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Response to Editor’'s comments

The original “Comments to the Authors” of prof. Giudici are quotedalincs, while our response is given liold.

The paper has been revised and slightly reorganized by the Authors in such a way as to conform with the expected quality
standard for publication on HESS.

In particular, the new section "2 Methodological framework" and the workflow in Figure 1 clarify the proposed method,
which was originally hidden in the description of the specific case study, and will permit the reader to test the method with
other data sets.

| provide below a few technical comments.

1) Page 2, lines 27 to 31. Substitute this paragraph, possibly with the following:

"In the present study, we describe a strategy to develop effective and realistic 3D Tls based on iterative modification of the
Tl images, so that general features of the unconstrained realizations meet the expected properties. Such an approach permits
to analyse the coupled effects of the investigated Tl and of the specific implementation of the MPS algorithm. Moreover, the
tests performed in this paper show that few unconstrained realizations per tested Tl are sufficient to obtain a correct
assessment of the general features common to all the realizations.”

2) Page 3, line 3. Substitute "the borehole" with "boreholes’.

3) Page 4, lines 3 to 4. Susbtitute "in our way to proceed”, possibly with "in this framework™.

4) Page 4, line 6. Substitute "an initial Tl attempt", possibly with "an initial tentative TI". Moreover, it is necessary (i) to
give an idea of the procedure to be adopted for the iterative adjustment of the Tl and/or (ii) to clarify if such an adjustment
can be done in an objective way or with a trial-and-error approach.

5) Page 4, line 8. | suggest to erase the sentence in parentheses, because the effect that some modifications on the Tl have on
conditioned realizations, depends on the conditioning data, above all on their density, and therefore it would be necessary to
explicitly state under which consditions this statement is correct.

6) Page 4, lines 10 to 11. Please, rephrase the sentence "For example,... sand bodies’, possibly as "For example, in the
present article, updates were based on the size, elongation, and compactness of the resulting sand bodies and on the visual
analysis of a single realization per considered TI."

7) Page 4, line 12. Please rephrase "visible to the modeller building the Tl and studying the realizations".

8) Page 4, lines 15 and 16; page 5, line 9; page 7, lines 1 and 3; page 8, line 26; page 11, line 23; page 12, line 4; page 16,
lines 14, 29 and 31. Substitute "borehol€e”, possibly with "borehole data”, "borehole logs', etc.

The manuscript has been modified to addresstherequests from the Editor.



9) Page 4, line 19. Is"adjoining" the right word?

Yes, webdieveit is.

10) Page 4, line 25. Erase "of".

11) Page 5, line 3. Add "at large scale" after "are spatially varying”, or provide a similar modification.

Following the Editor suggestions, we made these modificationsto the original manuscript.
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Abstract. Most studies about the application of geostatistical simulatioaedban multiple-point statistics (MPS) to
hydrogeological modelling focus on relatively fine-scale modets@ncentrate on the estimation of facies-level structural
uncertainty. Much less attention is paid to the use of input data amdabjgtinstruction of training images. For instance,
even though the training image should capture a set of spatial geologieaitehistics to guide the simulations, the majority
of the research still relies on 2D or quasi-3D training imalethe present study, we demonstrate a novel strategy for 3D
MPS modelling characterized by: (i) realistic 3D trainingges, and (ii) an effective workflow for incorporating a diverse
group of geological and geophysical data sets. The study cavareaof 810 knf in the southern part of Denmark. MPS
simulations are performed on a subset of the geological succetisiofoer to middle Miocene sediments) which is
characterized by relatively uniform structures and dominatesbhgl and clay. The simulated domain is large and each of
the geostatistical realizations contains approximately 45amilfioxels with size 100 m x 100 m x 5 m. Data used for the
modelling include water well logs, high-resolution seismic ,data a previously published 3D geological model. We apply
a series of different strategies for the simulations basedhtan quality, and develop a novel method to effectively create
observed spatial trends. The training image is constructed &tigetg small 3D voxel model covering an area of 9¢km
We use an iterative training image development strategy addHat even slight modifications in the training image create
significant changes in simulations. Thus, this research showddhimelude both the geological environment, and the type
and quality of input information in order to achieve optimal results i modelling. We present a practical workflow to
build the training image and effectively handle different typespiit information to perform large-scale geostatistical

modelling.

1 Introduction

Simulation of groundwater flow and solute transport requires repedse hydrogeological models of the subsurface.

While many studies focus on estimating the spatial distributidnyafaulic properties (i.e. hydraulic conductivity, porosity),
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the reliable delineation of the underlying geological structurddyoirostatrigraphic model is far more important to ensure
the reliability of groundwater flow predictions (e.g. Carrera, 1993; Lili,€2@04a; Renard and Allard, 2013).

Early geostatistical methods (e.g.: Chiles and Delfiner, 199jtdah, 2002) provided tools to model uncertainty in
smoothly varying Gaussian properties, like porosity or permeahiithin targeted rock formations (e.g., oil reservoirs).
These produced petrophysical models that generally improved miesmirce development, but the models were poor
when abrupt changes in rock type, and hence petrophysical pespsdie important in defining reservoir structure. Later
generations of geostatistical methods supplied tools for modellicky types (i.e., lithology or facies), that provided
incremental improvement (Stafleu et al., 2011), but still did not&fdy model non-stationary patterns in rock type, and
poorly captured patterns in stratigraphical units that are typically exnspmbinations of rock type.

Without suitable tools for developing realistic uncertainty-infatmmodels of either non-stationary rock type or
hydrostratigraphy, groundwater models are typically based otesidegterministic geological framework models that are
manually constructed. Research has continued to explore methods fatainbgdased simulation of structural
heterogeneities (Huysmans and Dassargues, 2009; Kesdler2ét18) to better estimate uncertainties in groundwater flow
(Feyen and Caers, 2006; He et al., 2013; Poeter and Anderson, 2005; Refsgaard et al., 2012).

The multiple-point statistics (MPS, Guardiano and Srivastava, 198shefie, 2002) was developed with the objective to
better reproduce complex geological patterns than other availaigtatistical modelling techniques. The method combines
the ability to condition the realizations to hard data (informatidgthout uncertainty) and soft data (information with
uncertainty) with the ability to reproduce geological featuresacherized by statistical properties described through a so
called Training Image (TI).

Hence, the TI plays a crucial role and should be constructed tesesp the structural patterns of interest (Hu and
Chugunova, 2008; Maharaja, 2008; Pickel et al., 2015). However, a fundametiigshdor the use of MPS for 3D
hydrogeological modelling lies in the difficulty to produce realistic 3D(€lg., Pérez et al., 2014, Ronayne et al, 2008), and
most of the studies in the literature are therefore based on @asr3D Tls (Jha et al., 2014; Comunian et al., 2012; Feyen
and Caers, 2006). Several researches have demonstrated the pofetitelMPS to simulate 2D patterns (Hu and
Chugunova, 2008; Liu et al., 2004b; Strebelle, 2002), but less attention has beetodive construction of real three-
dimensional Tls.

describe a strategy to develop effective and realistic 3Madded on iterative modifications of an initial training image. The

TI's updates are based on the consistency between the gentmadead the corresponding unconstrained realizations and

the actual geological expectations. This approach allows takingdotunt the coupled effects of the considered Tl and the
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used implementation of the MPS algorithm. Moreover, the testsrpextbin this research show that few unconstrained

realizations per tested Tl are sufficient to obtain a correct assessfiiiee general features common to all the realizations.

Concerning the use of conditioning data, it is extremely importasidtiress the fact that the data are characterized by
different uncertainty levels and scales (He et al., 2014; Mg@ad Curtis, 1997). In the example discussed in this study,
available sources of information are seismic lines, boreholes, aptk-axisting, manually constructed geo-model.
Depending on their scale and uncertainty, we developed a pracsigabowncorporate all of them into the Single Normal
Equation Simulation (SNESIM) workflow as it is implemented in M8HRemy et al., 2009). For example, the data from
theborehols are used in a non-standard way as soft conditioning and onlyaafegpropriate pre-processing aiming at: (i)
removing the effects of scale mismatches, (ii) properly acangifdir the data uncertainty, and (iii) effectively migratihg t
information between the borehole locations. The results of this novebambpare compared against more traditional
strategies along the article. The proposed workflow is geaathtan be readily extended to other data types (for example,
other kinds of geophysical data).

In summary, the main objectives of the present study concerhe(i)erative development of effective 3D Tls, and (ii) the
optimal strategy for the simulation conditioning.

The paper is organized as follows: (i) Section “2 The methodolofyazalework” summarizes the strategies for the optimal
Tl construction and best conditioning utilizing the available data amat griowledge. These strategies are actually
discussed along the entire paper and exemplified through their ajgplitata real case. (ii) Section “3 Study area” deals
with the overall geological framework of the area considerdggsbthe novel approach. In particular, its subsection “3.1
Establishing framework-model constraints” goes into details ghewpecific geological unit targeted during the stochastic
simulations. (iii) After the description of the test areatieac‘4 Data” describes the amount and characteristics of the
different kinds of available data. (iv) Section “5 Defining MPS inmibrmation” consists of the presentation of the
application of different approaches whose outputs are then comparedsub#ggiuent section “6 Results”. (v) The second
last section, “7 Discussion”, is about the assumptions/choices mads #te paper and their possible limitations and future
developments; (v) “8 Conclusion” is a concise section where we recap ous.result

Moreover, in “Appendix A", for sake of completeness, we provide furttegails regarding the variability within each
probabilistic model and analyse additional realizations with résjpethose necessary for the implementation of the
proposed workflow.

2 The methodological framework

This research is about the development and testing of a methodblgikflow for 3D MPS modelling aiming at: (i) the
construction of truly effective (3D) training images that considdso the coupled effects of the specific MPS algorithm

actually used, (ii) the inclusion of different geological/geoplalsilata sets that properly takes into account their varying
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uncertainty, (iii) the possibility of spreading the influence ofgb# conditioning beyond the neighbourhood of the available
observations.

2.1 Optimal training image development

In order to apply any MPS strategy, it is necessary to buiiltl(possibly 3D). The construction of the Tl is based on the
prior geological knowledge concerning the geological unit to be ateuil However, the actual realizations produced by
using a particular Tl are also influenced by the specific implgation, and simulation settings, used for the stochastic
simulation. Hence, it is necessary to consider the coupledstitthe Tl together with the algorithm implementation as a
whole. The proposed approach to practically tackle this is basad analysis of the unconditioned realizations. Thus, in
ourway-to-proceedthe present framew(klg. 1a), it is not merely the Tl that needs to be reprateatof the investigated

geology, but it is the unconditioned simulation result that needs thitteg geological expectations. So, our strategy for the

development of a truly effectivé&training imageconsists in iteratively adjustinga-theinitial Tl attemptuntil the
associated unconditioned realization shows the behaviour we desifee following section “5.4 Training image”, we
demonstrate that even tiny modifications have dramatic impacts deatiees in the unconditionéand;-se—in-turn-alse-in
the—eonditionedsimulations. Clearly, during theial-and-erroradjustment of the Tlonly features in the unconstrained
realizations that are general and not realization-dependent candidared. For example, in the present artigkeyisually
analysea single realization pamnsidered proposer is visually analysed and the corresponding TI's updates are based on
and-we-based-ourupdatesthe-theevolution ef-thein size, elongation, and compactness of the resulting sand bodies. In
general, the differencdsetween the subsequent unconditioned realizaBogeasity-visiblevery clearto thegeanodeller

building-thedeveloping theptimal T1_(on this respect, see the section devoted to the Tl constructiorfréming image”)

and-studying-therealizationSlearlyHowever the same differences can be easily made more quantitagivident (as it is
exemplified in the practical test discussed along the present paper).

2.2 Accounting for variable data uncertainty and scale mismatch

Too often boreholalatasare treated as ground-truth and naively considered with no uncertdowever, as any other
observation, they are affected by some sort of noise and are premertand misinterpretations. Moreover, borehiaies

can be at a resolution that is not compatible with the scallheofgeostatistical simulation. On the other hagakta
observationghat are usually considered “indirect” can be extremely r@iald precise, and at the correct scale when
compared with the features to be simulated. In the rest gbaper, for example, seismic data and pre-existing adjoining
geological models are considered very reliable sourcesafmation at the right scale. Our approach invites to reconsider
the conditioning data both in terms of uncertainty and scale misr(féitehlb). And it offers a way to effectively take into
account both these aspects: data can be efficiently transtateddft probability weighted accordingly to the varying
reliability. For example, in the test discussed along the paper Table 1, strategies (c) and (d)), borehole information is

turned into soft probability weighted by the distance from the eafteach of the formations (this is the essence of what the
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moving window does; see sections “5.3 Borebalata” and “7 Discussion”). In addition, to take into acceehthe
generally poor drilling quality, a flat 20% weight has been aatt to every transformed borehole. In an even more
sophisticated implementation of our approach, as it is further deddnitibe section “7 Discussion”, the weighting can, in
principle, be varying between boreholes and changing based on thksiblavquality rate. Similar weighting strategy can be
applied to any kind of data (including the geophysical measuremioisgver, in the example in this research, the seismic
observations (and the pre-existing Tgnder model) are considered ratiabjer (and with a characteristic scale compatible
with the stochastic simulation); for this reason, a constant wedgkdl 1 has been used and no averaging has been applied.

This makes them suitable for hard conditioning.

2.3 Enforcing the data-driven spatial trend in the soft conditioning

Very often, especially if theize of thesimulation domain isrery-targesignifican{as in the example discussed later in the
present article)some characteristics (e.g.: the sand/clay ratio) areaipatarying at large scaleand it would be highly
desirable to include this spatial trend in the simulation proti¥ertunately soft data have a limited spatial influence as it
is shown in the sections “5.3 Borehole data” and “7 Discussion” and fuléineonstrated in Hansen at al. (in review). With
the same rationale of the previous subsection “2.2 Accounting for datataimye and scale mismatch”, within the
framework of our approach (Fig. 1b), the information is migrdéedrom the source of soft probability by means of a
weighted conditioning. In the specific example described in the rest of the fhep@eight is linked to the distance from the
boreholes. Specifically, by kriging the soft probability dedifeom the borehol@bservationswe are able to enforce the
trend clearly visible in the data. In general, the applicakbfitthis approach is not limited to borehole information, but can
be extended to all the soft data with a limited spatial supportevinfisience needs to be spread across the simulation

domain.

3 Study area

The study area covers820 knf, from coast to coast in the southern part of Jutland, Denmark, andrnaptiréion of
Germany (Fig. 2). A part of this area (625%has formerly undergone 3D geological modelling (the Tgnder miigel2)
which is presented in Jgrgensen et al. (2015). In this paper, weondkctrate on the Miocene sediments within the model
domain. The Miocene sediments were selected because: (i) ehpsiraarily composed of two main hydrogeological facies:
clay and sand, and (ii) the unit is composed of rather uniform stesctbhroughout the area and therefore possible to
describe in a 3D TI.

A conceptual sketch of the geology in the area is shown in Figh&.base of the regional groundwater flow system
corresponds with the top of the very fine-grained Paleogene claly$dla a gentle dip towards the southwest. The
overlying Miocene sediments consist of marine clay with santigicéobate layers. The Miocene deposits in Jutland has

been thoroughly studied by Rasmussen et al. (2010) who based thes sindsedimentological and palynological
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investigations of outcrops and cores, combined with interpretation lefrégplution seismic data. During the Miocene, the
coastline fluctuated generally northeast-southwest across Juttanlling in a deltaic depositional environment. Rasmussen
et al. (2010) divided the Miocene deposits into three sand-rich dalii that are interfingered with prodeltaic clayey
units. In periods with low water levels, the coastline was teitliéar to the southwest and coarse-grained sediments were
consequently deposited in the study area. When the water levelghasha coastline was situated further to the northeast,
resulting in deposition of marine clays. The delta lobes dominateindrtheast and show smooth dips towards southwest.
In middle and upper Miocene, very fine-grained marine clays belongitlie Made Group were deposited in the western
part of the model domain.

The unconformable boundary between the Quaternary and the Miocenenissobured by buried valleys (Fig. 3). The
Quaternary deposits mainly consist of till and various meltwaéposits, but, in some places, also of interglacial and
postglacial deposits. In some areas, the Quaternary depeasiteavily deformed due to glaciotectonism. In the western
portion of the study area, the geology generally consists of duteasdurs surrounding old pre-Weichselian moraine
landscapes. The outwash sandurs show a low relief with a gentle dip towatr,dsiveesas the old moraine landscape shows
a more irregular relief up to 60 meters above sea-level (M.drs.the east, the younger morainic landscape from the
Weichselian shows topographic changes between 40 - 90 m.a.s.l. Theamadés influenced by a large fault-bounded
structure (the Tegnder graben structure, Fig. 2b) that offsets tiperd€ep Chalk surface of about hundred meters (Ter-
Borch, 1991). The faults clearly offset both the top of the Paleogene and the bottom wditdra&y.

3.1 Establishing framework-model constraints

The MPS model domain discussed in the present research corresponds to the loviddlaridiotene sediments which are
positioned below the Made Group and above the Top Paleogene surface .(Figidé) the Tander model area (Fig. 2),
however, the results of the already existing model (Jargensen et al. a22015pd and therefore are not included in the MPS
simulations. The Tgnder model results are used because the modebnsasicted based on very thorough geological
analyses and so considered as the best geological model obtain#idé¢ area. The surfaces of the relevant geological
boundaries: Top Paleogene, Bottom Made and Top pre-Quaternary (Big dynstructed in the geo-modelling software
package Geoscene3D (I-GIS, 2014) by using interpretation points amblatag these data to create the corresponding
stratigraphical surfaces. The top of the MPS model domain is oitajnmerging the surfaces of the Bottom Made and the
Top pre-Quaternary surface (Figs. 4 and 5a). The lower boundary ofatiel domain corresponds to the Top Paleogene
surface (Figs. 4 and 5b).

The top surface of the Miocene sediments shows a regional dipdwast with significant depressions along the Tgnder
graben structure and at the buried valleys. The surfacetielevanges from 20 m.a.s.l. to -460 m.a.s.l. (Fig. 5a),
corresponding to depths varying between 30 m and 80 m, in the east,abulibi60 m, in the west. In the Tgnder graben,
the depth to the top of the Miocene ranges approximately from 26@B&0tm and locally (associated with buried valleys)

up to 460 m. The bottom surface of the Miocene sediments (Fig. 583 waore smoothly, and also has a small regional dip
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from east (near elevation -100 m.a.s.l.) to west (approximahaten -320 m.a.s.l.), punctuated primarily by the Tgnder
graben structure (elevation down to -560 m.a.s.l.). The Miocene sedityigiotdly have a thickness varying between 50 m

and 250 m, but are thinner and locally absent below the buried valleys (Fig. 3).

4 Data
4.1 Borehole data

The borehole data in the Danish portion of the study area aretedtifaom the Danish national borehole database, the

‘Jupiter’ database_(http://jupiter.geus.dk), and comprise ab600 doreholes with lithological information from driller's

logs and sample set descriptions. The Jupiter database providesaitidoron a number of parameters about each borehole,
which enables an evaluation of borehole data quality. Boretaiées like any other kinds oflataobservationsre affected

by uncertainty. The level of uncertainty determines the qualiighility of the measurements (i.e., the quality/reliabitify

the boreholes). Many factors impact the quality of boreholes. Juséntion a few of them: (i) the drilling methods (e.g.:
rotary drilling and air lift drillings. In some cases, for exden the finer sediments can be flushed out and the driller could
potentially misinterpret a clay layer as more sandy);tlii¢ drilling purpose (sometimes, if the goal is to reacheaifip
target, the lithological description can be poor since it is nptiarity); (iii) the age of the boreholes (for example,
nowadays, in Denmark, samples are collected systematically ener, and this was not the case few years ago); (iv) the
presence of simultaneous wireline logging data (these kindsoifaay information make the geological interpretation
definitely more certain). During the geological modelling phasskilled geologist should go through all the borehole
records and verify all these different pieces of information andkctoe inconsistencies. This is (or should be) the standard
procedure to assess the quality of the boreholes and prepare tifer da¢asubsequent geo-modelling phases. In the study
area, many borehole records are of low quality.

Together with the Danish boreholes, geological information from d@uiboreholes located within the German portion of
the study area and deeper than 10 m is included in the analysis.ajdréynof the boreholes in both the Danish and the
German area are quite shallow and, in total, only 2 % of all the boreholes are deef80tha(Fig. 2).

4.2 High-resolution seismic data

The seismic data are extracted from the Danish geophysitzdate ‘Gerda’ (Mgller et al., 2009). Most of the seismisline
were conducted with the purpose to investigate the groundwater resanccexamine the Miocene sediments (Rasmussen
et al., 2007). In the study area, seismic lines for a total length of around 170 k&) (kege collected by several contractors
with two slightly different acquisition systems that, for sakelarity, we conventionally indicate here with SYS_COWI and
SYS RAMBJLL. In both cases, the lines were acquired as landstrd@gh-resolution seismic data (Vangkilde-Pedersen
et al.,, 2006) by using seismic vibrators as energy source frégaency ranges spanned: from 50 Hz to 350 Hz, for
SYS_COWI, and from 50 Hz to 400 Hz, for SYS_RAMB@LL,; for both systethe sweep was 5 s long. The receiver

7



10

15

20

25

arrays consisted of: 95 not-equally spaced geophones (1.25 m betweest 82 deophones, and 2.5 m for the others), for
SYS_COWI, and 102 geophones (1.25 m between the first 50 geophones, and 2.5 m for the others)RIBKM8ZEL. In

both acquisition settings, the sources were fired every 10 m.

Under normal circumstances, the data are high quality betweemxapptely 30 m to 800 m in depth. Prior to the import of
the seismic data to the geological interpretation softwareglévation values are adjusted, based on an assumed constant
seismic velocity of 800 m/s (Kristensen et al., 2015), which is a common velocity focé&he and Quaternary deposits in
Denmark (Hgyer et al., 2011; Jgrgensen et al., 2003). Elevation mmrseate important because of the considerable effect

of the topography that, even if mildly varying, along extended profile can significfect the quality of the final results.

5 Defining MPS input information
5.1 Seismic data

Rasmussen et al. (2010) proposed a lithostratigraphy for the Mioceression, a “Miocene model” (Kristensen et al.,
2015), based on interpretations of seismic data that was correlétedoavehole interpretations and outcrops. The
observational data points used in the Miocene model were utilized istudy to define the top of individual Miocene
stratigraphical formations along the seismic lines (Fig. Baprder to use this information in the MPS modelling, the
stratigraphical interpretations from the Miocene model arelatmusinto a binary sand/clay voxel model of one cell width
along each seismic line (Fig. 6b and 7).

The sand/clay distribution along the seismic lines is used asdatadn the MPS simulations. The information is used as
hard conditioning since it is considered highly reliable, and sincesdhle of structures delineated by the seismics is

comparable to the scale of the simulated output.

5.2 Existing 3D model

In order to ensure edge matching between the stochastic tiealizand the deterministically constructed T@nder model, a
buffer zone along the pre-existing model's edges is creathihvwibeoScene3D and used as hard conditioning data for the
MPS simulations. The Miocene formations interpreted in theiegidtender model (Jgrgensen et al., 2015) are translated
into sand and clay. In Fig. 7, the hard conditioning data from the prngxisodel (the buffer zone) are shown together

with the hard information from the seismic lines.

5.3 Borehole data

All lithological categories contained in Jupiter are simpdifend divided into three groups: sand, clay and ‘other’. In this
study, the conditioning based on the boreholes has been conducted through thtbresedifferent strategies. The different

ways of considering the borehole information are illustrated and summarizied & F
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The simplest and most common approach for exploiting the informatiom fine boreholes is to include them as hard
conditioning data. This is the first test performed in the presady (Fig. 8a). However, this simple approach does not take
into consideration the uncertainty in borehole data associated(iyitiaccuracies in the recorded information, and (ii) the
resolution, or scale, differences between the information in the borehole records gealdigécal model cell size.

In order to address these issues, an alternative conditionineggtiattested. In this case, the boreldd&asare considered

as softdata(Fig. 8b): a 20-meter-long moving window is applied to each oridinedhole in order to average the densely
sampled lithological data into probabilities defined on the coaisarlation grid. Since the typical vertical dimensions of
the structures are ~20 m, the size of the averaging window isrclagserdingly. This procedure is consistent with the
reasonable assumption that, in the middle of the geological format@®are relatively certain of the lithology, while this
certainty decreases as we get closer to the boundaries. Mori#oweder to take the general uncertainty in the borehole
information into account, we map the resulting averaged values s&od probability interval ranging from 80 to 20 %. In
this way, voxels with the highest chances of having sand araatbdazed by a maximum sand probability value of 80 % (in
pink, Fig. 8b), whereas voxels with the lowest sand probability aceiagsd to a value as low as 20 % (in green, Fig. 8b).
In Fig. 8D, it is clear that the transition zones between sandlayndarrespond to a band with sand probabilities of 40 %.
This value is the marginal distribution value for sand occurrenitenvthe investigated model volume, as it is calculated
from the borehole data and consistently formalized in the TIs.

When borehole information is too distant, the sand/clay ratios indhbasittic realization are solely derived from the Tl and
the sand marginal distribution. Unfortunately, borehole information atteeant depths is relatively sparse (due to shallow
boreholes), and, at the same time, the SNESIM algorithm has a¢grtdeignore such “localized” soft data (Hansen et al.,
in review). Moreover, it is known that the model domain shows a slggttas lithological variation in which the overall
proportion of sand is higher in the northeast compared to the southweg élsa clear from the borehole data). To enforce
this real, general trend in the realisations, the “localizedéhmle probabilities are kriged into a 3D grid to be used as
“diffuse” soft conditioning (Fig. 8c and Fig. 9). This would be unneamgsg SNESIM could handle soft data as local
conditional probability and, here, we are suggesting a practiez¢gyrto effectively overcome this limitation. Clearly, the
kriged sand probability distribution is seen to correspond to the boreathadesto their locations (Fig. 8c), whereas areas far
from boreholes (e.g., at km 6 along the section in Fig. 8c) appete (8hi characterized by a sand probability equal to 40
%). However, in a few cases (e.g. the clay layer in the gadpof the borehole at profile distance 10 km, Fig. 8c), the
borehole information does not seem to migrate into the surrounding gracdiibe explained by the influence of other
boreholes in the 3D domain. The desired spatial trend, characterizelidpyer sand probability in the north-east compared

to the south-west, is evident in the sand probability grid (Fig. 9).

5.4 Training image

The training images (TIs) are constructed as 3D voxel modeldheittame discretisation as the entire model (100 m by 100

m laterally, and 5 m vertically) and consist in approximatelyd®@0Dvoxels, covering an area of 90%ifhe sizes of the Tls
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are significantly smaller than the simulation domain, but theyaage enough to cover the size of the typical structures in
the simulated Miocene unit. The TIs are used by the MPS dginnukalgorithm to represent the basic spatial and proportion
relationships of the sand and clay facies within the Miocene uniicél¢he TIs are modelled to show deltaic sand layers
building out towards southwest within a larger clayey unit. The sanerdomt the TIs is 40 %, in accordance with the
proportion of sand observed in the borehole data.

The Tls are built in Geoscene3D using the voxel modelling toolsideddn Jgrgensen et al. (2013). In practice, each sand
and clay layer is defined by so called “interpretation” pointesE points are subsequently interpolated into surface grids,
defining the volumes, which are then populated with sand and clay voxels. bByhognually changing the locations of
these interpretation points and/or creating/deleting some of them, we can hawwatfallover the adjustments of the Tls.

In the present study, several different TIs were tested, andake of simplicity, only two of them (the first attempt &nel

final TI) are explicitly showed in this paper (Fig. 10). The fir$t(TI1 - Fig. 10a) is based on the existing 3D geological
model covering an adjacent area (the Tgnder model; Jargensen et gl. TR@lfirst Tl has been manually adjusted, during
several iterations, based on the unconditional outputs. This iterativespstopped when the corresponding unconstrained
realization was found satisfactory in terms of its abilitynimic the geological features we expect in the Miocene ac¢hes
study area. Those expectations about the geology are based on ourgldgicgeunderstanding of the area, the available
seismic lines, and the few existing deep boreholes. For examplandbaditioned realizations, associated with the TIs in
Fig. 10, are shown in Fig. 11. The main difference is that TlIrteae layers than the second one (TI2 - Fig. 10b). This is
clearly reflected in the unconditioned simulations, in which, thézaion based on TI1 (Fig. 11a) shows significantly more
layers than the corresponding realization based on TI2 (Fig. 11b)reBh#s are evaluated and compared against the
structures expected from the Miocene model (Kristensen et al., 28drige, to adhere to what we know about the Miocene
geology, the unconstrained realization associated with the skl&ttevas supposed to show fewer, larger, and more
compact sand structures. These characteristics are evidentifeetly compare the two realizations in Fig. 11, and clearly
confirmed by the study of the associated distributions in BE®,.43, 14 (see, for instance, Haralick and Shapiro, 1992). In
particular, Fig. 12 quantitatively demonstrates that larger sandsbaiemore frequent in the realization corresponding to
TI2 (black histogram), while the realization generated by (§leen histogram) is characterized by a significantly higher
presence of relatively small sand layers. Regarding the sifidipe features of the realizations in Fig. 11, Fig. 13 highlights
that elongated sand structures are more probable for the riealizafig. 11a (in fact, eccentricity equal 1 corresponds to
the degenerate case of a straight line). Jaggedness, defineel i@id between the surface and the size of bodies, can
provide a useful estimation of the compactness of the sand bodiesl{rigNot surprisingly, the sand lenses in the
realization associated to TI1 are more jagged than those ithirerealization obtained by using T12. Because of the higher
accordance between our geological expectation of the Miocene amghe@nd the unconstrained realization in Fig. 11b, TI2
is selected for all MPS simulations discussed in the resiegbaper. These conclusions are drawn on a single unconstrained
realization per Tl. Nevertheless, their validity is genaral they do not depend on the specific realization considered. In

fact, only the features induced by the specific choice of thgdupled with the actually used implementation of the MPS
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algorithm) are taken into account in the Tl selection procesf Aaepth discussion of multiple realizations and their mutual
coherence in terms of the proposed analysis is presented in the Appefatid in the associated Fig.s 20-22). Naturally,
after the full model has been set up conditional to all the datéharsklected Tl, and during its use for, e.g., risk analysis or
as input for hydrological modelling, a large (as large as pe3siollection of realizations of this model would be useful.
However, during the construction of the optimal Tl to be utilizechpstito the geostatistical model (as we do here) a few

realizations suffice.
6 Results

In the following, we present and compare the structures of tigdesrealizations generated by each of the different
conditional strategies analysed in this study (Table 1).h&lIrealizations are produced by using the same random seed to
better appreciate the differences. For comparison, an unconditiotiedtiea (a) is presented in the first panel of each of
the figures (Figs. 15 - 17). The second panel (b) shows a realizgnerated by using exclusively hard conditioning. In the
third panel (c) a realization is presented, in which the boreholemaf®n is directly treated as soft conditioning data.
Finally, in the fourth panel (d), a realization with the sand probability borehdl@igged for soft conditioning is shown.

Figure 15 shows a horizontal slice through a realization reptieg each of the four conditional strategies listed in Thble
As expected, the overall size and form of the structures arparabie between the realizations in (a) — (d) since theakpati
characteristics of the structures are primarily determinethé TI. In (b), (c) and (d), the realizations within the Tegnder
buffer zone (delimited by the dash lines, Fig. 15) are completeiyedeby the hard data. It can be observed that the buffer
zone cannot be identified in the realizations, which further supports our final étwoibe TI2. In fact, this indicates that the
same kind of spatial variability and geological patterns aamkessly present within the pre-existing Tgnder model and the
simulation results. In this horizontal slice, it is possible to apgie the effect of the soft probability grid (Fig. 15d)
compared to the case of “localized” borehole information (Fig. 15b and Wwheh using the probability grid, there is a
significantly higher sand content and more interconnected sand bodyemoeuin the middle part of the study area
(compare with Fig. 9).

Figure 15 shows vertical profiles through each of the testalizagons (Table 1) along a transect with several deep
boreholes (for location, see Fig. 15). Like in Fig. 15, the overalttstral patterns of the individual realizations appear
similar. The outcome of the unconditioned realization does not agre¢heitiorehole information, since this has not been
used. For instance, this is confirmed by the borehole at pradilandie 10 km in Fig. 16a. On the contrary, in the realization
where the borehole information is considered as hard data (Fig. 1®lojstglerfect consistency is observed between the
realization and the boreholes. However, mismatches naturally et@n the individual layers in the borehoézordssare
thinner than the simulated voxel thicknesses (e.g., by the borehalefig¢ distance of about 15.5 km). Another seeming
mismatch in Fig. 16b occurs every time the influence of thehbtganformation is extremely local, sometimes limited to a

single voxel corresponding to the one actually holding the borehole iatiorm This is, for instance, seen for the borehole
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at profile distance of about 9 km, where the fit between theati@aih and the deeper part of the borehole only appears when
observed at a very detailed scale.

Also in the realization where the borehole information is considasesbft data (Fig. 16c), there is a generally good fit
between the realization and the borehole data, but this mataaitydess pronounced in areas where a high uncertainty is
associated with the borehole data (Fig. 8b). For instance, a paar@mfpared to Fig. 16b is observed at profile distance of
about 10 km. Generally, the fit to the boreholes is better when theosafitioning information does not conflict with other
statistical properties as defined by the Tl or neighbouring dondig information. An example of this conflict can be
observed by the borehole at about 9 km. Here, the test with thedatdFig. 16b) resulted in a highly local match
concentrated in a single voxel column, implying that the borehole iat@mdid not comply with neighbouring data or
statistical parameters. For the same reason, the realiziies not strictly fit the borehole when the borehole information is
treated as soft conditioning data (Fig. 16c). The difference ketv€), where the boreholgatasare treated as soft
probability-data and (d), where the soft probability 3D grid is used (Fig. 8cinast pronounced when considering the
realization results on a larger scale than the shown in the profile in Fig. 16.

A further example highlighting the effects of the probabilitig g shown in Fig. 17, where a long SW-NE profile through
each of the tested realizations (Table 1) is inspectedggatibn, see Fig. 15). Borehole data are located further away than
the voxel size (100 m) and is therefore not shown on the profile. Agaimyverall structural pattern is comparable between
the different realizations. As also observed in the horizontal Wiégv 15), and as it must be, the results in (b), (c) and (d)
are fixed within the buffer zone around the Tgnder model, where thebaditioning information is used. For exactly the
same reason, the realizations in (b), (c) and (d) perfectlghnedso where the profile crosses the seismic lines. $lirece
differences in the constraining strategy are related to thg the borehole data are handled, only little structural
dissimilarities are seen when considering this specific profifle no borehole data. Those differences are therefore mainly
controlled by the trend imposed by the soft probability grid inH&gnce, the most pronounced difference is the higher clay
content in the south-western part of (d) compared to the northeasspatiel variation in the clay content from the west to
the east is even clearer in the 3D view of the realization shioviAig. 18. The kriged sand probability is effective in
enforcing the proper spatial trend on the realization. This is myidet only from the comparison between Fig. 18b and Fig.
9, which allows verifying, voxel-by-voxel, the accordance betw#®n soft conditioning distribution and the final
corresponding realization, but also from the results in Fig. 19ctnFay. 19 shows the cross-correlations (see, for instance,
Stoica and Moses, 2005) between the soft probability distribution gfignd each of the realizations visible, respectively,
for example, in Fig. 15¢c and Fig. 15d (see, also, Table 1, casexl(())» As expected, the correlation with the realization
(d) has a much higher and more pronounced maximum.

It is probably important to stress that our conclusions are geaseedl the differences highlighted for each conditioning set-
up are not realization-dependent. This means that they would appeastardhsifor every realization obtained with the
same conditioning setting. For clarity, this aspect, togetherthtvariability within each probabilistic model, are further

discussed and analysed in Appendix A.
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7 Discussion

If MPS modelling is applied to large study areas, it is tyfyiceecessary to divide the area into different regions or dwsnai
and use different Tls to properly describe the geology in each indivielgiain. In the present study, the entire investigated
area was divided into four main, vertically subdivided, units: the @uatg the Made Group, the Miocene and the
Paleogene. The Miocene sequence was chosen for our study sinmetatively stationary from a statistic point of view and
can be easily divided into two main facies: sand and clay.

One of the challenges was the presence of the significant gsabeture, which offsets the Miocene layers. In the current
study, the graben structure is only visible through the morphological shape apb tnedtbottom of the model domain, but in
the MPS realizations this has been ignored. In future studiets &nduld be handled, such that the MPS simulation results
are affected across the faults. A possible solution could be tthesgeochron formalism (Mallet, 2004), in which the
simulation could be performed in a regular grid, with geo-timg-asis. Realizations should then be converted into depth
using a geo-time to depth conversion.

The generation of 3D Tls that produce desired patterns is time ciomgsanmd difficult, which may be why many of the
previous studies are based on 2D or quasi-3D TIs (Comunian et al., 20t2raCet al., 2016; Feyen and Caers, 2006;
Strebelle, 2002). In this study, the 3D Tl was created in the nglabftware GeoScene3D. Since GeoScene3D is
specifically designed for 3D geological modelling and hostsstfml manual voxel modelling (Jgrgensen et al., 2013), the
creation of the Tl was relatively easy and straightforward. Wdreating the Tl in this manner, the main focus was to
represent the expected geological structures and not to make it statiotagorl, MPS implementations assume stationary
TIs (Liu et al., 2004b) and MPS application to strongly non-stationgstems is currently an area of research (e.g.
Honarkhah and Caers, 2012; Straubhaar et al., 2011; de Vries et al.CRO@8nova et al. 2008). The Tl used for this
study was generated by following the unique criterion that the uitmoretl simulation (obtained by using SNESIM
through its implementation in SGEMS) could satisfactorily reprodheeexpected geological structures. Ideally, the TI
should be constructed independently from the choice of MPS algorithmhemnealizations obtained by using a specific Tl
should have the same spatial variability as formalized bydivartg image. In practice though, this is rarely the case.anhil
a specific part of the spatial statistics may be acelyra¢produced, the realizations may lack geological featnegcan be
crucial for subsequent modelling and interpretation. This is whghb&e of MPS algorithm, and the parameters used to
run the MPS algorithm have significant impact on the spatiattsites seen on generated realizations. Hence, in practice,
structural modelling should consist of choosing a Tl together wipeaific MPS algorithm (and the associated modelling
parameters) to generate realizations capable to reflecipghtial variability that appears to be realistic fromealagical
perspective (Liu, 2006). Thus, the development of an effective Tl involvétemtive procedure, where the realizations
should be tested and evaluated. It is worth noting that even if thioped€T | is not stationary, it is interpreted as stationary

by the algorithm we have used (SNESIM; Strebelle, 2000). THeatans showed a significant sensitivity to the actual
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choice of the 3D TI (Fig. 11). Thus, we highly recommend a careflll@i@n of the unconditioned simulation results and
subsequent, consistent Tl optimisation.

A strategy to include available information into the stochastmulsition is via hard conditioning. Through hard
conditioning, the realizations are forced to perfectly match the geduilata. In this study, hard conditioning was used to
ensure a perfect correspondence between the simulation resliS@mer geological model available for the Tagnder area.
The results illustrate that this goal can be successfullghesheven though the influence of the hard conditioning data
remains quite local.

Also the seismic data, represented by interpretations alongitrais lines, have been treated as hard conditioning data.
This can be debated since seismics is an “indirect” geoplhysietnod that is inherently affected by uncertainty. The
reflections observed on seismic data represent changes in setotity and/or density, but they are not necessarily related
to lithological variations. Furthermore, the quality of the dataleahighly varying as the resolution capability depends on
the depth and, due to the uncertainty of seismic velocities used for aeptersion, also depths in the seismic sections are
uncertain. In the present case, it was decided to use the inteometaong the seismics as hard conditioning data as their
level of uncertainty is assumed to be much lower than the othealaleadata (Kristensen et al., 2015), especially at the
scale required for the simulation.

Because of technical and economic limitations, the applicatioefletction seismics for shallow hydrostatgraphic studies is
relatively recent (probably the first examples can be trheett to the ‘80s). However, as a consequence of the increasing
and general awareness concerning the use and protection ofregmterces, during the last 40 years, seismics - together
with several other geophysical techniques (e.g., the airborneoategnetic methodologies) - has been applied to many,
diverse hydrogeological characterizations with varying regelg., Francese et al. 2005; Giustiniani et al, 2008). Several of
the problems in this kind of surveys lie: (i) in the presence difrapic noise; (ii) the fact that a possible shallow water table
may reflect the majority of the energy and, at the same timsk low velocity geological features, preventing the effecti
reconstruction of deeper structures. Actually, in the attempt tcawer these difficulties, it has become more and more
common to process and invert what is still often considered noisgrabed-roll (Strobbia, 2009). In fact, ground-roll
contains valuable information about the share velocity distribution isuhsurface and is generally characterized by high-
amplitude. Recently high-resolution, shallow techniques based on surfaees vihave been developed and tested
successfully for hydrogeological investigations (Vignoli et aD12; Vignoli et al., 2016). A possible limitation of
techniques based on surface waves concerns the availability éfelguwency sources: in presence of slow sediments, low
frequencies are required to reach the desired depths, but gen#ratings very demanding and potentially detrimental to
the seismic vibrator.

In the present research, the use of the borehole data asdmaliioning data was considered suboptimal due to the low
quality of many of the wells and the different discretizatiothefborehole data (1 m) compared to the size of the realization
grid (5 m). The borehole data were therefore translated intpdfabilities by using a moving window strategy that, in one

shot, takes into account the borehole information uncertainty and the differenssaaleA uniform uncertainty of 20 % has
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been assumed for the boreholes across the entire domain; howduturénstudies, it would be straightforward to extend
the present approach and locally rescale the soft probakédeesding to a quality rate of each individual borehole as, e.g.,
the one presented in He et al. (2014). In this way, poor qualithdlersvould influence the simulation less than more
reliable data.

One of the difficulties in the development of a proper MPS rdaizaf the Miocene sequence was that the sand content
varied spatially across the model domain making the sequence rionsstat A 3D sand probability grid (Fig. 9) was
generated in order to migrate the information further from thehbtee and constrain the geostatistical simulation to follow
the spatial sand/clay trend characterizing the study areasdfhprobability grid can consequently be seen as a shortcut to
address the non-stationarity, such that the sand/clay content dendwedhe Tl was overruled by the probability grid.
Another possible solution could consist in the creation of differentoltspresent the end-members, and then interpolate
these to obtain gradual changes dependent on the positions as discussed in Mariethexs 4201@x Actually, if SNESIM
could correctly handle soft data in the form of localized comuti probability, kriging the borehole probabilities would be
unnecessary (Hansen et al., in review).

In addition to the data already incorporated as (soft and hard)tioontly data in this study, dense electromagnetic (EM)
surveys, on approximately half of the area, are available in @ahéesb geophysical database Gerda (Mgller et al., 2009). An
option would be to use these resistivity data in the MPS modellingpfasconditioning data, such that high electric
resistivities indicate sand, while clay corresponds to lowtieitysvalues (see, for instance, He et al., 2014; He et al. 2016).
However, EM data have a limited resolution capability towardsl#yiers (Ley-Cooper et al., 2014; Vignoli et al, 2017),
especially in the deeper parts of the investigated sequencemodbeied unit is generally present at great depths (from a
range between 30 m and 80 m, in the east, to a range betweenat&D1IM0 m, in the west) and the resolution of the EM
data is consequently quite low in most of the area. This is epeb&case in the west, where the Miocene unit is located
below the depth of investigation (Christiansen and Auken, 2012). Anotherngeallegarding the use of resistivity data for
detecting sand and clay within the Miocene deposits is thenoonoccurrence of silt (Rasmussen et al., 2010). Some of the
clayey formations are very silty and, while silt has srgediin sizes and hydraulic conductivities, it has high resistvitie
Thus, clayey formations with high silt contents might show highgstieities than expected, leading to potentially wrong
interpretations. In addition to that, during the borehole description péittsis, often recognised as clay, and this clearly
causes a mismatch between the borehole and resistivity information.

Geostatistical simulation methods are most commonly used te credtiple realizations whose variability represents the
combined (uncertain) information; for instance, with the purpose toaistiuncertainties of structural variability (Feyen and
Caers, 2006; He et al., 2013; Poeter and Anderson, 2005; Refsgaar®@12).or to make probability calculations to be
used for various forecasts (Stafleu et al., 2011, Christensen201), In the majority of this study (see Appendix A), only
one realization of each of the conditional strategies was peekserite reason is two-fold. Firstly, the primary goal of this
paper is to describe a workflow for choosing a training image, @edrhbine all available information into one consistent

probabilistic model. And each individual realization (e.g., in Fig. 18pysconstruction, compatible with all simulation
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inputs (thus, the statistics from the TI, the hard data, and the soft conditioning) sS8oup the proposed workflow, only the
analysis of single realizations is necessary and, in titly stf the performances of the different conditioning strategy, onl
the features present, by definition, in each realization have akem into consideration. Secondly, the realization generated
in the final test (Fig. 18) was, at the end, incorporated in anlbgexdogical model (Meyer et al., 2016): whereas, in this
case, using a single realization is considered acceptabke tsiembjective is to study large-scale groundwater flow and
saltwater intrusion, the use of multiple realizations for the ggapon of uncertainty into, for example, hydrological models
would be outside the scope. To make groundwater predictions on a lametssa@verall distribution and connectivity of
the overall structures are crucial, while the precise logaif the individual structures is less important. In contrast, detaile
studies, like catchment analyses, would not make sense based or aesilightion (He et al., 2013) and assessments based
on a significant number of different realizations should be conducted to invethigatariability of the outcome.

The validity of the presented workflow is demonstrated for the &fiecunit characterized by relative simplicity and
presence of only two categories. This does not mean that the apipyicatbthis approach should be limited to simple
situations. This research can be considered a proof of concept emeritss to clearly show the relevance and effectiveness
of our strategy in addressing the difficulties frequently encouhtereen in simple cases. We do not see any particular
difficulty in extending the proposed strategy to more complexngsttcharacterized, for example, by a larger number of
categories. In fact, if this is the case, dealing with tleremore categories makes the preparation of the hard conditioning
data (e.g., the interpretations of seismic lines) clearly dadr@rious, but conceptually not more difficult. The same is true
for the way we handle the borehaletaas soft conditioningtata definitely, the implementation of the sliding window and
the following kriging procedure are not different if a larger numdfecategories are involved. Finally, MPS approaches
(together with the associated TIs) are already routinegd in situations with more than two categories (e.g., Joras et
2013), and, in our approach, special emphasis is placed uniquely on theydtating development of effective Tls via

careful analyses of the unconstrained realizations.

8 Conclusions

This study investigates strategies for MPS simulationangel 3D model domains consistent with different types of input
data. The strategies were tested within an are@® &nf in which the Miocene unit was modelled using MPS simulation.
This part of the model was chosen since the Miocene can beweffgstubdivided into few categories (i.e.: sand and clay)
and is relatively stationary in the investigated area. An @reaisting and detailed geological model (the Tgnder model)
was present in a part of the study area, and was used in theofimarehensive geological model. A 3D Tl was constructed
based on the well-known geology of the unit. The stochastic simulatieresconducted using the SNESIM algorithm as it
is implemented in SGeMS. The final Tl was developed iterativglychecking the outcomes of the corresponding
unconditioned simulations, and adjusting it in order to obtain the mostgigallp meaningful structures in the final

realizations. The previously published Tgnder model and reliableiseigerpretations were used as hard conditioning data
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in order to preserve the associated information during the siomla@®n the other hand, the borehaleta -swere
incorporated into the simulation workflow through different conditioningesgias. The first approach - the most traditional
one - consisted of using the borehdbitasas hard conditioninglata This quite standard approach was not satisfactory as
borehole data can have a high degree of uncertainty. Hencemaoaiag window strategy, the lithological information in
the borehole was translated into a probability distribution that couldesgldmcertainties in borehole data both from
inaccuracies and scale mismatch. Unfortunately, SNESIM lities influence of soft conditioning data to local
neighbourhoods around each data value and is unable to effectivelyaiegg any trends that might be captured. To better
address this problem, we kriged the sand probability derived from tebddes into a 3D voxel model and used that kriged
sand probability as soft conditioning. By using this last approach, weaged to successfully reproduce the sand/clay trend
across the simulation domain evaluated based on a visual inspetiiostutly shows a practical workflow to properly build

Tl and effectively handle input information to be successfully used for lagde-geostatistical modelling.
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Appendix A

Despite the discussion of the rest of the paper is realizat@péendent, it might be worth highlighting some of the effects
of our approach on different realizations of the obtained probabilistdels. On this respect, Fig. 20 confirms what is in
Fig. 12. Thus, the use of TI2, instead of TI1, consistently promoteprdsence of larger sand bodies also when the
conditioning strategy (d) in Table 1 is adopted. In addition, the twolgparieFig. 20 demonstrate that similar size
distributions are common for all the realizations generated avidpecific TI. Analogous behaviours clearly appear also
when we compare the other two properties analysed previousigntecity (Fig. 21) and jaggedness (Fig. 22). If we
compare TI1's with TI2’s results for each of the Fig.s 21 and 22, we can dramntkecenclusion as for Fig.s 13-14. Hence,
elongated and jagged sand structures are more probable in theticeaindtained by using TI1. And, again, within the
same probabilistic model, the distributions of eccentricity andejdggss are very consistent between the realizations. Of
course, this should not lead us to the wrong deduction that there isialoilitg between the elements of the probabilistic
model. For example, Fig. 23 compares the conditioning approaches (a@j)dandréble 1 in terms of e-type and variance
maps: Fig.s 23b-c concern the conditioning strategy (c), while EBed result from the application of approach (d). To
make this comparison easier, also the corresponding (soft and biadifjanings are shown in the same figure: in the panel
(a), for the strategy (c) and, in the panel (d), for the approach-{d).23 makes evident the role of the seismic lines and the
buffer zone from the Tegnder model (used as hard data in both conditioritegists) in constraining all the realizations of
both probabilistic models. This is particularly clear when we olestite vertical W-E sections (Fig. 23c-f): the only place
characterized by an extremely limited variance is whezdrtersection with the seismic line occurs. Fig. 23 highliglsts

the crucial role of the 3D kriged grid of the sand probability distidon in migrating the information far from the boreholes.

This confirms, once more, the validity of the suggested way to handle the well itiforma
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Figure 2: a) Location of the study area, b) Map of the model &a (the solid black line) shown together with the data anthe fault
structures delimiting the Tonder graben: red stars indiate boreholes deeper than 100 m, green lines the positiontbé seismic
lines; the Tander graben structure is marked in blue (€r-Borch, 1991). The turquois shading marks the model area of ¢hTgnder
model (Jgrgensen et al., 2015); the grey zone in map (b) repemts Germany.
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Figure 3: Conceptual sketch of the geology in the study area.
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Figure 4: Sketch of the MPS model domain based on the condepl sketch of the geology in Fig. 3: Top and Bottom of the
Miocene unit is outlined by thick white lines. The sufaces are shown in Fig. 5a and 5b.
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Figure 5: Elevation of the top and bottom of the MPS model domaifthe Miocene unit). a) The modelled surface defininthe top
of the MPS model domain. The surface is obtained by mergintpe bottom of the Made Group and the top pre-Quaternary (se
Fig. 4). b) The modelled surface of the bottom of the MPS adel domain, which consists of the Top Paleogene clay. NoteffBient

colour scales.
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Figure 6: Preparation of seismic data input exemplified by &elected seismic section (for position, see Fig. 7) Tae seismic section
shown together with coloured horizons and interpretation poirg derived from the Miocene model (Kristensen et al., 2019)) The
seismic section shown together with the generated “2D voxebdel”. Vertical exaggeration = 10x.
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Figure 7: 3D view of the hard conditioning data (the buffer zoa around the Tgnder model and the seismic lines), seeorh south-
west. Positions of the seismic line in Fig. 6 and the pitef in Fig. 17 are marked on the figure. Vertical exaggeratiorr 10x.
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15). The resulting realizations are shown in Fig. 13. a)iEe sand/clay occurrence in the borehole is considered as batata. b) The
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Sand probability

Figure 9: 3D fence view into the sand probability grid, seefrom south-east. Vertical exaggeration = 10x.
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Figure 10: N-S and E-W slices through the two tested 3D tmaing images seen from north-east. a) The first Tl (TI1), wd to
generate the unconditioned realization in Fig. 11a. b) The eend TI (TI2), used for the unconditioned realization in Fg. 11b.
Vertical exaggeration = 3x.
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Figure 15: Horizontal slice at elevation -188 m through the realizains generated by using different conditional strategies (see
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Tegnder model, which has been used as hard conditioning orimation in (b), (c) and (d).
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boreholes are showed within a buffer of 100 m (yellow = sanblack =clay, white = ‘other’). For location of the profile, see Fig. 15.
Vertical exaggeration = 8x.

34



Southwest Northeast

— 100
9 ol
a —
£ -100 e Lt e  —
% -300 | ' Miocene sand
2 -400 ! B Miocene clay
-500 1
_. 100 .
1D — :
G 0 o
£ -100 s B e [l ——
5 -200 [ A =
2-300 el ] Miocene sand
i1 ~400|  Palecgene 1 B Miocene clay
-500 1
o [ E—— :
G 0 s T ") .
£ -100 ey [~ =
= 200 Pkl
8 o e _—
g jgg = P 7] Miocene sand
u% Paleogene B Miocene clay
-500
. 100
Tr@ . d _‘-"‘\‘w——__,._
£ -100 —— ——
£ - T m———
5 -200 e
‘,-;—, -300 =8 U ] Miocene sand
B 400|  paleogene B Miocene clay
-500
0 5 10 15 20 25 35 40 45 50 55 60 65 70 75
Distance (km)

I hard data from Tender model ™ hard data from seismic lines

Figure 17: Long SW-NE profile through the realizations generatedby using different conditional strategies (see Table 1)or
location of the profile, see Fig. 15. Vertical exaggeration = 15x.

35



R e

Figure 18: 3D view of the final realization (test (d), Table 1)The associated 3D probability grid is shown in Fig. 9. a) Avoxels are
plotted and the location of the profile in Figs. 13 and 14 arehewn. b) The associated fence view. Vertical exaggerationlfx.
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Figure 19: Cross-correlation between the soft probability disibution (Fig. 9) and each of the realizations showed, foexample, in
Fig. 15c (real. (c)) and Fig. 15d (real. (d)), and desbed in Table 1 (cases (c) and (d)).
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Figure 20: Sizes of the sand bodies for the realizations atimed by using the conditioning strategy (d) in Table 1 andespectively,
TI1 and TI2 (Fig. 10). While the histograms correspond to theiffst three realizations, the dots and error bars representhe mean
and the standard deviation obtained by using 100 realizations.
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Figure 21: Probability of the eccentricity of the sand bodis (with a size larger than 1000) for the realizations obtainday using the

conditioning strategy (d) in Table 1 and, respectively, Tlland TI2 (Fig. 10). While the histograms correspond to the ifst three
realizations, the dots and error bars represent the mean antthe standard deviation obtained by using 100 realizations.
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conditioning strategy (d) in Table 1 and, respectively, Tlland TI2 (Fig. 10). While the histograms correspond to the ft three
realizations, the dots and error bars represent the mean anithe standard deviation calculated by using 100 realizations.
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Figure 23: Comparison of the conditioning approaches (c) and (d)f Table 1 in terms of: soft and hard conditioning - panelsa)
and (d); e-type map - panels (b) and (e); variance map - palsgc) and (f). To facilitate the comparison, the probabilies in panels
(a) and (d) are presented in a different colour scale witrespect to Fig.s 8-9. The e-type and variance maps are bdsen 100
realizations. In all panels, the interpretation of the seimic data, and the buffer zone around the Tender model arexplicitly shown
in terms of sand and clay (the red homogeneous volumes repeas the sand bodies, the blue volumes show the clay lesise

Vertical exaggeration = 20x.
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Strategy| Training Soft data Hard data
image
a 2" (Fig. 10b)| + +
2" (Fig. 10b)| + The Tender model
Seismic interpretation
Boreholes
c 2" (Fig. 10b)| Sand probability directly from boreholgsThe Tander model
Seismic interpretation
d 2" (Fig. 10b)| 3D kriged grid of the sand probabilityThe Tander model
distribution from boreholes Seismic interpretation

Table 1: The different conditioning strategies tested inhis study. The corresponding realizations are presented ithe Figs. 15 - 17.
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