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Abstract. Return period estimation plays an important role in the engineering practices of water resources and disaster 10 

management, but uncertainties accompany the calculation process. Based on the daily discharge records at two gauging 

stations (Cuntan and Pingshan) on the upper Yangtze River, three sampling methods (SMs; (annual maximum, peak over 

threshold, and decadal peak over threshold), five distribution functions (DFs; gamma, Gumbel, lognormal, Pearson III, and 

general extreme value), and three parameterization methods (PMs; maximum likelihood, L-Moment, and method of moment) 

were applied to analyze the uncertainties in return period estimation. The estimated return levels based on the different 15 

approaches were found to differ considerably at each station. The range of discharge for a 20-year return period was 

63,800.8–74,024.1 m3 s-1 for Cuntan and 23,097.8–25,595.3 m3 s-1 for Pingshan, when using the 45 combinations of SMs, 

DFs, and PMs. For a 1000-year event, the estimated discharge ranges increased to 74,492.5–125,658.0 and 27,339.2–

41,718.1 m3 s-1 for Cuntan and Pingshan, respectively. Application of the analysis of variance method showed that the total 

sum of the squares of the estimated return levels increased with the widening of the return periods, suggestive of increased 20 

uncertainties. However, the contributions of the different sources to the uncertainties were different. For Cuntan, where the 

discharge changed significantly, the SM appeared to be the largest source of uncertainty. For Pingshan, where the discharge 

series remained almost stable, the DF contributed most to the uncertainty. Therefore, multiple uncertainty sources in 

estimating return periods should be considered to meet the demands of different planning purposes. The research results also 

suggest that uncertainties of return level estimation could be reduced if an optimized DF were used, or if the decadal peak 25 

over threshold SM were used, which is capable of representing temporal changes of hydrological series. 

1 Introduction 

A warming climate will cause increasingly frequent and more severe extreme events, exposing human society and 

ecosystems to greater climatic extremes (IPCC, 2014, Qin et al., 2015). Flooding and drought are among those extreme 

events that often cause huge damage. To cope with hydrological extremes, appropriate assessment of disaster and the 30 
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construction of hydraulic projects such as dams, bridges, and pipelines are greatly needed (Rosbjerg and Madsen, 1998; 

Milly et al., 2002; Cooley et al., 2007; Salvadori et al., 2011; Rootzén and Katz, 2013). Disaster assessment and mitigation 

relies heavily on the return period of hydrological extremes, where a T-year return period represents an event that has a 1/T 

chance of occurrence in any given year. However, because of limitations in understanding and data limitation, substantial 

uncertainties accompany the fitting of extreme hydrological events, and it is necessary to quantify the uncertainties for robust 5 

decision making (Kay et al., 2006; Salvadori et al., 2011). Typically, an estimation of return period uses an appropriate 

parameterization method (PMs) to fit a candidate distribution for an extreme series. Uncertainty might stem from any 

procedure used in establishing the extreme series from the available data, selecting the distribution functions (DFs), or 

performing the parameterization process (Beck, 1987; Hoffman and Hammonds, 1994; El Adlouni, 2008; AghaKouchak and 

Nasrollahi, 2010). 10 

Since Horton (1896) used a normal distribution to fit hydrological extremes, many distribution families have been built. 

Their suitability as candidates can be evaluated by their ability to reproduce some important features of the data, e.g., 

upper/lower bounds of the distribution, left/right tails of the distribution, shape of the distribution, and exact zero values 

(Hosking, 1997). The frequency–magnitude distributions used most commonly in hydrological studies can be categorized 

into four groups: the normal family (Normal, LogNormal(LN)), General Extreme Value (GEV) family (Gumbel (GUM), 15 

Fréchet, and Weibull), Pearson III (P III) family (Gamma (GAM), Pearson III, and Log-Pearson III), and Generalized Pareto 

distribution (Wakeby) (Cunnane, 1989; Beven and Binley, 1992; Hosking, 1997; El Adlouni et al., 2008; Heo et al., 2008; 

Malamud and Turcotte, 2006; Salinas et al., 2014). Two types of widely accepted sampling methods (SMs) are the annual 

maximum (AM) and peak over threshold (POT) methods. Studies have shown that the return levels estimated by POT series 

are usually higher than by AM series (Fisher and Tippett, 1928; Pickands, 1975; Madsen et al., 1997a, b). Another key 20 

source of uncertainty that should not be neglected is related to the method of parameterization. Based on probability 

weighted moments, developed by Greenwood et al. (1979) for obtaining closed-form estimates of distribution parameters, 

Hosking (1990) found that certain linear combinations of probability weighted moments, named L-moments (LMs), could 

measure the location, scale, and shape of probability distributions. LMs form the basis of a comprehensive theory for the 

description, identification, and estimation of distributions (Liu and Xu, 2015). Although moment-based methods are well 25 

established, it is sometimes difficult to assess the shape of a distribution conveyed by its moments, particularly when the 

sample is small (Hosking, 1997). Another common method is maximum likelihood (ML) estimation (Coles, 2001); however, 

it has a complex computation procedure.  

Uncertainty assessment plays an important role in return-period-based decision making (Funtowicz and Ravetz, 1990). For 

subjective method, such as the Pedigree Matrix (Barnett, 2006; Zhu et al., 2015), Carlo, Bayesian model averaging, and 30 

generalized likelihood methods (Vrugt et al., 2009; Tian et al., 2015), uncertainty estimation is often used for the 

approximation of the confidence intervals of quantiles of probability distributions (Coles and Pericchi, 2003; Parent and 
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Bernier, 2003; Beven, 2006; Blasone et al., 2008; Xu et al., 2010; Bouda et al., 2011; Delsman et al., 2013; Cheng et al., 

2014a; 2014b; 2015). However, these methods actually only test the uncertainty from parameterization and they have the 

limitation of to be affected greatly by the prior probability. Recently, the analysis of variance (ANOVA) approach has been 

applied to the quantitative assessment of uncertainties in studies of climate change and climate change impact (Bosshard et 

al., 2013; Vetter et al., 2015). ANOVA is a model-based approach that partitions the total variance into components from 5 

different sources, allowing a fuller interpretation (Madden, 1976; Zwiers, 1987; 1996; Hingray et al., 2007). However, most 

current research focuses on the uncertainty analysis in one respect and few studies have considered the full scope of 

uncertainty during the process of return period estimation. Furthermore, although the hypothesis of stationarity in 

hydrological frequency analysis in a changing world has been questioned, it has not been given sufficient consideration in 

related studies (Milly, 2008; Salas and Obeysekera, 2013; Serinaldi and Kilsby, 2015). 10 

The Cuntan and Pingshan hydrological stations on the Yangtze River (China) have experienced different levels of human 

interference. In this study, long-term records of observed discharge from these stations were selected for the estimation of 

the uncertainty sources in the process of deducing the return period based on combinations of five DFs (GAM, GUM, LN, 

GEV, and P III), three PMs (method of moment (MOM), ML, and LM), and three extreme SMs (AM, POT, and Decadal 

POT (DPOT)).  15 

2 Data and methods 

2.1 Data 

The daily discharge records of the Cuntan and Pingshan hydrological stations on the Upper Yangtze River (Fig. 1), obtained 

from the “Hydrological Year Book-Yangtze” published by the Ministry of Water Resources in China, were selected for the 

analysis of the uncertainty in return period estimation (Jiang et al., 2007). 20 

The drainage area of the Cuntan and Pingshan stations is about 8.6 × 105 and 4.8 × 105 km2, respectively. The discharge at 

Cuntan, averaged over the period 1939–2012, was 39.9 × 105 m3 s-1 and that at Pingshan, averaged over the period 1940–

2011, was 16.5 × 105 m3 s-1. The maximum daily discharge was 84,300 (1 July 1981) and 28,600 m3 s-1 (16 September 

1966) at Cuntan and Pingshan, respectively. Both stations have long-term observational records (over 70 years), but while 

the discharge at Cuntan has shown a significant downward trend, that at Pingshan has shown only slight changes (Fig. 2). 25 

Comparison of the records of the two stations can give us a clue that how does the different population series affect the 

return period estimation results. 
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2.2 Sampling Methods 

Three SMs were considered in this study. One is block maximum approach, which consists of selected maximum within a 

block. Here, a one-year block was used to choose the annual maxima (AM) series. The second was the POT method, which 

chooses all extremes that exceed a given threshold (Davison and Smith, 1990; Madsen et al. 1997a; 1997b). Furthermore, 

considering the possibility that an extreme series might be changed significantly in a changing world, we established and 5 

applied the DPOT approach, which considers a 10-year period (i.e., a decade) as a block and applies the POT method to each 

block to sample the extremes.  

2.3 Distribution Functions 

Skewness and kurtosis are indicators of the shape of a sample series distribution. Skewness is the third moment of a data 

series and it represents by how far the series deviates from a normal distribution. If skewness = 0, the empirical probability 10 

density function (EPDF) follows a normal distribution; if skewness > 0, the right-hand tail of the EPDF will be longer and 

become fatter as skewness increases (Groeneveld and Meeden, 1984; von Hippel, 2005; Cao et al., 2013). Kurtosis is the 

fourth moment of a data series and it represents the peakedness of the distribution. For a normal distribution, kurtosis = 3; a 

distribution with a lower value of kurtosis has a heavy tail, which denotes that greater variance is attributable to frequent 

extreme deviations (Westfall, 2014). 15 

Considering different climatic and environmental backgrounds, regional optimistic distributions are used in different 

countries to analyze the frequency of hydrological extremes. For example, the Log-Pearson III distribution is recommended 

by the United States and Australia, the GUM distribution has been used in Canada and India, and the LN and Wakeby 

distributions have been applied in Japan and Korea (Water Resources Council, USA, 1982; Park et al., 2001; Öztekin, 2007; 

El Adlouni et al., 2008;). Since the 1960s, the P III distribution, which is recommended by the Chinese Ministry of Water 20 

Resources (1995), has been used commonly in flood frequency analysis in China. Therefore, in this study, five distributions 

used worldwide in hydrological frequency analysis, namely GEV, P III, GAM, LN, and GUM were chosen to fit the extreme 

discharge series of the upper Yangtze River. GAM, LN, and GUM are two-parameter distributions, whereas GEV and P III 

are three-parameter distributions. Their probability density functions (PDFs) f(x) and their cumulative distribution functions 

(CDFs) F(x) are shown in Table 1. 25 

2.4 Parameterizations 

Different PMs might result in diverse quintile estimations. To evaluate the range of return levels using different 

parameterizations, three conventional approaches were applied to estimate the unknown parameters. These three methods are 

described briefly in the following. 
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2.4.1 MOM 

The shape of a probability distribution has traditionally been described by the moments of the distribution. Analogous 

quantities can be computed from an independent and identically distributed data sample {x1, x2,…, xn}. The moments are 
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2.4.2 ML 

It is desirable to find an estimator   as close to the true value θ0 as possible. Thus, θ is the function’s variable and it is 

allowed to vary freely. The function of the likelihood can be structured as 
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In practice it is often more convenient to work with the logarithm of the likelihood function, called the log-likelihood: 
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2.4.3 LM 

In terms of probability weighted moments, LMs are given by: 
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The LM ratios are defined as follows: 
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where t2 is L-Cv, t3 is L- skewness, and t4 is L- Kurtosis (Hosking 1990; 1997). 

2.5 Goodness of Fit Test 5 

The Chi-squared (χ
2
) statistic is used to examine the distances between the distributions of features, and figures out if a 

sample comes from a hypothesized continuous distribution (Stanberry, 2013; Corder and Foreman, 2014). The hypothesis 

regarding the distributional form is rejected at the chosen significance level (α) if the test statistic is greater than the critical 

value. For a random sample {x1, ... , xn}, the following formula is used to define the number of bins (k):  

21 logk N  .                     (9)

 

10 

Then, the Chi-squared statistic can be defined as 
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where Oi is the observed frequency for bin i, and Ei is the expected frequency for bin i, which can be calculated by 
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where F is the CDF of the probability distribution being tested, and x1 and x2 are the limits for bin i. 15 

2.6 Method of Uncertainty Assessment 

The ANOVA method was used to partition the variance of uncertainty (Von Storch and Zwiers, 2001; Deque et al., 2007; 

Yip et al., 2011). The framework of the three-way ANOVA used in the current study is depicted in Fig. 3. The different 

sample sizes of the uncertainty sources (three SMs, five DFs, and three PMs) might result in a biased variance estimation, 

which can be avoided using a subsampling scheme (Bosshard et al., 2013; Vetter et al., 2015). Here, subsampling was 20 

conducted to guarantee that each subsample had three distributions, three sample methods, and three parameter methods (3 × 

3 × 3). The unbiased variance fractions η
2
 related to different components can be calculated as 
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where Yijk is the particular value corresponding to SM i, PM j, and DF k, respectively; and Yooo is the overall mean. The 

ANOVA can split the total sum of the squares into the sums of the squares due to the individual effects (SSData, SSParam, SSDis). 

3 Results 

3.1 Statistical Characteristics of Extreme Series 

The EPDFs of AM, POT, and DPOT in the upper Yangtze River are shown in Fig. 4. For Cuntan, the skewness and kurtosis 5 

of the AM, POT, and DPOT series are 0.40 and 0.41, 1.76 and 5.25, and 1.12 and 3.10, respectively. The EPDF of the AM 

series has the heaviest tail and that of the POT series has the longest tail.  

Discharge at Pingshan has no significant trend over time. The kurtosis of its extreme series does not show any significant 

difference among the three SMs. The Skewness of its AM series is 0.61 (slightly higher than Cuntan) and its kurtosis is 0.48 

(comparable with Cuntan). The skewness and kurtosis of Pingshan’s POT series are 1.21 and 1.85, respectively; much lower 10 

than Cuntan. The skewness and kurtosis of the DPOT series are 0.68 and 0.81, respectively; the kurtosis is lower than 

Cuntan. 

3.2 Goodness of Fit of Distributions 

The χ2 test was applied to examine the goodness of fit (GOF) of the five distributions for fitting the upper Yangtze River 

hydrological extremes. A low value of the χ2 statistic indicates smaller differences between the theoretical PDF and EPDF. 15 

The results of the χ2 test statistics for the 45 combinations of SMs, DFs, and PMs are shown in Fig. 5. For the Cuntan 

discharge, except for the fitting of GEV to the POT series by the ML method, which fails to pass the χ2 GOF test (at the 0.05 

significance level), all the fitting results from the other 44 combinations are satisfactory (Fig. 5a). For the Pingshan discharge, 

all 45 results pass the χ2 test at the 0.05 significance level (Fig. 5b).  

The variances of the fitting results of the SMs are shown in the averaged χ2 statistics of the 15 combinations fitted by the 20 

different DFs (GAM/GUM/LN/P III/GEV) and PMs (ML/LM/MOM) for each SM in Fig. 5a and 5b. It is clear that for both 

stations the statistics of the DPOT-based combinations are smallest. This suggests that the DPOT sequence can be described 

well by all five selected DFs using all three PMs, but that the optimum way to deduce return levels for the DPOT series for 

both stations is the LM–GAM combination. For the AM series, the combinations of LM–GAM and ML–P III are optimum 

for Cuntan and Pingshan, respectively. For the POT series, the ML–P III combination is optimum for both stations. For all 25 

three extreme series at Pingshan, the fitting results from the combination of the LN distribution using LM parameterization 

are the worst. For the Cuntan extremes, the LM–LN combination is the worst choice for the AM series, ML–GEV is the 

worst for the POT series, and MOM–GAM is the worst for the DPOT series.  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-566, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 7 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



8 

 

To illustrate the effects of the DFs on the fitting results, the averaged χ2 statistics of nine combinations of SMs 

(AM/POT/DPOT) and PMs (ML/LM/MOM) fitted by each function are shown in Fig. 5c and 5d. Of the five distributions, 

the three-parameter distributions (P III and GEV) fit better than the two- parameter distributions (LN, GUM, and GAM) and 

the fitting result of the LN distribution are the worst. For the Cuntan extreme series, GAM is the optimum distribution, 

followed by the P III distribution. The averaged χ2 statistics of the GEV-based combinations are higher than the GAM-based 5 

combinations, and except for the poorer fit of the GEV–POT–ML combination, the GEV-based fittings are even better than 

the GAM-based results. For the Pingshan extreme series, P III is the optimum distribution, followed by the GEV distribution. 

The LN and GUM distributions do not fit the POT series well. 

The variabilities of the averaged χ2 statistics for the three PMs are relatively smaller than for the SMs and DFs. The χ2 

statistics of the LM-based fitting results are higher than the ML- and MOM-based fittings, and this variance is higher at 10 

Pingshan than Cuntan (Fig. 5c and 5d). For the Cuntan extreme series, the χ2 statistics are smallest for GAM–DPOT, P III–

POT, and LN–DPOT using LM, ML, and MOM, respectively. The largest χ2 statistics are obtained using the LN–AM, 

GEV–POT, and GUM–AM combinations with the LM, ML, and MOM methods, respectively. For the Pingshan extreme 

series, the smallest χ2 statistics are derived with P III–POT using the ML and LM methods, and with the GAM–DPOT 

combinations using MOM. The largest χ2 statistics are obtained with LN–POT combinations using ML and LM and by 15 

GAM–POT combinations using MOM (Fig. 5a and 5b). 

3.3 Uncertainty Range of Return Period Events 

The estimation of T-year return period events using all 45 combinations of the 3 SMs, 5 DFs, and 3 PMs shows that large 

variability can be found in the return levels. Figure 6 indicates that the range of return levels by the nine LN-based 

combinations is the largest, while that of the nine P III-based combinations is the smallest among the five distributions used. 20 

Note that because of the poor performance of the POT–ML–GEV combination, the range of return levels estimated by the 

GEV distribution is also very large for the Cuntan extremes. The return levels estimated by the DPOT method show steady 

performance for all PM and DF combinations, with the smallest range of return levels compared with other SMs. The return 

levels estimated by the three PMs are very similar. 

For Cuntan, the 20-year return period event deduced by the 45 combinations ranges from 63,800.8 to 74,024.1 m
3
 s

-1
; the 25 

variance of 10,223.3 m
3
 s

-1
 is about 15% of the average level (66,808.2 m

3
 s

-1
). The 50-year event ranges from 66,716.2 to 

83,115.0 m
3
 s

-1
; the variance of 16,398.8 m

3
 s

-1 
is 23% of the average level (71,995.1 m

3
 s

-1
). The 100-year event ranges from 

68,707.4 to 89,787.8 m
3 
s

-1
; the variance of 21,080.4 m

3
 s

-1
 is 28% of the average level (75,845.2 m

3 
s

-1
). The 200-year event 

ranges from 70,563.4 to 97,661.5 m
3
 s

-1
; the variance of 27,098.1 m

3
 s

-1 
is about 34% of the average level (79,617.8 m

3
 s

-1
). 

The 500-year event ranges from 72,855.9 to 112,444.0 m
3
 s

-1
; the variance of 39,588.1 m

3
 s

-1 
is 47% of the average level 30 
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(84,278.7 m
3
 s

-1
). The 1000-year event ranges from 74,492.5 to 125,658.0 m

3
 s

-1
; the variance of 51,165.5 m

3
 s

-1
 is 58% of 

the average level (88,240.2 m
3
 s

-1
) (Fig. 6a). 

The estimated ranges of return level events at Pingshan are smaller than at Cuntan. The 20-year return period event estimated 

by the 45 combinations ranges from 23,097.8 to 25,595.3 m
3 

s
-1

; the variance of 2497.5 m
3
 s

-1 
is about 11% of the average 

return level (23,761.3 m
3
 s

-1
). The 50-year event ranges from 24,250.6 to 28,740 m

3
 s

-1
; the variance of 4489.4 m

3
 s

-1 
is about 5 

17% of the average level (25,710.4 m
3
 s

-1
). The 100-year event ranges from 25,039.6 to 31,048.3 m

3
 s

-1
; the variance of 

6008.7 m
3
 s

-1 
is about 22% of the average level (27,123.7 m

3
 s

-1
). The 200-year event ranges from 25,776.2 to 33,323.0 m

3
 s

-1
; 

the variance of 7546.8 m
3
 s

-1
 is about 26% of the average return level (28,502.0 m

3
 s

-1
). The 500-year event ranges from 

26,687.6 to 37,604.3 m
3
 s

-1
; the variance of 10,916.7 m

3
 s

-1 
is about 36% of the average level (30,288.1 m

3
 s

-1
). The 1000-

year event ranges from 27,339.2 to 41,718.1 m
3
 s

-1
; the variance of 14,378.9 m

3
 s

-1 
is about 45% of the average level 10 

(31,621.9 m
3
 s

-1
) (Fig. 6b). 

3.3.1 Return Level Variation based on Different Samplings 

To analyze the range of different SMs, return period events estimated by the combinations of the five DFs (GEV/P 

III/GAM/GUM/LN) and three PMs (ML/LM/MOM) were averaged for each SM (Fig. 7a1 and 7b1). The range of averaged 

return levels estimated using the different SMs shows an increasing trend from shorter to longer return period events. 15 

For the Cuntan discharge, the average return levels of 20–1000-year events are 68,085.71–92,436.35, 65,862.59–87,633.27, 

and 66,176.39–~84,654.03 m
3
 s

-1 
for the AM, POT, and DPOT series, respectively. The range of return levels estimated by 

the different SMs is 2223.1–7785.3 m
3
 s

-1 
for the 20–1000-year events, which is about 3%–8% of the averaged return level 

over the three SMs (Fig. 7a1). For the Pingshan discharge, the average return levels of 20–1000-year events are 23,675.05–

32,755.79, 23,688.6–31,304.66, and 23,920.25–30,805.37 m
3
 s

-1
 based on AM, POT, DPOT samples, respectively. The 20 

changes of estimated return period extremes by the different SMs at Pingshan are obviously smaller than at Cuntan, with 

values ranging from 403.7 to 1324.6 m
3
 s

-1
 for 20–1000-year events, which are about 2%–4% of the averaged return level 

over the three SMs (Fig. 7b1).  

3.3.2  Return Level Variation based on Different Parameterizations 

Return period events estimated by the combinations of five DFs (GAM/GUM/LN/P III/GEV) and three SMs 25 

(AM/POT/DPOT) were averaged over each PM (Fig. 7a2 and 7b2).  

For the Cuntan discharge, the return levels by the three PMs are similar, ranging between 697.8 and 2360.4 m
3
 s

-1
 for 20–

1000-year events, which are about 1% and 3% of the averaged return levels over the three PMs. The average of return period 

events of MOM-based combinations is the smallest among the three parameterizations, with a value of 66,359.6–86,978.6 m
3
 

s
-1

 for 20–1000-year events. The return levels estimated by LM are the largest for events shorter than 200 years, whereas 30 
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those estimated by ML-combinations are the largest for events longer than 200 years. The average of the 15 LM- and ML-

based combinations is 67,057.4–88,403.1 and 66,707.7–89,399.0 m
3
 s

-1
 for 20- and 1000-year events, respectively (Fig. 7a2).  

For the Pingshan series, the ranges of the return levels derived by the three PMs are larger than for Cuntan, with values of 

245.2–1950.4 m
3
 s

-1 
for 20–1000-year events, respectively, i.e., about 1%–6% of the averaged return levels over the three 

PMs. The average return levels estimated by MOM are also the smallest, with values of 23,920.3–30,805.4 m
3
 s

-1 
for 20–5 

1000-year events, while the LM-based combinations have the largest average return levels with values of 23,675.1–32,775.8 

m
3
 s

-1
 for 20–1000-year events. For the ML-based combinations, the average return levels of all 15 LM-based combinations 

are 23,688.6–31,304.66 m
3
 s

-1
 for 20–1000-year events (Fig. 7b2). 

3.3.3  Return Level Variation based on Different Distributions 

The range of averaged return levels of the nine combinations of three SMs (AM/POT/DPOT) and three PMs (ML/LM/MOM) 10 

over each of the five DFs is greater than for the PM- and SM-based results (Fig. 7a3 and 7b3). 

For the Cuntan discharge, the results of GUM-based combinations have the largest return levels among the five functions, 

with values of 66,952.6–92,751.8 m
3
 s

-1 
for 20–1000-year events. The average return levels of the GAM-based combinations 

are the smallest, with values ranging from 65,532.9–80,719.4 m
3
 s

-1
 for 20–1000-year events. The range of the five DFs is 

between 1767.4 and 12,032.4 m
3
 s

-1 
for 20–1000-year events, which is about 3%–14% of the averaged return level over the 15 

five DFs (Fig. 7a3). 

A similar pattern is found for the Pingshan extremes. The results of the GAM-based combinations have the smallest return 

levels for all five functions, with values of 23,344.6–29,009.2 m
3
 s

-1 
for 20–1000-year events. The return levels of the GUM-

based combinations have the largest average return levels, with values of 23,860.6–33,415.8 m
3
 s

-1 
for 20–1000-year events. 

The range of the five DFs is between 664.7 and 4406.6 m
3
 s

-1 
for 20–1000-year events, which is about 3%–14% of the 20 

averaged return level over the five DFs (Fig. 7b3). 

3.4 Evaluation of Uncertainty Contribution 

The ANOVA method was used to decompose the total uncertainty into different sources. The total sum of the squares 

increases with increasing return period, but the contributions from the different sources to the overall uncertainty might 

change over the return period. Figure 8 shows the contributions from the different sources (SMs, DFs, and PMs) to the 25 

overall uncertainty. 

For the Cuntan discharge, the SMs contribute more than 40% of the total uncertainty in the estimation of return levels, and 

this changes little for 20–1000-year event estimations. The DFs also exert obvious influence on the return period estimation, 
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contributing about 30%–40% of the total uncertainty, and this uncertainty increases with time. The PMs contribute the least 

to the uncertainty, accounting for about 10%–20% of the total. 

A different pattern can be seen for the uncertainty of return period estimation at Pingshan. The DFs are the dominant source, 

explaining almost 50% of the total uncertainty, and this is constant over time. The SMs contribute about 22%–35% of the 

total uncertainty, and this proportion increases with the return period. Uncertainty originating from the PMs is the least 5 

important individual source of uncertainty at Pingshan (but more pronounced than that at Cuntan), contributing about 17%–

33% of the total uncertainty, and this proportion decreases with the return period.  

4 Discussion and Concluding Remarks 

This study used daily discharge monitored at the Cuntan (which had a significant trend of discharge) and Pingshan (which 

had no obvious trend of discharge) hydrological stations on the upper Yangtze River in China to compare the return period 10 

events estimated by different SMs (AM/POT/DPOT), DFs (GAM/GUM/LN/GEV/P III) and PMs (ML/LM/MOM). The 

contributions of the SMs, PMs, and DFs to the total uncertainty of the return period estimations was analyzed using the 

ANOVA method. 

A large variability of return period events was estimated by the 45 different combinations. For Cuntan, the range of return 

levels was about 15% of the average (66,808.2 m
3
 s

-1
) for 20-year events and up to 58% of the average (88,240.2 m

3
 s

-1
) for 15 

1000-year events. The ranges of return levels estimated by all 45 combinations at Pingshan were smaller than at Cuntan. For 

20–1000-year events, the ranges of return levels were about 11%–45% of the average return level (23,761.3–31,621.9 m
3
 s

-1
).  

The selection of SMs, DFs, and PMs clearly affected the return period estimations. The ranges of the averaged return levels 

of the three different PMs were similar, but those of the five DFs were the largest. The SMs caused intermediate variation of 

the return levels but with larger differences at Cuntan than at Pingshan. 20 

The ranges of return levels estimated by two-parameter DFs (GAM, GUM, and LN) were larger than estimated by three-

parameter DFs. According to the GOF test, the worst fitting LN distribution had the largest range of return levels, whereas 

the best fitting P III distribution had the smallest range. Note that because of the poor performance of the POT–ML–GEV 

combination, the range of return levels estimated with the GEV distribution was also very large for the Cuntan extremes. 

This indicates that it is not only the individual factors but also the interaction of the SMs, PMs, and DFs that affects the 25 

uncertainty of the return period estimation. The return levels estimated by the DPOT method demonstrated steady 

performance for every combination of PM and DF, with the smallest range of return levels in comparison with the other SMs.  

The results of the ANOVA analysis showed that all modeling chain combinations had an increasing trend of the total sum of 

the squares with increasing return periods, but that the contributions of the different sources were different. Although the 
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largest range of return levels stemmed from the DFs for both the Cuntan and the Pingshan discharge series, as the number of 

DFs used in this study was greater than the SMs and PMs, after the subsampling scheme, the main sources of uncertainty 

associated with return level estimation at the different stations were different. For Cuntan, which showed obvious change, 

the SMs had the greatest influence on the return levels, contributing more than 40% of the total uncertainty; however, for 

Pingshan, the DF was the most important source of uncertainty, contributing almost 50% of the total. The proportion of the 5 

contribution of the PMs to the total uncertainty is less significant than that of the SMs and DFs, but it plays a more important 

role in the Cuntan discharge series than the Pingshan series. This indicates that the sources of uncertainty in the return period 

estimations are different for discharges with and without significant trends, and that multiple uncertainty sources in the 

estimations of return periods should be considered to meet the demands of different planning purposes.  

Through a case-dependent uncertainty analysis in this study, it was found that the selection of different methods has 10 

significant effects on return period estimations. An estimation return period is an approximated figure and thus, some degree 

of uncertainty remains in the process. There are two possible ways to reduce the associated uncertainty. The first is to obtain 

a sufficiently long and high-quality extreme series, as in Parent and Bernier (2003), who highlighted that the incorporation of 

historical records and regional information into the process of deducing return periods is useful for uncertainty reduction. 

Unfortunately, reliable data are not always available, and therefore choosing better SMs is the more viable alternative. This 15 

study found that of the three SMs the DPOT method brought the least variation. The ranges of return levels based on the 

DPOT series were usually the smallest compared with the other two sampling series, and therefore it was considered suitable 

for sampling discharge time series with or without significant trends. Furthermore, it also performed best when applying 

different DFs and PMs. Several studies have recommended a nonstationary method to reduce the uncertainties in a changing 

world, by applying time-dependent distribution parameters. However, the application of these models remains immature and 20 

the hypothesis that “stationarity is dead” remains debatable (Milly et al., 2008; Salas and Obeysekera, 2013; Cheng et al., 

2014; Serinaldi and Kilsby, 2015). For a station that has significant trends, the application of DPOT sampling might be one 

way to reduce uncertainty in return period estimations. 

The second option is to reduce the uncertainty in the return period estimation processes is using more candidate DFs, and 

then by choosing an optimum DF to reduce the total uncertainty. In this study, the P III distribution performed well at both 25 

stations and the ranges of the return levels of the P III-based combinations were the smallest. However, it must be noted that 

the DF itself, as well as the interaction of the DF with the SMs and PMs, contributes to the uncertainty in the return period 

estimation. The GEV is recommended by the WMO to fit annual climate extremes (Klein Tank et al., 2009). However, it 

failed to pass the GOF test when fitting the Cuntan POT series by the MLE method, although other GEV-based 

combinations did fit the extreme discharge series very well (Botero and Francés, 2010; Salinas et al., 2014). In addition, 30 

Hosking (1997) indicated that the return period estimated by two-parameter distributions would be accurate only when the 

fitted distribution approximated the true distribution; otherwise, it could be severely biased. The results of this study also 
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suggested that the ranges of return periods estimated by the three-parameter distributions were smaller than those of the two-

parameter distributions, and that the three-parameter distributions were more reliable in the frequency analysis of extremes. 

Therefore, results derived from two-parameter DFs should be treated with caution in practice. 

As mentioned in the introduction, many distributions have been used in return period estimations (Park et al., 2001; Öztekin, 

2007; Su et al., 2009; Fischer et al., 2012). The selection of only five distributions is one of the primary limitations of the 5 

current study. The uncertainty ranges enlarged with increasing return periods. To achieve different goals, different sources of 

uncertainty should be considered when estimating return levels, especially with respect to the desired frequency when 

estimating the return levels. Considering the weights of uncertainties in return level estimations, reasonable SMs and DFs 

should be selected carefully in future hydraulic design and risk management practices, according to the level of return 

periods required. 10 
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Table 1. Distribution functions fitted to hydrological samples from the Cuntan and Pingshan hydrological stations 
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Figure 1: Locations of the hydrological stations in the Pingshan and Cuntan River basins on the upper Yangtze River, China. 
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Figure 2: Annual total runoff at the Pingshan (gray histogram) and Cuntan (black histogram) hydrological stations. The 

black line represents the 5-year running mean at Cuntan. The red line represents the 5-year running mean at Pingshan. 
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Figure 3: Modeling chain combination scheme. The three analyzed modeling chain elements are depicted from left to right. 
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Figure 4: Three sample method frequency histogram for the extreme discharge series: (a) Cuntan and (b) Pingshan. Red, 

blue, and black histograms represent the AM, POT, and DPOT extreme discharge series, respectively. 
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Figure 5: χ2
 goodness of fit tests of different distributions: (a) and (c) Cuntan, and (b) and (d) Pingshan. Black line indicates the 

0.05 significance level of χ
2
 goodness of fit tests. 5 
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Figure 6: CDF of all combinations: (a) Cuntan and (b) Pingshan. 1–5 represent the CDFs of the GAM, GUM, LN, GEV, 5 

and P III DFs, respectively.  
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Figure 7: Average return levels to extreme discharge: (a) Cuntan and (b) Pingshan. 1–3 represent the average return levels 

estimated by different SMs, PMs, and DFs. 5 
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Figure 8: Contributions of different sources of uncertainty to overall uncertainty with subsampling scheme: (a) Cuntan and 

(b) Pingshan. 
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