
POINT-BY-POINT RESPONSE 
First of all, we would want to thank the referees for the suggestions and comments. They were 

highly useful to improve the manuscript. To better address their concerns, their comment were 

divided into two sections, concerning: (1) research comments and (2) writing style comments. 

Since both referees highlighted the good research quality of the manuscript and they found it 

relevant, we think the revised version of the manuscript provides new insights and innovative 

calibration tools and HESS would be a perfect journal to disseminate the outcomes of this 

research. 

In the following, we address each question formulated by the referees.  

Research comments 
1- Are the model parameters different from cell to cell? If yes, which parameters are identical 

and which parameters are different? 

To answer this question is important to better understand the concept of split-structure for the 

effective parameter value at each cell. This calibration strategy consists on an application of a 

scalar multiplier to each prior parameter field (specified from data describing watershed 

characteristics: soils, vegetation, topography, land use, etc.) and to estimate a “best” value for 

this multiplier via calibration. This so-called “multiplier” approach makes the assumption that 

the prior parameter field properly describes the spatial pattern of a specific parameter (the 

pattern of relative magnitudes from cell to cell), but that the magnitudes of all the parameter 

values must be adjusted to achieve a better simulation of the model response. 

Hence, the effective parameter at each cell (i.e. the parameter value used when running the 

model) is compounded by two parts: (1) a common correction factor for each type of parameter 

that takes into account the model, information and input errors and the temporal and spatial 

scale effects; and (2) the a priori estimated parameter value at each cell.  

Therefore, for a given parameter, the a priori and effective values are different from cell to cell 

while the correction factor is common for all cells (and different from map to map). The 

estimated parameter values were extracted from the field work done and presented in the 

doctoral thesis by Franz (2007) and following the recommendations provided by the TETIS 

model’s support team. Two of the authors are actually active members of this team and we 

also used our own experience. 

This discussion is included in the current version of the manuscript from line 13 to line 19, page 

7. 

2- I did not understand how the model calculate the LAI which then is used to calculate the 

transpiration? 

The LAI is calculated by the dynamic vegetation sub-model called LUE-Model. The LUE-Model 

computes the leaf biomass (Bl) according to the following equation: 

𝑑𝐵𝑙
𝑑𝑡

= (𝐿𝑈𝐸 ∗ 𝜀 ∗ 𝑃𝐴𝑅 ∗ 𝑓𝑃𝐴𝑅 − 𝑅𝑒) ∗ 𝜑𝑙(𝐵𝑙) − 𝑘𝑙 ∗ 𝐵𝑙 

 

where LUE is the Ligth Use Efficiency, ε takes into account the reduction in LUE due to stress 

sources, Re is the respiration, ϕl(Bl) is the fractional leaf allocation and kl is the leaf natural 

decay factor to reproduce the senescence. 



Once Bl is computed it can be transformed into LAI by using the specific leaf area (SLA) and 

the vegetation fractional cover (fc) according to the next equation: 

𝐿𝐴𝐼 = 𝐵𝑙 ∗ 𝑆𝐿𝐴 ∗ 𝑓𝑐  

In the last version of the manuscript only the references about this model were mentioned. 

This more detailed explanation is provided in the current version of the manuscript (equation 

1 and text from line 30 to 32, page 7). In this way, readers will only have to check the references 

if they are interested in specific details. More detailed description can be found in Pasquato et 

al. (2015) and Ruiz-Pérez et al. (2016) (references embedded in the manuscript). 

3- Maybe I missed, but what is the resolution of the implemented model? 

You did not miss, we forgot to give that information. The temporal resolution is already 

specified and it is daily while the spatial resolution was 90X90 meters. It is included in the 

current manuscript in line 32, page 6. 

4- How did the manual calibration help to find the best parameters? How the parameters’ 

ranges have been constrained? In table 1, LUE tree and shrub is out of specified range (Shrub 

is misspelled). 

In this case, the manual calibration was considered mandatory as long as the model had never 

been used at catchment scale and, therefore, we had not clues about its suitability. Although 

non-statistical indicators were reported, the manual calibration helped to find the best 

parameters and constrain the searching boundaries in this following three senses: 

1. The best set of parameters obtained after the manual calibration was used as seed for 

the automatic calibration. We think this fact reduced the computational time required 

by the automatic calibration as long as this starting point or seed is supposed to be 

closer to the best global solution than a random starting point. 

2. We were allowed to double-ckeck the values of the parameters after the manual 

calibration with those ones recommended in literature. In this way, we assured that the 

searching boundaries to be used during the automatic calibration process were 

consistent and wide enough. The manual calibration pointed out that wider ranges were 

not required and, in this sense, it constrained this searching boundaries. 

3. A manual calibration always gives clues about the potential inter-relationships between 

parameters. These clues can be used to guide the automatic calibration process (this 

research was not the case) and to be critic with the results obtained after the automatic 

calibration (it was the case here) since a sense of relative values was provided by the 

manual calibration. In that sense, the manual calibration can be extremely helpful to 

find the best and with physical consistency parameters. 

Finally, thanks for the observation about Table three. The boundary for all three cases was 

1.12 instead of 1.2 and ‘Srhub’ was corrected in the whole table. 

5- A clearer explanation regarding EOFi would be appreciated. What does different i exactly 

mean? 

If we apply the EOF decomposition (also called Principal Component Analysis) to a simple 

matrix, the EOFi is the i eigenvector. We always assume that the eigenvectors are ordered 

according to their corresponding eigenvalues (i.e. the amount of variance explained by them). 

Hence, EOF1 is the first eigenvector associated with the first eigenvalue and, therefore, which 

explained more amount of variance. Therefore, i means the position of the eigenvalue when is 

sorted according the explained variance. 



In our research, however, we wanted to apply this methodology to analyse spatio-temporal 

data. That’s why the first step was to transform this data into a matrix. Basically, we construct 

a matrix (F) in which each column is the temporal variation of the data in a particular cell while 

each row represents the cells values during a particular time step. Once the matrix was 

constructed, we applied then the EOF analysis as usual. Therefore, we obtained the 

eigenvectors as usual. However, these eigenvectors can be regarded as maps by considering 

the same ordering criterion as used in F construction. In this way, the i-eigenvector becomes 

to the i-main/principal pattern/map. Hence, EOFi is the principal pattern associated with the i 

eigenvalue. 

Having reviewed the current manuscript, we found inconsistencies in line 5 and equation 5. 

We should have kept the same sub-index i instead of j. Otherwise, it might be confusing. We 

checked the mathematical consistency within the equations as can be seen in equation 5 and 

lines 31 and 32, page 9. 

6- How would be the model performance with and without calibration on observed satellite 

data? Any gains or losses there? This would be great to be addressed. 

We completely agree with your suggestions. In fact, we are working on it in new on-going 

projects. In this new applications, we want to use different sources of information (field 

observations, remote sensing data, etc.) with different resolutions (point measurements, 

spatio-temporal data, etc.) in order to determine whether models performance improve. 

However, the study area of this manuscript was discarded for this analysis because this 

Kenyan catchment can be considered as scarce-data catchment. In fact, the available data is 

really poor and for this reason, it was precisely selected for this experiment. We wanted to face 

the issue of no having available observations. The calibration was completely ‘blind’ in terms 

of observed discharge, i.e. observed discharge was not even known at the beginning of this 

research. In this way, we assured that the calibration relied only on the satellite data. The main 

reason to do so was because we did not want to analyse the potential performance 

improvement by including satellite data, but how well we can calibrate a model by using only 

satellite data when this data is used properly. This latter goal builds the main theme of this 

research. 

Anyway, as mentioned, we also are interested in your suggestion but we would recommend to 

achieve this goal in study areas with good quality of field data. Hopefully, we can discuss in-

depth this topic in following applications.  

7- I am not convinced that what the authors are showing is only taking into account the remote 

sensing data. Did the authors look into the seasonality or the recession of the hydrograph and 

adjust the range accordingly based on some expert guess? If yes, what is the effect of those 

assumptions or limitations? In a nutshell I would like to see “how exclusive the model result is 

regarding NDVI”. 

As said in the previous question, the calibration of the model was blind in terms of observed 

discharge. We did not use the observed discharge in any way. Neither the observed discharge 

per se nor its seasonality and/or other statistical metric. Therefore, we did not look into the 

seasonality of the recession of the hydrograph, neither adjust the range accordingly based on 

some expert guess. However, the TETIS-VEG model is process based. It is not a black box 

and it was driven by precipitation and temperature records measured at field. The estimated 

value at each cell was done by using data describing watershed characteristics (soils, 

vegetation, topography, land use, etc.). Moreover, the proposed calibration process relied on 

the satellite NDVI main patterns. As said in page 15 lines 1 to 3, the temporal variation of the 

EOF1 (which explained more than 60% and which dominated the calibration process) was 

related to the two usual rainy seasons of the study area. The NDVI contains information about 

seasonality by itself. By using the proposed conceptual model, such information is transferred 



to all hydrological processes involved in the water cycle (incl. discharge at the outlet point). Of 

course, some characteristics as runoff propagation parameters cannot be assessed using 

satellite NDVI. However, they are not influent in this case study since the model was run at 

daily time step. 

Writing style comments 
Since these comments are very similar, we consider more fruitful to address them with a 

common response. These are the comments regarding to language issues and style: 

 This draft paper has major language problem. It is recommended that the paper should 

be edited by professional language editor before the last edition. 

 I highly recommend the authors to make sure that the sentences are accurate, 

quantitative and fluent. As an example, in the abstract I can see that the authors wrote 

“extraordinary amount of information”. What does it mean? They also mentioned 

“scarce data dry region”; do they mean data-scarce dry regions? For example on page 

4 line 2 the authors stated that “but it was complete enough for our purpose”. What is 

complete enough and what is the purpose? Is it really necessary to write this sentence? 

There are many similar cases across the manuscript. 

 I encourage the authors to show the added value of the manuscript clearly and in 

precise manner. At this moment the manuscript is a mix of methods, literature review 

and theories. The clarification on model structure, model inputs, model outputs, and 

the ranges of the parameters would be highly appreciated. 

The manuscript was improved by taking advantage of one of the co-authors on board who is 

native English speaker. 

Additionally, we gave a thorough editorial check in order to meet the requested requirements. 

We removed ‘empty’ sentences as those ones mentioned in the second bullet. We ensured 

that the sentences are accurate, quantitative and fluent. All these improvements can be seen 

along the marked-up manuscript version. 

 

 

 



LIST OF RELEVANT CHANGES 
 In-depth explanation of the split-structure for the effective parameter used in the 

TETIS-VEG model. 

 Improvement of the mathematical equations of the EOF methodology. 

 More detailed description of how LAI is simulated in the proposed dynamic vegetation 

model. 

 Thorough editorial check along the manuscript in order to meet the requirements 

requested by the reviewers. 

 Use of more direct and fluent sentences. In particular, the conclusion section was 

substantially modified and improved. 

 Minor errors (such as language-related errors, typos, etc) were also changed 
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Abstract. Ecohydrological models provide a tool to investigate the mutual relationships between vegetation and the 

hydrological cycle. Ecohydrological modelling studies in developing countries, such as sub-Ssaharan Africa often face the 

problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill 15 

this gap, but require novel methodologies to exploit its spatio-temporal information that could potentially be incorporated in 

ecohydrological model calibration and validation. 

The present study tackles this problem suggesting an automatic calibration procedure, based on Empirical Orthogonal 

Functions techniques, for aims to implement a distributed ecohydrological daily models. The procedure is tested with the 

support of remote sensing data in a data- scarce environment – the Upper Ewaso river basin in Kenya. with the support of 20 

remote sensing data. An automatic calibration procedure, based on Empirical Orthogonal Functions techniques, is proposed 

and applied in the Upper Ewaso river basin in Kenya. In the present application, the TETIS-VEGThe  model is calibrated only 

using NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The obtained results demonstrate that: (1) 

satellite data of vegetation dynamics contains an extraordinary amount of information that can be used to to calibrate and 

validate  implement ecohydrological models in scarce data dry water-controlled and data-scarce regions; (2) the model 25 

calibrated only using satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed 

discharge at the outlet point; and (3) the proposed semi-automatic calibration methodology works satisfactorily and it allows 

for a straightforward to incorporation ofe spatio-temporal data in the calibration/validation framework of a modelmodel 

parametrization. 
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1 Introduction 

Drylands cover 30% of the Earth’s land surface and 50% of Africa (Franz et al., 2010). Projections of the IPCC 

(Intergovernmental Panel on Climate Change, 2007) indicate that the extent of these regions will likely increase in the coming 

decades. Dryland expansion would have a considerable additional impact on water resources, which should be taken into 

account by water management plans (Franz et al., 2010).  5 

In water-controlled ecosystems, the vegetation assumes a critical role influencing all components of the hydrological cycle 

(Rodriguez-Iturbe et al., 2001; Manfreda and Caylor, 2013). For instance, actual evapotranspiration (aET) may account for 

more than 90% of the annual precipitation in water-controlled areas (Zhang et al., 2016; Jasechko et al., 2013).  Montaldo et 

al. (2005) affirmed that the use of constant LAI (Leaf Area Index) values, commonly used in hydrological applications, 

produces large errors in land surface flux predictions. Given the strong control exerted on aET by the vegetation Therefore, 10 

reliable estimates of spatio-temporal variations of vegetation patterns are vital to obtain trustworthy predictions of available 

water resources , given the strong control exerted on aET by the vegetation (Andersen, 2008). In this sense, ecohydrological 

modeling becomes essential in order to include the vegetation dynamics as an additional state variable (Rodriguez-Iturbe et 

al., 2001). 

EParticularly, evidence of aET being prevalent driver of in hydrological records of streamflow and water-table depth, i.e. 15 

available water resources, has been observed in many studies (e.g. Gribovszki et al., 2008). Recently, Tsang et al. (2014) 

showed that adding a better evapotranspiration scheme in a widely used runoff model improves streamflow predictions. 

Conradt et al. (2013), who compared three different strategies for deriving sub-basin aET, affirmed that incorporating spatial 

variation of aET in a semi-distributed model increases its robustness. Contrarily, Stisen et al. (2011) and others stressed that 

those improvements are not necessarily seen in the outlet hydrograph. However, it could also be interpreted in the inverse 20 

sense; good performances in terms of the outlet hydrograph do not necessarily mean more reliable estimates of aET. 

TActually, the stream flow record is traditionally the only observation used for the calibration of hydrological models, but 

several studies demonstrated the limited capabilities of such an approach when models are validated at interior points of a river 

basin. Dischargebecause it represents an integrated catchment response, and hence provides only limited some inherent insight 

oninto the lumped behavior of athe catchment (Stisen et al., 2011; Koch et al., 2016a; Michaud and Sorooshian, 1994; Reed 25 

et al., 2004 or Smith et al., 2013). Nevertheless, several studies demonstrate that distributed hydrological models, which 

accurately simulate discharges at the basin outlet, produce poor results at interior points. In that sense, Conradt et al. (2013) 

provided several examples for larger simulation errors within the model domain and they mentioned, among others, the 

outcomes given by Feyen et al. (2008), Merz et al. (2009) and Smith et al. (2012). Moreover, Wi et al. (2015) pointed out also 

that caution is needed when using an outlet calibration approach for streamflow predictions under future climate conditions. 30 

This leads to At this point, the idea of using spatial state variables with which to implement the new era of distributed (temporal 

and spatially) models emergesd in order to balance the conceptual distributed nature of this kind of models (Stisen et al., 2011). 
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 Traditional observation which generally consist of point data with little spatial support are effectively strengthened by Rremote 

sensing data which are well suited to this purpose because while traditional observations generally consist of point data with 

little spatial support, remote sensing retrievals offer the capacity to provide detailed spatial coverage and pattern information 

(Franssen et al., 2008, McCabe et al., 2008 and Stisen et al., 2011). Additionally, satellite data has the great advantage to be 

also available everywherein data scarce areas. In this sense, among the wide range of possibilities in data scarce areas, the 5 

applicationuse of remotely sensed data represents an excellent source that provides information with a fairly good 

spatial/temporal resolution (Yang et al., 2012). In modeling, remote sensing data has been basically utilized in three different 

ways: (1) as forcing data (Xiao et al., 2004; Yuan et al., 2010; Samaniego et al., 2011; and Stisen et al., 2011), (2) as priori 

information of  a particular parameters (Winsemnius et al., 2008; Stisen et al., 2011) and (3) for modell’s calibration and 

validation (see next section for an in-depth discussion of this point).  10 

Since Ssatellite imagery provideincludes not only temporal information but also valuable information on spatial patterns which 

can facilitate a spatial pattern orientated model evaluation, a proper spatial model evaluation is required. As highlighted 

mentioned by Koch et al. (2015), spatial model evaluation is an active field of research not only in Hydrology but also in other 

disciplines,  such asbesides it, as for example, Atmospheric Sciences (Brown et al., 2011; Gilleland et al., 2010). However, up 

to now, there exists no formal guideline on how to assess the goodness of fit of the simulated spatial patternsthe spatial explicit 15 

model predictions and little information can be found about how to effectively utilize handle with spatio-temporal data. That’s 

why sSome authors such as Conradt et al., (2013), Graf et al., (2014) and Koch et al., (2015 and 2016b) focused ontheir efforts 

in order to  developing and testing metrics to be employed when spatio-temporal data is involved. For example, Koch et al. 

(2015) compared Kappa statistics, Fuzzy theory, and EOF-analysis in an attempt towards a true spatial model evaluation of 

distributed models. But, besides these efforts, there are only a limited number of spatial validation studies that fully embrace 20 

the availability of satellite remote sensing data by means of true spatial performance metrics (Koch et al., 2016b).  

The In this research, we applied the Empirical Orthogonal Functions (EOF) analysis to identify predominant spatial or temporal 

patterns in observed data (Graf et al., 2014) by means of decomposition. Consequently, the EOF analysis is a versatileuseful 

methodology to investigate the spatio-temporal patterns of fluxes and states in the soil-vegetation-atmosphere continuum (Fang 

et al., 2015). AIn particular, as mentioned previously, Koch et al. (2015) carried out a validation of a distributed model using 25 

satellite based land surface temperature data by means of an EOF analysis. With other statistical purposes, the EOF analysis 

was used by Graf et al. (2014), Kim and Barros (2002) and Liu (2003). A fine scaled study was carried out by Drewry and 

Albertson (2006) who used the EOF analysis to associate spatial pattern in the errors of a canopy-atmosphere model with 

errors in the parameters. But, to our knowledge, the EOF analysis has not been applied in model calibration yet. In this research, 

we incorporated the EOF analysis in the calibration of a distributed model and proposed an automatized calibration procedure. 30 

Having identified the importance of aET in the water cycle of drylands and, the potential of satellite data that is still largely 

unexploited (i.e. taking advantage simultaneously of both: spatial and temporal information). For this reason, this research 

wants to ‘properly’ apply satellite data in an ecohydrological model’s calibration and validation and to develop a mathematical 

methodology to incorporate this particular kind of data and its spatio-temporal nature in model’s automatic calibration. 



4 

 

In summary, the main objectives of this research are: (1) to incorporate spatio-temporal data into the calibration process by 

applying the EOF methodology as an objective function and (2) to exploit satellite data as a proxy of reliable estimates of 

vegetation dynamics for both the calibration and validation of an ecohydrological model. To address these key challenges, a 

distributed parsimonious ecohydrological model was applied in a water-controlled basin located in Kenya. 

2 Satellite data and model calibration/validation 5 

As said previously, theThe applicability of remote sensing to calibrate and/or validate a model by exploiting information on 

spatial patterns still remains a challenging task that may help to exploit information on spatial patterns contained in satellite 

imagery. To provide in-depth vision of this issueIn order to better understand this issue in more detail, a bibliographic survey 

of the ISI Web of Knowledge Science Citation Index database was undertaken using the following words combinations in the 

topic search: (1) satellite calibration, (2) satellite implementation, (3) satellite ecohydrological modelling, and (4) remote 10 

sensing ecohydrology. This search looked for each term in the title, abstract and keywords list in the publication database (i.e. 

articles, letters and book reviews) of ISI-rated journals and conference proceedings since 2006 (we analyszed the last decade). 

From the total number of publications obtained by this search, only those that incorporated satellite data to specifically models 

calibration were selected. 

 We must acknowledge that the adopted searching method may have some limitations but it was complete enough for our 15 

purposes. 

At plot scale, Quevedo and Francés (2008) and Pasquato et al. (2015) calibrated and validated a parsimonious ecohydrological 

model using satellite information. More recently, Ruiz-Pérez et al. (2016) discussed the applicability of satellite data during 

the calibration process comparing the results obtained by a parsimonious model calibrated only using satellite data against the 

results obtained by a complex model calibrated using field measurements at pixel scale. Similarly, Quevedo and Francés (2008) 20 

and Pasquato et al. (2015) used time-series of NDVI to validate a parsimonious ecohydrological model named HORAS. Also, 

Quevedo and Francés (2008) and Pasquato et al. (2015) calibrated and validated a parsimonious ecohydrological model at 

pixel scale using satellite information. 

At catchment scale, Immerzeel and Droogers (2008) used satellite-based evapotranspiration in combination with observed 

streamflow to calibrate the semi-distributed SWAT. Zhang et al. (2009) concluded that multi-objective calibration of SymHyd 25 

model againstwith streamflow and satellite-based aET produced better daily and monthly runoff compared to calibration with 

streamflow alone. More recently, Rientjes et al. (2013) calibrated a semi-distributed hydrological model using streamflow data 

and satellite-based aET. Regarding to other satellite products, GRACE (the US-German satellite mission) data have been used 

to calibrate both global and regional-scale surface hydrology models, in combination with stream discharge data (e.g. Lo et 

al., 2010). Zhang et al. (2011) calibrated the AWRA-L model with streamflow, NOAA-AVHRR LAI and TRMM-MI 30 

(Tropical Rainfall Measuring Mission- Microwave Imager) soil moisture using a multi-objective calibration framework. Only 

few criteria. Only in few studies carried out , the calibration was carried out exclusively againstwith remote sensing data. For 
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instance, Gutmann et al. (2010) calibrated landscapes hydraulic properties in the Noah land surface model using only MODIS 

surface temperatures from 14 different sites and using observed flux data for model verification. Also, Velpuri et al. (2012) 

modelled Lake Turkana water level only using satellite information. All the above mentionedse studies reach shared the same 

conclusion: that including remote sensing data into the model calibration/validation improves the overall performance. 

In general, from the total of reviewed publications, calibration only using satellite data was performed in the 47% of cases 5 

while a combination of satellite data and field measurements (specially, streamflow at the outlet) was used in the remaining 

contributions. Similar results were obtained regarding to the validation: 35.3% of publications adopts only field measurements 

(specially, historical streamflow) employing satellite data exclusively for the model calibration, 47%  using a combination of 

field measurements and satellite data, 11.8% using only satellite data and one publication without any specification. But, more 

interesting is how the different calibrations were carried out. In most of the cited examples, a sort of multi-objective calibration 10 

was used adopting only some points/pixels to calibrate the entire catchment. Those points were selected randomly or by 

considering the knowledge about each study site. In other cases, lumped or semi-distributed models were implemented instead 

of fully distributed ones, considering aggregated values of the satellite data. In other words, the spatial heterogeneity of the 

basin is neglected and the full potential of satellite imagery, namely the information on spatial patterns, is not fully exploited. 

Therefore, a method able to make use of the potential of the spatio-temporal information contained in remote sensed data is 15 

highly desirable as well as a calibration scheme which relies solely on remote sensing data will be greatly beneficial in 

modelling at data scarce catchments (Kunnath-Poovakka et al., 2016). And these are the main objectives of this paper. 

3 Study area and data 

The Upper Ewaso Ngiro Basin is located in the Laikipia region of Kenya (Figure1). The basin is part of the Laikipia Plateau 

which lies between Mount Kenya (South East) and the Aberdare Mountains (South West). The basin has a drainage area of 20 

15,200 km2, with the largest river being the Ewaso Ngiro.  This region is characterized by distinct rainy and dry seasons. The 

first rainy season occurs from March to May, while the second rainy season occurs from October to December. Both air 

temperature and precipitation patterns are heavily influenced by elevation. A full description of the precipitation patterns in 

the region can be found in Franz (2007).  

Soil texture ranges from sandy clay to clay soils (according to the 1980 UNESCO Soil Map). Although the most characteristic 25 

landscape is savanna, higher elevations are dominated by forests and a large piece of land has been converted to cropland 

(Franz, 2007). The remaining of the study region is classified as grassland, shrurbland, and wooded grassland (savanna 

ecosystems).  

As meteorological dataFor the modelling application, we used the weather stations of the Natural Resource Monitoring, 

Modeling and Management Project (NRM3) of Nanyuki, Kenya illustrated in Figure 1. Daily precipitation and temperature 30 

from 1959 to 2003 were validated by Franz et al. (2010). Considering the available hydrological information, we selected a 
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sub-basin with an area of about 4,600 km2 for the present study (Figure 1). The selected catchment is equipped with a 

streamflow gauge at the outlet, operating from 1980 to 2002.  

The reference evapotranspiration (ET0) was calculated using the Penman Monteith equation with the simplifications proposed 

by Allen et al. (2006). This approach is extremely useful to describe the spatial distribution of solar radiation and to derive the 

ET0 maps during any phase of the year (Manfreda et al., 2013). 5 

Regarding the satellite data, we incorporated adopted the Normalized Difference Vegetation Index (NDVI) included in the 

MOD13Q1 and MYD13Q1 products provided by NASA (NASA Land Processes Distributed Active Archive Center (LP 

DAAC)). This satellite product is available from 2000 to present. For the coverage of the study site, the h21v08 and h21v09 

tiles are required, where h and v denote the horizontal and vertical tile number, respectively. The MOD13Q1 and MYD13Q1 

data are provided every 16 days at 250-meter of spatial resolution. The used NDVI products (MOD13Q1 and MYD13Q1) are 10 

in level 3 that means they don’t contain raw satellite data. Actually, the NDVI indices are retrieved from daily, atmosphere-

corrected, bidirectional surface reflectance. Specifically, these products use a MODIS-specific compositing method based on 

product quality assurance metrics to remove low quality pixels. From the remaining good quality NDVI values, a constrained 

view angle approach then selects a pixel to represent the compositing period (from the two highest NDVI values it selects the 

pixel that is closest-to-nadir). That’s why assimilation approaches (such as Kalman filters) were not considered in this research. 15 

At last, based on previous experience (Ruiz-Pérez et al., 2016 and Pasquato et al. 2015)and  in a similar climatic conditions, 

we declined to use other products such as LAI or ET derived from MODIS because this kind of products are produced by 

models. And, for example, Ruiz-Pérez et al. (2016) found large discrepancies between the LAI provided by satellite and the 

LAI measured in field. At this point, we had no information to determine the accuracy of these particular models and the spatial 

information used to implement them. In contrast, NDVI values are calculated by direct differences of spectrum bands, i.e. no 20 

models are involved and that’s why we decided to use this latter product instead of satellite LAI and/or ET. 

4 Model description:TETIS-VEG 

The proposed model, called TETIS-VEG, is based on a distributed hydrological model called TETIS (Francés et al., 2007) 

coupled with a dynamic vegetation model. Both models have simplicity in model structure in common. The used equations 

are as simple as possible in order to reduce the number of parameters ( and the number of parameters of each sub-model is 25 

specified in Table I). The sub-models are inter-connected. T because the transpiration calculated in the hydrological sub-model 

depends on the leaf area index (LAI) simulated by the dynamic vegetation model. At the same time, the simulated LAI depends 

on the water stress which is calculated using the hydrological sub-model. A more detailed description of this link can be found 

in Pasquato et al. (2015) and Ruiz-Pérez et al. (2016). The hydrological sub-model can be used at different time scales (from 

few minutes up minutal to daily timesteps) while the vegetation dynamic sub-model has to be applied at daily scale. Hence, 30 

the TETIS-VEG model must be used at daily scale. Both sub-models can be used at a broad range of spatial scales. In this 

research, the resolution of the implemented model was 90X90 meters. 
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4.1 The hydrological sub-model: TETIS 

TETIS’s conceptual scheme consists of a series of connected reservoirs or tanks, each one representing different water storages 

in the soil column: vegetation interception, first static soil layer (retained water by upper soil capillary forces, i.e., below field 

capacity plus water detention in surface puddles; evaporation and transpiration can occur), second static soil layer (retained 

water in deeper soil by capillary forces; only transpiration can occur), surface (for overland runoff), gravitational soil layer 5 

(upper soil water content above field capacity for  interflow) and aquifer (for river baseflow). Vertical connections between 

reservoirs describe the precipitation, evapotranspiration, infiltration and percolation processes. The horizontal flows describe 

the three different hydrological responses that give the discharge at the catchment outlet: overland runoff, interflow and 

baseflow. A more detailed description of the TETIS model can be found in Francés et al. (2007) and GIMHA (2014). 

The TETIS model uses a split-structure for the effective parameter value  at each cell (Francés and Benito, 1995; Francés et 10 

al., 2007). The effective parameter is calculated using a correction factor multiplied by the estimated value of the parameter 

in each cell using all the available information (land cover map, soil type map, DEM, depth of roots and soil layer, etc.) and 

expert’s knowledge. Hence, the effective parameter in each grid cell is computed as the product of two terms: (1) a common 

correction factor for each type of parameter that takes into account the model, information and input errors and the temporal 

and spatial scale effects; and (2) the a priori estimated value at each cell. For a given parameter, the a priori and effective 15 

values are different from cell to cell while the correction factor is common for all cells (and different from map to map). 

we can distinguish between two parts: (1) the common correction factor for each type of parameter that takes into account the 

model and input errors and the temporal and spatial scale effects; and (2) the estimated parameter value at each cell. With the 

split-parameter structure, only nine correction factors are calibrated. Each one related to one of these estimated parameter 

maps: maximum static storage, reference evapotranspiration, infiltration capacity, hillslope velocity, percolation capacity, 20 

horizontal saturated conductivity for interflow, horizontal saturated conductivity for aquifer and river channel velocity. 

4.2 The dynamic vegetation sub-model: LUE-model 

The proposed dynamic vegetation sub-model is based on the concept of Light Use Efficiency (LUE) (Medlyn, 1998) and 

calculates the leaf biomass according to the equation 1. The LUE is based on the proportionality between plant biomass 

production by terrestrial vegetation and absorbed photosyntetically active radiation (APAR) in optimal conditions. However, 25 

the LUE can be strongly affected by stress conditions. The key factors contributing to the variation of this efficiency are: soil 

moisture content, air temperature (Landsberg and Waring, 1997; Sims et al., 2006), and nutrient levels (Gamon et al., 1997; 

Ollinger et al., 2008). Since this model is designed to be used in water-controlled areas, the nutrient levels are not considered. 

𝑑𝐵𝑙

𝑑𝑡
= (𝐿𝑈𝐸 ∗ 𝜀 ∗ 𝑃𝐴𝑅 ∗ 𝑓𝑃𝐴𝑅 − 𝑅𝑒) ∗ 𝜑𝑙(𝐵𝑙) − 𝑘𝑙 ∗ 𝐵𝑙                                                                                                                     (1) 

 30 

where ε is the water stress factor, Re is the respiration, φl(Bl) is the fractional leaf allocation and kl is the leaf natural decay 

factor to reproduce the senescence. TIn the LUE-model, the water stress factor depends on the amount of water contained in 
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the two static reservoirs and it is calculated according to Porporato et al. (2001). Basically, the stress factor is equal to 1 

(maximum stress) if the water storage is less than the water storage at wilting point; it is equal to 0 (minimum stress) if the 

water storage is higher than the water storage at critical point (plants start the stomatal closure); and, it varies from 0 to 1 using 

a potential function which depends on the wilting point, the critical point and an exponent set equal 2. Then, this stress 

multiplies the LUE index, reducing the efficiency when its value is lower than 1 (non-optimal conditions). 5 

The LAI is simulated through the product between the leaf biomass, the specific leaf area (SLA) and the vegetation fractional 

cover. Later, the LAI is used to calculate the transpiration in the hydrological sub-model according to the Eq. (21).  

𝑇𝑖 = (𝐸𝑇0 − 𝐸𝐼) ∗ min(1, 𝐿𝐴𝐼) ∗ 𝜁 ∗ 𝑍𝑖

∗ 𝑓𝑐                                                                                                                                            (21) 

where Ti is the transpiration from the i soil layer, ET0 is the reference evapotranspiration, EI is the evaporation of the 10 

intercepted water, LAI is simulated by the model, Zi is the percentage of roots in the i soil layer and fc is the coverage factor. 

Therefore, the LUE-model has eight parameters to be calibrated: (1) Specific leaf storage (the maximum interception storage 

is calculated as the product between the specific leaf storage and the LAI simulated by the model), (2) the LUE index (explained 

above), (3) the coverage factor, (4) the distribution of roots between the first and the second static storage layers, (5) the 

maximum LAI sustainable by the system (the simulated LAI is limited by a maximum), (6) the light extinction coefficient, k 15 

(this parameter is used to calculate the fPAR according to the Eq. (2), , (7) the SLA and, (8) the optimal temperature (the stress 

factor also depends on the temperature). 

𝑓𝑃𝐴𝑅 = 0.95 ∗ (1 − 𝑒−𝑘∗𝐿𝐴𝐼)                                                                                                                                                                      (2) 

A complete description of the LUE-Model can be found in Pasquato et al. (2015). 

5 Methodology 20 

One of the main objectives of this research was to explore the potential of the satellite remotely sensed data for model 

calibration. Hence, the TETIS-VEG model was calibrated purely against MODIS NDVI. Therefore, modelling elaborations 

were carried out into three different steps: (1) a manual calibration in order to obtain a first approximation of model parameters, 

(2) an automatic calibration based on the combined use of EOFs and a genetic algorithm in order to refine model 

parametrization and (3) a model validation carried out with both remote sensed data and traditional data (such as streamflow 25 

measurements). Considering that hydrological observationsSince the meteorological data (precipitation and temperature) were 

available from 1960 to 2003 andwhile the MODIS NDVI was available from 2000 to present, we decided to use the year 2003 

as the calibration period and the period from 2000 to 2002 for validation. In order to avoid the effect of the initial conditions, 

we used one year as warming up period (the year 2002 and 1999 for model calibration and validation respectively). 
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For these purposes, we adopted the NDVI as a descriptor of the state of the vegetation assuming that LAI and NDVI are 

intimately related. Studies on various vegetation types, e.g., agroecosystems (Cohen et al., 2003), grasslands (Friedl et al., 

1994), shrublands (Law and Waring, 1994), conifer forests (Chen and Cihlar, 1996), and broadleaf forests (Frassnacht et al., 

1997) have led to the general conclusion that the spectral vegetation indices such as NDVI have considerable sensitivities to 

LAI. Hence the relationship between NDVI and LAI has been documented by several authors (e.g., Gigante et al., 2009). The 5 

relationship between LAI and NDVI can be considered linear for low values, while it becomes nonlinear for the higher values 

of the NDVI due to the greenness saturation (e.g., Turner et al., 1999). In this case study, the maximum LAI values are around 

2.0 – 2.5, according to Franz (2007), that are lower than the greenness saturation threshold. Therefore, the relationship between 

the observed NDVI and the simulated LAI is expected to be linear. 

5.1 Empirical Orthogonal Function method (EOF) 10 

The EOF method is generally used to analyze the spatio-temporal variability of a single variable but, comparison between 

different variables can also be performed using coupled EOF techniques (Björnssson and Venegas, 1997). The method 

decomposes a dataset in a time series and spatial patterns. Furthermore, tThe method allows also to estimate a measure of the 

“importance” of each spatial pattern. We refer to the spatial patterns as the EOFs (in literature, they are also referred tocalled 

as principal components), and to the time variation as loadings (in literature, there are several terms: expansion coefficient 15 

time series, expansion coefficients, EOF time series, principal components time series, etc.). 

The EOF method is essentially a linear algebra methodology based on matrix transformation. The first step is thus the 

conversion of the spatio-temporal data to be analyzed into a matrix. Basically, we construct a matrix (F) in which each column 

is the temporal variation of the data in a particular cell while each row represents the cells values during a particular time step. 

Usually, the second step is to compute the anomalies of the analyzed data which was not needed in this study because we used 20 

normalized data (for reasons that will be explained below). 

The next step of the applied EOF method consists on the calculation of the spatial F’s covariance matrix (R) according to Eq. 

(3). Then, the eigenvalue problem is solved Eq. (4). 

𝑅 = 𝐹𝑇 ∗ 𝐹                                                                                                                                                                                             (3) 

𝑅 ∗ 𝐶 = 𝐶 ∗ Λ                                                                                                                                                                                        (4) 25 

Λ is a diagonal matrix containing the eigenvalues λi of R. The ci column vectors of C are the eigenvectors of R corresponding 

to the i-respective eigenvalues. Each of these eigenvectors can be regarded as a map which denote the EOFs (or principal 

spatial patterns). In what follows, we always assume that the eigenvectors are ordered according to the value of the eigenvalues. 

Thus, EOF1 is the eigenvector associated with the biggest eigenvalue. The fraction of the total variance in R explained by 

EOFi is found by dividing the λi by the sum of all the other eigenvalues. The time evolution of an EOFij ( 𝑎𝑖𝑗⃗⃗⃗⃗  ⃗)  is calculated 30 

according to Eq. (5). The components of this time vectors are referred to as loadings in this paper. 
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𝑎𝑖𝑗⃗⃗⃗⃗  ⃗

= 𝐹 ∗ 𝐸𝑂𝐹𝑖𝑗                                                                                                                                                                                         (5) 

Using the spatial covariance calculated according to the Eq. (3), the EOF technique provides three different results: the main 

patterns or EOFs, their time evolution whose components are called loadings and the portion of spatial variance explained by 

each EOF which is calculated dividing each λ by the trace of Λ. 5 

5.2 Manual calibration 

The manual calibration was done with a dual purpose. First, we wanted to test the applicability of the proposed TETIS-VEG 

model in the study basin. Second, we wanted to obtain a first approximation for the parameters and, at the same time, constrain 

the automatic calibration. TBasically, this manual calibration consisted ofn the usual ad hoc method (manual adjustment of 

parameter values) considering the Pearson correlation coefficient between the simulated LAI and the observed NDVI in a total 10 

of 32 different points inside the basin. These points were selected within homogeneous areas defined according to the main 

spatial patterns of the observed NDVI (EOFs) and the available maps of land cover, soil texture, DEM, slope and soil depth.  

In this case, the EOF analysis was used to identify the main spatial patterns of the observed NDVI. Once the main spatial 

patterns were identified, we combined our own human perception with the confusion matrices between the main spatial patterns 

and the spatial maps of model parameterization. Confusion matrices are widely applied for map comparison in distributed 15 

modelling comparing actual to predicted values for each specific category defined previously (García-Arias et al., 2016; 

Bennett et al., 2013; Van Vliet et al., 2013 among many others). Generally, the rows in the matrix represent the values predicted 

by the model, whereas the columns represent the actual values. By its nature, the confusion matrix is an overall measure for 

similarity between two categorized maps. However, the comparison of numerical maps is feasible if they are categorized 

previously. In this research, we compared categorized map (land cover map, soil type maps, etc.) and the main patterns obtained 20 

by using the EOF methodology. That’s why the main pattern of the observed NDVI (which is a continuous variable) was 

discretized according to the number of river basin features (such as land cover map, soil type map, etc.) and based on the 

similitude between the corresponding histograms. Once the discretization was done, by a cell-by-cell comparison of the 

discretized NDVI main pattern maps obtained after the EOF analysis and the available spatial maps, the confusion matrices 

were built.  25 

These confusion matrices allowed the calculation of the weighted kappa (k) coefficient (Cohen, 1968). This coefficient, whose 

maximum value is 1, representing a perfect agreement, was employed to identify which spatial maps (land cover map, soil 

type map, DEM, etc) were linked with the main patterns of the observed NDVI. Then, they were used in order to select the 

most appropriate points for the manual calibration. 
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5.3 Automatic calibration 

The most innovative aspect of the proposed procedurehis automatic calibration was the direct useincorporation of the EOF 

analysis in the automatic calibration as an objective function. As proposed by Koch et al. (2015), we decided to build one 

integral matrix concatenating both the observed and predicted data: the matrix contained the normalized values of the NDVI 

provided by MODIS and the normalized values of the LAI simulated by the model. In this way, the upper part of this matrix 5 

contained the temporal variation of the normalized observed NDVI in all cells as columns while the lower part contained the 

temporal variation of the normalized simulated LAI in all cells as columns. We decided to use the normalized values of the 

NDVI and LAI because, although they are correlated, they differ in range.  

However, normalization implies that some spatial information is lost. In order to avoid these losses, we added two rows in the 

matrix F: the first containing the difference between the temporal mean of the observed NDVI at a particular cell and the 10 

general mean using the complete NDVI dataset; and the second with the same content referred to the simulated LAI. In this 

way, we included the spatial gradient of the observed NDVI and the spatial gradient of the simulated LAI. These two rows 

represents two additional maps included in the evaluation of the model performance. If they were similar, it would mean that 

the spatial gradient remains and is properly reproduced.  

The number of pixels was 1,034,706. For the calibration period (year 2003), there were 44 NDVI maps (one each 8 days more 15 

or less). Hence, the built integral matrix’s size was 90 rows (44 + 44 + 2 additional rows) X 1,034,706 columns. After the 

construction of this matrix, the EOF analysis was applied obtaining: the EOF maps for the matrix containing both NDVI and 

LAI, the portion of variance explained by each EOF map and the loadings of each EOF map. The combined EOF analysis 

yielded orthogonal EOF maps that explained the combined intervariability and intravariability of both data sets. For each time 

step, the loadings express how much the respective LAI and NDVI map contribute to the direction of the corresponding EOF. 20 

Hence, if the observed NDVI and the simulated LAI were completely correlated, the temporal evolution of the EOF maps for 

both, NDVI and LAI, would be essentially equal. 

The automaticBasically, model calibration was carried out forcing trying to minimize the differences between the loadings of 

simulated and observed data to be close. The used objective function was based on that idea and it also took into account the 

portion of variance explained by each EOF in order to consider that the variance contribution decreases consecutively for the 25 

EOFs. The adopted error measure is described in following equation: 

𝐸𝑟𝑟𝑜𝑟 = ∑𝑤𝑖 ∗ ∑|𝑙𝑜𝑎𝑑_𝑠𝑖𝑚𝑖,𝑗 − 𝑙𝑜𝑎𝑑_𝑜𝑏𝑠𝑖,𝑗|

𝑡

𝑖=1

𝑘

𝑖=1

                                                                                                                      (6) 

 

where Error is the objective function to minimize, wi is the portion of variance explained by the EOFi, load_simi,j is the loading 

of the EOFi at time step j for the simulated data (in this particular case, the normalized LAI) and load_obs i,j is the loading of 30 

the EOFi at time step j for the observed data (in this particular case, the observed NDVI).  
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The calibration was performed using a genetic algorithm called Pyevolve (Perone, 2017). This algorithm needs a seed (initial 

values of the parameters) and a searching boundary of the parameters to be calibrated. We used the results obtained after the 

manual calibration explained above as seed and made sure that the searching boundaries were wide enough (Table1). 

After the automatic calibration process, inIn order to explore the outcomes of the proposed procedurecalibration framework, 

we additionally calculated both the temporal Pearson correlation coefficient between the NDVI provided by MODIS and the 5 

LAI simulated by the TETIS-VEG model in each cell and the spatial Pearson correlation at each time step. For the spatial and 

temporal correlation coefficients, we used the original values of both datasets (NDVI and LAI), not the normalized values as 

used by the EOF analysis. It is important to mention that the Pearson correlation coefficient between two datasets X and Y is 

positive if X and Y tend to be simultaneously greater than, or simultaneously less than, their respective means. Hence, the 

mean should be representative. For this reason, in the case of the spatial correlation coefficient, we decided to distinguished 10 

between the main land covers whose means can be significantly different: tree, shrubs and grass. 

5.4 Validation 

The period selected for the model validation was of three years from 2000 to 2002. As during the calibration period (year 

2003), there were data of precipitation, temperature and, also, NDVI provided by MODIS. To validate the model, we used the 

same performances indexes applied during the automatic calibration process. Keeping the parameter values obtained by the 15 

automatic calibration, we built the matrix concatenating the normalized value of the observed NDVI and the normalized value 

of the simulated LAI with two additional rows used to incorporate the spatial gradient of both datasets as explained above. We 

also plotted these two maps and compared them as we did during the model calibration. Using the EOF techniques, we obtained 

the coupled EOF maps and their associated loadings and portion of variance explained by them. As during the calibration, we 

compared the deviation of the loadings for each EOF map and we calculated the Error function defined in Eq. (6).  20 

We also calculated the temporal and the spatial Pearson correlation coefficient. as we did during the calibration period.  

In addition to this, we also explored the reliability of the calibrated model in reproducing streamflow. In fact, during the 

validation period, the observed discharge at the outlet point was available unlike during the calibration period. Such condition 

was defined on purpose in order to avoid the use of any information regarding streamflow data during the calibration phase. 

This validation allowed exploring Tthe reliability of the hydrological sub-model in reproducing the streamflow. This was an 25 

extremely challenging task considering that the entire modelling structure had been calibrated only using vegetation data from 

remote sensing along with physical information about the basin. 

Furthermore, wWith this aim, we includedcalculated the Nash and Sutcliffe efficiency index (NS-Nash and Sutcliffe, 1970) 

and the bias (or volume) error (E) value between the observed and simulated discharges at the basin outlet in the model 

validation. We also decided to strengthen our discharge analysis by using the concept of flow duration curves (FDCs). FDCs 30 

are simple and powerful tools, commonly used in hydrology to describe the runoff regime in a river basin that can be 

representative of the model ability in reproducing the different components of the streamflow (e.g., Manfreda et al., 2005). In 

fact, FDCs represent the relationship between magnitude and frequency of streamflows, providing thus an important synthesis 
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of the relevant hydrological processes occurring at the basin scale (Pumo et al., 2013). Actually, the shape of a flow-duration 

curve in its upper and lower regions is particularly significant in evaluating the stream and basin characteristics (Coopersmith 

et al., 2012).  The shape of the curve in the high-flow region indicates the type of flood regime the basin is likely to have, 

whereas, the shape of the low-flow region characterizes the ability of the basin to sustain low flows during dry seasons (Cheng 

et al., 2012). Hence, the flow duration curve represents the full spectrum of variability in terms of their magnitudes (Wagener 5 

et al., 2013). 

6 Results 

6.1 Manual calibration 

As explained before, theThe main objective of this a priori manual calibration was the identification of the most appropriate 

points where the model could be tested. To accomplish do that, we identified the spatial main patterns of the observed NDVI 10 

and, then, we compared the EOFs with the spatial features of the river basin (such as: land cover map, DEM, soil type map, 

etc). 

Using our own perception, we identified a certain relationship between the EOF1 (which explained the 61.5% of the observed 

NDVI’s spatial variance) and the land-use map. This potential relationship was supported by the K coefficient (described in 

the methodology section) that assumed a value of 0.34. This is not areally high value but it showed the existence of a 15 

relationship between the two maps. I.e., there is a connection between the EOF1 and the land-use map. Regarding to the EOF2 

(which explained the 10.5% of the observed NDVI’s spatial variance), no connections with the basin physical characteristics 

were found. It might contain a mix of several drivers and, therefore, it can’t be directly linked to a single one. Contrarily, the 

EOF3 showed a good agreement with the soil texture map (the K coefficient was 0.32). Therefore, we can state that the observed 

patterns of NDVI are strongly influenced by the spatial distribution of land cover and soil texture. In the following, we 20 

combined these two maps, extracted all possible combinations and selected randomly two points of each of these combinations 

obtaining 32 points covering all the catchment area.  

When the manual calibration was stoppedAfter conducting the manual calibration, the Pearson correlation coefficient between 

the observed NDVI and the simulated LAI was positive in 25 points of the 32 considered points.. Hence, there were only seven 

points with negative correlation coefficient.  All points with negative correlations of them had in common the fact that they 25 

were located near to de Mount Kenya or Aberdare mountains (Figure 2). 

Finally, Table I shows the obtained set of parameters. This set was used as seed during the automatic calibration. It must be 

underlined that all parameters had values consistent with the reviewed literature (references embedded in Table I). 
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6.2 Automatic calibration 

The proposed automatic calibration is based on the assumption that the closer the loadings of the simulated values are to the 

loadings of the observed values, the higher the similarity between the spatial pattern is. Calibration was carried out using a 

Pyevolve genetic algorithm using the objective function given in Eq. (6). 

Calibration produced a good agreement between the observed and simulated loadings of the EOF1 (upper part of the Figure 3, 5 

first graphic) while small deviation between the observed and simulated loadings related to the EOF2 and the EOF3. The 

loadings of the remaining EOFs were completely scattered mainly due to their corresponding low contribution (low weight) 

in the objective function of the automatic calibration process (Eq. 6). IIn this context, it is useful needed to remark that the 

EOF1 explained more than 60% of the dataset spatial variance while the EOF2 and the EOF3 explained around 10% each. The 

remaining EOFs explained less than 3% each, but in any case they were considered during the calibration process (weighted 10 

by the portion of variance explained by each one). 

We On the other hand, as mentioned in the methodology section, we also used three additional metrics to evaluate the model 

performance: (1) the temporal Pearson correlation coefficient evaluated in each cell, (2) the spatial Pearson correlation 

distinguishing between trees, shrubs and grasses computed at any time and (3) comparison of the called spatial gradient maps. 

First, the temporal Pearson correlation coefficient between the observed NDVI and the simulated LAI was higher than 0.4 (left 15 

panel of Figure 4) in most of the catchment. The weakest correlations were obtained in the two higherst areas of the basin near 

to the Mount Kenya and Aberdare Mountains with zero to negative values.  

The spatial Pearson correlation coefficients were calculated excluding the regions with negative temporal Pearson correlation 

coefficient. Although slightly worse than the results in terms of temporal correlation, the mean spatial correlations were higher 

than 0.45 for all main land covers: trees (mean=0.58), shrubs (mean=0.49) and grasses (mean=0.55) (Figure 5, upper panel). 20 

The best scores were obtained in cells classified as trees. In fact, the median was almost 0.60 and the variance was not high 

(standard deviation= 0.16). Contrarily, the cells classified as grasses obtained the worst results with the lowest median and the 

highest variance (standard deviation= 0.18).  

Figure 6 (upper panels) shows the comparison between the maps which represent, in each cell, the difference between the 

temporal mean and the general mean of the observed NDVI and the simulated LAI respectively. No great differences were 25 

found by comparing both maps indicating the good spatial performance of the ecohydrological model, at least from the 

vegetation point of view. 

6.3 Validation 

Similarly to the calibration process, the EOF1 explained in validation more than 60% of the spatial variance while the EOF2 

and the EOF3 explained around 10% for the validation period. The remaining EOF maps are not presented because noneany 30 

of them explained more than 3%. The simulated and observed loadings of the EOF1 were almost equals while the obtained 

results in relation to the EOF2 and the EOF3 were slightly worse (lower part of the Figure 3). However, it is important to stress 
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that both showed the same clear temporal dynamics. Indeed,Anyway, the resulted Error for the validation period was 4.03, just 

slightly worse than the Error for the calibration period. It must be considered that the Error value was calculated considering 

all EOFs (Eq. 6). 

The temporal Pearson correlation map between simulated LAI and NDVI showed the same pattern observed in the calibration 

period: the two areas located near to the Mount Kenya and the Aberdare Mountains had a temporal correlation coefficient 5 

equal to zero or negative. However, in more than 80% of the catchment, this coefficient was between 0.3 and 0.9 (right panel 

of Figure 4).  

Regarding to the spatial Pearson correlation coefficient between simulated LAI and NDVI in the three main land cover, the 

results were not as good as the results obtained in terms of temporal correlation. Nevertheless, there were no negative spatial 

correlation coefficients at any time step. In the case of shrubs and grasses, the mean and median were almost 0.4 while the 10 

corresponding ones for the trees were around 0.35 (Figure 5, lower panel). The variance obtained during the validation period 

was narrower than the obtained during the calibration period for the three land covers: trees, shrubs and grasses. Furthermore, 

tThe spatial pattern of LAI was, as for the calibration period, well captured by the model (see the lower panels in Figure 6). 

The cells with high differences between their own temporal mean and the general mean were consistent in both maps. 

Finally, since there was observed discharge at the basin outlet during the years 2000, 2001 and 2002, it was possible to compare 15 

the discharge simulated by the model against with the observations. The volume error (E) was equal to -0.40 while the NS 

index was equal to 0.32. E is strongly affected by the results obtained at the beginning of the validation period, probably due 

to the absence of information regarding the initial conditions. Although we used a year as warming-up period, the simulations 

improved only afterfrom 2001. In fact, having calculated the performances indexes in each year, the E decreased from -0.88 

in 2000 to only -0.17 during the year 2002 (Figure 7). Regarding to the NS index, the worst result was also obtained infor the 20 

first year and it improved from a negative value in 2000 to 0.35 during the year 2002, as one should expect considering the 

visual comparison in Figure 7. This trend is emphasized in the plot of the FDCs (Figure 8) where the underestimation in the 

first two years is clearly highlighted. The first panel compares the FDC of observations and simulations within the whole 

period while the following three panels compared the corresponding FDCs within the 2000, 2001 and 2002. In these plots, the 

simulation seems to interpret closely hydrological response in the year 2002. 25 

7 Discussion 

From the a priori manual calibration step up to model validation, it was possible to identify a behavioral pattern which would 

be also observed during the following automatic calibration and validation steps: the EOF1 explains more than 60% of the 

spatial variance, the EOF2 around 10%, the EOF3 around 5% while the remaining EOFs could be considered negligible. The 

fact that the EOF1 and EOF3 of the observed NDVI was related to the land cover and soil type maps respectively was consistent 30 

with our expectations that what one can expect as long as the  NDVI is a suitablean indicatora proxy of vegetation dynamics. 
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After the automatic calibration, the model matched fitted the observed loadings of the EOF1 and its accuracy wasis slightly 

poorerworse regarding for the second and third EOFs. Thus EOF1 captured the predominant pattern that was found in both, 

the observed NDVI and the simulated LAI data. Furthermore, on one hand, the temporal variation of the EOF1’s loadings 

seemed to be related to the two typical growing seasons in the catchment: the first one during March-May and the second one 

during October-December (Franz et al., 2010) (Figure 3). On the other hand, the loadings of EOF2 and EOF3 were not strongly 5 

connected with any feature. The loadings of the remaining EOFs were scattered which implies that mainly measurement and 

model noise were covered by these EOFs. Nevertheless, the accuracy between the observed and the simulated loadings could 

be considered satisfactory. 

The weakness of the proposed calibration methodology is that, although the associated weights to the loading deviation in Eq. 

(6) are needed, they are also misleading some spatial information. New ways to weight the loading deviations must emerge in 10 

future researches as proposed by Koch et al. (2015). In fact, due to the portion of variance explained by the EOF1, this first 

main pattern controlled the calibration process. In future applications, the proposed error index may could be improved by 

focusing or excluding specificif we didn’t want the EOF1 to dominate the calibration process or we wanted to emphasize a 

particular EOFs map. A popular method for deciding which EOF to keep and which to discard is to use ‘selection rules’. 

Basically, there are three classes of selection rules depending on whether they focus on the amount of variance explained by 15 

each EOF, the loadings or the EOF maps (Preisendorfer, 1988). Other option could be to rotate the EOFs as proposed by 

Bonaccorso et al. (2003). Basically, as each rotated EOF will not explain the same variance of the unrotated one, this approach 

would be an option to use different combinations of EOFs which explain different amount of variance in order to reduce the 

influence of the EOF1. However, the real fact is that the variability captured in EOF1 is predominant and explains more than 

60% of the total variance and should thus be weighted more. 20 

Actually, theThe automatic calibration process workeds satisfactorily as shown by the additional metrics: temporal Pearson 

correlation coefficient, spatial Pearson correlation coefficient in the main land covers and the comparison between the gradient 

maps. In terms of spatial Pearson correlation coefficient, the weakest values were obtained in the higher portion of the basin 

near to the Mount Kenya and Aberdare Mountains, while the remaining cells within the study area showed a good agreement 

between observed NDVI and simulated LAI. This same behavior was also observed when calibrating manually.  25 

Two reasons could explain such results. First, the observed NDVI in some cells of those areas had a really bad quality testified 

by the unrealistic oscillations of the NDVI from 0.8 to 0.1 (even zero) in just one week. These unrealistic oscillations could be 

produced by the presence of clouds over the area near to the mountains. The second reason is related to the conceptual limitation 

of the proposed model. The TETIS-VEG was designed to be used only in water-controlled areas. Franz (2007) analyzed the 

correlation between the fractional woody cover and the mean annual precipitation within the catchment and they were strongly 30 

correlated. However, two different slopes were observed. The transition point, which indicates when water availability had a 

smaller influence on the fractional woody cover, occurred combined the fractional woody cover and the mean annual 

precipitation (MAP) in order to provide some insights as to the limiting resources in the basin. Two different behaviors could 

be observed indicating the point in which water had a smaller influence. The transition point occurred approximately around 
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800mm/year. Physically, the transition point is believed to be a good approximation of the transition from a water-controlled 

ecosystem to a nutrient-controlled ecosystem. Franz (2007) affirmed that the high-latitudesThis approach allowed to define 

the higher areas within the study catchment (where Mount Kenya and Aberdare Mountains are included) as were nitrogen 

limited ecosystems instead of water-controlled.. 

With the exemption of these two areas, it is clear that there existeds a strong correlation between NDVI and LAI, i.e the model 5 

can captured the temporal dynamic of LAI. However,  but itthis didoes not necessarily mean that the magnitude of LAI wasis 

reasonable. This last point was proven by calculating the good performance in terms of spatial Pearson correlation and the 

comparison between the gradient maps. No differences and good agreements were observed along the main land covers: trees, 

shrubs and grasses. 

Finally, for the automatic calibration, there were four parameters in the automated calibration which changed substantially (in 10 

relative terms) in comparison to the values obtained during the manual calibration: the correction factor of the maximum static 

storage, the correction factor of the reference evapotranspiration, the factor related to the distribution of roots between the first 

and second static storage layers and the maximum LAI sustainable by the system (Table I). These parameters affect directly 

on the transpiration process and on the amount of available water to be consumed by the plants. In any case, all obtained values 

were consistent with the reviewed literature (embedded in Table I). All of them are completely included in the searching 15 

boundary used during the automatic calibration and there were not reasons to think we should use wider ranges.  

The Similar results were obtained regarding to the EOF analysis and the additional metrics computed within the validation 

period. In fact, the validation process confirmed: (1) the model was able to capture completely the EOF1 while the model 

performance worsened in the following two EOFs, (2) the simulated LAI and the observed NDVI were temporally correlated 

in most of the catchment and (3) the spatial distribution of LAI was consistent as shown by the comparison between the 20 

gradient maps and the value of the spatial Pearson correlation coefficient at any time. 

An additional interesting outcome provided by the validation was the comparison between simulated and observed hydrograph 

at the outlet point. The simulated Sstream flow was simulations presented were promising, but not completely convincing. 

This limitation It is obvious since the model parameters were calibrated on NDVI data, i.e. the model was calibrated on 

vegetation dynamics. ThereforeThat’s why the direct comparison between hydrographs should not becould be too exigent 25 

when that no information considering nothing was known about the parameters involved in hydrological processes not linked 

with vegetation, as the river flow routing or aquifer discharge was included in the calibration.  

 WTherefore, we strengthened our discharge analysis by using the concept of FDCs. By graphical comparison (Figure 8), it 

could be observed that the model is able to reproduce the shape of the observed FDC, while some discrepancies were found in 

terms of magnitude. However, its performance improved considerably year over year. Since the FDC shape is an important 30 

synthesis of the relevant hydrological processes occurring at the basin scale, this result pointed out the capability of the 

proposed model calibration methodology to reproduce the main hydrological behavior of the study basin. 
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8 Conclusions 

The main two objectives of this research were: (1) to explore if it is possible to calibrate and validate an ecohydrological model 

only using satellite information, and (2) to incorporate spatio-temporal data about a model state variable into thean automatic 

calibration process. In order to tackle these questions, a parsimonious distributed ecohydrological model was calibrated using 

exclusively NDVI data provided by MODIS. A methodology based on the EOF analysis was proposed to carry out the model 5 

manual and automatic calibration. Finally, the results were validated using satellite data referring to different periods and, also, 

the observed discharge at the basin outlet which was not used for calibration. 

In general, the proposed model wasis able to reproduce properly the vegetation dynamics and the observed streamflow. T 

Regarding to the first objective of this work, the results highlighted the enormous usefulness of satellite data. It was possible 

to implementcompletely implement the hydrological and the vegetation components of TETIS-VEG daily model only using 10 

NDVI data and also to validate the model validation with satisfactory results can be considered satisfactory. Such outcomes 

areThis fact is a promising conclusion particularly for ungauged basins because it demonstratesmeans that satellite data could 

be exploitedused in order to predictobtain river discharge in ungauged basins.s at certain conditions. More specifically, we do 

expect this result given the At the same time, this result also shows the key role played by vegetation in water-controlled areas 

such as the upper Ewaso river basin in Kenya where having an appropriate description of vegetation and transpiration is critical 15 

for a correct description of the water balance at the local and basin scale. Of course, the time step also was a relevant factor in 

the transfer of information from satellite NDVI to hydrological parameters: at daily time step the runoff propagation was not 

relevant in this case study and the model was able to reproduce the flow duration curve with no information about the 

parameters involved in the river flow routing process. 

The proposed automatic calibration was completely designed in order to incorporate spatio-temporal data in order to take the 20 

maximum advantage of the available satellite data. After calibrating, the simulated vegetation patterns display good agreement 

with measured NDVI in most of the basin except for some portions at higher altitudes. This non-satisfactory result may be due 

to the bad quality of the NDVI data and/or the limitation of the vegetation sub-model (that was specifically designed for 

semiarid regions). 

Model limitation along with poor data quality and resolution affected negatively the overall model performances, but the 25 

proposed procedure allowed to exploit the amount of information available addressing the critical issue of identifying a 

procedure for the calibration of a distributed model. This allowed to obtain a correct description of vegetation dynamics in 

space and time also providing as a marginal benefit a fairly good stream flow prediction. In this context, it was mandatory to 

adopt a daily time step in order to have a coherence with satellite NDVI data and also removing the need for a runoff 

propagation module in our model. 30 

Finally, we should consider that the potential of the present study is due to the large 

Nowadays, there is a grand  availability of remote sensing information (not only satellite) concerning spatial state variables 

and more information will be available in the future. Many efforts are being done to improve the quality and quantity of remote 
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sensing data (drones, better devices, etc.). And, the scientific community must also be ready to exploit the enormous amount 

of information contained in this data work with different kinds of information (temporal, spatial and spatio-temporal) 

simultaneously. Therefore, we shouldIf we want to be efficient, we have to identify the best way to use all of this new available 

information, not only for data assimilation, but also and more important from our point of view, for model calibration and 

validation. 5 
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Table I. Summary of the initial values, the search range and the final value of the parameters or correction factors of both sub-models (hydrological and 

dynamic vegetation sub-models) as well as the units and the reviewed references.  

Model Correction factor or parameter* Units  Initial Value Search Range Final Value References 

H
Y

D
R

O
L

O
G

IC
A

L
 

S
U

B
-M

O
D

E
L

  

FC1-Maximum Static Storage [-]  1.00 [0.5,2.5] 1.80 [1] 

FC2-Evapotranspiration [-]  0.70 [0.7,1.2] 1.05 [1] 

FC3-Infiltration [-]  0.20 [0.01,2] 0.12 [1] 

FC4-Slope velocity [-]  1.00 [0.1,1.2] 1.00 [1] 

FC5-Percolation [-]  0.08 [0.001,2] 0.05 [1] 

FC6-Interflow [-]  140.00 [0.001,100000] 150.12 [1] 

FC7-Deep percolation [-]  0.06 [0.001,2] 0.04 [1] 

FC8-Connected aquifer [-]  20.00 [0.001,100000] 16.82 [1] 

FC9-Flow velocity [-]  1.00 [0.2,1.2] 1.00 [1] 

V
E

G
E

T
A

T
IO

N
 

S
U

B
-M

O
D

E
L

 

Specific Leaf Storages  mm Tree 0.50 [0.5,3] 0.43 [2],[3],[4] 

  Srhrub 2.00 [0.5,3] 2.00  

  Grass 2.00 [0.5,3] 2.00  

LUE kg/m2 

MJ 

Tree 1.50 [1.2,2.5] 1.14 [5],[6] 

  Srhrub 1.50 [1.2,2.5] 1.14  

  Grass 1.50 [1.2,2.5] 1.71  

Coverage factor [-] (**) 0.80 [0.1,1.0] 0.90 [3],[4] 

Distribution of roots [-] Tree 0.30 [0.0,1.0] 0.10 [3],[4],[7] 

  Srhrub 0.5 [0.0,1.0] 0.20  

  Grass 0.7 [0.0,1.0] 0.34  

Maximum LAI m2/m2 Tree 2.50 [0.5,3.5] 3.10 [5],[8],[9],[10] 

  Srhrub 2.00 [0.5,3.5] 2.00  

  Grass 1.00 [0.5,3.5] 1.50  
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Light extinction coefficient [-] All 0.50 [0.4,0.6] 0.52 [11] 

SLA m2/kg Tree 4.00 [2.0,5.0] 4.00  

  Srhrub 6.00 [4.0,20.0] 10.00 [5],[12] 

  Grass 6.00 [6.0,50.0] 30.00  

Optimal temperature ºC All 16 [10,30] 18 [11] 

(*) Regarding to the hydrological sub-model, the table shows the value of the correction factors while regarding to the vegetation sub-model, the 

table shows the parameter values 

(**) The coverage factor depends on the location. The value in the table is the mean value. We used the reported information by [3] and [4]. 

[1] GIMHA Team, 2014 

[2] Van Dijk et al., 2011 5 

[3] Franz et al., 2007 

[4] Caylor et al., 2006 

[5] TRY Database (www.try-db.org) 

[6] Yuan et al., 2007 

[7] Le Roux et al., 1995 10 

[8] Pasquato et al., 2015 

[9] Ceballos and Ruiz de la Torre, 1979 

[10] López-Serrano et al., 2000 

[11] Ruiz-Pérez et al., 2016 

[12] Castro de Costa et al., 2014 15 
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Figure 1. General map location of the Ngiro river basin within the boundaries of the Sub-saharan Africa. The study sub-catchment (in blue) was selected 

because the density of the rainfall stations (points in dark blue). 
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Figure 2. Location of the points where the manual calibration was carried out. The value of the Pearson 6 
correlation coefficient between the satellite NDVI and the simulated LAI appears together to the point used to 7 
the manual calibration of the model 8 
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Figure 3. The three first EOFs during the calibration (upper part) and during the validation (lower part) are represented. The y-axes reflect the unitless 

loadings of each EOF. The x-axes reflect the time step. 
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Figure 4. Temporal Pearson correlation coefficient between the NDVI provided by MODIS and the LAI simulated by the model during the calibration 

and validation period. The two areas with negative values correspond to the Mount Kenya and Aberdare Mountains. 
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Figure 5. Spatial Pearson correlation coefficient during the calibration (upper panel) and during the validation (lower panel) 

distinguishing between the main land covers: tree, shrubs and grass. The whiskers were calculated according to the 98% percentile 

and the outliers were plotted as x. The median is the line inside boxplot and the mean is the quadrangle. 
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Figure 6. Comparison between the maps where each pixel contains the difference between the temporal mean calculated in this 

particular pixel and the general mean calculated using the all dataset of the simulated LAI (left) and observed NDVI (right) in both 

periods: calibration (upper panels) and validation (lower panels). This difference is a measure of spatial gradient of both variables 

(LAI and NDVI). 5 
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Figure 7. Time series of rainfall and observed and simulated daily discharge (m3/s) during the validation period (2000,2001 and 2002) 
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 25 

Figure 8. Observed (in black) and simulated (in red) flow duration curves for the whole validation period (upper 26 
panel) and for the corresponding three years in isolation (lower three panels): 2000, 2001 and 2002 respectively 27 
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