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Abstract. Most studies about the application of geostatistical simulatioaedban multiple-point statistics (MPS) to
hydrogeological modelling focus on relatively fine-scale modets@ncentrate on the estimation of facies-level structural
uncertainty. Much less attention is paid to the use of input data amdabjgtinstruction of training images. For instance,
even though the training image should capture a set of spatial geologieaitehistics to guide the simulations, the majority
of the research still relies on 2D or quasi-3D training imalethe present study, we demonstrate a novel strategy for 3D
MPS modelling characterized by: (i) realistic 3D trainingages, and (ii) an effective workflow for incorporating a diverse
group of geological and geophysical data sets. The study cavareaof 810 knf in the southern part of Denmark. MPS
simulations are performed on a subset of the geological succetisiofoer to middle Miocene sediments) which is
characterized by relatively uniform structures and dominatesbbhgl and clay. The simulated domain is large and each of
the geostatistical realizations contains approximately 45aomilfioxels with size 100 m x 100 m x 5 m. Data used for the
modelling include water well logs, high-resolution seismic ,data a previously published 3D geological model. We apply
a series of different strategies for the simulations basedhtan quality, and develop a novel method to effectively create
observed sand/clay spatial trends. The training image is cotestras a relatively small 3D voxel model covering an area of
90 knf. We use an iterative training image development strategy and find thalighéemsdifications in the training image
create significant changes in simulations. Thus, this rdssh@vs how to include both the geological environment, and the
type and quality of input information in order to achieve optimaliltesfrom MPS modelling. We present a practical
workflow to build the training image and effectively handle diffiereypes of input information to perform large-scale

geostatistical modelling.
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1 Introduction

Simulation of groundwater flow and solute transport requires repedse hydrogeological models of the subsurface.
While many studies focus on estimating the spatial distributidrydfaulic properties (i.e. hydraulic conductivity, porosity),
the reliable delineation of the underlying geological structurddyoirostatrigraphic model is far more important to ensure
the reliability of groundwater flow predictions (e.g. Carrera, 1993; Lill,€2@04a; Renard and Allard, 2013).

Early geostatistical methods (e.g.: Chiles and Delfiner, 1999jtdah, 2002) provided tools to model uncertainty in
smoothly varying Gaussian properties, like porosity or permeahiithin targeted rock formations (e.g., oil reservoirs).
These produced petrophysical models that generally improved miesmirce development, but the models were poor
when abrupt changes in rock type, and hence petrophysical pespeeie important in defining reservoir structure. Later
generations of geostatistical methods supplied tools for modeltick) types (i.e., lithology or facies), that provided
incremental improvement (Stafleu et al., 2011), but still did not&fdy model non-stationary patterns in rock type, and
poorly captured patterns in stratigraphical units that are typically exnepmbinations of rock type.

Without suitable tools for developing realistic uncertainty-infatmmodels of either non-stationary rock type or
hydrostratigraphy, groundwater models are typically based otesidegterministic geological framework models that are
manually constructed. Research has continued to explore methods fatainbgdased simulation of structural
heterogeneities (Huysmans and Dassargues, 2009; Kesdler2ét18) to better estimate uncertainties in groundwater flow
(Feyen and Caers, 2006; He et al., 2013; Poeter and Anderson, 2005; Refsgaard et al., 2012).

The multiple-point statistics (MPS, Guardiano and Srivastava, 198shefie, 2002) was developed with the objective to
better reproduce complex geological patterns than other availaidtatistical modelling techniques. The method combines
the ability to condition the realizations to hard data (informatidgimout uncertainty) and soft data (information with
uncertainty) with the ability to reproduce geological featuresacherized by statistical properties described through a so
called Training Image (TI).

Hence, the TI plays a crucial role and should be constructed tesesp the structural patterns of interest (Hu and
Chugunova, 2008; Maharaja, 2008; Pickel et al., 2015). However, a fundametiigehdor the use of MPS for 3D
hydrogeological modelling lies in the difficulty to produce realistic 3D(€lg., Pérez et al., 2014, Ronayne et al, 2008), and
most of the studies in the literature are therefore based on @asi-3D Tls (Jha et al., 2014; Comunian et al., 2012; Feyen
and Caers, 2006). Several researches have demonstrated the pofetitelMPS to simulate 2D patterns (Hu and
Chugunova, 2008; Liu et al., 2004b; Strebelle, 2002), but less attention has beetodive construction of real three-
dimensional Tls.

In the present study, we describe a strategy to develop effectivesalistic 3D Tls based on the analysis of the associated
unconstrained realizations. This analysis can be performed hy agew unconstrained realizations per tested TI. In fact,

only general features induced by the coupled effects of the investid and the used implementation of the MPS
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algorithm are evaluated. These general features are commibiiht r@alizations (as it is confirmed also by the analg$i

the results generated by using hundreds of realizations and discussed at thbhepdoér).

Concerning the use of conditioning data, it is extremely importasidtiress the fact that the data are characterized by
different uncertainty levels and scales (He et al., 2014; MgGard Curtis, 1997). In this study, available sources of
information are seismic lines, boreholes, and a pre-existing, nigoaktructed geo-model. Depending on their scale and
uncertainty, we developed a practical way to incorporate afleshtinto the Single Normal Equation Simulation (SNESIM)
workflow as it is implemented in SGEMS (Remy et al., 2009). kample, the data from the borehole are used in a non-
standard way as soft conditioning and only after an appropriate gregsing aiming at: (i) removing the effects of scale
mismatches, (ii) properly accounting for the data uncertainty, iiip@ffectively migrating the information between the
borehole locations. The results of this novel approach are compared agaiegraditional strategies along the article. The
proposed workflow is general and can be readily extended to other data typaaitiptes other kinds of geophysical data).

In summary, the main objectives of the present study concerhe(i)erative development of effective 3D Tls, and (ii) the
optimal strategy for the simulation conditioning.

The paper is organized as follows: (i) section “2 Study arealsdeith the overall geological framework of the area under
investigation, while section “3 Data” describes the amount and atkastics of the different kinds of available data; (ii)
section “4 Establishing framework-model constraints” goes intdlsletiaout the specific geological unit targeted during the
stochastic simulations; (iii) “5 Defining MPS input informatiois”the most methodological section and consists of the
presentation of the different approaches whose outputs are thenrednipdhe subsequent section “6 Results”; (iv) the
second last section, “7 Discussion”, is about the assumptions/choécks anross the paper and their possible limitations
and future developments; (v) “8 Conclusion” is a very concise section where wg sumpharize our results.

Moreover, in “Appendix A", for sake of completeness, we provide furtietails regarding the variability within each

probabilistic modeland analyse additional realizations.

2 Study area

The study area covers820 knf, from coast to coast in the southern part of Jutland, Denmark, andrnaotiréion of
Germany (Fig. 1). A part of this area (625%ihas formerly undergone 3D geological modelling (the Tgnder miidel1)
which is presented in Jgrgensen et al. (2015). In this paper, weondkctrate on the Miocene sediments within the model
domain. The Miocene sediments were selected because: (i) ehpsiraarily composed of two main hydrogeological facies:
clay and sand, and (ii) the unit is composed of rather uniform stegctbroughout the area and therefore possible to
describe in a 3D TI.

A conceptual sketch of the geology in the area is shown in Fih&.base of the regional groundwater flow system
corresponds with the top of the very fine-grained Paleogene claly$dlia a gentle dip towards the southwest. The

overlying Miocene sediments consist of marine clay with santgicdobate layers. The Miocene deposits in Jutland has
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been thoroughly studied by Rasmussen et al. (2010) who based thes sindedimentological and palynological
investigations of outcrops and cores, combined with interpretation lefrégplution seismic data. During the Miocene, the
coastline fluctuated generally northeast-southwest across Jutanlling in a deltaic depositional environment. Rasmussen
et al. (2010) divided the Miocene deposits into three sand-rich daliic that are interfingered with prodeltaic clayey
units. In periods with low water levels, the coastline was teitlifar to the southwest and coarse-grained sediments were
consequently deposited in the study area. When the water levelghasha coastline was situated further to the northeast,
resulting in deposition of marine clays. The delta lobes dominakeindrtheast and show smooth dips towards southwest.
In middle and upper Miocene, very fine-grained marine clays belongittte Made Group were deposited in the western
part of the model domain.

The unconformable boundary between the Quaternary and the Miocenenissobured by buried valleys (Fig. 2). The
Quaternary deposits mainly consist of till and various meltwagposits, but, in some places, also of interglacial and
postglacial deposits. In some areas, the Quaternary depeasiteavily deformed due to glaciotectonism. In the western
portion of the study area, the geology generally consists of duteasdurs surrounding old pre-Weichselian moraine
landscapes. The outwash sandurs show a low relief with a gentle dip towardstveesas the old moraine landscape shows
a more irregular relief up to 60 meters above sea-level (M.drs.the east, the younger morainic landscape from the
Weichselian shows topographic changes between 40 - 90 m.a.s.l. Theamadés influenced by a large fault-bounded
structure (the Tagnder graben structure, Fig. 1b) that offsets tiperd€ep Chalk surface of about hundred meters (Ter-
Borch, 1991). The faults clearly offset both the top of the Paleogene and the bottom wditdra&y.

3 Data
3.1 Borehole data

The borehole data in the Danish portion of the study area aretedtifaom the Danish national borehole database, the

‘Jupiter’ database_(http://jupiter.geus.dk), and comprise ab600 doreholes with lithological information from driller's

logs and sample set descriptions. The Jupiter database providesaitidoron a number of parameters about each borehole,
which enables an evaluation of borehole data quality. Boreholesarik@ther kinds of data, are affected by uncertainty.
The level of uncertainty determines the quality/reliabilityttef measurements (i.e., the quality/reliability of the boreholes
Many factors impact the quality of boreholes. Just to mention afélem: (i) the drilling methods (e.g.: rotary drilling and
air lift drillings. In some cases, for example, the finer dits can be flushed out and the driller could potentially
misinterpret a clay layer as more sandy); (ii) the ddllpurpose (sometimes, if the goal is to reach a specificttahge
lithological description can be poor since it is not a priorityi)) (he age of the boreholes (for example, nowadays, in
Denmark, samples are collected systematically every regtdrthis was not the case few years ago); (iv) the presgnc
simultaneous wireline logging data (these kinds of ancillary nmétion make the geological interpretation definitely more

certain). During the geological modelling phase, a skilled gestlesgiould go through all the borehole records and verify all
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these different pieces of information and check for inconsistencies. Thisstsoidd be) the standard procedure to assess the
quality of the boreholes and prepare the data for the subsequemodeting phases. In the study area, many borehole
records are of low quality.

Together with the Danish boreholes, geological information from d@uboreholes located within the German portion of
the study area and deeper than 10 m is included in the analysis.ajdréynof the boreholes in both the Danish and the

German area are quite shallow and, in total, only 2 % of all the boreholes are deefpé0tha(Fig. 1).

3.2 High-resolution seismic data

The seismic data are extracted from the Danish geophysitzdiate ‘Gerda’ (Mgller et al., 2009). Most of the seismisline
were conducted with the purpose to investigate the groundwater resanctexamine the Miocene sediments (Rasmussen
et al., 2007). In the study area, seismic lines for a total length of around 170gkrh) (Were collected by several contractors
with two slightly different acquisition systems that, for sakelarity, we conventionally indicate here with SYS_COW!I and
SYS RAMBYLL. In both cases, the lines were acquired as landstrd@gh-resolution seismic data (Vangkilde-Pedersen
et al., 2006) by using seismic vibrators as energy source frégeency ranges spanned: from 50 Hz to 350 Hz, for
SYS_COWI, and from 50 Hz to 400 Hz, for SYS_RAMB@LL,; for both systethe sweep was 5 s long. The receiver
arrays consisted of: 95 not-equally spaced geophones (1.25 m betweest 82 deophones, and 2.5 m for the others), for
SYS_COWI, and 102 geophones (1.25 m between the first 50 geophones, and 2.5 m for the others)RIBKMBZEL. In

both acquisition settings, the sources were fired every 10 m.

Under normal circumstances, the data are high quality betweeoxapptely 30 m to 800 m in depth. Prior to the import of
the seismic data to the geological interpretation softwaregléwvation values are adjusted, based on an assumed constant
seismic velocity of 800 m/s (Kristensen et al., 2015), which is a common velocity focé&he and Quaternary deposits in
Denmark (Hgyer et al., 2011; Jgrgensen et al., 2003). Elevation morseate important because of the considerable effect
of the topography that, even if mildly varying, along extended profile can sigrilfice#ffect the quality of the final results.

4 Establishing framework-model constraints

The MPS model domain corresponds to the lower and middle Miocenaesgsiwhich are positioned below the Made
Group and above the Top Paleogene surface (Fig. 3). Inside the Tgndéramadéig. 1), however, the results of the
already existing model (Jgrgensen et al., 2015) are used and thareforat included in the MPS simulations. The Tagnder
model results are used because the model was constructed based thhorough geological analyses and so considered as
the best geological model obtainable in that area. The surfddbe relevant geological boundaries: Top Paleogene,
Bottom Made and Top pre-Quaternary (Fig. 3) are constructed igetivenodelling software package Geoscene3D (I-GIS,

2014) by using interpretation points and interpolating these datadtedhe corresponding stratigraphical surfaces. The top
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of the MPS model domain is obtained by merging the surfaces ddtiem Made and the Top pre-Quaternary surface
(Figs. 3 and 4a). The lower boundary of the model domain corresponds to the Top Paleogené-sysfa&tand 4b).

The top surface of the Miocene sediments shows a regional dipd®wast with significant depressions along the Tgnder
graben structure and at the buried valleys. The surfacetielevianges from 20 m.a.s.l. to -460 m.a.s.l. (Fig. 4a),
corresponding to depths varying between 30 m and 80 m, in the east,abulibi60 m, in the west. In the Tgnder graben,
the depth to the top of the Miocene ranges approximately from 26B@&0tm and locally (associated with buried valleys)

up to 460 m. The bottom surface of the Miocene sediments (Fig. 483 waore smoothly, and also has a small regional dip
from east (near elevation -100 m.a.s.l.) to west (approximaihatadn -320 m.a.s.l.), punctuated primarily by the Tgnder
graben structure (elevation down to -560 m.a.s.l.). The Miocene sedityygiotdly have a thickness varying between 50 m

and 250 m, but are thinner and locally absent below the buried valleys (Fig. 2).

5 Defining MPS input information
5.1 Seismic data

Rasmussen et al. (2010) proposed a lithostratigraphy for the Mioceression, a “Miocene model” (Kristensen et al.,
2015), based on interpretations of seismic data that was correldtedoavehole interpretations and outcrops. The
observational data points used in the Miocene model were utilized istudy to define the top of individual Miocene
stratigraphical formations along the seismic lines (Fig. Baprder to use this information in the MPS modelling, the
stratigraphical interpretations from the Miocene model arelatmusinto a binary sand/clay voxel model of one cell width
along each seismic line (Fig. 5b and 6).

The sand/clay distribution along the seismic lines is used asdatadn the MPS simulations. The information is used as
hard conditioning since it is considered highly reliable, and sincesghle of structures delineated by the seismics is

comparable to the scale of the simulated output.

5.2 Existing 3D model

In order to ensure edge matching between the stochastic tieakizand the deterministically constructed Tgnder model, a
buffer zone along the pre-existing model’s edges is creatdihvwteoScene3D and used as hard conditioning data for the
MPS simulations. The Miocene formations interpreted in theiegidtgnder model (Jgrgensen et al., 2015) are translated
into sand and clay. In Fig. 6, the hard conditioning data from the pringxisodel (the buffer zone) are shown together

with the hard information from the seismic lines.
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5.3 Borehole data

All lithological categories contained in Jupiter are simpdifend divided into three groups: sand, clay and ‘other’. In this
study, the conditioning based on the boreholes has been conducted through thtbresedifferent strategies. The different
ways of considering the borehole information are illustrated and summarizegl i7.

The simplest and most common approach for exploiting the informatom fine boreholes is to include them as hard
conditioning data. This is the first test performed in the pregady (Fig. 7a). However, this simple approach does not take
into consideration the uncertainty in borehole data associated(iyitiaccuracies in the recorded information, and (ii) the
resolution, or scale, differences between the information in the borehole records gealdlyecal model cell size.

In order to address these issues, an alternative conditioningygtimteested. In this case, the boreholes are considered as
soft data (Fig. 7b): a 20-meter-long moving window is applied th esiginal borehole in order to average the densely
sampled lithological data into probabilities defined on the coaisarlation grid. Since the typical vertical dimensions of
the structures are ~20 m, the size of the averaging window isrclaserdingly. This procedure is consistent with the
reasonable assumption that, in the middle of the geological formateare relatively certain of the lithology, while this
certainty decreases as we get closer to the boundaries. Moreoweder to take the general uncertainty in the borehole
information into account, we map the resulting averaged valuea is&iad probability interval ranging from 80 to 20 %. In
this way, voxels with the highest chances of having sand araatbazed by a maximum sand probability value of 80 % (in
pink, Fig. 7b), whereas voxels with the lowest sand probability aceiatsd to a value as low as 20 % (in green, Fig. 7b).
In Fig. 7b, it is clear that the transition zones between sandlapdarespond to a band with sand probabilities of 40 %.
This value is the marginal distribution value for sand occurreritteénvithe investigated model volume, as it is calculated
from the borehole data and consistently formalized in the Tls.

When borehole information is too distant, the sand/clay ratios indhbagittic realization are solely derived from the Tl and
the sand marginal distribution. Unfortunately, borehole information aeteeant depths is relatively sparse (due to shallow
boreholes), and, at the same time, the SNESIM algorithm has a¢grideignore such “localized” soft data (Hansen et al.,
submitted). Moreover, it is known that the model domain shows a spghiaklithological variation in which the overall
proportion of sand is higher in the northeast compared to the southwes éisa clear from the borehole data). To enforce
this real, general trend in the realisations, the “localizedéhmle probabilities are kriged into a 3D grid to be used as
“diffuse” soft conditioning (Fig. 7c and Fig. 8). This would be unneagsg SNESIM could handle soft data as local
conditional probability and, here, we are suggesting a practied¢gyrto effectively overcome this limitation. Clearly, the
kriged sand probability distribution is seen to correspond to the borethadesto their locations (Fig. 7¢), whereas areas far
from boreholes (e.g., at km 6 along the section in Fig. 7c) apgets (8o characterized by a sand probability equal to 40
%). However, in a few cases (e.g. the clay layer in the gadpof the borehole at profile distance 10 km, Fig. 7c), the

borehole information does not seem to migrate into the surrounding gradcadiibe explained by the influence of other
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boreholes in the 3D domain. The desired spatial trend, characterizehidpyer sand probability in the north-east compared

to the south-west, is evident in the sand probability grid (Fig. 8).

5.4 Training image

The training images (TIs) are constructed as 3D voxel modeldhveittame discretisation as the entire model (100 m by 100
m laterally, and 5 m vertically) and consist in approximately@@@voxels, covering an area of 90%he sizes of the Tls
are significantly smaller than the simulation domain, but theyaage enough to cover the size of the typical structures in
the simulated Miocene unit. The TIs are used by the MPS dinnukagorithm to represent the basic spatial and proportion
relationships of the sand and clay facies within the Miocene uniicdiehe Tls are modelled to show deltaic sand layers
building out towards southwest within a larger clayey unit. The saneéroint the Tls is 40 %, in accordance with the
proportion of sand observed in the borehole data.

The Tls are built in Geoscene3D using the voxel modelling toolsideddn Jagrgensen et al. (2013). In practice, each sand
and clay layer is defined by so called “interpretation” pointest points are subsequently interpolated into surface grids,
defining the volumes, which are then populated with sand and clay voxels. Byhognually changing the locations of
these interpretation points and/or creating/deleting some of them, we can hawematfal over the adjustments of the TIs.

In the present study, several different TIs were tested, andake of simplicity, only two of them (the first attempt aimel

final TI) are explicitly showed in this paper (Fig. 9). The first TIL(TFig. 9a) is based on the existing 3D geological model
covering an adjacent area (the Tgnder model; Jgrgensen et al., 205kt THdas been manually adjusted, during several
iterations, based on the unconditional outputs. This iterative process cstogye® the corresponding unconstrained
realization was found satisfactory in terms of its abilitynimic the geological features we expect in the Miocene ac¢hes
study area. Those expectations about the geology are based on ourgldgicgeunderstanding of the area, the available
seismic lines, and the few existing deep boreholes. For examplagndbaditioned realizations, associated with the TIs in
Fig. 9, are shown in Fig. 10. The main difference is that TIlnha® layers than the second one (TI2 - Fig. 9b). This is
clearly reflected in the unconditioned simulations, in which, thézation based on TI1 (Fig. 10a) shows significantly more
layers than the corresponding realization based on TI2 (Fig. 10b)rebh#s are evaluated and compared against the
structures expected from the Miocene model (Kristensen et al., 20d4%)e, to adhere to what we know about the Miocene
geology, the unconstrained realization associated with the skl@ttevas supposed to show fewer, larger, and more
compact sand structures. These characteristics are evidemtifeetly compare the two realizations in Fig. 10, and clearly
confirmed by the study of the associated distributions in Bity.42, 13 (see, for instance, Haralick and Shapiro, 1992). In
particular, Fig. 11 quantitatively demonstrates that larger sandsbadiemore frequent in the realization corresponding to
TI2 (black histogram), while the realization generated by (§leen histogram) is characterized by a significantly higher
presence of relatively small sand layers. Regarding the sifigpe features of the realizations in Fig. 10, Fig. 12 highlights
that elongated sand structures are more probable for the riealirafig. 10a (in fact, eccentricity equal 1 corresponds to

the degenerate case of a straight line). Jaggedness, definee radid between the surface and the size of bodies, can
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provide a useful estimation of the compactness of the sand bodiesl8igNot surprisingly, the sand lenses in the
realization associated to TI1 are more jagged than those ithirerealization obtained by using TI12. Because of the higher
accordance between our geological expectation of the Miocene angaend the unconstrained realization in Fig. 10b, TI2
is selected for all MPS simulations discussed in the retbiegbaper. These conclusions are drawn on a single unconstrained
realization per TI. Nevertheless, their validity is genarad they do not depend on the specific realization considered. In
fact, only the features induced by the specific choice of thedupled with the actually used implementation of the MPS
algorithm) are taken into account in the Tl selection procesf Aapth discussion of multiple realizations and their mutual
coherence in terms of the proposed analysis is presented in the Appefadid in the associated Fig.s 19-21). Naturally,
after the full model has been set up conditional to all the datéharstkected Tl, and during its use for, e.g., risk analysis or
as input for hydrological modelling, a large (as large as pl@jstollection of realizations of this model would be useful.
However, during the construction of the optimal Tl to be utilizechpatito the geostatistical model (as we do here) a few

realizations suffice.

6 Results

In the following, we present and compare the structures of tiggesrealizations generated by each of the different
conditional strategies analysed in this study (Table 1).h&lIrealizations are produced by using the same random seed to
better appreciate the differences. For comparison, an unconditiotiedtiea (a) is presented in the first panel of each of
the figures (Figs. 14 - 16). The second panel (b) shows a realizgnerated by using exclusively hard conditioning. In the
third panel (c) a realization is presented, in which the boreholematmn is directly treated as soft conditioning data.
Finally, in the fourth panel (d), a realization with the sand probability borehaleiggid for soft conditioning is shown.

Figure 14 shows a horizontal slice through a realization reptiag each of the four conditional strategies listed in Table
As expected, the overall size and form of the structures arparabie between the realizations in (a) — (d) since theaspati
characteristics of the structures are primarily determinethé TI. In (b), (c) and (d), the realizations within the Tagnder
buffer zone (delimited by the dash lines, Fig. 14) are completeilyedieby the hard data. It can be observed that the buffer
zone cannot be identified in the realizations, which further supports our final ébiothe TI2. In fact, this indicates that the
same kind of spatial variability and geological patterns aamkessly present within the pre-existing Tgnder model and the
simulation results. In this horizontal slice, it is possible to apaie the effect of the soft probability grid (Fig. 14d)
compared to the case of “localized” borehole information (Fig. 14b and When using the probability grid, there is a
significantly higher sand content and more interconnected sand bodyemoeuin the middle part of the study area
(compare with Fig. 8).

Figure 15 shows vertical profiles through each of the testalizagons (Table 1) along a transect with several deep
boreholes (for location, see Fig. 14). Like in Fig. 14, the overalttsiral patterns of the individual realizations appear

similar. The outcome of the unconditioned realization does not agre¢heitiorehole information, since this has not been
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used. For instance, this is confirmed by the borehole at prafilendie 10 km in Fig. 15a. On the contrary, in the realization
where the borehole information is considered as hard data (Fig. Iblojstglerfect consistency is observed between the
realization and the boreholes. However, mismatches naturally obeur the individual layers in the boreholes are thinner
than the simulated voxel thicknesses (e.g., by the borehole dé¢ plisfance of about 15.5 km). Another seeming mismatch
in Fig. 15b occurs every time the influence of the borehole infiomas extremely local, sometimes limited to a single
voxel corresponding to the one actually holding the borehole information.isTHisr instance, seen for the borehole at
profile distance of about 9 km, where the fit between the réializand the deeper part of the borehole only appears when
observed at a very detailed scale.

Also in the realization where the borehole information is considasesbft data (Fig. 15c), there is a generally good fit
between the realization and the borehole data, but this mataaitydess pronounced in areas where a high uncertainty is
associated with the borehole data (Fig. 7b). For instance, a paar@mfdared to Fig. 15b is observed at profile distance of
about 10 km. Generally, the fit to the boreholes is better when theosafitioning information does not conflict with other
statistical properties as defined by the TI or neighbouring donifig information. An example of this conflict can be
observed by the borehole at about 9 km. Here, the test with thedatxdFig. 15b) resulted in a highly local match
concentrated in a single voxel column, implying that the borehole iatmmdid not comply with neighbouring data or
statistical parameters. For the same reason, the reatiziies not strictly fit the borehole when the borehole information is
treated as soft conditioning data (Fig. 15¢). The differentedem (c), where the boreholes are treated as soft probability
data, and (d), where the soft probability 3D grid is used (Fig. §anast pronounced when considering the realization
results on a larger scale than the shown in the profile in Fig. 15.

A further example highlighting the effects of the probabilitig gs shown in Fig. 16, where a long SW-NE profile through
each of the tested realizations (Table 1) is inspectedg¢ation, see Fig. 14). Borehole data are located further away than
the voxel size (100 m) and is therefore not shown on the profile. Abaimyverall structural pattern is comparable between
the different realizations. As also observed in the horizontal iégv 14), and as it must be, the results in (b), (c) and (d)
are fixed within the buffer zone around the Tgnder model, where thebaditioning information is used. For exactly the
same reason, the realizations in (b), (c) and (d) perfectlghnedso where the profile crosses the seismic lines. $lirece
differences in the constraining strategy are related to thg tlwe borehole data are handled, only little structural
dissimilarities are seen when considering this specific profifle no borehole data. Those differences are therefore mainly
controlled by the trend imposed by the soft probability grid inH&nce, the most pronounced difference is the higher clay
content in the south-western part of (d) compared to the northeasspaties variation in the clay content from the west to
the east is even clearer in the 3D view of the realization shiovifig. 17. The kriged sand probability is effective in
enforcing the proper spatial trend on the realization. This is ®yidet only from the comparison between Fig. 17b and Fig.
8, which allows verifying, voxel-by-voxel, the accordance betw#®en soft conditioning distribution and the final
corresponding realization, but also from the results in Fig. 18ctnFay. 18 shows the cross-correlations (see, for instance,

Stoica and Moses, 2005) between the soft probability distribution §ignd each of the realizations visible, respectively,

10



10

15

20

25

30

for example, in Fig. 14c and Fig. 14d (see, also, Table 1, casexl(())» As expected, the correlation with the realization
(d) has a much higher and more pronounced maximum.

It is probably important to stress that our conclusions are gesmeedl the differences highlighted for each conditioning set-
up are not realization-dependent. This means that they would appeatamhsifor every realization obtained with the
same conditioning setting. For clarity, this aspect, togetherthdtvariability within each probabilistic model, are further

discussed and analysed in Appendix A.

7 Discussion

If MPS modelling is applied to large study areas, it is tyfyiceecessary to divide the area into different regions or dwsnai
and use different Tls to properly describe the geology in each indivigigiain. In the present study, the entire investigated
area was divided into four main, vertically subdivided, units: the @uatg the Made Group, the Miocene and the
Paleogene. The Miocene sequence was chosen for our study sinmetatively stationary from a statistic point of view and
can be easily divided into two main facies: sand and clay.

One of the challenges was the presence of the significant gsaheture, which offsets the Miocene layers. In the current
study, the graben structure is only visible through the morphological shape ap tredtbottom of the model domain, but in
the MPS realizations this has been ignored. In future studiets #nduld be handled, such that the MPS simulation results
are affected across the faults. A possible solution could be tthasgeochron formalism (Mallet, 2004), in which the
simulation could be performed in a regular grid, with geo-timg-aisis. Realizations should then be converted into depth
using a geo-time to depth conversion.

The generation of 3D Tls that produce desired patterns is time cigsanmd difficult, which may be why many of the
previous studies are based on 2D or quasi-3D TIs (Comunian et al., 20tat al., 2016; Feyen and Caers, 2006;
Strebelle, 2002). In this study, the 3D Tl was created in the mogledbftware GeoScene3D. Since GeoScene3D is
specifically designed for 3D geological modelling and hostsstfml manual voxel modelling (Jgrgensen et al., 2013), the
creation of the Tl was relatively easy and straightforward. Wineating the Tl in this manner, the main focus was to
represent the expected geological structures and not to make it statinortagorl, MPS implementations assume stationary
Tls (Liu et al.,, 2004b) and MPS application to strongly non-stationgstems is currently an area of research (e.g.
Honarkhah and Caers, 2012; Straubhaar et al., 2011; de Vries et al.CR0O@8nova et al. 2008). The Tl used for this
study was generated by following the unique criterion that the uitmoretl simulation (obtained by using SNESIM
through its implementation in SGEMS) could satisfactorily reprodheeexpected geological structures. Ideally, the TI
should be constructed independently from the choice of MPS algorithmhemnealizations obtained by using a specific Tl
should have the same spatial variability as formalized by alvdrtg image. In practice though, this is rarely the case.anhil
a specific part of the spatial statistics may be acelyratproduced, the realizations may lack geological featbegsan be

crucial for subsequent modelling and interpretation. This is whghb&e of MPS algorithm, and the parameters used to
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run the MPS algorithm have significant impact on the spatiattsires seen on generated realizations. Hence, in practice,
structural modelling should consist of choosing a Tl together wipeaific MPS algorithm (and the associated modelling
parameters) to generate realizations capable to refleciphtial variability that appears to be realistic fromealagical
perspective (Liu, 2006). Thus, the development of an effective Tl involvétemtive procedure, where the realizations
should be tested and evaluated. It is worth noting that even if thioped€T | is not stationary, it is interpreted as stationary
by the algorithm we have used (SNESIM; Strebelle, 2000). THeatans showed a significant sensitivity to the actual
choice of the 3D TI (Fig. 10). Thus, we highly recommend a careflli@i@n of the unconditioned simulation results and
subsequent, consistent Tl optimisation.

A strategy to include available information into the stochastioulgition is via hard conditioning. Through hard
conditioning, the realizations are forced to perfectly match the geduilata. In this study, hard conditioning was used to
ensure a perfect correspondence between the simulation resblid@mer geological model available for the Tagnder area.
The results illustrate that this goal can be successfulshegaeven though the influence of the hard conditioning data
remains quite local.

Also the seismic data, represented by interpretations alongitis lines, have been treated as hard conditioning data.
This can be debated since seismics is an “indirect” geophysiethod that is inherently affected by uncertainty. The
reflections observed on seismic data represent changes in settotity and/or density, but they are not necessarily related
to lithological variations. Furthermore, the quality of the datalehighly varying as the resolution capability depends on
the depth and, due to the uncertainty of seismic velocities used for aeptersion, also depths in the seismic sections are
uncertain. In the present case, it was decided to use the inteometaong the seismics as hard conditioning data as their
level of uncertainty is assumed to be much lower than the othealdleadata (Kristensen et al., 2015), especially at the
scale required for the simulation.

Because of technical and economic limitations, the applicatioaflettion seismics for shallow hydrostatgraphic studies is
relatively recent (probably the first examples can be traeett to the ‘80s). However, as a consequence of the increasing
and general awareness concerning the use and protection ofregaterces, during the last 40 years, seismics - together
with several other geophysical techniques (e.g., the airborneoategnetic methodologies) - has been applied to many,
diverse hydrogeological characterizations with varying regelg., Francese et al. 2005; Giustiniani et al, 2008). Several of
the problems in this kind of surveys lie: (i) in the presence tir@pic noise; (ii) the fact that a possible shallow water table
may reflect the majority of the energy and, at the same timask low velocity geological features, preventing the effecti
reconstruction of deeper structures. Actually, in the attempt tcawver these difficulties, it has become more and more
common to process and invert what is still often considered noisgrdhbed-roll (Strobbia, 2009). In fact, ground-roll
contains valuable information about the share velocity distribution isuhsurface and is generally characterized by high-
amplitude. Recently high-resolution, shallow techniques based on surfaees vihave been developed and tested
successfully for hydrogeological investigations (Vignoli et aD12; Vignoli et al., 2016). A possible limitation of

techniques based on surface waves concerns the availability éfelgwency sources: in presence of slow sediments, low
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frequencies are required to reach the desired depths, but gen#ratings very demanding and potentially detrimental to
the seismic vibrator.

In the present research, the use of the borehole data asdmalitioning data was considered suboptimal due to the low
quality of many of the wells and the different discretizatiothefborehole data (1 m) compared to the size of the realization
grid (5 m). The borehole data were therefore translated intprifabilities by using a moving window strategy that, in one
shot, takes into account the borehole information uncertainty and the differenssaaleA uniform uncertainty of 20 % has
been assumed for the boreholes across the entire domain; howduaurenstudies, it would be straightforward to extend
the present approach and locally rescale the soft probabédeesding to a quality rate of each individual borehole as, e.g.,
the one presented in He et al. (2014). In this way, poor qualithdlersvould influence the simulation less than more
reliable data.

One of the difficulties in the development of a proper MPS rdalizaf the Miocene sequence was that the sand content
varied spatially across the model domain making the sequence rionsstat A 3D sand probability grid (Fig. 8) was
generated in order to migrate the information further from thehbtge and constrain the geostatistical simulation to follow
the spatial sand/clay trend characterizing the study areasofhprobability grid can consequently be seen as a shortcut to
address the non-stationarity, such that the sand/clay content dexwedhfe TI was overruled by the probability grid.
Another possible solution could consist in the creation of differentoltepresent the end-members, and then interpolate
these to obtain gradual changes dependent on the positions as discussed in Mariethexs 4261@x Actually, if SNESIM
could correctly handle soft data in the form of localized comuti probability, kriging the borehole probabilities would be
unnecessary (Hansen et al., submitted).

In addition to the data already incorporated as (soft and hard)tionitj data in this study, dense electromagnetic (EM)
surveys, on approximately half of the area, are available in @éhésb geophysical database Gerda (Mgller et al., 2009). An
option would be to use these resistivity data in the MPS modellingpfasconditioning data, such that high electric
resistivities indicate sand, while clay corresponds to lowtigsysvalues (see, for instance, He et al., 2014; He et al. 2016).
However, EM data have a limited resolution capability towardsl#yiers (Ley-Cooper et al., 2014; Vignoli et al, 2017),
especially in the deeper parts of the investigated sequencemadbeied unit is generally present at great depths (from a
range between 30 m and 80 m, in the east, to a range betweenati&D1IM0 m, in the west) and the resolution of the EM
data is consequently quite low in most of the area. This is eBpeb&case in the west, where the Miocene unit is located
below the depth of investigation (Christiansen and Auken, 2012). Anotherngeategarding the use of resistivity data for
detecting sand and clay within the Miocene deposits is thenoonoccurrence of silt (Rasmussen et al., 2010). Some of the
clayey formations are very silty and, while silt has srgediin sizes and hydraulic conductivities, it has high resistvitie
Thus, clayey formations with high silt contents might show highsstieities than expected, leading to potentially wrong
interpretations. In addition to that, during the borehole description péiisis, often recognised as clay, and this clearly

causes a mismatch between the borehole and resistivity information.
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Geostatistical simulation methods are most commonly used te eredtiple realizations whose variability represents the
combined (uncertain) information; for instance, with the purpose mastiuncertainties of structural variability (Feyen and
Caers, 2006; He et al., 2013; Poeter and Anderson, 2005; Refsgaay®@12).or to make probability calculations to be
used for various forecasts (Stafleu et al., 2011, Christensen2814), In the majority of this study (see Appendix A), only
one realization of each of the conditional strategies was pegksertie reason is two-fold. Firstly, the primary goal of this
paper is to describe a workflow for choosing a training image, aodrhbine all available information into one consistent
probabilistic model. And each individual realization (e.g., in Fig. 1,7pysconstruction, compatible with all simulation
inputs (thus, the statistics from the Tl, the hard data, and the soft conditioningy) s8bup the proposed workflow, only the
analysis of single realizations is necessary and, in titly stf the performances of the different conditioning strategy;, onl
the features present, by definition, in each realization have &ken into consideration. Secondly, the realization generated
in the final test (Fig. 17) was, at the end, incorporated in anlbgexdogical model (Meyer et al., 2016): whereas, in this
case, using a single realization is considered acceptabke thiembjective is to study large-scale groundwater flow and
saltwater intrusion, the use of multiple realizations for the gayafion of uncertainty into, for example, hydrological models
would be outside the scope. To make groundwater predictions on a laegetseaverall distribution and connectivity of
the overall structures are crucial, while the precise locaif the individual structures is less important. In contrast, detaile
studies, like catchment analyses, would not make sense based or aesihiphtion (He et al., 2013) and assessments based
on a significant number of different realizations should be conducted to invethigatariability of the outcome.

The validity of the presented workflow is demonstrated for the &fiecunit characterized by relative simplicity and
presence of only two categories. This does not mean that the apipficatbthis approach should be limited to simple
situations. This research can be considered a proof of concept snteritss to clearly show the relevance and effectiveness
of our strategy in addressing the difficulties frequently encouhtexeen in simple cases. We do not see any particular
difficulty in extending the proposed strategy to more complexngstitharacterized, for example, by a larger number of
categories. In fact, if this is the case, dealing with tloremore categories makes the preparation of the hard conditioning
data (e.g., the interpretations of seismic lines) clearly nadr@rious, but conceptually not more difficult. The same is true
for the way we handle the borehole as soft conditioning data: defjrtibel implementation of the sliding window and the
following kriging procedure are not different if a larger numbércategories are involved. Finally, MPS approaches
(together with the associated TIs) are already routinegd in situations with more than two categories (e.g., Joras et
2013), and, in our approach, special emphasis is placed uniquely on theydtrating development of effective Tls via

careful analyses of the unconstrained realizations.

8 Conclusions

This study investigates strategies for MPS simulationsrigel 3D model domains consistent with different types of input

data. The strategies were tested within an are@® &nf in which the Miocene unit was modelled using MPS simulation.
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This part of the model was chosen since the Miocene can beweffestubdivided into few categories (i.e.: sand and clay)
and is relatively stationary in the investigated area. An dreaisting and detailed geological model (the Tgnder model)
was present in a part of the study area, and was used in theofimarehensive geological model. A 3D Tl was constructed
based on the well-known geology of the unit. The stochastic simulatieresconducted using the SNESIM algorithm as it
is implemented in SGeMS. The final Tl was developed iterativglychecking the outcomes of the corresponding
unconditioned simulations, and adjusting it in order to obtain the mostggeadly meaningful structures in the final
realizations. The previously published Tgnder model and reliableisergerpretations were used as hard conditioning data
in order to preserve the associated information during the simul&ionthe other hand, the boreholes were incorporated
into the simulation workflow through different conditioning strategiBlse first approach - the most traditional one -
consisted of using the boreholes as hard conditioning data. This quitlast approach was not satisfactory as borehole
data can have a high degree of uncertainty. Hence, via a moving wstdaegy, the lithological information in the
borehole was translated into a probability distribution that could sslduecertainties in borehole data both from
inaccuracies and scale mismatch. Unfortunately, SNESIM litties influence of soft conditioning data to local
neighbourhoods around each data value and is unable to effectivelyalegg any trends that might be captured. To better
address this problem, we kriged the sand probability derived from thbddes into a 3D voxel model and used that kriged
sand probability as soft conditioning. By using this last approach, weaged to successfully reproduce the sand/clay trend
across the simulation domain evaluated based on a visual inspetiiostutly shows a practical workflow to properly build

Tl and effectively handle input information to be successfully used for lagde-geostatistical modelling.
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Appendix A

Despite the discussion of the rest of the paper is realizat@péendent, it might be worth highlighting some of the effects
of our approach on different realizations of the obtained probabilistdels. On this respect, Fig. 19 confirms what is in
Fig. 11. Thus, the use of TI2, instead of TI1, consistently promoteprédsence of larger sand bodies also when the
conditioning strategy (d) in Table 1 is adopted. In addition, the twolparieFig. 19 demonstrate that similar size
distributions are common for all the realizations generated avidpecific TI. Analogous behaviours clearly appear also
when we compare the other two properties analysed previousigntecity (Fig. 20) and jaggedness (Fig. 21). If we
compare TI1's with TI2’s results for each of the Fig.s 20 and 21, we can draw the@athesion as for Fig.s 12-13. Hence,
elongated and jagged sand structures are more probable in theticeaindtained by using TI1. And, again, within the
same probabilistic model, the distributions of eccentricity andejdggss are very consistent between the realizations. Of
course, this should not lead us to the wrong deduction that there isialoilitg between the elements of the probabilistic
model. For example, Fig. 22 compares the conditioning approaches (a@j)dandréble 1 in terms of e-type and variance
maps: Fig.s 22b-c concern the conditioning strategy (c), while ERpd result from the application of approach (d). To
make this comparison easier, also the corresponding (soft and biadifjanings are shown in the same figure: in the panel
(a), for the strategy (c) and, in the panel (d), for the approach-{d).22 makes evident the role of the seismic lines and the
buffer zone from the Tegnder model (used as hard data in both conditioritegists) in constraining all the realizations of
both probabilistic models. This is particularly clear when we olestite vertical W-E sections (Fig. 22c-f): the only place
characterized by an extremely limited variance is whezdrtersection with the seismic line occurs. Fig. 22 highliglsts

the crucial role of the 3D kriged grid of the sand probability distidon in migrating the information far from the boreholes.

This confirms, once more, the validity of the suggested way to handle the well itiforma
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Figure 1: a) Location of the study area, b) Map of the model &a (the solid black line) shown together with the data anthe fault
structures delimiting the Tonder graben: red stars indiate boreholes deeper than 100 m, green lines the positiontbé seismic
lines; the Tander graben structure is marked in blue (€r-Borch, 1991). The turquois shading marks the model area of ¢hTgnder
model (Jgrgensen et al., 2015); the grey zone in map (b) repemts Germany.

South-west North-east
50

'

- !
(6]

[5)]

o o

(I's'e'w) uones|g

o
o
<)

-350

-450
0 10 20 30 40 50 60 70

Distance (km)
M Quaternary clay B Quaternary sand M Miocene clay (Made group) M Miocene clay [l Miocene sand Ml Paleogene clay

Figure 2: Conceptual sketch of the geology in the study area.
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Figure 3: Sketch of the MPS model domain based on the condepl sketch of the geology in Fig. 2: Top and Bottom of the
Miocene unit is outlined by thick white lines. The sufaces are shown in Fig. 4a and 4b.
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Figure 4: Elevation of the top and bottom of the MPS model domaifthe Miocene unit). a) The modelled surface defininthe top
of the MPS model domain. The surface is obtained by mergintpe bottom of the Made Group and the top pre-Quaternary (se
Fig. 3). b) The modelled surface of the bottom of the MPS @del domain, which consists of the Top Paleogene clay. NoteffBient

colour scales.
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Figure 5: Preparation of seismic data input exemplified by &elected seismic section (for position, see Fig. 6). &eTseismic section
shown together with coloured horizons and interpretation poirg derived from the Miocene model (Kristensen et al., 2019)) The
seismic section shown together with the generated “2D voxebdel”. Vertical exaggeration = 10x.
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Figure 6: 3D view of the hard conditioning data (the buffer zoa around the Tgnder model and the seismic lines), seeorh south-
west. Positions of the seismic line in Fig. 5 and thegfile in Fig. 16 are marked on the figure. Vertical exaggeratin = 10x.
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Figure 7: Three different ways to handle borehole informationillustrated along a profile in the study area (for position,see Fig.
14). The resulting realizations are shown in Fig. 12. a)ie sand/clay occurrence in the borehole is considered as batata. b) The
sand/clay occurrence is translated into sand/clay probabilitand then considered as soft data. c) The sand probabilitié#som the
boreholes are kriged into a 3D grid to be used as soft conditiing. Vertical exaggeration 8x.
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Sand probability

Figure 8: 3D fence view into the sand probability grid, seefrom south-east. Vertical exaggeration = 10x.
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Figure 9: N-S and E-W slices through the two tested 3D traing images seen from north-east. a) The first Tl (TI1), uskto
generate the unconditioned realization in Fig. 10a. b) The saed Tl (T12), used for the unconditioned realization in Fig.10b.
Vertical exaggeration = 3x.
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Figure 11: Sizes of the sand bodies of the unconditionedalezations obtained by using the two different Tls shown irFig. 9.
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Figure 12: Probability of the eccentricity of the sand bodig (with a size larger than 1000) for the unconditioned realizaiins
obtained by using the two Tls in Fig. 9.
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Figure 13: Probability of the jaggedness of the sand bodies iftv a size larger than 1000) for the unconditioned realizations
obtained by using the TI1 and TI2 in Fig. 9.
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Figure 14: Horizontal slice at elevation -188 m through the realations generated by using different conditional strategies (se
Table 1). Position of the profiles in Figs. 7, 10 & 12 and 13 ershowed. The dashed region encapsulates the buffer aroutit
Teonder model, which has been used as hard conditioning orimation in (b), (c) and (d).
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Figure 15: Profile through the realizations generated by usinglifferent conditional strategies (see Table 1). The borehole
information used for conditioning is illustrated in Fig. 7: a) unconditioned; b) borehole as hard data (Fig. 7a); c) boreholas soft
data (Fig. 7b); d) sand probability grid derived by boreholes asoft data (Fig. 7c). Sand/clay information from the original
boreholes are showed within a buffer of 100 m (yellow = santlack =clay, white = ‘other’). For location of the profile, see Fig. 14.
Vertical exaggeration = 8x.
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R e

Figure 17: 3D view of the final realization (test (d), Tablel). The associated 3D probability grid is shown in Fig. 8. @Il voxels are
plotted and the location of the profile in Figs. 12 and 13 arehewn. b) The associated fence view. Vertical exaggerationlfx.

33



Cross-Correlation

T T T T T T T T T

1er « realiz. (d) | |

- realiz. (¢)

14

0.5 1 1.5 2 25 3 35 4 4.5

Voxel index x107

Figure 18: Cross-correlation between the soft probability disibution (Fig. 8) and each of the realizations showed, foexample, in
Fig. 14c (real. (c)) and Fig. 14d (real. (d)), and desbed in Table 1 (cases (c) and (d)).
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Figure 19: Sizes of the sand bodies for the realizations obteid by using the conditioning strategy (d) in Table 1 andaspectively,
TI1 and TI2 (Fig. 9). While the histograms correspond to thdirst three realizations, the dots and error bars represet the mean

and the standard deviation obtained by using 100 realizations.
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Figure 20: Probability of the eccentricity of the sand bodie (with a size larger than 1000) for the realizations obtainedytusing the

conditioning strategy (d) in Table 1 and, respectively, Tlland TI2 (Fig. 9). While the histograms correspond to the fist three
realizations, the dots and error bars represent the mean antthe standard deviation obtained by using 100 realizations.
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Figure 21: Probability of the jaggedness of the sand bodies giia size larger than 1000) for the realizations obtained by usinthe

conditioning strategy (d) in Table 1 and, respectively, Tlland TI2 (Fig. 9). While the histograms correspond to the ffst three
realizations, the dots and error bars represent the mean anithe standard deviation calculated by using 100 realizations.
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Figure 22: Comparison of the conditioning approaches (c) and (d)f Table 1 in terms of: soft and hard conditioning - panels (a)
and (d); e-type map - panels (b) and (e); variance map - palsgc) and (f). To facilitate the comparison, the probabities in panels
(a) and (d) are presented in a different colour scale witrespect to Fig.s 7-8. The e-type and variance maps are bdson 100
realizations. In all panels, the interpretation of the seimic data, and the buffer zone around the Tender model arexplicitly shown

in terms of sand and clay (the red homogeneous volumes repent the sand bodies, the blue volumes show the clay lesis

Vertical exaggeration = 20x.
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Strategy | Training Soft data Hard data
image
a 2 (Fig. 9b) + +
2 (Fig. 9b) + The Tender model
Seismic interpretation
Boreholes
c 2 (Fig. 9b) Sand probability directly from boreholes The Tgnder model
Seismic interpretation
d 2 (Fig. 9b) 3D kriged grid of the sand probabilityrhe Tgnder model
distribution from boreholes Seismic interpretation

Table 1: The different conditioning strategies tested irthis study. The corresponding realizations are presentediithe Figs. 14 -
16.
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