Supplementary material for Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

1 Landsat imagery

Figure 1: Landsat scenes analyzed in this study (N = 45), with the year corresponding to the date on January 1. Decades are separated by dashed vertical lines using "monsoon year" (e.g., the January 1990 image is grouped with the 1980s because it corresponds to the 1989 monsoon year).

Date	Mission	Sensor	Path	Row	Cloud Free	Source	Use
1973 January 22	Landsat 1	MSS	154	051	Yes	USGS	LTT,DSA
1973 February 27	Landsat 1	MSS	154	051	Yes	USGS	DSA
1976 January 17	Landsat 2	MSS	155	051	Yes	USGS	LTT
1976 December 05	Landsat 2	MSS	154	051		USGS	DSA
1976 December 24	Landsat 2	MSS	155	051	Yes	USGS	DSA
1977 January 10	Landsat 2	MSS	154	051	Yes	USGS	LTT,DSA
1977 January 11	Landsat 2	MSS	155	051	Yes	USGS	DSA
1977 January 28	Landsat 2	MSS	154	051	Yes	USGS	DSA
1986 December 15	Landsat 5	TM	144	051	Yes	NRSC	LTT
1990 January 24	Landsat 5	TM	144	051	Yes	NRSC	LTT

Continued on next page

Date	Mission	Sensor	Path	Row	Cloud Free	Source	Use
1990 December 26	Landsat 5	TM	144	051		NRSC	LTT
1992 December 31	Landsat 5	TM	144	051	Yes	NRSC	LTT
1995 January 22	Landsat 5	TM	144	051	Yes	NRSC	LTT
1999 February 02	Landsat 5	TM	144	051	Yes	USGS	DSA
1999 February 18	Landsat 5	TM	144	051	Yes	USGS	DSA
1999 April 07	Landsat 5	TM	144	051	Yes	USGS	DSA
1999 November 09	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2000 March 16	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2000 May 03	Landsat 7	ETM+	144	051		USGS	DSA
2001 January 14	Landsat 7	ETM+	144	051	Yes	USGS	LTT
2001 October 29	Landsat 7	ETM+	144	051		USGS	DSA
2002 February 18	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2002 April 07	Landsat 7	ETM+	144	051		USGS	DSA
2002 December 03	Landsat 7	ETM+	144	051	Yes	USGS	LTT,DSA
2003 March 09	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2003 December 22	Landsat 7	ETM+	144	051	Yes	USGS	LTT
2005 December 27	Landsat 7	ETM+	144	051		USGS	LTT,DSA
2006 January 12	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2006 January 28	Landsat 7	ETM+	144	051		USGS	DSA
2006 March 01	Landsat 7	ETM+	144	051		USGS	DSA
2006 December 30	Landsat 7	ETM+	144	051	Yes	USGS	LTT
2008 January 02	Landsat 7	ETM+	144	051	Yes	USGS	LTT,DSA
2008 January 18	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2008 February 19	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2008 March 06	Landsat 7	ETM+	144	051	Yes	USGS	DSA
2009 January 20	Landsat 7	ETM+	144	051	Yes	USGS	LTT
2010 January 07	Landsat 7	ETM+	144	051		USGS	LTT
2013 November 07	Landsat 8	OLI	144	051		USGS	DSA
2014 January 10	Landsat 8	OLI	144	051		USGS	DSA
2014 January 26	Landsat 8	OLI	144	051	Yes	USGS	DSA
2014 February 11	Landsat 8	OLI	144	051	Yes	USGS	DSA
2014 February 27	Landsat 8	OLI	144	051		USGS	DSA,ACC
2014 March 15	Landsat 8	OLI	144	051	Yes	USGS	DSA
2014 March 31	Landsat 8	OLI	144	051	Yes	USGS	DSA
2014 April 16	Landsat 8	OLI	144	051		USGS	DSA

Table 1: Landsat scenes analyzed. The path and row numbers refer to WRS-1 for Landsat 1–3 and WRS-2 for Landsat 5–8. "Use" column indicates whether the scene was used for calculation of long-term trends (LTT), dryseason analysis (DSA), or for accuracy assessment (ACC).

2 Classification flags

Figure 2: Left: Landsat false color composite (FCC) of a tank on 17 December 2005, with missing pixels visible as black diagonal bands. Middle: FCC after missing pixels were filled using successive grayscale dilation. Right: Classification of water in the image shown in blue.

Figure 3: Left: Landsat false color composite on 27 December 2005 showing clouds and shadows near multiple tanks, with missing pixels visible as black diagonal bands. Middle: FCC after missing pixels were filled using successive grayscale dilation. Tank boundaries are shown in light gray. Right: Classification of clouds (yellow), cloud shadows (gray), water in tanks (blue), and areas classified as water but removed from the analysis due to clouds or cloud shadows (red outline).

3 Classification examples

Figure 4: Left: Timeseries of tank water extent with selected Landsat images. Right: Landsat images (NIR-redgreen mapped to red-green-blue) and corresponding classified water fraction.

Figure 5: Left: Timeseries of tank water extent with selected Landsat images. Right: Landsat images (NIR-redgreen mapped to red-green-blue) and corresponding classified water fraction.

4 Results from multiple regression

Figure 6: Subwatershed names and cluster IDs for the multiple regression. The Manchanabele and Harobele subwatersheds here are named for reservoirs within the watershed, which are not located at the subwatershed outlet.

Figure 7: Quantile-quantile plot of residuals from multiple regression, with residuals normalized by mean and standard deviation and plotted agains a theoretical normal distribution.

X7 · 11	XX7 / 1 1			0: :0
Variable	Watershed	Estimate	95% Conf. Interval	Significant
P_total	Hesaraghatta	0.0030	[0.0011, 0.0048]	Y
P_total	Kumudavathy	0.0048	[0.0031, 0.0065]	Y
P_total	TG Halli	0.0053	[0.0032, 0.0073]	Y
P_total	Vrishabhavati	0.0026	[0.0013, 0.0040]	Y
P_total	Manchanabele	0.0052	[0.0031, 0.0074]	Y
P_total	Suvarnamukhi	0.0029	[0.0011, 0.0048]	Y
P_total	Kanakapura	0.0027	[0.0007, 0.0048]	Y
P_total	Harobele	0.0037	[0.0018, 0.0057]	Y
P_extreme	Hesaraghatta	0.0824	[0.0192, 0.1456]	Y
P_extreme	Kumudavathy	0.0635	[0.0065, 0.1206]	Y
P_extreme	TG Halli	0.0563	[-0.0117, 0.1243]	
P_extreme	Vrishabhavati	0.0960	[0.0509, 0.1412]	Y
P_extreme	Manchanabele	0.0345	[-0.0293, 0.0983]	
P_extreme	Suvarnamukhi	0.0855	[0.0277, 0.1433]	Y
P_extreme	Kanakapura	0.0728	[0.0025, 0.1431]	Y
P_extreme	Harobele	0.0840	[0.0295, 0.1385]	Y
L_dryseason	Hesaraghatta	-0.0062	[-0.0145, 0.0021]	
L_dryseason	Kumudavathy	-0.0187	[-0.0276,-0.0097]	Y
L_dryseason	TG Halli	-0.0169	[-0.0277,-0.0062]	Y
L_dryseason	Vrishabhavati	-0.0042	[-0.0119, 0.0034]	
L_dryseason	Manchanabele	0.0046	[-0.0078, 0.0170]	
L_dryseason	Suvarnamukhi	-0.0023	[-0.0127, 0.0080]	
L dryseason	Kanakapura	0.0081	[-0.0033, 0.0196]	
L dryseason	Harobele	-0.0021	[-0.0122, 0.0080]	
Trend	Cluster 1	-8.5423	[-13.1524,-3.9321]	Y
Trend	Cluster 2	-5.7428	[-9.8688,-1.6168]	Y

Continued on next page

Variable	Watershed	Estimate	95% Conf. Interval	Significant
Trend	Cluster 3	-5.9023	[-9.2785,-2.5262]	Y
Trend	Cluster 4	-6.0719	[-9.7290,-2.4149]	Y
Trend	Cluster 5	-3.0386	[-6.3040, 0.2268]	
Trend	Cluster 6	-4.9914	[-7.5963,-2.3865]	Y
Trend	Cluster 7	-1.9311	[-3.2717,-0.5905]	Y
Trend	Cluster 8	-6.0638	[-9.8431,-2.2845]	Y
Trend	Cluster 9	-1.8920	[-4.3096, 0.5256]	
Trend	Cluster 10	-0.6443	[-2.3368, 1.0483]	
Trend	Cluster 11	-1.5497	[-3.0651,-0.0344]	Y
Trend	Cluster 12	0.5510	[-0.3884, 1.4904]	
Trend	Cluster 13	0.2430	[-0.4284, 0.9144]	
Trend	Cluster 14	-2.4326	[-3.8343,-1.0309]	Y
Trend	Cluster 15	-0.4811	[-1.8790, 0.9168]	
Trend	Cluster 16	-0.0440	[-0.6246, 0.5367]	
Trend	Cluster 17	0.7534	[-0.4355, 1.9424]	
Trend	Cluster 18	-0.1927	[-0.5592, 0.1737]	
Trend	Cluster 19	1.8104	[0.1391, 3.4817]	Y
Trend	Cluster 20	1.3214	[0.3053, 2.3374]	Y
Trend	Cluster 21	0.2823	[-1.0812, 1.6458]	
Trend	Cluster 22	0.2253	[-1.8224, 2.2730]	
Trend	Cluster 23	4.4629	[1.3973, 7.5285]	Y
Trend	Cluster 24	0.3318	[-0.5243, 1.1879]	
Trend	Cluster 25	-0.4928	[-1.6529, 0.6673]	
Trend	Cluster 26	0.0559	[-0.1662, 0.2779]	
Trend	Cluster 27	-0.0627	[-0.5995, 0.4741]	
Trend	Cluster 28	-0.5958	[-1.7350, 0.5433]	
Trend	Cluster 29	2.1627	[0.9886, 3.3368]	Y
Trend	Cluster 30	0.5555	[-0.7622, 1.8732]	
Trend	Cluster 31	3.0785	[-0.4827, 6.6397]	
Trend	Cluster 32	-0.1133	[-2.2537, 2.0270]	
Trend	Cluster 33	0.1548	[-0.6438, 0.9535]	
Trend	Cluster 34	0.6434	[-0.1912, 1.4780]	
Trend	Cluster 35	-0.7273	[-2.2420, 0.7874]	
Trend	Cluster 36	0.0639	[-0.7680, 0.8957]	
Trend	Cluster 37	-0.6639	[-2.5395, 1.2118]	
Trend	Cluster 38	-0.0057	[-0.6712, 0.6598]	
Trend	Cluster 39	0.1250	[-0.2911, 0.5411]	
Trend	Cluster 40	-1.7551	[-3.9551, 0.4450]	
Trend	Cluster 41	-0.5841	[-1.6055, 0.4373]	
Trend	Cluster 42	0.1273	[-0.1511, 0.4058]	

Table 2: Results from multiple regression for all varibles. The effects that apply at the subwatershed level are reported as directly output from the model. The temporal trend of each cluster was converted to units of ha per decade per 10 square km, matching Figure 8.

5 Dry-season analysis

Figure 8: Dryseason analysis. (a) Post-monsoon drying of all tanks in each subwatershed, relative to the water extent at start of the dry season. The symbol for each subcatchment corresponds to the symbol in Figure 8 of Section 4.2 of the main article. (b) Histogram of the remaining water at the end of dry season as a fraction of the start of the dry season for all tank clusters. (c) Confidence intervals on the Mann–Kendall test statistic (tau) for a trend in the rate of tank water loss in dry season. Most subwatersheds do not exhibit a statistically significant trend in the rate of dry-season water loss (the confidence intervals include zero), but the Hesaraghatta and TG Halli subwatersheds exhibit a significant decreasing trend, meaning that tanks dry at a slower rate now than in the past.