annual maximum series of daily flows (AMD); 2) high flow events defined from
frequency analysis as those events when the daily discharge exceeds the 95" percentile, Qos, for longer
than 15 days. Results are shown in a circle plot where each date of occurrence of the variables analyzed
in the data set are visible along the perimeter. The month of occurrence of each of the variables can be
easily identified. Also, the proximity to the center of the circle of the global value indicates the

regularity of the phenomenon with the highest regularity found in the perimeter of the circle.

4 Results and discussion
4.1 Long term persistence estimation

The application of the heuristic methods for LTP estimation to deseasonalized and detrended time series
is displayed in Table 2. H values above 0.5 were obtained for the mean daily river flows in both rivers
and thus, all three heuristic methods detect the presence of noticeable LTP. The intensity of LTP seems
to be more or less the same for monthly flow data. Similarly, A values in monthly temperature data of

11
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0.64 and 0.61 in Po and Danube, respectively, suggest the presence of LTP in both records. In contrast,
the estimated H values in the monthly rainfall datasets are not sensibly higher than 0.5.

In general, these results agree with previous outcomes of long term persistence studies for the daily
discharge of the Po at Pontelagoscuro (Montanari, 2012) as well as with previous studies in the daily
river flows in an upstream tributary of the Po (H=0.71-0.81) and in the monthly rainfall registered at
certain weather stations within the watershed (Montanari et al., 1996; 1997). Also, H values of the same
order of magnitude were found by Szolgayova et al. (2014) for the rainfall (H=0.43-0.50) and

temperature (H=0.65-0.72) monthly time series in the upper Danube watershed at Bratislava.

4.2 Meta-Gaussian model for updating the flood frequency distribution

4.2.1 Flood season identification

Figure 3 shows the results of the directional statistics applied to the extreme events in both rivers. In the
Po river, we can see a very low regularity (»~0.1) and high dispersion (4 months) in the annual
maximum daily flows (AMD in Fig. 3) due to their possible occurrence in any of the two high flow
seasons, spring and autumn, as depicted in Fig. 2. The seasonality increases to » values close to 0.8 for
high flow events that mostly take place in autumn as already reported in previous studies (Zanchettin et
al., 2008; Montanari, 2012).

In the Danube, we find a considerable regularity in high flow events (7=0.8) but a certain decrease in the
annual maximum flows (with » values of 0.4). Nevertheless, the 2-month dispersion in the date of
occurrence is lower than in the Po river and corresponds to the length of the high flow season reported
in Fig.2. In view of these results we set October-November and May-July as the main flood seasons in
the Po and Danube respectively.

As pre-flood season, we consider a 1-month period, which is long enough in order to reduce the effect
of river regulation. We first set the month preceding the flood season (i.e., September and April for Po
and Danube, respectively) as pre-flood season. Then, we repeat the analysis by making reference to the
previous months, with the expectation that the statistical dependence decreases as the pre-flood season

is moved back in the past.

12
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4.2.2 Estimation of the Meta-Gaussian model

Table 3 shows the cross-correlation coefficients p(NQm,NQp) and p(NQm,NQms), along with their
confidence bands, between the normalized dependent variables (NQp and NQur in both study sites) and
the explanatory variable (NQm) at each study site. In detail, we assumed that Q,, is given by the
monthly mean flow in each of the 9 months preceding the floods season (from September to January in
the Po river and from April to August in the antecedent year in the upper Danube). Table 3 shows that
the correlation coefficient decreases as the considered pre-flood season moves backwards, as we
expected. Besides, we always found noticeably higher coefficients with the mean flow in the flood
season (P(NQm, NQumy)), than with the annual maximum daily flows (p(NQm, NQp)) in both rivers. For
example, a cross-correlation coefficient of 0.24 was obtained between NQ, and NQy, in the Po when the
pre-flood season considered is September, compared to 0.39 between NQms and the same explanatory
variable, NQm. Moreover, a continuous decreasing cross-correlation coefficient is found as we move
further apart the flood season and negative correlation in the Po river appears from May-June
backwards. These negative correlations put in evidence that low flows in the winter season may be
related to higher flows in the summer season and therefore higher peak flows in the fall season. The
latter outcome could be explained by a higher storage during the winter months in the form of increased
snowpack, which may be related to the frequency and memory properties of temperature and
precipitation data.

The only anomalous correlation is found when considering the QO in March as the explanatory variable
for both dependent variables in the Danube. This month corresponds with both the peak in the snowmelt
annual cycle in the catchment (Zampieri et al., 2015) and the steepest rising slope in the hydrograph
(Fig. 2). Therefore, the use of monthly mean flow might not be representative given the high variability
in the daily flows along this month and the complexity of the processes that are affecting the streamflow
(complex contribution from subsurface flow or from the runoff generated from snowmelt/precipitation).
An evaluation was carried out for the Meta-Gaussian model by using residuals plots (Montanari and
Brath, 2004). Fig. 4 shows the residuals for a time span of 4-months backwards the flood season at each
study site. The residuals look homoscedastic, therefore confirming that the model assumptions about the

residuals behavior are justified.
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4.2.3 Flood frequency distribution updating

In order to decipher the technical benefit that can be gained by updating the flood frequency distribution
through the proposed data assimilation procedure, we assumed that above average river flows are
observed in the month preceding the flood season and then applied the Meta-Gaussian model to
estimate the updated probability distribution. In detail, we assume that, in average, monthly flow
corresponding to the 70%, 80% and 95% quantile is observed in September for the Po River and April

for the Danube River.

Fig. 5 and 6 show the unconditioned and updated probability density functions (pdf) of the normalized
peak flow (i.e., the peak flow transformed to the canonical Gaussian distribution). As one would expect,
the results show that the higher the cross-correlation value, the lower the variability in the distribution
of the normalized dependent variable and the higher the mean value. For example, in the Po River for
the occurrence of the 95 quantile value in the normalized mean flow in September, the pdf is centered
around a mean vaue of 0.4 and presents a standard deviation of 0.97 (Fig. 5). In contrast, if one attempts
to estimate the probability distribution of NQ,, conditioned to the occurrence of the 95" quantile of the
normalized mean flow in July, no noticeable change is found in the estimate with respect to the
unconditioned distribution. In fact, the resulting probability density function (pdf) for NQ, is centered
around a mean value of 0.09 with a standard deviation of 0.998. The same behavior is found in the
probability distribution of the other dependent variable in its normalized form, NQug, where the higher
correlation coefficients (Table 3) determine even a greater displacement with respect to the
unconditioned distribution. In fact, the pdf of NQus conditioned to the occurrence of the 95™ quantile
value in the normalized mean flow in September is centered around a mean vaue of 0.64 and presents a

standard deviation of 0.92 (Fig. 5).

In the upper Danube a similar scheme is found with the mean of the probability distribution of NQ,, and
NQus conditioned to the occurrence of the 95th quantile of the normalized mean flow in April, displaced

to 0.32 and 0.82 respectively (Fig. 6 and Table 3).

Figure 7 shows the comparison between the unconditioned flood frequency distribution and the updated

distributions in the untransformed domain when the flow in the previous month (September for the Po

14
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River, April for the Danube River) is higher than usual (70%, 80% and 95% quantile). For example, in
the Po river, the unconditioned flood for a return period of 200 years, which results equal to 12507
m’s™, increases up to 13790 m’s™ (about 10% increase) when the mean flow in September corresponds
to its 95% quantile. Similarly, in the upper Danube the unconditioned peak flow for a return period of
200 years, 10075 m’s”, increases up to 10861 m’s™ (about 8% increase) when the mean flow in April
corresponds to its 95% quantile. The differences show that the average flow during the pre-flood
seasons may indeed provide useful indications to update the flood frequency distribution.

After removing from the analysis the observations of the years 1977 for the Po River and 1944 for the
Danube River, which are the previous flood season wettest years in record, an emulation of a one-
month-ahead real time prediction of the probability distribution of the flood flows in the next flood
season was developed, along with uncertainty estimation as described in Section 3.2. Figure 8 shows,
for both Po and Danube rivers, the unconditioned flood frequency distribution along with the updated
one. 95% confidence bands for the latter are also shown. It can be seen that the proposed procedure

allows one to obtain an effective update in real world applications.

5 Conclusions

The analysis of the observed mean daily flow values suggests the existence of LTP in both study sites
with H values above 0.71. Such persistence is exploited to improve streamflow forecasting in the flood
season in terms of the mean monthly flow of the pre-flood seasons. To this end, we automatically detect
the flood season through directional statistics and we fit a bivariate Gaussian distribution function to
model the above dependence. A 10% and 8% increase in the 200-yr return period peak flows are found
in the Po and Danube, respectively, when the average flows during the previous month corresponds to
its 95% quantile. The above results show that the Meta-Gaussian model applied to the streamflow
records can be used for updating a season in advance the flood frequency distribution estimated for a
given river, through a data assimilation approach by using the mean monthly flow of the pre-flood

s€asons.
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The methodology herein proposed can be applied to any other study site once the parameters of the
Meta-Gaussian model confirm the presence of the above stochastic dependence. Like in any time series
analysis method, records that encompass a wide range of meteorological and hydrological conditions
should be used to minimize uncertainty, which is in this case related to the estimation of the correlation
coefficient and standardization of the regression variables. Finally, other explanatory variables (e.g.
rainfall, snowmelt, etc.) can be incorporated to profit from additional stochastic dependence among
peak flows and the state of the catchment and external forcings.

The findings presented in this paper highlight that river memory has an impact on flood formation and
should then be properly considered for real time management of flood risk mitigation and resilience of
societal settings to floods. The procedure herein described can provide useful information in those cases
where the memory of the catchment is supposed to persist for a long time. These conditions may occur
when the precipitation-runoff transformation is characterized by a slow development. Memory is
frequently found to be related to the storage capacity of the catchment and the complexity of the river

network. Therefore, they may be indicators of potential useful results from the proposed approach.
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Table 1. Data description of observed time series. Descriptive statistics are given for non-deseasonalized data.

Po Danube
Observation period 1920-2009 1901-2007
Daily discharge
Gauge location Pontelagoscuro Bratislava
Catchment area (km?) 71 000 131 331
Mean (m’ s™) 1470 2053
Standard deviation (m’ s™) 1007 973
Fluvial regime Pluvial regime. Two peak Alpine regime. One peak in the
periods summer
Monthly precipitation
Number  of  weather 18 16
stations
Mean (mm/month) 72 73
Standard deviation 17 37
(mm/month)
Monthly temperature
Number  of  weather 12 11
stations
Mean (°C) 12.9 7.9
Standard deviation (°C) 7.5 7.2
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Table 2. Estimated H values on deseasonalized data series applying R/S statistic (R/S), Aggregated Variance Method (AV), and

Differenced Variance Method (DV)

R/S AV DV
Po (Pontelagoscuro)
Daily Q 0.81 0.74 0.94
Monthly Q 0.76 0.62 0.80
Monthly P 0.61 0.59 0.60
Monthly T 0.64 0.80 0.90
Danube (Bratislava)
Daily Q 0.80 0.71 0.86
Monthly Q 0.75 0.54 0.79
Monthly P 0.56 0.36 0.56
Monthly T 0.61 0.76 0.70

Table 3. Pearson’s cross-correlation coefficient and its 95% confidence interval between both, NQ, and NQ,;, and NQ,, for

varying antecedent monthly flow. Flood season in Po: October-November. Flood season in Danube: May-July

Po Danube
Month P(NQm, NQp)  p(NQum, NQmi) Month P(NQm, NQy) P(NQm, NQui)
September  0.24 (0.04, 0.43)  0.39(0.20, 0.55) April 0.20 (0.01, 0.38) 0.50 (0.34, 0.63)
August 0.18 (0, 0.37) 0.27 (0.07,0.45) March 0.06 (0, 0.25) 0.26 (0.07, 0.43)
July 0.06 (0, 0.26) 0.13 (0, 0.33) February 0.16 (0, 0.34) 0.32(0.14, 0.48)
June 0.02 (0, 0.23) -0.02 (-0.23, 0) January 0.07 (0, 0.26) 0.25 (0.06, 0.42)
May -0.06 (-0.26, 0) -0.05 (-0.25, 0) December -0.002 (-0.19, 0) 0.17 (0, 0.35)
April -0.13 (-0.33, 0) -0.07 (-0.27, 0) November 0.05 (0, 0.24) 0.09 (0, 0.27)
March -0.18 (-0.37, 0) -0.12 (-0.32, 0) October 0.13 (0, 0.31) 0.10 (0, 0.28)
February  -0.04 (-0.25, 0) -0.05 (-0.25, 0) September -0.07 (-0.26, 0) -0.08(-0.27, 0)
January -0.07 (-0.27, 0) -0.07 (-0.27, 0) August -0.21 (-0.38,-0.02)  0.09 (0, 0.27)
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