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Response to Reviewer #1 

 

We thank the Reviewer #1 for their useful comments. These comments highlighted some areas of 

weakness within the discussion paper. 

 5 

Reviewer quote #1: 

 

This work approaches a very challenging issue: how far we are from a satellite-based estimation 

of every term of the terrestrial water balance? Probably this is the underlying idea of the authors, 

but for some reason the focus of the paper, as reflected by the title, is switched to the possibility of 10 

estimating water storage from microwave-based surface water content. May be the intention is 

still there, and this paper represents just a first piece of results. However, it would be useful to 

clarify the original idea behind the concepts presented here 

 

Response: 15 

 

The motivation (or in the words of the reviewer “the original idea”) for estimating surface water storage 

from microwave remote sensing is laid out in the first paragraph of the original discussion paper. To 

quote: 

 20 

“Within the past decade, the analysis of data products from the Gravity Recovery and Climate 

Experiment (GRACE) satellite mission (Tarpley et al., 2004a; 2004b) has led to an enhanced 

appreciation of the role played by inter-annual variations of total terrestrial water storage (S) within 

the terrestrial water budget (Chen et al., 2009; Rodell et al., 2007; Syed et al. 2008). However, the 

application of GRACE S retrievals is potentially limited by their extremely coarse spatial resolution 25 

(~200,000 km
2
). In contrast, microwave-based surface soil moisture (θ) retrievals can be obtained at 

relatively finer resolutions (typically ~1,000 km
2
). However, such retrievals are hampered by both 

shallow vertical support (reflecting soil moisture conditions only in the top several centimeters of the 

soil column) and substantially-reduced accuracy for dense vegetative cover. As a result, they are 

generally assumed to be of limited value for examination of S variations and commonly neglected in 30 

water budget studies. However, recent empirical work demonstrates that microwave-based θ retrievals 

are well correlated with GRACE-based S estimates in certain regions (Abelen et al., 2013; 2015). This 

suggests that θ retrievals retain some value for water-balance studies - particularly at spatial scales 

finer than the resolution of GRACE products.”  

Or stated more concisely: 1) gravity remote sensing has revealed that inter-annual variations in 35 

terrestrial water storage are important; 2) gravity remote sensing suffers from severe resolution 

limitations; and 3) microwave remote sensing of soil moisture offers a potential approach for providing 

higher-resolution assessments. This is the rationale behind looking at microwave remote sensing. 

 

We feel this rationale is laid out clearly early in the manuscript.  However, it could perhaps be (re-40 

)emphasized more throughout the entire manuscript to address the confusion noted by the reviewer. 
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New text has been added to the first paragraph of Section 4 to ensure that these objectives are alluded to 

throughout the paper (and not just at the start). 

Reviewer quote #2: 

…alternatively, it should be emphasized the relevance of thermal data in context of this study.  

 5 

Response: 

 

This point is directly addressed by the second paragraph in the original discussion paper. To quote: 

 

“Confirming such potential will require the availability of accurate terrestrial water flux variables. 10 

Recent progress in the remote sensing of S and θ has been mirrored by the increased consideration of 

satellite-derived evapotranspiration (ET) retrievals in a water balance context (Senay et al., 2011; Hain 

et al., 2015; Hendrickx et al., 2016; Wang-Erlandsson et al., 2016). In particular, when combined with 

precipitation (P) and basin-outlet steam flow (Q) measurements, satellite-derived ET  estimates can be 

used to verify estimates of S variations (dS/dt) obtained from various independent sources (Han et al., 15 

2015). This opens up the possibility for the objective “top-down” evaluation of dS/dt estimates obtained 

from various remote sensing sources and the opportunity to empirically confront “bottom-up” 

expectations for these products based solely on theoretical considerations.”  

Or stated more concisely, thermal-based remote sensing observations are needed to provide 

evapotranspiration estimates which - when combined with rainfall and stream flow measurements - can 20 

be used to independently verify estimates of terrestrial water storage variations obtained from various 

remote sensing sources. 

Again, we feel that these first two paragraphs of the discussion paper directly address the overarching 

motivation issues raised by the reviewer. New text has been added to the first paragraph of Section 4 to 

ensure that these objectives are alluded to throughout the paper (and not just at the start). 25 

Reviewer quote #3: 

In a similar way, the calendar year aggregation deemed as questionable by the authors themselves 

(pag.16, Discussion) appears as an “exit-strategy” following a monthly-scale analysis that 

provided unsatisfactory results.  

Response: 30 

 

The reviewer is misunderstanding our point on page 16 (of the original discussion paper) regarding the 

use of calendar year averaging. Our point here is not to undercut the motivation for an analysis of inter-

annual water storage variations, rather to acknowledge that there is some sensitivity to the particular set 

of “book-end” months used to define a year (i.e., January 1 to December  31 versus June 1 to July 30). 35 



3 

 

This was simply done to acknowledge a potential source of sensitivity in inter-annual results and not to 

underline the value of inter-annual results in general.  

In fact, the impact of inter-annual terrestrial water storage variability on the terrestrial water cycle is an 

area of significant scientific interest. See, for example, recent work aimed on the detection of decadal-

scale variability in terrestrial storage due to long-term meteorological drought and patterns of 5 

anthropogenic ground water extraction or work on the role of groundwater in modulating the impact of 

climate trends on the hydrologic cycle. These are important scientific issues which can be largely 

addressed via the measurement of inter-annual water storage variations. This can (and should) be 

emphasized more in the discussion paper.  

Obviously, improved temporal resolution (down to e.g. monthly) would be useful in some cases. 10 

However, it is unfair to characterize the resolution of inter-annual variations as a fall-back “exit-

strategy” meant to mask a failure to achieve a more important goal. The characterization of inter-annual 

variability is a key goal in and of itself.  

The above points are now clarified via new text added to the last paragraph of Section 5. 

Reviewer quote #4: 15 

It would have been reasonable to support the period of temporal aggregation with some 

considerations about the hydrological yearly cycle in each basin. 

Response: 

 

This is a fair point. Ideally, the period of temporal aggregation would have been based on hydrological 20 

considerations. However, there is an important practical issue to consider. Preliminary analysis suggests 

that adequately capturing monthly variations requires seasonally and spatially-varying parameters (to 

capture the relationship between surface soil moisture and terrestrial water storage). Given the (quite-

limited) effective sampling size at our disposal (i.e., 8 years), it quickly becomes impossible to 

adequately calibrate and validate such a high-parameter approach. So while we suspect that a finer (e.g. 25 

seasonal) scale approach is possible, we simply lack the data to adequately validate it. This point was 

already made in Section 5 of the original discussion paper; however, we have revised this section (see 

last paragraph of Section 5) to further clarify this key point. 

Reviewer quote #5: 

At the end, the overall impression is that the authors tried in every possible way to extract a 30 

similarity between Grace and AMSR-E datasets, and they finally got it.  

 

Response: 
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This is not a fair impression (although we acknowledge that weaknesses in our write-up may have 

contributed to it).   

 

As described in discussion paper, we “tried” only two operations (i.e. linear smoothing and temporally 

lagging) to resolve both monthly and inter-annual water storage variations (dS/dt). Both operations were 5 

applied via only two parameter degrees of freedom (i.e. the application of 3 monthly weighting 

parameters constrained to sum to one). 

 

Based on our attempts, we did not feel like we could adequately validate the monthly approach and 

stated that conclusion clearly in the original discussion paper (see above and Section 5 of the write-up).   10 

 

In contrast, inter-annual dS/dt estimates derived from both water balance consideration and GRACE are 

actually extremely robust. This point was made in Section 4.2 of the original discussion paper:  

 

“Our primary goal is determining the potential for explaining observed annual P-Q-ET variations in 15 

Figure 4 using the microwave-based dSPM/dt proxy introduced above. Our first priority is empirically 

evaluating the assumptions - expressed in (4-6) - which underlie the proxy. The first issue is the degree 

to which the appropriate temporal averaging of microwave-based soil moisture via (4) can be used to 

obtain a robust linear proxy for P-Q-ET. Figure 5a addresses this by plotting the average linear 

correlation for all the medium-scale basins between annual P-Q-ET and dθPM/dt obtained using all 20 

potential combinations of WDec, WNov and WOct (where WDec + WNov + WOct = 1.0). Plotted correlations 

in Figure 5a are generally greater than 0.50 [-]. In fact, even after realistically accounting for the 

impact of over-sampling due to spatial and temporal auto-correlation in the P-Q-ET fields (Section 2.3), 

sampled correlations are statistically-significant (one-tailed, 95% confidence) for all possible 

combinations of WDec, WNov and WOct.” 25 

 To summarize, AMSR-E is transformed into a proxy representation of inter-annual dS/dt (dθPM/dt) via 

the application of only three monthly weighting parameters (constrained to sum to one). All possible 

combinations of these parameters lead to an expression of dθPM/dt which has a statistically-significant 

relationship with (independent) basin-scale measurements of rainfall minus evaptotranspiration minus 

stream flow.  30 

 

Therefore, this is not a result that needs to be aggressively “extracted.” It is a robust relationship which 

emerges from any parameterization of a simple weighted average. Also, given the important role of 

inter-annual water storage variations in a number of research and water resource application issues, it is 

not a conclusion which can be fairly characterized as a “fall-back” consolation prize. We feel like the 35 

original discussion paper made this point adequately. 

 

Reviewer quote #6: 

To this extent, the paper is valuable, and it is able to bring new knowledge, even if the fee paid to 

the empiricism is probably too high. 40 
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Response: 

 

We are unclear what empirical “price” is actually being paid here. As described above the proposed 

empirical relationship (between surface soil moisture and annual dS/dt) is simple, robust, and 5 

statistically-significant (when applied appropriately at an inter-annual time) scale. It is a robust 

empirical “top down” result which will potentially shape our “bottom-up” understanding of large-scale 

processes linking surface soil moisture with deeper hydrologic units As such it provides a “dividend” 

rather than paying a “price.”    

  10 
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Response to Reviewer #2 

 

We thank the reviewer for their generally positive comments and useful suggestions. With only a few 

minor exceptions (noted below), we agree with all their comments and have modified the manuscript 

accordingly. 5 

 

Review Quote #1: 

 

Title: I think the title is somewhat too broad. I would prefer the title also states you are looking at 

medium scale catchments (just add in medium-scale catchments to the title)  10 

 

Response: 

 

Good point. We have modified our title accordingly. 

 15 

Reviewer Quote #2: 

 

Although you make several remarks on the use of a calendar year instead of a hydrological year 

and discuss it in section 5, I think especially this parts could benefit from some extra details. 

Maybe you could add some of the “Preliminary sensitivity analysis data to the paper. Maybe even 20 

a complete sub-section under section 4.  

 

Response: 

 

We agree - this was a weak link in our original write-up. In response, we have significantly expanded 25 

the discussion of this issue in Section 5 of the revised manuscript. In particular, we present new 

sensitivity results which demonstrate that key manuscript conclusions are not significantly impacted by 

the particular set calendar months used to define a year.  

 

Reviewer Quote #3: 30 

 

Your approach (eq.4-6) is fully empirical, testing a pseudo-hydrological year and e.g. using less 

months (or add one month with more vegetation but with lower weight factor) seems so logical. 

 

Response: 35 

 

The impact of removing one month is already described in the tertiary plot in Figure 5 (by simply 

setting the weighting of one particular month to zero).  However, the reviewer is correct that there is no 

analogous discussion concerning the impact of adding one more month. Therefore, in response, new 

text has been added to Section 4.2 of the revised manuscript which specifically discusses the impact of 40 

adding an additional month to equation (4) on optimization results presented in Figure 5. 
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Reviewer Quote #4: 

 

You clearly show the value of microwave soil moisture for downscaling GRACE information. Can 

you discuss whether there are other down-scaling possibilities to have the same effect on GRACE 5 

derived storage variations? 

 

Response: 

 

The revised manuscript now describes alternative strategies for downscaling GRACE-based water 10 

storage estimates (see new text added to the first paragraph of Section 1). However, an objective 

comparison with these earlier strategies is beyond the scope of this paper. The need for such a 

comparison; however, is now noted in the revised manuscript (see 2
nd

-to-last paragraph in Section 6 of 

the revised manuscript). 

 15 

Reviewer Quote #5: 

 

P1L18: “contain significant” maybe it is more accurate to say “contain statistically significant”  

 

Response: 20 

 

Agreed. Changed. 

 

Reviewer Quote #6: 

 25 

P2L5: certain regions: please specify  

 

Response: 

 

The spatial variation of results in Abelen and Seitz, 2013; Abelen et al. 2015 is difficult to summarize 30 

briefly. However, we agree that simply referring to “certain regions” (without providing any specifics) 

is likely to cause frustration on the part of the readers. Therefore we have modified the sentence to 

remove any reference to the geographic variation of results these studies (which is not relevant for the 

current study).   

 35 

Reviewer Quote #7: 

 

P2L12 steam > stream 

 

Response: 40 

 

Fixed.  
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Reviewer Quote #7: 

 

P2L19: Q and P are not products but ground based data. 

Response: 5 

 

To avoid confusion, “products” has been changed to “datasets.”  

 

Reviewer Quote #8: 

 10 

Please rephrase P7L18: closure of (1). For me it would be easier if you insert „equation‟ between 

“of (1)”. 

 

Response: 

 15 

Agreed…our original phrasing was awkward. It has been rephrased along the lines suggested by the 

reviewer.  

 

Reviewer Quote #9: 

 20 

P9L20: snow/could >snow/cold P11L9: suggestion to remove ( ) around “credible” 

 

Response: 

 

Removed.  25 
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Abstract. Due to their shallow vertical support, remotely-sensed surface soil moisture retrievals are commonly 

regarded as being of limited value for water budget applications requiring the characterization of temporal 

variations in total terrestrial water storage  (dS/dt). However, advances in our ability to estimate 15 

evapotranspiration remotely now allow for the direct evaluation of approaches for quantifying dS/dt annual 

variations in S via water budget closure considerations. By applying an annual water budget analysis within a 

series of medium-scale (2,000-10,000 km
2
) basins within the United States, we demonstrate that, despite their 

clear theoretical limitations, surface soil moisture retrievals derived from passive microwave remote sensing 

contain statistically significant information concerning dS/dtrelative inter-annual variations in S. This suggests 20 

the possibility of using (relatively) higher-resolution microwave remote sensing products to enhance the spatial 

resolution of dS/dtS estimates acquired from gravity remote sensing. However, challenging calibration issues 

regarding the relationship between S and surface soil moisture must be resolved before the approach can be used 

for absolute water budget closure. 

1 Introduction 25 

Within the past decade, the analysis of data products from the Gravity Recovery and Climate Experiment 

(GRACE) satellite mission (Tarpley et al., 2004a; 2004b) has led to an enhanced appreciation of the role played 

by inter-annual variations of total terrestrial water storage (dS/dtS) within the terrestrial water budget (Chen et al., 

2009; Rodell et al., 2007; Syed et al. 2008). However, the application of GRACE S retrievals is potentially 

limited by their extremely coarse spatial resolution (~200,000 km
2
). This has spurred interest in the development 30 
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of spatial downscaling techniques for GRACE-based dS/dt. These approaches have generally been based on the 

use of (relatively) higher-resolution water storage predictions obtained from distributed land surface model 

predictions (Reager et al., 2015; Wan et al., 2015) or a combination of land surface model output and independent 

evapotranspiration (ET) and precipitation (P) flux estimates (Ning et al., 2014). In contrast, microwave-based 

surface soil moisture (θ) retrievals provide a direct assessment of soil water storage that can be obtained at 5 

relatively finer resolutions (typically ~1,000 km
2
). However, such retrievals are hampered by both shallow 

vertical support (reflecting soil moisture conditions only in the top several centimetres of the soil column) and 

substantially-reduced accuracy for dense vegetative cover. As a result, they are generally assumed to be of 

limited value for the examination of dS/dt S variations and commonly neglected in water budget studies. 

However, recent empirical work demonstrates that microwave-based θ retrievals are generally well- correlated 10 

with GRACE-based S estimates in certain regions (Abelen and Seitz, 2013; Abelen et al.,, 2013;  2015). This 

suggests that θ retrievals retain some value for water-balance studies - particularly at spatial scales finer than the 

resolution of GRACE products.  

Confirming such potential will require the availability of accurate terrestrial water flux variables. Recent progress 

in the remote sensing of dS/dtS and θ has been mirrored by the increased consideration of satellite-derived 15 

evapotranspiration (ET) retrievals in a water balance context (Senay et al., 2011; Hain et al., 2015; Hendrickx et 

al., 2016; Wang-Erlandsson et al., 2016). In particular, when combined with precipitation (P) and basin-outlet 

stream flow (Q) measurements, satellite-derived ET estimates can be used to verify estimates of S variations (dS/dt 

) obtained from various independent sources (Han et al., 2015). This opens up the possibility for the objective 

“top-down” evaluation of dS/dt estimates obtained from various remote sensing sources and the opportunity to 20 

empirically confront “bottom-up” expectations for these products based solely on theoretical considerations.  

Here, we combine ET estimates acquired from thermal infrared (TIR) remote sensing with ground-based Q and P 

measurements to evaluate the water balance performance of passive microwave (PM) estimates of annual dS/dt 

for a set of medium-scale (2,000-10,000 km
2
) river basins within the United States. The analysis will focus on 

two primary tasks: 1) evaluating the suitability of existing ET, Q and P data productsdatasets to accurately 25 

estimate dS/dt and 2) empirically investigatinge the ability of inter-annual dS/dt estimates (acquired from 

microwave remote sensing of soil moisture) to close the inter-annual terrestrial water balance. As discussed 

above, this particular application of θ is arguably inconsistent with their known theoretical limitations. Therefore, 

Formattato: Tipo di carattere: Corsivo
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our focus will be on empirically measuring evaluating their ability to provide dS/dt closure within an annual 

water budget analysis and examining how these empirical results fit with a priori theoretical expectations.  

Section 2 describes the water balance data sets and study basins. Section 3 examines the ability of existing flux 

and storage products to close the terrestrial water balance closure within a set of larger-scale (150,000-1,000,000 

km
2
) hydrologic basins where GRACE-based dS/dt can be directly utilized (see task #1 defined above). Based on 5 

verification results in Section 3, Section 4 derives a technique for estimating dS/dt from microwave remote 

sensing and evaluates the ability of microwave-based dS/dt to close the terrestrial water balance within a second 

set of medium-scale (2,000-10,000 km
2
) basins (see task #2 defined above). Results in are discussed in Section 5 

and conclusions summarized in Section 6.  

2 Study basins and data sets 10 

Within a closed hydrologic basin, the annual water budget equation can be summarized as: 

  P - Q - ET = dS/dt       (1) 

where P, Q and ET [mm yr
-1

] represent annual sums of fluxes, and dS/dt [mm yr
-1

] is the annual change in 

terrestrial water storage. Besides Q, all other lateral water fluxes (into or out of the basin) are assumed to be 

negligible. See Section 2.2 below for a description of data products used to describe flux terms on the left-hand-15 

side of (1). The storage change term dS/dt is independently obtained using both gravity-based (GR) retrievals of 

total terrestrial water storage and passive microwave-based (PM) retrievals of surface soil moisture content. In 

both cases, annual change estimates are based on the differencing of temporally-averaged storage retrievals 

acquired at (or near) the end of each calendar year. Based on constraints associated with the availability of 

various remote sensing products, the analysis is conducted within a January 1, 2003 to December 31, 2010 time 20 

period. Additional methodological details are given below.  

2.1 Study basins 

For the analysis, hydrologic basins are sought with: excellent ground-based rain gauge coverage, the availability 

of good remotely-sensed ET products, and the relative absence of complex topography and/or dense vegetation 

conditions known to reduce the accuracy of existing long-term, satellite-based soil moisture products. In addition, 25 
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arid areas are avoided due to their known lack of inter-annual dS/dt variations. The North American Mississippi 

River system is one of only a handful of continental-scale river basins which that generally meets all of these 

criteria. Therefore, water budget closure will be examined in two separate sets of basins within the Mississippi 

River system. To start, a large-scale analysis will be conducted on five major Mississippi River sub-basins: the 

Missouri, the Arkansas, the Red, the Ohio and the Upper Mississippi - see Figure 1 and Table 1. The primary 5 

focus in these large-scale basins will be evaluating the ability of existing P, Q, ET and GRACE-based dS/dt 

product to close the annual water budget. The results of this water balance analysis will subsequently then be 

used to refine the geographic focus and water flux processing approach applied in the medium-scale analysis 

described below.  

Following this large-scale water balance analysis, the performance of a microwave-based dS/dt proxy is 10 

examined within 16 (smaller) medium-scale (10
3
-10

4
2,000-10,000 km

2
) unregulated basins positioned along an 

east/west transect across the United States Southern Great Plains (SGP) region (see Figure 1 and Table 2). A 

complete justification of this geographic emphasis is given in Section 3. However, in general, medium-scale 

basins were selected following a screening analysis applied by the Model Parameter Estimation Experiment 

project (Duan et al., 2006) which removed basins with either inadequate rain gauge coverage or excessive human 15 

regulation of stream flow. Moving from west to east, these basins exhibit progressively higher mean P and annual 

runoff ratios (Q/P) (Figure 1 and Table 2). Associated with this climatic gradient is a gradual west-to-east 

increase in vegetation biomass. Western basins are characterized by large fractions of rangeland, grassland and 

winter wheat land cover with relatively low biomass. In contrast, basins located along the eastern edge of the 

transect contain significant upland forest cover and intensive summer agricultural cultivation in low-lying areas.  20 

2.2 Data Products and Processing 

A range of ground and remotely-sensed data sets were acquired to characterize components of the terrestrial 

water balance summarized in (1). The acquisition and processing of these datasets is described below. 

2.2.1 Thermal remote sensing of ET 

Daily evapotranspiration estimates were obtained from the Atmosphere-Land EXchange Inverse (ALEXI) 25 

algorithm. In particular, ALEXI exploits the moisture signal conveyed by the mid-morning rise in satellite 

observed land surface temperature (LST) in order to capture water limitations on surface energy fluxes (Anderson 
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et al. 2007a,b; Hain et al. 2009, 2011). Based on this principle, ALEXI produces estimates of daily 

evapotranspiration without any direct knowledge of antecedent precipitation or soil water balance considerations 

(Anderson et al., 2011). This ensures that ALEXI evapotranspiration estimates are independent of those derived 

via water balance calculations.  

ALEXI evapotranspiration has been evaluated using a spatial disaggregation technique (DisALEXI) which uses 5 

high resolution LST retrievals from Landsat to downscale ALEXI fluxes to a 30-m pixel level (Anderson et al., 

2004). Typical accuracies obtained in comparison with eddy-covariance tower observations are on the order of 5 

to 15% for daily to seasonal evapotranspiration estimates during snow-free periods (Anderson et al., 2012; 

Cammalleri et al., 2013, 2014a; Semmens et al., 2016).  

Here, the ALEXI model was processed over CONUS at a spatial resolution of 4-km for the period of 2003-2010 10 

and forced with: meteorological inputs from the Climate Forecast System Reanalysis (CFSR; Saha et al. 2010), 

TIR land surface temperature from the Geostationary Operational Environmental Satellites (GOES East and 

West), and leaf area index estimates obtained from the 4-day 1-km Combined Aqua-Terra MODIS product 

(MCD15A3).  

Daily, instantaneous clear-sky latent heat fluxes retrieved from ALEXI were upscaled to daytime-integrated 15 

evapotranspiration estimates assuming a self-preservation of the ratio of latent heat flux and incoming shortwave 

radiation (fSUN) during daytime hours (Cammalleri et al., 2014b). Hourly CFSR incoming shortwave radiation 

inputs were integrated to produce daily estimates (24-h) of insolation used in this temporal upscaling. Currently, 

ALEXI is not executed over snow-covered surfaces. These periods were instead gap-filled with a linear 

interpolation of fSUN and a snow albedo correction to account for differences in surface net radiation over snow-20 

covered versus snow-free surfaces. Resulting 4-km ALEXI daily evapotranspiration estimates were temporally-

summed within calendar years to produce annual ET [mm yr
-1

] and spatially-averaged within each of the basins 

listed in Tables 1 and 2. Annual ALEXI ET estimates acquired in this way have been successfully applied to 

verify inter-annual evapotranspiration estimates acquired from land surface modeling (Han et al., 2015). 

2.2.2 Land surface model predictions of ET 25 

For the purposes of cross-comparison with ALEXI ET results, annual ET was also acquired from 0.125°-resolution 

Noah v3.2 simulations (Chen et al., 1996; Chen and Dudhia, 2001; Ek et al., 2003) generated as part of North 
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American Land Data Assimilation Phase 2 (NLDAS-2) activities (Xia et al. 2012). Hourly Noah predictions of: 

1) direct evaporation from the surface soil, 2) direct evaporation of canopy-intercepted precipitation, and 3) 

transpiration via plant root uptake of water were aggregated to produce an hourly evapotranspiration estimate. 

Annual ET averages were then obtained by summing these estimates for the calendar years 2003 to 2010 and 

spatially-averaging these summations within the basins indicated in Figure 1.  5 

2.2.3 Ground-based observations of P and Q 

Daily stream flow magnitudes were obtained from United States Geologic Survey (USGS) stream gauging 

stations located at the outlet of basins listed in Tables 1 and 2. These values were aggregated into (calendar year) 

sums and normalized by basin drainage area to obtain units of water depth per year [mm yr
-1

]. Annual total 

(liquid plus solid phase) precipitation (P) [mm yr
-1

] was based on the temporal aggregation of rain gauge 10 

observations acquired by the National Centers for Environmental Prediction (NCEP)’s Climate Prediction Center 

(CPC) and re-sampled onto a 0.125° grid by the NLDSE-2 project (Xia et al., 2012). These annual averages were 

then spatially-averaged within each of basins listed in Tables 1 and 2.  

2.2.4 Gravity remote sensing of dS/dt 

Monthly GRACE terrestrial water storage deviations (SGR) data were obtained by separately applying the 15 

rescaling coefficients of Landerer and Swenson (2012) to gridded 1° GRACE Level-3 terrestrial water storage 

products provided by the GeoForschungsZentrum (GFZ; version RL05.DSTvSCS1409), University of Texas 

Center for Space Research (CSR; version RL05.DSTvSCS1409), and the NASA/Cal-Tech Jet Propulsion 

Laboratory (JPL; version RL05.DSTvSCS1411). GRACE-based annual estimates of terrestrial water storage 

variations (dSGR/dt) were then derived via simple linear averaging of the GFZ, CSR and JPL terrestrial storage 20 

product to estimate SGR,Dec,i and SGR,Jan,i+1 (where i is an annual index) and the subsequent application of year-over-

year differencing: 

 (dSGR/dt),i = (SGR,Dec,i + SGR,Jan,i+1 )/2 - (SGR,Dec,i-1 + SGR,Jan,i )/2.   (2) 

Finally, gridded 1° dSGR/dt [mm yr
-1

] products were spatially-averaged within all of the coarse-scale basins listed 

in Table 1. Note that GRACE Level-3 SGR values capture monthly deviations from a long-term average datum 25 
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(based on average 2004-2009 conditions) and not absolute S valueslevels. However, the distinction is immaterial 

since our focus lies solely on annual dSGR/dt, which is insensitive to the presence or absence of any such datum.  

The primary application of dSGR/dt retrievals will be to verify annual water balance closure within the coarse-

scale basins listed in Table 1. However, we will also apply dSGR/dt within the medium-scale basins as a source of 

parameterization information for microwave-based dS/dt estimates and as a baseline for evaluating microwave-5 

based dS/dt as a source of downscaling information (see Section 4.2). TNaturally, these applications will be 

approached with caution since the spatial resolution of the dSGR/dt retrievals (~200,000 km
2
) is much coarser than 

the size of the medium-scale basins considered here (2,000-10,000 km
2
). The impacts of this significant scale 

mismatch will be discussed below. 

2.2.5 Passive microwave remote sensing of soil moisture 10 

Passive microwave-based surface soil moisture retrievals were based on the application of the Land Parameter 

Retrieval Model (LPRM; Owe et al., 2001) to Advanced Microwave Scanning Radiometer – EOS (AMSR-E) C- 

and X-band brightness temperature observations obtained from both ascending (1:30 PM LST) and descending 

(1:30 AM LST) orbits of the NASA Aqua satellite (Owe et al., 2008). AMSR-E LPRM Level 3 soil moisture data 

products were downloaded from the NASA Global Change Master Directory (http://gcmd.nasa.gov). The Aqua 15 

satellite was launched in June 2002 and remained operational until October 2011. Soil moisture datasets acquired 

from AMSR-E represent the longest surface soil moisture data record currently available from a single satellite 

sensor. The processing of these datasets into dS/dt estimates is discussed in Section 4. 

2.3 Statistical approach 

The temporal length of required remotely-sensed data sets imposes a serious challenge for this analysis. The 20 

primary limiting factor for this length is the availability of a consistent microwave-based θ dataset. As noted 

above, tThe data period utilized here (2003-2010) represents the longest current period of (temporally-consistent) 

microwave-based θ retrievals available from any single sensor (AMSR-E). Nevertheless, it still provides only 

eight annual values upon which to evaluate the annual closure of expressed in (1). Longer θ datasets based on the 

merger of multi-satellite/multi-sensor θ retrievals exist (Liu et al., 2011). However, concerns about their temporal 25 

consistency currently limit their value for analyses conducted at inter-annual time scales (Loew et al., 2013).  
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The restriction of the annual analysis to only 8 years limits our ability to robustly assess closure using temporal 

sampling alone. Therefore, whenever possible, we will sample closure evaluation statistics across both space and 

time to maximize the total degrees of freedom available for a statistical analysis. However, due to significant 

amounts of both spatial and temporal auto-correlation in P-Q-ET fields, datasets, considerations must be made for 

oversampling (in both space and time) when calculating effective sample sizes. To address this we followed 5 

applied the approach of Bretherton et al. (1999) who recommended (for the case of sampling quadratic statistics) 

an effective sampling size N* of: 

N*= N(1 - ρ
2
)/( 1 + ρ

2
)     (3) 

where N is the original sample size and ρ the auto-correlation at individual sampling points. In particular, we 

applied (3) separately in both space and time utilizing both temporal (separated in time, sampled over time and 10 

then averaged across various basins) and spatial (separated in space, sampled over space and then averaged over 

various years) samples of ρ to obtain both spatial and temporal sample size reduction factors. Next, the total 

sample size (i.e., total time samples x total space samples) was multiplied by both reduction factors to estimate 

effective sample size in both time and space. For example, in the large-scale basin analysis, we have a total 

sample size of 40 annual values (5 basins over 8 years); however, after accounting for over-sampling in both 15 

space and time, the effective sample size was reduced to 9.7. Likewise, for the medium-scale basins analysis, the 

total sample size of 128 annual values (16 basins over 8 years) was reduced to an actual effective size of 48.4. 

These effective sample sizes were then used to calculate effective degrees-of-freedom for all statistical hypothesis 

tests. 

3 Water balance closure within large-scale basins 20 

All water storage and flux products described above contain significant errors and biases. In addition, it is 

possible that non-resolved flux terms in (1) may hinder closure versus observed storage changes. Therefore, 

before deriving and evaluating an approach to estimate dS/dt for medium-scale basins using microwave-based 

remote sensing, we will first verify the ability of water balance data sets introduced in Section 2 to close the 

terrestrial water balance via (1). Due to the coarse spatial resolution of GRACE, a direct closure analysis is 25 

possible only for the large-scale basins listed in Table 1. Based on ET values derived from ALEXI, Figure 2 plots 

annual variations of P-Q-ET and (GRACE-based) dSGR/dt for all 5 large-scale basins listed in Table 1. In all 
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basins except the Missouri, annual values of P-Q-ET depart significantly from zero – illustrating the general 

importance of annual dS/dt on the terrestrial water budget. Within the Missouri, P-Q is roughly balanced by ET, 

and therefore, alone among other basins examined here, the annual estimation of dSGR/dt does not appear to be a 

requirement for closing the annual water budget. This may be linked to the very large reservoir capacity of the 

Missouri River Basin system, and the active management of Q to minimize inter-annual reservoir and channel 5 

level variability. This aggressive level of management ensures that the Missouri River Basin exhibits the smallest 

standard deviation of inter-annual P-Q-ET variability (~30 mm yr
-1

- see Figure 2) of any large basin considered in 

this analysis.  

The best closure results in Figure 2 are obtained in the Arkansas River and Red River basins. In these two basins, 

GRACE-based dSGR/dt closely matches inter-annual variations in P-Q-ET. This suggests that in the United States 10 

Southern Great Plains (SGP) region, both the assumptions underlying (1) and the water flux data sets considered 

are sufficiently accurate to characterize inter-annual variations in S. In contrast, there is clear evidence of a low 

bias in annual P-Q-ET relative to dSGR/dt within both the Upper Mississippi and Ohio River Basins. Given the 

frequency and extent of winter-time snow cover in these basins, it seems reasonable to ascribe this bias to known 

under-catch issues associated with the gauge-based measurement of snowfall (Goodison et al., 1998). In addition, 15 

there exists a potential for systematic error in cold-season ALEXI ET estimates (which are based on a simple 

extrapolation approach).  

Figure 3a show annual P-Q-ET versus dSGR/dt for all 5 large-scale basins. The sampled correlation is in Figure 3a 

is marginal (0.37 [-]) but improves considerably (0.52 [-]) when the 8-year mean of annual P-Q-ET is subtracted 

from yearly P-Q-ET results for each basin (Figure 3b). This is equivalent to imposing closure of P-Q-ET within 20 

each basin over the entire 8-year time period. In addition, replacing ALEXI ET with Noah-based ET reduces the 

sampled correlations in both Figure 3a and 3b (from 0.37 to 0.33 [-] and from 0.52 to 0.33 [-], respectively). This 

implies that preference should be given to the remotely-sensing-based ALEXI ET product. 

Due to the coarse spatial resolution of GRACE-based dSGR/dt, a comparable water balance analysis cannot be 

applied to the medium-scale basins listed in Figure 1 and Table 2. Instead we will cross-apply general tendencies 25 

observed in the large-scale closure analysis (Figures 2 and 3) to refine the medium-scale analysis presented 

below. In particular, the medium-scale basins listed in Table 2 are selected based on the principal of minimization 

of both human regulation (to avoid the lack of annual P-Q-ET signal noted in the Missouri Basin) and snow/could 
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season impacts (to avoid the low bias in annual P-Q-ET observed in the Ohio and Upper Mississippi River 

Basins). Overall, these two considerations motivate our decision to utilize only lightly-regulated MOPEX basins 

within the SGP portion of the Mississippi River system (see Figure 1 and earlier discussion in Section 2.1). In 

addition, based on annual water balance closure results presented in Figures 2-3, ALEXI-based (as opposed to 

Noah-based) ET will be used and closure will be imposed on 8-year P-Q-ET totals. 5 

4 Microwave-based closure for medium-scale basins 

As discussed above, the primary focus of thise analysispaper is on the utilization of new ET remote sensing 

products to objectively evaluate the contribution of microwave surface soil moisture retrievals towards describing 

resolving inter-annual variations of P-Q-ET  variations withinfor a series of medium-scale basins.basins using a 

new microwave-based proxy for dS/dt. To this end, tThis section will describe the derivation of the proxyof a 10 

new microwave-based proxy for dS/dt and its empirical evaluation within the specific set of medium-scale basins 

listed in Table 2. 

4.1 Microwave-based dS/dt estimation 

Any transition between surface soil moisture and S must account for relative variations in the temporal scale and 

phase of both quantities. In particular, the tendency for S variations to beis temporally-smoothed, and lagged (in 15 

time), with respect to corresponding surface soil moisture variationsbility (Chagnon 1987; Entekhabi et al., 1992; 

Swenson et al., 2008). Based on this reasoning, instantaneous 0.25° LPRM surface soil moisture retrievals (see 

Section 2.2) were averaged in time and space into a single monthly value for each of the basins in Tables 1 and 2. 

Next monthly (basin-scale) soil moisture averages for October, November and December (θPM,Oct, θPM,Nov, and 

θPM,Dec) were merged into a single, end-of-calendar-year estimate of passive -microwave- based θPM: 20 

θPM,i = WOct θPM,Oct,i + WNov θPM,Nov,i + WDec θPM,Dec,i    (4) 

where i is an annual index (here corresponding to calendar years between 2003 and 2010), and W are constant 

weighting factors (summing to unity) applied to each month. Annual changes in θPM (dθPM/dt) were then derived 

from annual differencing of θPM,i with θPM,i-1. This entire procedure was done separately for LPRM retrievals 

acquired during both ascending and descending AMSR-E orbits. Finalized values of dθPM/dt were then obtained 25 

by averaging results obtained from both orbits. Our decision to utilize a calendar year to accumulate annual 

Formattato: Tipo di carattere: Corsivo



19 

 

flux/storage change totals in (1) is largely arbitrary, and the impact of utilizing other annual periods will be 

discussed below. 

In addition to the specification of W, we also allowed for the application of a single calibration factor KPM [mm] 

when converting volumetric dθPM/dt [m
3
m

-3
 yr

-1
] variations into annual dS/dt depth changes [mm yr

-1
]: 

dSPM/dt = KPM dθPM/dt.       (5) 5 

Our approach for obtaining KPM was based on scaling dθPM/dt to match the sampled temporal variance of gravity-

based dSGR/dt. Therefore, KPM was defined as the ratio: 

KPM = σ(dSGR/dt)/σ(dθPM/dt)      (6) 

where the σ operator indicates a temporally-sampled inter-annual standard deviation.  

Despite some evidence for significant large-scale correlation between θ and S (Abelen and Seitz, 2013; Abelen et 10 

al. 2015)(Abelen et al., 2013; 2015), there are strong a priori reasons for scepticism regarding the application of 

(4-6) to a water budget application. First, due to the extremely shallow vertical support of passive microwave-

based surface soil moisture retrievals, it is uncertain if dθPM/dt actually provides an effective linear proxy for 

dS/dt. Second, even if such a linear relationship can be established, it is unclear if the ratio σ(dSGR/dt)/σ(dθPM/dt) 

in (6) provides a robust calibration coefficient to convert surface soil moisture variations into annual variations in 15 

S. Below we will attempt to provide empirical evidence to allay these (credible) theoretical concernsThese 

theoretical concerns are addressed below. 

4.2 Evaluation of proxy assumptions and calibration 

Figure 4 plots (annual) variations of P-Q-ET and dSPM/dt for all 16 medium-scale basins listed in Table 1. See 

Section 3 for the rationale behind the selection of these particular basins. The large plotted departures (from zero) 20 

seen for P-Q-ET confirms that inter-annual variations in S play a significant role in the application of (1) at an 

annual time scale. 

In addition, consistently negative P-Q-ET estimates are observed within several medium-scale basins (see e.g., 

basins #5, #8, #9, and #12 in Figure 4). Because these basins cannot be directly resolved by GRACE, it is 
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difficult to confirm whether this tendency is a real (i.e., a decadal- scale reduction trend in S) or an artefact of the 

summed impact of multiple long-term measurement biases in independent P, Q and ET products. However, based 

on the large-basin analysis presented in Section 3, the latter appears more likely. Therefore, annual P-Q-ET values 

are de-biased by subtracting out (on a basin-by-basin basis) the 8-year annual mean of P-Q-ET (see dashed line in 

Figure 4). The impact of this assumption on subsequent results will be discussed below. 5 

Our primary goal is determining the potential for explaining observed annual P-Q-ET variations in Figure 4 using 

the microwave-based dSPM/dt proxy introduced above. Our first priority is and empirically evaluating the 

assumptions - expressed in (4-6) - which underlie the proxy. The first issue is the degree to which the appropriate 

temporal averaging of microwave-based soil moisture via (4) can be used to obtain a robust linear proxy for P-Q-

ET. Figure 5a addresses this by plotting the average linear correlation for all the medium-scale basins between 10 

annual P-Q-ET and dθPM/dt obtained using all potential combinations of WDec, WNov and WOct (where WDec + WNov 

+ WOct = 1.0). Plotted correlations in Figure 5a are generally greater than 0.50 [-]. In fact, even after realistically 

accounting for the impact of over-sampling due to spatial and temporal auto-correlation in the P-Q-ET fields 

(Section 2.3), sampled correlations are statistically-significant (one-tailed, 95% confidence) for all possible 

combinations of WDec, WNov and WOct. Since these correlations are based on annual values (where there is no 15 

potential for obtaining spurious fitting due to the trivial representation of an obvious seasonal cycle), and there is 

no credible reason to suspect cross-correlated errors between the wholly independent P-Q-ET and dSPM/dt fields, 

the statistical significance of sampled correlation in Figure 5a can be taken as clear evidence of a robust linear 

underlying relationship between dθPM/dt and P-Q-ET. As such, it provides clear empirical support for (4-5). 

Nevertheless, the performance of the dθPM/dt proxy does vary as a function of WDec, WNov and WOct in Figure 5a 20 

and feasible parameterization strategies will be required to fix their values. To this end, Figure 5b plots the 

sampled correlation between dθPM/dt and dSGR/dt as a function of WDec, WNov and WOct. Note that monthly 

weighting values which maximize this correlation in Figure 5b also tend to maximize the correlation between 

dθPM/dt and P-Q-ET in Figure 5a. Based on Figure 5b, the maximum correlation between dθPM/dt and dSGR/dt is 

found at WOct = 0.4 [-], WNov = 0.5 [-], and WDec = 0.1 [-]. These (spatially and seasonally-fixed) weighting values 25 

will be used for all subsequent calculations of dθPM/dt via (4). The relative lack of weight applied to December 

surface soil moisture retrievals is likely reflective of frozen soil moisture conditions at this time and the need for 

S anomalies to be lagged in time with respect to superficial surface soil moisture variations. Adding monthly-
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averaged θ retrievals from September (θPM,Sep)  into (4) - so that end-of-year θPM was calculated using a four-

month weighted-average product - produced essentially no change to Figure 5. 

This The parameterization of WOct, WNov, and WDec alone is sufficient if dθPM/dt is to be interpreted solely as a 

linear proxy for relative inter-annual variations in dS/dt; however, interpretation of dθPM/dt as an absolute 

measure will requires the additional parameterization of KPM [mm] in (5) to transform dθPM/dt into a 5 

representation of dS/dt estimates with units of [mm yr
-1

] (i.e., dSPM/dt). Figure 6 shows the impact of KPM in (5) 

on the root-mean-square difference (RMSD) between dSPM/dt and P-Q-ET. Results are obtained by lumping 

annual results for all years within all medium-scale basins listed in Table 2, and the assumption that KPM is fixed 

in both space and time. The plotted horizontal line plots the inter-annual standard deviation of P-Q-ET - which is 

equivalent to the RMSD accuracy achievable by assuming dS/dt = 0 in (1). This baseline is improved upon by a 10 

wide range of KPM values. However, the absolute accuracy of the dSPM/dt proxy is maximized near KPM = 900 

mm.  

The KPM estimation approach in (6) is based on the assumption that this optimal value can be obtained via a 

simple variance matching approach applied to dθPM/dt and dSPM/dt. Applying (6) (in a lumped manner to all years 

and all medium-scale basins in Table 2) leads to a value of KPM = 1080 mm,
 
which is reasonably close to the 15 

optimal value of KPM (900 mm). It is also well-within the broad range of KPM which improves upon a baseline of 

neglecting dS/dt entirely (see Figure 6). 

It should be noted that the parameterization strategies presented above involve direct comparison between 

(relatively) high-resolution θ products obtained from microwave remote sensing with lower-resolution GRACE-

based dSGR/dt retrievals (which have been trivially re-sampled to capture a basin-scale mean). Despite the 20 

inability of GRACE retrievals to spatially-resolve the medium-scale basins considered here, Figures 5 and 6 

suggest these comparisons are still able to yield useful calibration information. However, it is possible that 

resolution inconsistencies between GRACE and AMSR-E may have a degrading impact on results. One strategy 

for resolving this scale inconsistency is to first degrade the spatial resolution of the AMSR-E θ field to match the 

~200,000 km
2
 GRACE resolution prior to applying the calibration approach outlined in Figures 5a and 6. 25 

However, attempts to do this (via smoothing of the AMSR-E θ fields using a 2-dimensional Gaussian filter) 

actually led to a small decrease in the quality of the WOct, WNov, WDec, and KPM calibration. This implies that, 
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despite their resolution differences, direct comparisons between AMSR-E and GRACE products appears to offer 

the most viable calibration approach.  

4.3 Microwave-based closure evaluation 

Utilizing the calibrated W and KPM derived in Section 4.2 leads to the dSPM/dt values plotted in Figure 7. Each 

point in the scatter plot represents one annual value within a single medium-scale basin. Our microwave-based 5 

dSPM/dt proxy product has a linear correlation with independently-acquired P-Q-ET values of 0.71 [-], which is 

statistically-significant (one-tailed, at 99% confidence) even after allowances have been made for over-sampling 

in both time and space (see Section 2.3). Note that all calibrated parameters (W and KPM) are constant in both 

space and time and therefore cannot provide a spurious source of skill for dSPM/dt temporal variations. In 

addition, all calibration is against GRACE-based dSGR/dt and plotted P-Q-ET fieldsvalues are used solely for the 10 

purpose of independent verification.  

While P-Q-ET derived in medium-scale basins cannot be directly validated against GRACE-based dSGR/dt 

retrievals (due to the ground-resolution of GRACE being much coarser than the size of the medium-scale basins), 

the significant correlation in Figure 7 strongly suggests that they are adequately representing the net annual flux 

of water into and out of the medium-scale basins. A slight reduction in correlation (from 0.71 to 0.62 [-]) is found 15 

when P-Q-ET is not corrected to close water balance over the 8-year study period. Likewise, replacing ALEXI ET 

with NOAH-based ET leads to another (very) slight reduction in correlation in Figure 7 (from 0.71 to 0.69 [-]). 

However, it should be stressed that, in all cases, the correlation between dSGR/dt and plotted P-Q-ET remains 

statistically significant (one-tailed, at 95% confidence). See Figure 4 for dSPM/dt time series results within 

individual medium-scale basins. 20 

4.4 Downscaling evaluation 

An important follow-on question is the degree to which the skill demonstrated in Figure 7 enhances our ability to 

track dS/dt in medium-scale basins above and beyond existing GRACE products. To this end, Figure 8a plots 

annual GRACE-based dSGR/dt versus P-Q-ET for all medium-scale basins. Since the ground resolution of 

GRACE is significantly coarser than the size of these basins, it is unfair to evaluate dSGR/dt based on these 25 

comparisons. However, despite this severe resolution penalty, dSGR/dt still manages to correlate relatively well 

(i.e., a linear correlation of 0.66 [-]) with independently-acquired estimates of annual P-Q-ET. The tendency for 
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skill in GRACE-based dSGR/dt to persist even at these (sub-resolution) scales implies that annual dS/dt fields in 

this region contain spatial auto-correlation at length scales finer than the GRACE spatial resolution. However, it 

should be stressed that the use of GRACE-based dSGR/dt fields at these spatial resolutions is not recommended 

and applied here only to define a baseline upon which to evaluate the benefits of subsequent downscaling using 

microwave-based dSPM/dt estimates. 5 

To this end, Figure 8b plots the relationship between annual P-Q-ET and dS/dt estimates obtained via a simple 

downscaling strategy based on the direct averaging of annual dSGR/dt and dSPM/dt estimates for each medium-

scale basin. Relative to GRACE-only results presented in Figure 8a, this simple downscaling strategy leads to a 

significant improvement in the degree of correlation with independent P-Q-ET values. Specifically, this 

correlation is increased from 0.66 [-] for the GRACE-only dSGR/dt case in Figure 8a to 0.77 [-] for the case of 10 

averaging dSGR/dt and dSPM/dt in Figure 8b. Application of a Fisher z-transformation and the effective degree 

sample size calculation presented in Section 2.3 confirms that this increase in correlation is statistically 

significant (two-tailed, at 95% confidence). 

In order to further examine geographic trends in results, Figure 9 evaluates dSPM/dt, dSGR/dt and downscaling 

results (based on the simple linear averaging dSPM/dt and dSGR/dt) obtained individually for each medium-scale 15 

basin in Table 2. Results are shown for both the linear correlation and absolute RMSD match with annual P-Q-ET 

variations. It is reasonable to expect that the accuracy of microwave-based θ retrievals, and thus their value as the 

basis of dSPM/dt estimates, should progressively degrade for higher-numbered study basins (which generally have 

wetter climates and denser vegetation coverage – see Figure 1). Therefore, it is somewhat surprising that no clear 

trend between basin land cover and the relative performance of the microwave based dSPM/dt proxy is discernible 20 

in Figure 9. However, dSPM/dt results demonstrate relatively poor accuracy for the furthest north (and most 

heavily-cultivated) basin (i.e., basin #7) and for the wettest basin (i.e., basin #16). The downscaled results (based 

on the simple averaging of dSPM/dt and dSGR/dt) generally produce results which are superior to the isolated 

application of either dSPM/dt or dSGR/dt; however, basin-to-basin variations are large and metric values for 

individual basins are likely to be impacted by large sampling errors. 25 

It is possible to replicate the dSPM/dt approach applied to the medium-scale basins for the larger-scale basins 

listed in Table 1. However, large-scale dSPM/dt proxies calculated in this way (not shown) are significantly less 

accurate than GRACE-based dSGR/dt results. There is no indication that a microwave-based dSPM/dt proxy can 
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consistently improve upon the relative accuracy of annual dS/dt in large basins beyond what is already possible 

via the utilization of existing GRACE-based dSGR/dt. As a result, the added benefits of a microwave-based 

dSPM/dt proxy appear limited to basins which cannot be directly resolved by GRACE. 

5 Discussion 

Passive microwave-based estimates of surface soil moisture capture only soil water storage variations occurring 5 

within the couple of centimetres of the vertical soil column and cannot directly detect storage dynamics occurring 

in deeper layers of the unsaturated zone - to say nothing of even deeper variations in groundwater storage or 

reservoir storage. However, despite this severe theoretical limitation, passive microwave surface soil moisture 

retrievals (θ) appear to retain significant value as an indicator of relative inter-annual variations in P-Q-ET (see 

e.g., Figure 7). This implies that, at least at an annual time scale and for certain conditions, unobserved 10 

components of S are sufficiently correlated with observable trends in surface soil moisture such that θ retrievals 

may serve as a potential proxy for variations in total S. Given the two orders of magnitude difference in the 

spatial resolution of microwave-based θ (1,000 km
2
) versus gravity-based (200,000 km

2
) dS/dt estimates, the 

microwave-based proxy appears to enhance our existing ability to closure the terrestrial water budget within the 

medium scale (2,000-10,000 km
2
) basins listed in Table 2 (Figure 8).  15 

Intuitively, the ability of surface θ retrievals to capture (much deeper) S variations is likely due to the tendency 

for (non-anthropogenic) variations in dS/dt to be forced, in a “top-down manner”, by atmospherically-driven 

anomalies in P and ET. In this simple conceptual model, variations in surface soil moisture provide a leading 

indicator of these anomalies as they are propagated downward into deeper hydrologic storage units (Chagnon 

1987; Entekhabi et al., 1992; Swenson et al., 2008). However, it must be stressed that this conceptual model is 20 

likely to break down for a number of cases; in particular, in instances in which variations in S are forced by 

anthropogenic modification of the hydrologic cycle. For example, S variations due to direct ground-water 

pumping (Rodell et al., 2009), particularly when associated with increased surface soil moisture via irrigation, 

will almost certainly confound the ability of θ retrievals to effectively capture inter-annual variability in S. 

Likewise, it is difficult to imagine microwave-based θ providing an effective representation of variations in S due 25 

to large changes in reservoir storage and/or river system management. Finally, even in cases lacking significant 

anthropogenic modifications of the hydrologic cycle, the relationship between soil moisture and groundwater 

memory is known to vary significantly as a function of climate (Lo and Famiglietti, 2010). Some modes of soil 
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moisture/groundwater interactions are almost certainly inconsistent with the application of (4-6). Therefore, 

additional study is required to better understand the geographic limitations of dθPM/dt as a credible dS/dt proxy. 

The geographic scope of this study was limited by two considerations. First, the evaluation analysis required 

access to sufficiently accurate annual P-Q-ET time series to serve as an independent benchmark for microwave-

based dSPM/dt estimates. As discussed in Section 2, this requirement restricts the geographic domain over which 5 

the analysis can currently be conducted. Second, the long-term AMSR-E LPRM soil moisture dataset utilized in 

the analysis has known limitations within areas of moderate and/or dense vegetation cover. Datasets based on 

lower-frequency L-band observations are currently being produced but will require 2 or 3 more years (beyond 

2017) to match the temporal length of the existing AMSR-E data record. However, once longer-term L-band 

datasets becomes available, they will enable the expansion of this analysis into more densely- vegetated areas. 10 

Our decision to calculate annual flux quantities using a calendar year (i.e., January 1 to December 31) approach is 

admittedly arbitrary. This choice will almost certainlymay impact the accuracy of dSPM/dt proxy estimates due to 

seasonal variations in the availability and accuracy of remotely-sensed soil moisture retrievals acquired from 

passive microwave remote sensing (due to e.g. vegetation phenology and/or the presence of snow or frozen soils). 

The impact of frozen soils could, for example, be circumvented by defining years as ending in early fall and 15 

therefore requiring sampling of θPM only during spring and summer months. However, high amounts of 

vegetation biomass during these months leads to a higher amount of uncertainty in sampled θPM and thus dSPM/dt. 

In order to directly examine this issue, results in Figure 8 were re-generated using a September 1 to August 31 

annual time period. Relative to earlier January 1 to December 31 results, this new annual definition resulted in 

less skill for both the gravity based and merged gravity/microwave estimates of inter-annual storage (i.e., a 20 

reduction in correlation from 0.66 to 0.39 [-] for dSGR/dt results in Figure 8a and from 0.77 to 0.54 [-] for the 

simple average of dSPM/dt and dSGR/dt in Figure 8b). However, the relative improvement of the averaged dSPM/dt 

and dSGR/dt remained statistically-significant (two-tailed, at 95% confidence). The reason for the reduction in 

performance for both dS/dt products is unclear; however, the added value of the microwave-based dSPM/dt 

retrievals appears to be robust regardless of whether the fixed annual cycled is defined to end during the summer 25 

(August 31) or the winter (December 31). A more detailed sensitivity analysis involving a more continuous range 

of annual end dates is possible; however, it is complicated by the relatively small number of annual cycles 

currently available for this analysis and thus the tendency to significantly change temporal sampling supports in 

order to accommodate changes in the definition of an annual period.  
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The targeting of annual variations in S A preliminary sensitivity analysis suggests that, despite the complication 

of frozen soil and snow cover, dSPM/dt results based on November to December θPM samples provide superior 

water budget closure than comparable results based on June to September θPM. As a result, for the specific set of 

basins examined here, the use of a calendar year (January 1 to December 31) appears to maximize the value of 

dSPM/dt for water balance applications.  5 

is motivated by the need to address important questions surrounding inter-annual variations in the hydrologic 

cycle. FinallyHowever, a natural extension of this work is is the application of the dSPM/dt at a finer monthly (as 

opposed to annual) time scale. In theory this is possible; however, there are several practical obstacles which 

must be overcome. First, as noted above, the accuracy of the dSPM/dt proxy appears to be reduced when applied 

during heavier biomass conditions found outside of winter. This implies that it may be difficult to adequately 10 

characterize monthly-scale storage variations based on calculating dSPM/dt at multiple points over the season 

cycle. In addition, based on a preliminary analysis, optimal values of W and KPM appear to vary within the 

seasonal cycle. Therefore, a seasonally-varying W and/or KPM parameterization would likely be required for 

dSPM/dt to accurately capture monthly variations in S. Given that monthly dSPM/dt variations are commonly 

dominated by a fixed seasonal cycle, it is very difficultchallenging to discern whether any apparent skill in 15 

monthly dSPM/dt variations is real or simply an artefact of over-fitting such a seasonally-varying W and/or KPM 

parameterization. As a result, the objective validation of a monthly dSPM/dt proxy will likely will require the 

availability of longer-term (i.e., 10+ years) dSPM/dt and P-Q-ET datasets capable of supporting mutually-exclusive 

calibration and validation time periods. As discussed above, the current limiting factor on the length of this 

analysis is the availability of temporally-consistent, satellite-based soil moisture products. Our current 8-year 20 

dataset is almost certainly too short to support such an analysis. 

 

6 Conclusions 

Advances in the remote sensing of ET currently afford an opportunity to independently verify other annual 

components of the terrestrial water budget - including changes in terrestrial water storage (dS/dt). Confirming 25 

recent work with GRACE, results clearly demonstrate the importance of dS/dt for closing the annual water 

budget. In particular, GRACE-based dSGR/dt estimates appear to provide a reliable source of such information 
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within large-scale river basins with relative low annual snowfall totals and anthropogenic management (Figures 

2-3). In addition, for basins smaller than the 200,000 km
2
 GRACE spatial resolution, estimates of dSPM/dt derived 

from passive microwave remote sensing and (4-6) also demonstrate clear value for providing annual closure 

information (Figure 7). Given that passive microwave-based soil moisture retrievals are available at substantially-

finer spatial resolution than gravity-based retrievals of S, this opens up the strong possibility of using microwave-5 

based surface soil moisture retrievals to downscale gravity-based dS/dt retrievals (Figure 8). 

The retrieval of the microwave-based dSPM/dt proxy is based on two - somewhat ad hoc - assumptions expressed 

in (4-6) which claim that: 1) dθPM/dt obtained via (4) has a linear underlying relationship with dS/dt and 2) the 

constant of proportionality in the relationship can be derived via variance matching between microwave and 

gravity-based estimates of dS/dt. These assumptions are directly supported by empirical results presented in 10 

Figures 5 and 6. Nevertheless, it should be stressed that theoretical support for (4-6) is still quite weak, and it is 

relatively easy to imagine cases in which these assumptions would be expected to fail (see Section 5). Therefore, 

additional validation work over a wider variety of conditions is certainly warranted. Likewise, an objective inter-

comparison between this approach and earlier downscaling approaches based on higher-resolution land surface 

model output (e.g., Reager et al. 2015; Wan et al. 2015) is warranted.  15 

In addition to isolating potential value in microwave-based dSPM/dt estimates, water balance results presented 

here also provide added confidence regarding our ability to capture annual variations in dS/dt via (1) and flux 

observations. In particular, both annual dSGR/dt and dSPM/dt estimates exhibit a statistically-significant correlation 

against independent annual P-Q-ET values with the medium-scale basins examined here (Figure 7). Terrestrial ET, 

in particular, is commonly perceived to represent a weak link in the characterization of (1). However, based on 20 

results presented here, it appears that ALEXI-based ET products over CONUS are now sufficiently accurate (at 

least in a relative inter-annual sense) for annual ET estimates to be used as a viable constraint to infer the accuracy 

of other water budget components. This is a marked improvement over the calculation of ET as a balance residual 

and opens the door to the fuller use of (1) as a diagnostic tool for various water balance products.  
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Table 1. Attributes of large-scale basins in Figure 1. 

River Basin 

USGS 

Station 

No. 

USGS Station Name 
Basin Size 

(km
2
) 

Annual 

P 

(mm) 

Runoff 

Ratio 

Q/P 

Missouri  06934500 Missouri River at Hermann, MO 1,347,556 563 0.10 

Arkansas  07263450 Arkansas River at Little Rock, AR 409,201 747 0.14 

Red 07344370 Red River at Spring Bank, AR 153,906 850 0.13 

Upper Miss.  07022000 Mississippi River at Thebes, IL 496,016 898 0.31 

Ohio 03611500 Ohio River at Metropolis, IL 527,557 1187 0.45 
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Table 2. Attributes of medium-scale basins in Figure 1. 

Basin 

Number 

USGS 

Station 

No. 

USGS Station Name 

Basin 

Size 

(km
2
) 

Annual 

P 

(mm) 

Runoff 

Ratio 

Q/P 

1 07144780 Ninnescah River AB Cheney Re, KS 2,049 768 0.08 

2 07144200 Arkansas River at Valley Center, KS 3,402 842 0.11 

3 07152000 Chikaskia River near Blackwell, OK 4,891 896 0.19 

4 07243500 Deep Fork near Beggs, OK 5,210 945 0.15 

5 07147800 Walnut River at Winfield, KS 4,855 980 0.31 

6 07177500 Bird Creek Near Sperry, OK 2,360 1025 0.23 

7 06908000 Blackwater River at Blue Lick, MS 2,924 1140 0.29 

8 07196500 Illinois River near Tahlequah, OK 2,492 1175 0.29 

9 07019000 Meramec River near Eureka, MO 9,766 1187 0.28 

10 07052500 James River at Galena, MO 2,568 1255 0.31 

11 07186000 Spring River near Wace, MO 2,980 1258 0.27 

12 07056000 Buffalo River near St. Joe, AR 2,148 1238 0.37 

13 06933500 Gascondade River at Jerome, MO 7,356 1293 0.24 

14 07067000 Current River at Van Buren, MO 4,351 1309 0.31 

15 07068000 Current River at Doniphan, MO 5,323 1314 0.36 

16 07290000 Big Black River NR Bovina, MS 7,227 1368 0.37 
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Figure 1. Map of the 5 large-scale basins (color shading - see Table 1) and 16 unregulated medium-scale basins 

(red outlines - see Table 2) considered in the analysis.  
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Figure 2. Annual time series of P-Q-ET (black) and gravity-based dSGR/dt (red) estimates for each of the large-5 

scale basins listed in Table 1. 
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Figure 3. (a) Relationship between annual P-Q-ET and gravity-based dSGR/dt within each of the large-scale basins 

listed in Table 1. (b) Same, except that annual P-Q-ET time series for each basin have been closed (i.e., modified 

to sum to zero over the 8-year data record). The blue line is a one-to-one line and red line is the least-squares 5 

linear fit. 
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Figure 4. For the 16 medium-scale basins listed in Table 2, the annual time series of raw P-Q-ET (solid black 

line) and P-Q-ET obtained by assuming flux closure over the 8-year period of record (dashed red line). Values of 5 

the microwave-based dSPM/dt proxy are also plotted (solid blue line). 
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Figure 5. The impact of monthly weighting factors in (4) on the sampled correlation between: a) dθPM/dt and P-

Q-ET and b) dθPM/dt and dSGR/dt.  5 
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Figure 6. The impact of KPM in (5) on the RMSD between dSPM/dt and P-Q-ET. Also plotted is the standard 

deviation of P-Q-ET (i.e., the RMSD incurred by neglecting annual dS/dt) and the value of KPM defined by the 

variance matching approach in (6).  10 
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Figure 7. Relationship between annual P-Q-ET (closed over the 9-year time series) and the microwave-based 

dSPM/dt proxy within each of the 16 medium-scale basins listed in Table 1. The blue line is a one-to-one line and 

red line is the least-squares linear fit. 10 
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Figure 8. a) Relationship between annual P-Q-ET (with 8-year closure) and gravity-based dSGR/dt estimates 

within each of the 16 medium-scale basins listed in Table 1. Part b) is the same as a) except for correlation 

against the simple average of dSPM/dt and dSGR/dt. The blue line is a one-to-one line and red line is the least-

squares linear fit. 
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Figure 9. For the 16 medium-scale basins listed in Table 1: a) the linear correlation between annual P-Q-ET and 

various annual dS/dt estimates and b) the RMSD between P-Q-ET and various dS/dt estimates. Basins are ordered 

from drier to wetter (from left to right) and basin numbering corresponds to listing in Figure 2. 
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