Appendix A: Notations

Table A1. Notations

Symbols	Units	Definitions
*	_	represents the mathematical convolution function
C_M	$[m.s^{-1}]$	parameter controlling the solute mass flux celerity
C_Q	$[m.s^{-1}]$	flood wave celerity
D_M	$[m^2.s^{-1}]$	parameter controlling the solute mass flux diffusivity
D_Q	$[m^2.s^{-1}]$ flood wave diffusivity	
(K_Q, K_M)	_	Hayami kernel function for water flow and mass flux modelling, respectively
m	$[kg.s^{-1}.m^{-1}]$	lateral mass flux per length unit
M	$[\mathrm{kg.s}^{-1}]$	mass flux
$(M_{I,base}, M_{I,flood}, M_{I,tot})$	$[\mathrm{kg.s}^{-1}]$	upstream base, flood and total mass flux, respectively
$(M_{O,base}, M_{O,flood}, M_{O,tot})$	$[kg.s^{-1}]$	downstream base, flood and total mass flux, respectively
$(M_{A,base}, M_{A,flood}, M_{A,tot})$	$[\mathrm{kg.s}^{-1}]$	lateral base, flood and total mass flux exchanges, respectively
q	$[m^2.s^{-1}]$	lateral flow per length unit
Q	$[m^3.s^{-1}]$	discharge
$(Q_{I,base}, Q_{I,flood}, Q_{I,tot})$	$[m^3.s^{-1}]$	upstream base, flood and total flow, respectively
$(Q_{O,base}, Q_{O,flood}, Q_{O,tot})$	$[m^3.s^{-1}]$	downstream base, flood and total flow, respectively
$(Q_{A,base}, Q_{A,flood}, Q_{A,tot})$	$[m^3.s^{-1}]$	lateral base, flood and total flow exchanges, respectively
(R1, R2)	_	reach 1 (s1 to s2) and reach 2 (s2 to s3), respectively
(s1, s2, s3)	_	monitoring station 1, 2 and 3, respectively
$(S_{I,base}, S_{I,flood}, S_{I,tot})$	$[g.l^{-1}]$	upstream solute base, flood and total concentrations, respectively
$(S_{O,base}, S_{O,flood}, S_{O,tot})$	$[g.l^{-1}]$	downstream solute base, flood and total concentrations, respectively
$(S_{A,base}, S_{A,flood}, S_{A,tot})$	$[g.l^{-1}]$	lateral solute base, flood and total concentrations, respectively
t	[s]	time
U	_	percentage of the unsaturated conduit length along R2
x	[m]	downstream distance