Preprints
https://doi.org/10.5194/hess-2016-571
https://doi.org/10.5194/hess-2016-571
11 Nov 2016
 | 11 Nov 2016
Status: this discussion paper is a preprint. It has been under review for the journal Hydrology and Earth System Sciences (HESS). The manuscript was not accepted for further review after discussion.

Human amplified changes in precipitation-runoff patterns in large river basins of the Midwestern United States

Sara A. Kelly, Zeinab Takbiri, Patrick Belmont, and Efi Foufoula-Georgiou

Abstract. Complete transformations of land cover from prairie, wetlands, and hardwood forests to homogenous row crop agriculture scattered with urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. Continued intensification of land use and drainage practices combined with increased precipitation have caused many Midwest watersheds to exhibit higher streamflows today than in the historical past. While changes in crop type and farming practices have been well documented over the past few decades, changes in artificial surface (ditch) and subsurface (tile) drainage systems have not. This makes it difficult to quantitatively disentangle the effects of climate change and artificial drainage intensification on the observed hydrologic change, often spurring controversial interpretations with significant implications for management actions. In this study, we investigate four large (23,000–69,000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of climate and land use change. While we detect similar timing of precipitation and streamflow changes in each basin, overall the magnitude and significance of precipitation changes are much less than we detect for streamflows. Of the basins containing greater than 20 % area drained by tile and ditches, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Monthly precipitation has increased slightly for some months in each basin, mostly in fall and winter months (August – March), but total monthly streamflow has increased in all months for the Minnesota River Basin (MRB), every month but April for the Red River Basin (RRB), September-December and March in the Illinois River Basin (IRB), and no months in the Chippewa River basin (CRB). Using a water budget, we determined that the soil moisture/groundwater storage term for the intensively drained and cultivated MRB, IRB, and RRB, has decreased by about 200 %, 100 %, and 30 %, respectively while increased by roughly 30 % in the largely forested CRB since 1975. We argue that agricultural land use change, through wetland removal and artificial drainage installation, has decreased watershed storage and amplified the streamflow response to precipitation increases in the Midwest. Highly managed basins with large reservoirs and urban centers, such as the Illinois River basin (IRB), may be able to buffer some of these impacts better than largely unregulated systems such as the Minnesota River (MRB) and Red River of the North (RRB) basins. The reported streamflow increases in the MRB, IRB, and RRB are large (18 %–318 %), and should have important implications for channel adjustment and sediment and nutrient transport. Acknowledging both economic benefits and apparent detrimental impacts of artificial drainage on river flows, sediments, and nutrients, we question whether any other human activity has comparably altered critical zone activities, while remaining largely unregulated and undocumented. We argue that better documentation of existing and future drain tile and ditch installation is greatly needed.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Sara A. Kelly, Zeinab Takbiri, Patrick Belmont, and Efi Foufoula-Georgiou
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Sara A. Kelly, Zeinab Takbiri, Patrick Belmont, and Efi Foufoula-Georgiou
Sara A. Kelly, Zeinab Takbiri, Patrick Belmont, and Efi Foufoula-Georgiou

Viewed

Total article views: 1,479 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,005 394 80 1,479 266 84 113
  • HTML: 1,005
  • PDF: 394
  • XML: 80
  • Total: 1,479
  • Supplement: 266
  • BibTeX: 84
  • EndNote: 113
Views and downloads (calculated since 11 Nov 2016)
Cumulative views and downloads (calculated since 11 Nov 2016)

Viewed (geographical distribution)

Total article views: 1,425 (including HTML, PDF, and XML) Thereof 1,419 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 14 Dec 2024
Download
Short summary
Humans have profoundly altered land use and drainage of the Midwestern USA. We examine whether historical precipitation increases alone can explain large increases observed in streamflows throughout the region. Using multiple analyses, statistical tests and a water budget we determine that streamflow increases have been driven by combined effects of precipitation and agricultural drainage installation. We argue that better documentation of artificial drainage is greatly needed.