
 
Spatial characterization of long-term hydrological change in the Arkavathy watershed 
adjacent to Bangalore, India -- (1) Letter to Editor, (2) list of manuscript changes, (3) 
responses to Referees 1 & 2, and (4) marked up version of revised manuscript 

 
 
Dear Dr. Shraddhanand Shukla, 
 
Thank you for conveying the referee comments and major revisions to us. We made a number 
of improvements to the revised manuscript in response to the referee comments. We have 
provided a list of manuscript changes below, followed by point-by-point responses to the referee 
comments, and finally a marked up version of the revised manuscript with pertinent revisions 
colored in red.  
 
Among the changes to the manuscript, the most notable was that we explored a more 
sophisticated analysis of the associating human drivers of change with hydrological trends in the 
TG Halli watershed (the northern portion of the Arkavathy watershed). This region coincides with 
land use maps recently developed for 1973-74, 1991-92, 2001-02, and 2013-14. Using a linear 
regression of the hydrological trends on land use, we found the streamflow decline was closely 
associated with groundwater irrigated agriculture. As we describe in the revised manuscript, the 
mechanisms of change are likely related to groundwater pumping and construction of in-stream 
check dams. There was not a clear relationship between streamflow decline and Eucalyptus 
plantations. Based on referee comments and this new analysis, we have modified the 
introduction and discussion sections to include a more detailed analysis of the relationship 
between hydrological change and human drivers of change. 
 
A number of other changes to the manuscript are listed below. We again thank the referees for 
their consideration of this paper and their helpful comments which we believe has resulted in a 
better manuscript. We look forward to hearing back regarding the revised manuscript. 
 
Best regards, 
 
Gopal Penny 
Veena Srinivasan 
Iryna Dronova 
Sharad Lele 
Sally Thompson 
  

 



 
 

List of changes to the manuscript 
 
Abstract  

● Minor changes to reflect updates to the manuscript. 
 
Introduction 

● Added a paragraph relating the importance of understanding human driven hydrological 
changes to understanding water resources in South India. This paragraph begins on 
page 2, line 3. 

● Consolidated information related to groundwater irrigation and other potential human 
drivers of hydrological change, including eucalyptus plantations and check dams. This 
paragraph begins on page 2, line 30. 

● Added a sentence starting on page 3, line 29, describing a new analysis which allows us 
to associate hydrological trends with land-use (and specifically agricultural practices). 

 
Methods 

● Added watershed area to the study site section on page 4, line 3. 
● On page 7, line 22, we describe an additional validation approach using Google Earth 

imagery. 
● On page 8, line 35, we describe why we were unable to consider wet season dynamics. 
● On page 9, line 18, we provide a more in-depth description of the statistical model 

coefficient, B. 
● On page 9, line 24, we begin a new section entitled Linear regression of hydrological 

change in land use. This section describes our analysis relating hydrological trends to 
land-use in the watershed. 

 
Results 

● On page 11, line 7, we clarified the meeting of the coefficient B. 
● On page 11, line 15, including new section Streamflow decline in agricultural practices. 

This section describes our ability to predict (in terms of the linear regression) 
hydrological trends based on agricultural practices. 

 
Discussion 

● We rewrote the discussion section Long-term hydrological changes. 
● Beginning on page 11, line 25, we describe our use of historical land-use maps and how 

they allowed us to associate streamflow decline with groundwater irrigated agriculture, 
while eucalyptus plantations did not have a strong association with streamflow decline. 

● On page 12, line 12, we describe the potential influence of check dams on streamflow 
decline in notes our inability to separate the effects of groundwater pumping and check 
dams on streamflow decline. 

● On page 12, line 26, we describe the downstream wedding affect of urban areas, 
including changes to water imports and groundwater pumping for the city of Bangalore. 

 



 
 

Conclusions 
● On page 14, line 1, we begin a new paragraph summarizing our findings related to the 

heterogeneity of hydrological change, and how we associated hydrological change with 
groundwater irrigation. We also make suggestions for further investigation. 

 
Additional changes 

● We moved the figure of trends and surface water in reservoirs (figure 6 in the original 
manuscript submission) to supplementary material. 

● We removed the figure showing a scatterplot of the magnitude of hydrological change 
versus agricultural land-use fraction (figure 8 in the original manuscript submission). 

● We added a figure (figure 4 in the revised manuscript) showing the divisions of the 
Arkavathy watershed into sub watersheds and tank cluster watersheds. This figure is 
referenced on page 8, line 4. 

● We added a figure showing trends over time of eucalyptus plantations and irrigated 
crops in the TG Halli watershed as well as model coefficients from the linear regression 
relating hydrological change to these two land uses (figure 8 in the revised manuscript). 
This figure is referenced on page 11, line 19. 

● We added a figure to the supplementary material showing a comparison of the water 
extent in Google Earth images and using our Landsat classification approach. This is 
figure S6. 

 
  



 
 

Response to Referee 1 
Referee comments in black 
Our (author) response in blue 
 
Strengths 
 
The premise of this paper is interesting and the application of remote sensing to measuring the 
extent of tank surface area is unique. The paper demonstrates the practical application of 
remote sensing for characterizing hydrologic change in an otherwise unmonitored setting. 
 
I appreciate the challenge of accounting for various degrees of turbidity in the classification of 
these water bodies. The methods for measuring tank water extent were clearly presented, and 
the supplementary figures showing examples of classification were really useful. In my opinion, 
all of the figures and tables, including those in the supplement, are necessary and contribute to 
this paper, with the possible exception of Fig. 6. The supplemental tables should make it 
possible for someone to reproduce this 
Analysis. 
 

● We thank the referee for offering careful consideration and analysis of the manuscript. 
The referee brings up a number of valid points that we believe will strengthen the paper. 
We intend to incorporate a number of the suggestions from this referee. We have moved 
Figure 6 to the supplementary material. 

 
Major Concerns 
 
Although I accept that the multiple regression in Eqn. 1 is a reasonable technique to remove 
precipitation (climate) effects from the estimate of long-term trend, the analysis of hydrologic 
change related to land use change is not convincing. The visual comparison of percent 
agriculture with temporal trend in water extent shown in Fig. 8b does not show a clear 
relationship. It appears that there is only a temporal trend of magnitude greater than 1 ha 
decadeˆ(-1) 10 kmˆ(-2) (units should be clarified, is this ha/(decade * 10 kmˆ2)?) if the 
agricultural area is close to 0.75% (which I assume is a typo for 75%); however, low temporal 
trends are possible for any percent of agricultural land area. This is not a strong argument for a 
relationship between the two. In fact, the notable negative trends occur only in the two 
northernmost sub-catchments.  
 

● Thank you for this comment. We have removed that figure (figure 8 in the original 
submission) from the manuscript. To replace this figure, we've explored a more detailed 
analysis of the relationship between hydrological trends and land-use. This analysis is 
described in sections 2.6, 3.3, and 4.1. 

 
An argument could possibly be made that this is an upstream-to-downstream effect, where 
water withdrawals upstream have a greater impact on stored water over time because return 



 
 

flows from irrigation dampen the effects of water withdrawals in downstream sub-catchments 
and/or the major reservoirs shown on Fig. 1 are operated in a way that mitigates long-term 
trends in water storage changes in the tanks (see for example de Graaf et al., 2014).  
 

● Thank you for this interesting suggestion. On page 12, line 19, we have added a 
paragraph to the discussion describing our thoughts on upstream-downstream 
processes.  

● Our current hypothesis is that the drying of the northern part of the watershed is linked to 
groundwater pumping that caused a disconnection between groundwater and surface 
water (see Srinivasan et al., 2015), leading to reduced baseflow, in a manner analogous 
to the model in de Graaf et al. (2014). Field studies addressing this mechanism are also 
currently in progress. Unlike the model presented by de Graaf, however, we are doubtful 
that the upstream-to-downstream effect is important in the Arkavathy today. Various 
sources of indirect evidence indicate that the water table is hundreds of meters below 
the surface in northern parts of the Arkavathy watershed (Srinivasan et al., 2015), 
suggesting that excess infiltration water is likely to move vertically. Similarly, the relief in 
the watershed is only about 100 m over a distance of 100 km, again promoting vertical 
groundwater movement and system-wide return flows connecting upstream to 
downstream are unlikely. We will make a note to this effect in the revised manuscript. 

 
Additionally, as the authors note on p. 7, lines 28-35, the two watersheds farthest upstream 
(those that drive the trend) were the only two watersheds with a significant trend in dry season 
water loss, which they relate to the shift from tank irrigation to groundwater irrigation during the 
study period. Unless I have misunderstood how dry season losses were treated in the 
regression, this shift would be reflected in the long-term trend. The authors should test whether 
or not the change in drying rate is the dominant cause of the trend, and if without this shift, a 
relationship with the % agricultural area still holds.  
 

● Thank you for this salient observation. We have (briefly) attempted to clarify the following 
points in the manuscript, beginning on page 9, line 18. Also see page 11, line 7, for a 
brief discussion around the results. 

● Detailed response: non-stationarity in the dry-season water loss term would indeed 
affect the magnitude of estimated hydrological change in tank clusters given that the 
regression relationship used to identify this change assumes a stationary loss coefficient. 

● The violation of this stationarity assumption in 2 tank clusters might be expected to 
marginally increase the model error, and, if the time trend in the dry season losses was 
aligned with the time trend in tank storage, it could indeed confound interpretation of the 
meaning of the storage trend. However, the trend in dry season losses in the 
northernmost tank clusters is, instead, in the opposite direction to the trend in storage. 
Dry-season loss rates have ​decreased ​ over time in the two northernmost 
subwatersheds. We would expect this change to result in an ​increase ​in tank water 
storage after monsoon season (as tanks lose water more slowly). Yet we observe a 
statistically significant decrease in post-monsoon tank storage over time, in spite of the 



 
 

decrease in loss rates. Thus, introducing a non-stationary loss coefficient into the model 
might improve model fit (at the expense of the degrees of freedom of the model) and 
improve quantitative estimates of the rate of drying due to hydrologic change in the 
northern watersheds, but would not alter the main conclusion of the study, which is that 
these watersheds are, in fact, drying. 

 
Are there other spatial patterns in rates of groundwater pumping? 

● Understanding the spatial patterns of groundwater extraction in the Arkavathy Basin 
would be very useful, but unfortunately, monitoring of groundwater use through space 
has been indirect and sparse. However, groundwater depletion should be associated 
with groundwater irrigated agriculture (this is not a perfect proxy, as check dams are also 
likely to be more prevalent in areas with high irrigated agriculture). Please see the 
discussion, on page 11, line 27, for how we analyze the relationship between 
hydrological change and irrigated agriculture. In this way, we are essentially using 
groundwater irrigation agriculture as a proxy for groundwater depletion, with the caveat 
that we cannot separate groundwater pumping from check dams. 

 
The authors develop a simple mathematical model to extract the trend (B) due to “hydrological 
change”, by which I infer that the authors are referring to the “temporal trends in water extent: : 
:indicative of long-tem hydrological changes induced by human activity” (p. 3, lines 12-13). The 
intent would be clearer if the authors were to describe other potential causes of this change (for 
example, temperature change in the region) and to state when defining B in Eqn. (1) that it is 
the trend (primarily) due to human-induced hydrological change. Also, because dry season loss 
is a variable in this regression, it is important that the authors clarify exactly which change B is 
tracking. As described in lines 27-28, p. 7, the dry season loss term is actually the number of dry 
season days, rather than a volumetric water loss. As such, the trend B presumably includes 
year-to-year variations in dry season water use as well. This should be stated explicitly, and 
instead of loss (L) in Eqn. 1, the authors should refer to the variable as what it is, number of dry 
season days. In summary, the manuscript needs to be more explicit about what exactly the 
authors intend B to include and exclude, and why. 
 

● We thank the reviewer for these helpful comments, and particularly the suggestion to 
frame the response to these issues in terms of the effects on the “meaning” of the trend 
term B. We have attempted to clarify these issues on page 9, line 18 of the Methods 
section and beginning page 11, line 7 in the results. We have also changed the 
designation of dry-season days in the statistical model from “L” to “DSD”, which will 
hopefully help alleviate confusion. 

● Detailed response: 
● Many of the issues relating to human-induced change (rather than environmental 

change drivers) were addressed through a hypothesis testing approach in a previous 
paper (Srinivasan et al. (2015)), which concluded that hydrologic change in the 
Arkavathy derives from human activity rather than changes in climate or weather.  



 
 

● We agree that the designation of L as a “loss” term is misleading (as L is the time 
variable and rather the loss rates arise in the coefficient C,3k). We will consider changing 
the letter designation of the variable as well as its name in order to clarify the 
interpretation of that component of the regression.  

● We also agree with the reviewer that the magnitude of B could be affected by other 
sources of variation (that is we are potentially vulnerable to the unobserved variable 
problem). We note that random interannual variations in water use, dry season losses, 
evaporative rates etc would not alter the magnitude of B, as they would not change the 
long-term trend. Rather, random variability would widen the confidence intervals around 
B.  

● Finally, as noted above, we have attempted to clarify in the manuscript the statistical and 
hydrological interpretation of B. Statistically, B is the temporal trend in total tank water 
storage over time, after controlling for a stationary relationship between the covariates 
we describe (Ptotal, Pextreme, L) and tank water storage. Hydrologically, B represents a 
change in the relationship between both precipitation and dry season water losses and 
streamflow. Because there is is no change in the effect of dry season water losses in 6/8 
watersheds, we interpret B as a change in the rainfall-runoff response. In the two 
subwatersheds where we detect a change in the effect of dry season water loss on tank 
storage, we will clarify that B captures the combined effect of hydrological change 
(streamflow decline pushes B in the negative direction) and dry-season tank water 
losses (lower tank losses pushes B in a the positive direction). Because B is negative in 
this area, the effect of hydrological change must exceed that of reduced tank water 
losses. 

 
Secondary Concerns 
 
The one figure that, to me, is basically a throw away is Fig. 6 for multiple reasons. First, the 
reservoirs are explicitly exclude from all other parts of the analysis, so whether or not their 
time-trends are correct is immaterial. Second, the figure does not show an independent source 
of the temporal evolution of reservoir extent. Third, the conclusion that can be drawn from the 
satellite imagery matching the timing of reservoir construction is simply that the algorithm can 
distinguish if, in a very large body of water, there is essentially no water or a lot of it. If this were 
not the case, there would be no merit in even pursuing this approach at all. It would be 
reasonable to mention that the method shows the timing of reservoir construction and filling as a 
single sentence.  
 

● Thank you for this suggestion. We agree with the referee’s argument. We have moved 
Fig 6 to the supplementary material. 

 
In terms of reproducibility, it would be helpful if the authors could provide contact information (an 
address, perhaps) for Karnataka State Remote Sensing Application Centre as a source for a 
shapefile of tank boundaries in the Acknowledgments section. 



 
 

● We have provided the KSNDMC website (see page 11, line 27), which includes their 
contact information. We are working on publishing a timeseries of Tank water area for all 
tanks in CUAHSI. 

 
MINOR STUFF: 
 
p. 7, line 20: please clarify why average depth is used for extreme precipitation events rather 
than total number of extreme events or total depth of precipitation in extreme events. 
 

● We made a minor change on page 8, line 13, noting potential for infiltration excess runoff 
and the reason for wanting a proxy for rainfall intensity. We did not write a detailed 
explanation within the manuscripts, hoping that our explanation below will suffice.  

● We use average depth of extreme events as a way of approximating heavy rainfall, 
because our experience in the field suggests a prevalence of infiltration excess runoff. 
Larger storms are likely to have more infiltration excess runoff due to intense rainfall, and 
average storm depth is a rough way of approximating this in a way that is feasible (as 
only daily precipitation data are available) and meets the requirements for the statistical 
model. Total depth in extreme events is more likely to be correlated with total 
precipitation depth (and thus add less information to the model) than average storm 
depth. We will clarify this in the paper. 

 
p. 7, last paragraph: reference Fig. S8. 
 
p. 8, 2nd paragraph: define variable terms explicitly (i.e., The covariates total precipitation, 
Ptotal,ij, : : :) here, close to the equation, instead of in previous paragraphs. State near the 
equation that the loss is actually the number of dry season days 

● We have defined the variables directly after the equation (page 9, line 11). 
 
p. 8 line 19: clarify what is meant by “centered” (long-term means removed?). 

● We will clarify that “centered” entails removing the mean (shifting the data to a mean of 
zero). 

 
Fig. 7: it would be useful to overlay a drainage/stream map to show how subwatersheds 
Relate. 

● We have added this to Figure 7 
 
p. 10, line 1: clarify what is meant by “The spatial scales of tank clusters are comparable 
with that of land use” 

● This sentence was removed after making changes in the discussion, and hopefully the 
discussion clarified. What we originally intended to say, is that spatial heterogeneity of 
hydrological change is important, and that the observed pattern of hydrological change 
can be related to observed pattern of land use change if we can resolve the hydrological 
change at a sufficient level of detail. 



 
 

 
p. 10, lines 16-17: quotes around “drying” make sense because this is referencing algae blooms 
giving the false appearance of smaller tank water extent. Quotes around “wetting” do not make 
sense because the increase in impervious surfaces actually causes tank water extent to 
increase. It may not be more water in the watershed, but it is more water in the tanks. 

● We have removed quotes around wetting in the manuscript (page 12, line 26). 
 
p. 10, line 29: instead of saying “: : :by focusing on land use from a single date.”, say “: : 
:because we only consider land use on [Mon. Day, Year]” 

● This sentence was removed from the manuscript. 
 
Figs. S4-S5: at least mention in the caption the water extent vs. precipitation plots. 

● We have written a more detailed caption for these figures. 
 
References 
 
de Graaf, I.E.M., L. P. H. van Beek, Y. Wada, M. F. P. Bierkens, 2014: Dynamic attribution 
of global water demand to surface water and groundwater resources: Effects 
of abstractions and return flows on river discharges, Adv. Water Resour., 64, 21-33, 
doi:10.1016/j.advwatres.2013.12.002. 
  



 
 

Response to Referee 2 
Referee comments in black 
Our (author) responses in blue 
 
Overall this is a well written manuscript that attempted to describe trends and spatial differences 
in changes in hydrology in the Arkavathy watershed on the basis of changes in extracted tank 
water surface area from satellite images along with other attributes. 

● We thank the referee for consideration of our manuscript and valuable advice in helping 
us clarify some of the key messages of the paper. The referee’s feedback has been 
helpful in alerting us to pieces of writing that need to be improved, particularly in 
clarifying the broader perspective. 

 
Although the methods were well described, the broader perspective of the analysis is not well 
presented. After all the study analyzed the tank’s surface water dynamics for a very small area 
(the total area of the Arkavathy is not provided), so, what new information does the findings 
bring to the community compared to the known facts at regional to national scale for India? 

● We have provided the watershed area (4,253 sq. km) in Study Site section. We have 
updated the introduction to include a new paragraph contextualizing our research in term 
of water resources in India (see the Introduction, page, 2, line 3). We sought to make the 
following arguments: 

● The Arkavathy contains features that are characteristic of the landscape throughout 
much of Southern India, and although the findings from our study cannot be directly 
applied to the region as a whole (given the spatial heterogeneity of the change), the 
lessons from the Arkavathy can provide clues to hydrologic functioning in the broader 
region. India faces an array of water scarcity challenges, many of which have been 
studied at the country scale (Devineni et al., 2013; Tiwari et al., 2009) or at the local field 
scale (Perrin et al., 2012, Van Meter et al. 2016). Other studies have modeled hydrology 
at the local scale (Glendenning and Vervoort, 2011) and regional scale (Gosain et al., 
2006), but none of these studies describe patterns of surface hydrological change. What 
is missing from the hydrology literature is an historical analysis at spatial and temporal 
scales commensurate with the scales of the change. The absence of hydrological 
records is a primary reason for this gap in the literature (Batchelor et al., 2002; 
Glendenning et al., 2015), and new datasets are needed that indicate hydrological 
change at a scale that sufficiently captures the spatial heterogeneity. Such a spatial 
understanding is particularly pertinent to our study region where the hydrology is truly 
local, because upstream and downstream subcatchments have been isolated by the 
fragmentation of the river network (due to tanks and check dams) and the subsurface 
disconnection due to the vastly depleted groundwater table (as we will clarify in our 
manuscript, urban effluent can serve to maintain a connected river network directly 
downstream of urban areas). The heterogeneity of observed changes in the Arkavathy 
emphasizes one of the problems associated with viewing water trends only at regional or 
national levels - such large scale trends to not map directly to local scales, yet these are 
the scales at which people experience and must respond to change. Such local 



 
 

understanding is of great importance to water managers in southern India, as 
considerable efforts are underway for river and tank rehabilitation in some areas, without 
a clear understanding of the mechanisms underlying the historical degradation and loss 
of water resources (Kumar et al., 2016; Srinivasan et al., 2014). 

 
Given the size of the tanks studied, I would imagine the seasonal water area dynamics will have 
greater implications than the inter-annual dynamics. The manuscript did not discuss anything on 
the seasonality for these tanks, or how does that influence the trend? 

● We agree that seasonal dynamics are interesting to understand in so far as they indicate 
the seasonal availability of surface water resources. However, we avoided a detailed 
description of these dynamics for several reasons. Firstly, since tanks are not widely 
utilized as a surface water resource throughout the Arkavathy Basin today, the 
importance of understanding these seasonal dynamics is not so great in the present 
context as in situations where those surface water stores are relied upon by 
communities. The importance of the tanks as studied in this paper is as indicators of 
long-term changes through space in the hydrological dynamics that produce the end of 
monsoon season storage. Secondly, for pragmatic reasons, it is challenging to study 
within-year variations other than in the dry season. For approximately 6 months of the 
year, extensive cloud cover obscures many of the tanks in Landsat images and active 
radar satellite imagery (which can effectively “see through” clouds) is too coarse to 
estimate water area in small tanks. We appreciate the referee comments and we will 
more carefully discuss dry-season dynamics in the manuscript.  

● On page 8, line 35 of the revised manuscript, we briefly note that we were unable to 
consider wet season dynamics. 

 
The manuscript mentioned about differences in water quality, turbidity, vegetation in the water 
which are influential factors for changes in the reflectance. Even though the DN values were 
converted to reflectance, the manuscript used only one index (NDWI) to classify water surface 
area, while there were potentially many other methods or index (Senay et al., 2013) could be 
used to map water surface correctly, as no one index can cover it all. 

● We agree that there is no one method for remote sensing classification of surface water. 
We selected a simple classification method that was consistent across all Landsat 
sensors (MSS, TM, ETM, OLI). Our method uses NDWI as an initial classification, and 
we then apply spectral unmixing using Red, Green, and NIR bands. Although more 
complex methods have been published, they may not result in a significant improvement 
in confidence in our model, which we believe is sufficient for our purposes.  

 
While the analysis was performed for the time period between 1972 and 2010 the validation was 
done for 2014 results. To me validation needs to be done for the time for which the trend 
analysis is performed (few sample years both wet and dry between 1972 and 2010). 
 
As the study area is so small Google earth might provide good data for validation. Have the 
authors looked into google earth images as a potential source of validation data? 



 
 

● We thank the referee for this suggestion. We had conducted an additional validation of 
our classification approach, which has given us increased confidence in our method. We 
manually delineated Google Earth images from multiple years (with both “normal” and 
“wet” precipitation). Our classification compared very well with the Google Earth manual 
delineation (R-squared of 0.97 in both cases). We were unable to find a suitable Google 
Earth image to conduct this validation in a dry year. Please see page 27, line 22 in 
Section 2.4, and page 10, line 26 of Section 3.1 for our approach and the brief results. 
We have also included a supplementary figure (Figure S6) showing the comparison of 
tank extent between our Landsat classification and the Google Earth manual delineation. 

 
Page 10 line 5: claims that MK analysis confirms an increase in agricultural land use fraction is 
related to decrease in tank water storage. How? There is no evidence shown in the manuscript 
that suggests agricultural land use is increasing. This is vague to me. 

● We have restructured this analysis, and will make sure to clarify a number of key points. 
Agriculture has not expanded so much as it has changed over the course of the study 
period, and these changes appear to be associated with the drying. We conducted a 
more sophisticated analysis of the drivers of hydrological trends in the TG Halli 
watershed (the northern portion of the Arkavathy watershed). This region coincides with 
land use maps recently developed for 1973-74, 1991-92, 2001-02, and 2013-14. Using a 
linear regression of the hydrological trends on land use, we found that streamflow 
decline was closely associated with groundwater irrigated agriculture. As we describe in 
the revised manuscript, the mechanisms of change are likely related to groundwater 
pumping and construction of in-stream check dams. There was not a clear relationship 
between streamflow decline and Eucalyptus plantations. This analysis is described in 
sections 2.6, 3.3, and 4.1. 

 
Page 10 line 11-12: statement connects with changes in land use and management practice 
with depleted subsurface stores without providing evidence. 

● We have restructured this analysis as well. Please see Figure 8 (top) (referenced in 
Section 3.3, page 11, line 19, and the dynamics described in more detail in section 4.1) 
for changes in irrigated agriculture over time and changes in Eucalyptus plantations over 
time. The time-averaged metric of irrigated agriculture shows a clear relationship with 
long-term hydrological trends in the TG Halli watershed. 

 
Page 11 line 6-7: Target for classification is to identify water and not water cells, in that case 
how does incorporation of additional land cover will reduce the classification error? 

● Because we are using spectral unmixing, the land class end-member affects the 
calculated water fraction in each cell. For this reason, having additional (and more 
precise land classes) could potentially improve classification. We have worked to clarify 
the discussion in section 4.2.  

 
I think the method used in the manuscript is too simplistic, although producing time- series 
information of tank water surface area is valuable. I am not sure how much new information has 



 
 

been brought to the community by this study; therefore I am not convinced that HESS is the 
right journal for this article.  

● We agree that the classification is fairly simple, but overcomes a variety of challenges 
related to the study, such as the need to incorporate imagery from four Landsat sensors 
(MSS, TM, ETM, OLI), spectral unmixing in all images, cloud and cloud shadow 
masking, and the temporal nature of water in tanks (and single image gap filling in 
SLF-off images). We also note that the classification serves its purpose based on the 
validation we showed in the manuscript, including the additional Google Earth validation. 
The overall objectives for the paper (and updated validation information) have been 
clarified in the updated manuscript, as we describe above and in our previous letter to 
the editor. 

 
Senay, G.B., Velpuri, N.M., Henok, A., Pervez, M.S., Asante, K.O., Gatarwa, K., Asefa, T., & 
Jay, A. (2013). Establishing an operational waterhole monitoring system using satellite data and 
hydrologic modelling: Application in the pastoral regions of East Africa. Pastoralism: Research, 
Policy and Practice, 3, 20.  
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Abstract. The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede

the understanding of hydrologic change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy

watershed in south India, surface water inflows to major reservoirs decreased over a 40 year period during which urbanization,

groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multi-

ple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water5

resources in the basin challenging and impede effective policy responses. To mitigate these challenges, we develop a novel,

spatially distributed dataset to understand hydrologic change by characterizing trends in surface water and compare these trends

with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel un-

mixing, we classified water surface area in nearly 1700 tanks in Landsat images from 1973 to 2010. The classification results

compared well with a reference dataset of water surface area of tanks (R2 = 0.95). We modeled water surface area of 42 clus-10

ters of tanks in a multiple regression on simple hydrological covariates and time, and found statistically significant trends, both

positive and negative, in water surface area in different regions of the watershed. Wetting was found primarily downstream of

Bangalore, likely due to increased urban effluents. Comparison of drying trends with land use indicated that trends in stream-

flow decline were most strongly associated with irrigated agriculture, suggesting that groundwater pumping for irrigation was

a major driver of surface water change in this watershed. Disaggregating the watershed-scale hydrological response via remote15

sensing of surface water bodies over multiple decades yielded a spatially resolved characterization of hydrological change

in an otherwise poorly monitored watershed. This approach presents an opportunity for understanding hydrological change

in heavily managed watersheds where surface water bodies integrate upstream runoff and can be delineated using satellite

imagery.

1 Introduction20

Human water consumption is straining water resources worldwide (Vogel et al., 2015; Gleick, 2014; Wada et al., 2012; Lall

et al., 2008), with developing nations particularly vulnerable to water scarcity (Vörösmarty et al., 2010). The causes of water

scarcity are complex (Srinivasan et al., 2012) and in south India have been associated with urbanization (Srinivasan et al., 2013),

1



groundwater depletion (Reddy, 2005), degradation of rainwater harvesting structures (Gunnell and Krishnamurthy, 2003), and

interstate water disputes (Anand, 2004).

Effective management of water resources in south India requires a process-based understanding that relates changes in

hydrology to the evolving human drivers of such change. Such human interventions in the water cycle often occur due to

decisions made at local scales, and therefore exhibit considerable spatial heterogeneity when considered at larger scales. This5

is problematic in this region because most research linking human drivers to hydrologic responses focuses on either the local

scale (Perrin et al., 2012; Van Meter et al., 2016), or regional to national scales (Gosain et al., 2011; Devineni et al., 2013;

Tiwari et al., 2009). There is little research that addresses the emergent effects and heterogeneity of human-driven surface

water change change across the watershed or basin scales at which management decisions must typically be made. The gap in

scientific understanding at management-relevant scales is strongly associated with lack of data resolution at these scales, and10

forces water managers to make decisions without sufficient information about cause and effect within watersheds (Batchelor

et al., 2003; Glendenning et al., 2012; Lele et al., 2013; Srinivasan et al., 2015).

The data scarcity that challenges understanding of human-driven hydrologic change in south India is a common challenge

in hydrology and has been extensively explored through the lens of “predictions in ungauged basins” (PUB) over the past

two decades (Bonell et al., 2006; Hrachowitz et al., 2013). The methodologies developed through the PUB initiative focused15

strongly on near-“natural” basins, where proxies for flow behavior (whether climatic, geographic or geomorphic) could be used

to form a space in which to extrapolate flows observed in gauged basins to those in the ungauged site (Blöschl, 2013). Ex-

tending these techniques to heavily managed catchments presents numerous challenges, including the identification of suitable

proxies to define the effects of human intervention and non-stationarity of the water cycle (Thompson et al., 2013). Given the

complexity of these managed systems, hydrological reconstruction to infer or reproduce the history of hydrologic change can20

help identify the predominant processes that relate human water use and management with the hydrological response.

Here we present such a hydrologic reconstruction covering four decades of extensive hydrologic change in the Arkavathy

watershed near Bangalore, India. Concern about water scarcity in the Arkavathy watershed has grown with the loss of historical

monsoon-season river flow and reduced inflows to the TG Halli reservoir, which was the primary water supply reservoir for

Bangalore between the 1930s and 1970s. These inflows have declined by nearly 80% since the late 1970s, a time period that25

also included groundwater depletion and loss of storage in surface reservoirs. Analysis by Srinivasan et al. (2015) showed that

neither trends in precipitation nor evaporative demand could explain the observed changes in river flow. Instead, reductions in

river channel flow were probably caused by human drivers of change such as expansion of Eucalyptus plantations, groundwater

depletion associated with irrigated agriculture, and the construction of in-stream check dams (Srinivasan et al., 2015).

Groundwater irrigation grew in popularity in India in the 1960s (Briscoe and Malik, 2006), supplanting tank irrigation30

in south India in the following decades with the widespread adoption of borewells for groundwater pumping (Janakarajan,

1993a). Groundwater is now the dominant source of irrigation water in the Arkavathy watershed (Lele et al., 2013; Srinivasan

et al., 2015). The availability of year-round reliable water supplies led to increases in the extent and intensity of agricultural

production, and thus further demand for water. Replacement of traditional crops with Eucalyptus plantations, and population

growth and urbanization around the periphery of Bangalore, the road network, and other urban hubs have also likely increased35
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water demand. As villages and farmers became more reliant on groundwater, they attempted to augment groundwater recharge

by constructing hundreds, if not thousands, of in-stream check dams which impound a portion of streamflow which is then

removed from the channel via groundwater recharge or evaporation (Srinivasan et al., 2015). These decentralized land and

water management decisions are spatially heterogeneous and characterizing their effects on surface water is hindered by the

lack of hydrological records in the Arkavathy. However, spatially explicit characterization of variations in these drivers and5

hydrological change across the basin could offer a basis for drawing conclusions about the likely causes of change, thus

assisting in the development of management approaches. To date, such analysis has been limited to anecdotal stakeholder

accounts (Lele et al., 2013).

Our reconstruction relies on developing a history of change in post-monsoon season storage in widely distributed surface

rainwater harvesting structures known as tanks (Vaidyanathan et al., 2001; Van Meter et al., 2014). Agriculture in south India10

was historically sustained by a series of reservoirs known collectively as the “cascading irrigation tank system”. Nearly 1700

tanks have been constructed in the Arkavathy watershed. Tanks typically consist of a long, shallow dam bund constructed

across a river to harvest surface runoff during the monsoon and supply irrigation water during the dry season. The bund

impedes streamflow until the tank fills, overflows, and “cascades” into downstream tanks. Although the dam bunds remain in

place, village-level water managers report that the tanks rarely fill up and overflow in large portions of the Arkavathy (ATREE15

et al., 2015), similar to other watersheds in south India (Janakarajan, 1993b; Gunnell and Krishnamurthy, 2003; Kumar et al.,

2016). This decline of tank water is a cause of concern in the Arkavathy and much of the region, and multiple efforts have been

initiated to rejuvenate tanks, often without clear understanding of the drivers of degradation of the system (Kumar et al., 2016;

Srinivasan et al., 2015).

Because the tanks are directly connected to surface flow in the river channel network, their surface area provides a proxy for20

surface flow generation over the upstream catchment area. In situ measurements of tank water storage have been successfully

used to calibrate and validate hydrological models in Andhra Pradesh (Perrin et al., 2012) and Tamil Nadu (Van Meter et al.,

2016). Other studies in south India (Mialhe et al., 2008), the USA (Halabisky et al., 2016), Africa (Meigh, 1995; Liebe et al.,

2005; Sawunyama et al., 2006; Liebe et al., 2009; Gardelle et al., 2010) and South America (Rodrigues et al., 2012) also use

surface water bodies as aggregators of streamflow.25

Hydrological changes in the Arkavathy watershed should be apparent in historical satellite imagery, as the period of reported

hydrological change in the Arkavathy (from the late 1970s onwards) coincides with the initial image collection by Landsat

satellites in 1972. We develop an automated approach for estimating surface water area in tanks in the Arkavathy watershed

using Landsat imagery and apply this approach to reconstruct a timeseries of water extent in tanks from 1973 to 2010. We use

this dataset to identify temporal trends in water extent, hypothesizing that these trends reflect long-term hydrological changes30

induced by human activity. Specifically, we predict that areas with streamflow decline will correspond to agricultural land use

associated with groundwater decline, either through groundwater irrigation or groundwater mining by Eucalyptus plantations.

We conclude by comparing the temporal trends of streamflow against land use profiles developed by Lele and Sowmyashree

M.V. (2016) as an initial estimate of competing influences of different land use practices on water resources throughout the

Arkavathy watershed.35
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2 Methods

2.1 Study site

The Arkavathy watershed spans 4,253 km2 on the western edge of the city of Bangalore in Karnataka, south India (Fig. 1). It

has a monsoonal climate, with the rainy season lasting from June to November, relatively stable daily maximum temperature

of 27�C, and mean annual rainfall of 830 mm. Temperature peaks near the end of dry season in April around 34�C, before5

pre-monsoon rainfall arrives sporadically in April and May. The river is gauged at TG Halli reservoir (Location 2, Fig. 1b) and

upstream of Harobele reservoir (Location 5, Fig. 1b).

The watershed contains a mix of urban, natural and agricultural land uses. Agricultural land can be divided into rainfed grain

crops, irrigated vegetable crops, Eucalyptus plantations, and other irrigated tree plantations (e.g., areca nut). Most present-day

irrigation water in the Arkavathy is sourced from a deep, fractured rock aquifer. Irrigation from tanks is now significant in only10

a few locations, mostly located downstream of Bangalore. The city of Bangalore imports water from the regional Cauvery river

and returns some urban wastewater to the Arkavathy system. Although many tanks are no longer in use, the tank structures

remain intact and continue to capture surface water flows.

2.2 Remote-sensing images and supplementary data

Tracking water storage in the tanks at monthly or higher temporal resolution would be desirable, but is precluded because15

remotely sensed images from the monsoon season often contain large areas of cloud cover. This analysis therefore focuses

on post monsoon images from the months of December and January. The highly seasonal monsoonal climate in south India

means that end-of-monsoon tank water storage can be attributed primarily to the magnitude of streamflow filling the tank

during monsoon season, allowing tank water storage to be used as a proxy for cumulative streamflow, minus any evaporation,

drainage or extraction losses. Although these losses do occur, they can be accounted for during subsequent trend analysis.20

We selected 48 Landsat images for classification, including 18 acceptable post-monsoon images from 1973 to 2010 for ana-

lyzing long-term hydrological trends (see Supplementary Material, Fig. S1 and Table S1 for dates). The 2014 Landsat imagery

was used for remote-sensing validation and dry-season analysis, but was not included in the 1973–2010 study period. Most

images were downloaded from Earth Explorer (earthexplorer.usgs.gov), except for five images from 1986 through 1993, which

were purchased from the National Remote Sensing Centre (NRSC, nrsc.gov.in). An image from the Land Imagery Scan Sensor25

(LISS-IV) were also purchased from NRSC and used for accuracy assessment. A shapefile of tank boundaries was obtained

from the Karnataka State Remote Sensing Application Centre (KSRSAC, karnataka.gov.in/ksrsac) to aid in classification of

water bodies. Topographic maps completed in the 1970s by the Survey of India (surveyofindia.gov.in) were manually georef-

erenced and used to verify tank boundaries at the beginning of the study period. Other supplementary datasets were obtained

from NASA Reverb (reverb.echo.nasa.gov) and Karnataka State Natural Disaster Monitoring Centre (KSNDMC) as listed in30

Table 1.

NRSC images were manually georeferenced using reference points from the higher-resolution LISS image, with root mean

squared error (RMSE) less than 0.5 pixels in all images. All Landsat images were cropped to the extent of the Arkavathy
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Dataset Date Resolution Source

Landsat images 1973–2010 & 2014 30 m USGS & NRSC

LISS IV image 2014 5 m NRSC

Land use map 2001 30 m KSRSAC

Tank boundaries - - KSRSAC

Topographic maps 1970s - Survey of India

Aster DEM - 30 m NASA Reverb

Daily Precipitation (62 stations) 1972–2010 0.69 10km2 KSNDMC
Table 1. Data sources used in this paper.

watershed and converted to top-of-atmosphere (TOA) reflectance (Chander et al., 2009), which was used for training and

classification of all images. Landsat 7 ETM+ scenes acquired after May 31, 2003 contained gaps due to a failure of the Scan

Line Corrector (SLC) (Scaramuzza et al., 2005). Although gap-filling techniques for the SLC error generally use successive

images to fill missing pixels (e.g., Chen et al., 2011), we used a single-image gap-filling approach because of the inherent

temporal variability of tank water extent. We used pixels along the edge of the gap to fill missing pixels similar to Catts et al.5

(1985) but instead of interpolation, which would cause spectral homogenization in missing pixels, we repeated edge pixels

towards the center of the gaps using using successive grayscale dilation.

We used cloud-free images where possible, but in some years the only viable post-monsoon image contained some cloud

cover. Cloud shadows were particularly troublesome because the spectral reflectance of land in a cloud shadow was often

similar to that of water. We applied the fmask algorithm (Zhu and Woodcock, 2012) to identify clouds and cloud shadows,10

making minor modifications to improve the method for the Bangalore region as follows: (i) we included the filters from the

automatic cloud cover assessment algorithm (ACCA, Irish, 2000) when determining the potential cloud pixels, which reduced

false positives for clouds in urban areas, and (ii) we removed clouds whose height (determined with fmask) was an outlier.

This approach was possible because the topography was relatively flat and the selected images contained only cumulus clouds

which exhibit relatively consistent base height at the lifting condensation level (Craven et al., 2002). Outliers were determined15

as clouds with a height less than H25 � 1.5(H75 �H25) or greater than H75 +1.5(H75 �H25) where H25 and H75 are the

first and third quartiles of cloud height and H75 �H25 is the interquartile range. This procedure helped prevent erroneous

classification of cold, white land pixels as clouds and limited the potential for erroneous classification of water bodies as

shadows.

2.3 Classification method20

The tank water classification method relied on separating pixels containing water from pixels containing land in a spatial

region defined by the mapped tank boundaries. Water stored in tanks in the Arkavathy watershed varied from clear (with low

reflectance in all Landsat reflectance bands) to turbid (more reflective in the visible (Moore, 1980) and NIR bands (Whitlock
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et al., 1981)). Turbid water exhibited its highest reflectance in the red band due to the red soils in the Arkavathy watershed

(Novo et al., 1989) (see Figure 2).

Land cover surrounding wetted areas of tanks included vegetation, bare soil, and built-up urban land. We grouped these

classes into a single land class, which was characterized by high reflectance in the NIR band and lower reflectance in vis-

ible bands (McFeeters, 1996). These characteristics primarily distinguish land from water in the Arkavathy, which has low5

reflectance in the NIR band and either low reflectance in the green band (clear water) or high reflectance in the red band (turbid

water).

We developed an automated classification algorithm that distinguished areas of clear water and turbid water from land in

each pixel, allowing rapid and consistent classification approach across images and Landsat sensors. We used a two-stage

approach for estimating water extent in tanks. First, pixels having definitive spectral properties of water were identified and10

classified as “apparent” water pixels. Second, spectral unmixing was used to estimate the water fraction in all pixels within 60

m of any apparent water pixels. A conceptual representation of this algorithm is provided in Figure 3, and the steps described

below are cross referenced to the numbered panels in the figure.

The only user input to the classification algorithm for each scene was to select a reservoir containing clear water with which

to train the image (Fig. 3, step 1). The Normalized Difference Water Index by McFeeters (1996), NDWI = (green - NIR) /15

(green + NIR), reveals a clear distinction between land and water pixels. In each image, we divided pixels within the training

reservoir (or a rectangular window of pixels around the training reservoir if the reservoir was mostly full) into water or land

classes using Otsu’s method (Otsu, 1979), which clusters grayscale pixels into two classes by minimizing the within-class

variance. The water and land pixels at the training reservoir were used to calculate the spectral means of land pixels and clear

water pixels (step 2). The minimum NDWI of water pixels at the training reservoir (step 3a) was used as a threshold to create a20

mask of apparent clear water for the entire scene (step 3b) which was then dilated using a 5x5 square kernel (a 3x3 kernel for

MSS scenes). All pixels within the dilated mask were transformed to a single component, x̂, parallel to the transect between

the spectral means of clear water and land in the 2-dimensional space of NIR and green reflectance (step 3c). Pixels falling

between the x̂ means of clear water and land were assigned a clear water fraction. Clear water fraction was set to 1 in pixels at

or below the clear water x̂ mean, and linearly decreased to 0 for pixels at or above the land x̂ mean.25

A similar procedure of masking, dilating, and unmixing was performed for turbid water, with minor changes. The criteria

for apparent turbid water pixels were determined from land pixels near the training reservoir as the 98th percentile of red

reflectance and the 98th percentile of NDWI (step 4a), provided that red reflectance was greater than NIR reflectance. Pixels

meeting these criteria were included in the turbid water mask and dilated to include the surrounding area (step 4b). Spectral

unmixing was conducted similarly to clear water, except the component for unmixing, ŷ, was taken along the transect between30

the spectral means of turbid water and land in the NIR-red space (step 4c). Finally, the water area in each pixel was taken as

the higher value of clear water area and turbid water area (step 5). Tank water extent was calculated as the sum of water area

of all pixels within two pixels of the mapped tank boundary (step 6).

We did not estimate the area of water in any tank that was flagged for the following quality concern criteria: (i) spatial

overlap or adjacency of dry tank boundary or wetted tank area with clouds or cloud shadows, (ii) spatial overlap of greater than35
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25% of dry or wet tank area with missing pixels due to the SLC error in Landsat 7 images, or (iii) greater than 25% spatial

overlap of dry or wet tank area with the edge of the scene from MSS images (step 7). In each of these cases, the tank area was

recorded as “NA”.

Remote sensing and spatial processing were scripted in R (R Core Team, 2016) using the raster (Hijmans, 2015), rgeos

(Bivand and Rundel, 2016), sp (Pebesma and Bivand, 2005), and rgdal (Bivand et al., 2016) packages, as well as ggplot5

(Wickham, 2009) for plotting. Watershed delineation and extraction of the cascading tank network were completed in GRASS

GIS (GRASS Development Team, 2016).

2.4 Validation of classification method

To validate the classification results, we used a 5 m resolution LISS IV satellite image from 26 February 2014 to compare with

a classified Landsat image from 27 February 2014. The LISS IV image was classified in ENVI software (Harris Geospatial10

Solutions Inc.) using support vector machine (SVM) classification with four land classes and four water classes. After classifi-

cation, the water classes were merged into a single water class and resampled to the resolution of Landsat so that the resulting

grayscale classification contained a water fraction in the range [0,1] for each pixel.

We compared the Landsat results with the results from the reference (LISS) classification at the pixel scale and tank scale,

ignoring tanks in which there were obvious differences due to the incongruous image capture dates (e.g., cloud cover). At15

the pixel level, a traditional confusion matrix is inappropriate for continuous classification data (Congalton and Green, 2009).

Thus, we evaluated the error (Landsat water fraction minus reference water fraction) in all pixels within tanks by binning the

pixel error into categories representing under-classified (-1 to -0.2), correct (-0.2 to 0.2) and over-classified (0.2 to 1). We

further separated pixels into groups by binning the producer (reference) water fraction and user (Landsat) water fraction. We

calculated producer’s and user’s accuracy for each water fraction bin to form both a producer error matrix and consumer error20

matrix (see Sect. 3.1).

We also used Digital Globe imagery available from Google Earth (Google Earth, 2016) to assess the validity of the classifi-

cation in normal and wet precipitation years during the study period. Given the limited availability of these images, we were

unable to find a dry-year image within the study period that was suitable for comparison with a mostly cloud-free Landsat

image. We manually delineated 18 tanks in the normal year (2009) and 34 tanks in wet years (2004 and 2005), and compared25

the manual delineation with classification of Landsat images from the same time period using a linear regression.

2.5 Statistical model for long-term hydrological change

We used a statistical modeling approach to identify long-term trends in tank water extent that could not be explained by readily

available hydrological covariates (e.g., precipitation). We account for the effect of such explanatory variables in the model and

posit that the remaining temporal trend in surface water extent indicates long-term hydrological changes induced by human30

activity. In the model, we exclude reservoirs, which are more likely to release water to users or downstream, and complicate

the relationship between streamflow and reservoir water storage.

7



Because the timeseries for individual tanks were relatively short and contained many dry tanks, the dependent variable in

the model was a spatially aggregated measure of water area in all tanks within a “tank cluster”. We divided the watershed

into 8 subwatersheds, which were further subdivided into hydrologically-connected tank cluster watersheds, hereafter referred

to as tank clusters (Fig. 4). Each tank cluster contained at least 15 tanks having non-zero water extent in at least 4 post-

monsoon images. Tank clusters within each subwatershed were assumed to function as hydrologically similar units, with the5

only difference being the temporal trend in water extent over time.

Some tanks were constructed during the study period and were manually identified by examining the classification results

of the largest 10 tanks in each cluster and verified using the Survey of India topographic maps. For these “new” tanks, we

removed the tank (set the water extent to NA) in all scenes prior to the construction of the tank, unless there was a downstream

tank within the same cluster, in which case the original classification (no water) was retained.10

In an exploratory analysis we found that total surface water extent across the whole Arkavathy watershed was most strongly

related to precipitation metrics computed from September 1, the approximate onset of the northeast monsoon, to the date of

Landsat image acquisition. We anticipated that tank storage would respond to total seasonal precipitation as well as intense

precipitation, which could lead to infiltration excess runoff. Because we only had access to daily precipitation data, we could

not directly calculate precipitation intensity, and use the average depth of large storms (>10 mm/day) an alternative metric that15

would correlated with extreme rainfall.

For each post-monsoon Landsat scene, we calculated these metrics at up to 62 rain gauges reporting daily rainfall, omitting

gauges in which the period of record excluded the monsoon year for the Landsat image. We spatially interpolated the rainfall

metrics throughout the entire watershed using the inverse distance squared method, and calculated the spatial average for each

tank cluster.20

We exclusively used images that were taken early in the dry season (December or January), but we anticipated that there

would be a relationship between the time that the image was taken and the wetted tank area, due to evaporative and drainage

losses of water from the tanks. We incorporated a linear loss term using dry season days (DSD) as a covariate in the model,

approximated as the number of days after December 1. To check the suitability of this assumption, we classified an additional

27 dry season Landsat images, and estimated the rate of decline of tank cluster water extent for years with at least two dry25

season images via linear regression. The nonparametric Mann–Kendall test was used to determine if there had been a change in

dry season water losses over time, and showed that in only two subwatersheds, the Hesaraghatta and TG Halli East, the trends

were significantly different from zero (i.e., the 95% bootstrap confidence intervals of the Mann–Kendall statistic excluded

zero) (see Fig. S9). Presumably the trend in these two subwatersheds relates to the shift from tank irrigation to groundwater

irrigation during the study period.30

To understand the effects of carryover storage in tanks between years we developed a timeseries of tank water extent through-

out the dry season of 2014 (chosen largely for image availability through the dry season). We confirmed that at the start of

the 2014 monsoon, half of the tank clusters contained  25% of 2013 post-monsoon storage. More than 75% of tank clus-

ters contained  50% of 2013 post-monsoon storage. Tank clusters with the highest carryover storage were found in urban

subwatersheds or hilly sub watersheds at the southern part of the Arkavathy watershed. We were unable to consider any wet-35
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season dynamics over the study period because of persistent cloud cover during monsoon season, which prohibits land-cover

classification of most of these images.

We used a multivariate regression with interactions between continuous covariates and categorical variables (e.g., see Jaccard

et al., 1990; Cohen et al., 2003) to estimate temporal trends in the different regions throughout the Arkavathy watershed. The

covariates total precipitation, extreme precipitation, and tank water loss were modeled as fixed effects which interact with5

the subwatersheds. In other words, the response of the stored water area to these variables was allowed to vary for each

subwatershed, but was assumed to be consistent for the tank clusters within the subwatershed. The model can be written as the

following:

A
cluster,ij

= C0 +C1,kPtotal,ij

+C2,kPextreme,ij

+C3,kDSD
i

+B1,jY ear
i

+ e
ij

(1)

The subscripts refer to the Landsat scene (i), tank clusters (j), and subwatersheds (k). Other than the intercept (C0), the fixed10

effects differ for each subwatershed (C1,k, C2,k, and C3,k) or tank cluster (B1,j). The model includes total precipitation depth

(P
total

) and the average depth (P
extreme

) of large storms (>10 mm/day) as explanatory variables, calculated from September

1 through the date of the image. The errors for each observation are included as e
ij

. The dependent variable (A
cluster,ij

) is

the normalized cluster area, where the cluster water extent of the scene is divided by the total maximum water extent of all

tanks that were not removed from the scene. As a quality control measure, this area was set to NA for a given cluster and scene15

if more than 30% of the total tank area in the cluster was removed, either in classification (due to clouds or missing Landsat

pixels) or in the assessment of tanks constructed during the study period. All covariates were centered by subtracting the mean

before being input into the model. The primary result of interest is the value of the time trend for each cluster, B1,j , which

is the temporal trend in total tank water storage over time (as a percent change over time), after controlling for a stationary

relationship between tankw water storage and the covariates (P
total

, P
extreme

, DSD). In the six subwatersheds where there20

is no change in the effect of dry season water losses, we interpret B1,j as a change in the relationship between rainfall and

streamflow. In the two subwatersheds where we detect a change in the effect of dry season water loss on tank storage, B1,j

captures the combined effect of hydrological change and dry-season tank water losses.

2.6 Linear regression of hydrological change and land use

We used four land use maps of the TG Halli watershed, encompassing the three subwatersheds upstream of the TG Halli25

reservoir (TG Halli East, Kumudavathy, and Hesaraghatta), developed for 1973-74, 1991-92, 2001-02, and 2013-14 (Lele and

Sowmyashree M.V., 2016). The maps differentiate agricultural land use classes into rainfed crops, irrigated agriculture, and

Eucalyptus plantations. Irrigated agriculture in this region is supplied almost exclusively by groundwater, allowing us to test

whether groundwater irrigated agriculture, increased water utilization by Eucalyptus plantations (Srinivasan et al., 2015), both,

or neither, are associated with the trends in surface flows.30

In the early 1970s, rainfed agriculture was the primary land use in the TG Halli watershed. Over the study period, many

farmers adopted groundwater irrigation and others converted their fields to Eucalyptus plantations, which have the potential

to mine shallow groundwater or to significantly reduce deep recharge. These land use changes have the potential to reduce
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surface water flows by depleting subsurface water availability and baseflow over time. We therefore calculate the time-average

land use fraction corresponding to irrigated crops (A
irrigated,avg

) and Eucalyptus plantations (A
Eucs,avg

) in each of the tank

cluster watersheds, as a proxy for the cumulative effect on groundwater storage by that land use. We hypothesize that this

time-averaged land use fraction correlates with the metric of hydrological change (B1,j) developed in the statistical model. We

test this hypothesis using a multivariate linear regression:5

B1,j = C
Eucs

A
Eucs,j

+C
irrigated

A
irrigated,j

(2)

The coefficients, C
Eucs

and C
irrigated

, correspond to the sensitivity of hydrological change to time average Eucalyptus land

cover and irrigated agriculture land cover, across all tank clusters. This analysis is not designed to directly infer causation, but

rather to understand associations between streamflow decline and agricultural practices.

3 Results10

3.1 Accuracy assessment

The Landsat classification yielded timeseries of surface water in each of the tanks throughout the watershed. The classification

performed best for pixels that were fully dry or wet, when compared with the reference (LISS) classification in producer and

consumer error matrices (Figure 5a). Producer accuracy was 84% for wet pixels and 99% for dry pixels, and because of the

high number of dry pixels the overall accuracy was 98%. Pixels containing a mix of water and land (20–80% water) had15

lower producer accuracy (41–82%). Overall, the classification errors were unbiased and the histogram of classification errors

(excluding pixels with zero error) was approximately normally distributed (Figure 5b).

The Landsat classification agreed well with the reference LISS classification at the tank scale, and accuracy improved with

increasing tank size. A regression of Landsat extent versus reference extent (Figure 6) for tanks less than 25 hectares (27.8

pixels) had a slope of 0.98 and coefficient of determination (R2) of 0.95. When all tanks and reservoirs were included, the20

regression line had a slope of 1.02 and coefficient of determination of 0.99. Over 99% of dry tanks were correctly classified

as dry, but error was considerably large for small tanks with non-zero water extent less than 2.5 ha (2.8 pixels), due to false

positives in the reference classification as well as errors the Landsat classification. For tanks between 2.5 and 10 ha the classi-

fication performed considerably better. The mean absolute error increased as the extent of the water body increased, but mean

percent error decreased with water body size.25

Comparison of our automated Landsat classification similarly compared well with the Google Earth manual delineation of

tanks in both normal years (R2 = 0.97) and wet years (R2 = 0.97) (see Fig. S6).

Although the time-trends in most tanks have not been reported as ground data, trends in water storage over time are widely

known for some of the major reservoirs. The TG Halli and Hesaraghatta reservoirs declined from a peak storage in the 1970s

to much lower contemporary storage. Large increases in water extent were observed in Manchanabele reservoir, which was30

constructed in 1993, and Harobele reservoir which was constructed in 2004. These anecdotal trends corroborate our findings

for these specific structures.
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3.2 Long-term trends in surface water

The multivariate analysis yielded both negative and positive values of B1,j (Table S2) revealing drying and wetting in different

parts of the Arkavathy watershed, with statistically significant trends in 13 tank clusters. The model explained nearly 70%

of the variation in tank cluster water extent (R2 = 0.68). The effects (slopes) of both precipitation covariates were significant

(the 95% confidence interval of the slope of the temporal trend excluded zero) in nearly all subwatersheds, and the effect of5

dry-season water loss was significant in the two subwatersheds that flow into TG Halli reservoir.

In the two subwatersheds flowing directly into the TG Halli reservoir, B1,j captured the combined effect of hydrological

change (streamflow decline pushes B1,j in the negative direction) and dry-season tank water losses (lower tank losses pushes

B1,j in a the positive direction). Where B1,j is negative in this area, the effect of hydrological change must exceed that of

reduced tank water losses. We converted the units of B1,j to an areal rate of change over time per 10 km2 of catchment10

area (Figure 7). In the three subwatersheds upstream of TG Halli reservoir, most tank clusters showed a drying trend. Tanks

within Bangalore generally exhibited drying trends, and tanks at the city periphery and immediately downstream showed

wetting trends. Other regions of the watershed exhibited mixed results in changing water extent, but none of the trends were

statistically significant at the 95% confidence level.

3.3 Streamflow decline and agricultural practices15

The regression of hydrological change on irrigated agriculture and Eucalyptus land use areas explained most of the variation

in hydrological change (R2 = 0.68) between tank clusters. The relationship between irrigated crops and hydrological change

was statistically significant (95% confidence intervals of C
irrigated

excluded zero), while the relationship with Eucalyptus

plantations was not statistically significant (Fig. 8).

4 Discussion20

4.1 Long-term hydrological trends and human drivers of change

Our analysis confirms that tank water extent at the end of the monsoon season can be primarily attributed to the storage of

monsoon season streamflow. Because tanks in the Arkavathy watershed rarely overflow today and there is little carry-over

storage year to year, the volume of water in tanks provides an integrated measure of hydrological processes from the previous

wet season. Using historical land use maps for the TG Halli watershed we can also make associations between variations in the25

observed streamflow decline and variations in human drivers of change.

We hypothesized that the declines in streamflow would correspond with agricultural practices associated with groundwater

depletion. Although little data exists to describe historical decline of the water table, contemporary farmers typically have to

drill new borewells to depths exceeding 100 m to reach any groundwater. If a loss of baseflow due to groundwater depletion

and the disconnection of the water table from the stream channel is a primary driver of streamflow decline, we would expect30
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the negative trends in streamflow to correspond with irrigated agriculture, which is supplied almost entirely by groundwater in

the TG Halli watershed.

In the linear model relating streamflow changes to land use in the TG Halli watershed, the time-averaged irrigated crop land

use area is a clearer and stronger predictor of declines in tank inflow than Eucalyptus land use. Moreover, other exploratory

analyses showed that irrigated crop land-use is more correlated with streamflow decline (R2 = 0.68) than rainfed crops (R2 =5

0.5) and all other land-use types (R2 < 0.38). Areas retaining mostly rainfed crops exhibit less of a decline in streamflow, and

the decline in streamflow is associated with areas with higher conversion of rainfed crops to irrigated crops. The finding that

Eucalyptus plantations do not play a major role in streamflow decline is consistent with field experiments, which show that that

Eucalyptus plantations tend to reduce infiltration capacity and therefore would increase infiltration excess runoff (Penny et al.,

2015). There could be some relationship between Eucalyptus plantations and tank inflow decline, but if so it is secondary to10

that of irrigated crops.

Irrigated agriculture is also likely to contain relatively higher densities of check dams than other other land use types, given

the desire to recharge diminished groundwater resources. In the absence of datasets describing the spatial distribution and

hydrologic properties of check dams (or a viable way to develop such a dataset), our analysis is unable to separate the effect of

loss of baseflow due to groundwater pumping from the in-stream losses due to check dams. Both processes likely play a role15

in observed hydrological changes. Recession analyses indicate that the loss of the shallow water table could plausibly explain

the observed magnitude of streamflow declines (Srinivasan et al., 2015), and check dams exacerbate the loss of streamflow by

converting water in the stream channel to groundwater recharge (Jeremiah et al., 2014).

The highest streamflow decline occurs in the northernmost regions of the Arkavathy where elevation is higher than other

areas of the watershed. Although it may appear that the pattern of decline could be related to upstream-downstream processes20

and the presence or absence of irrigation return flows (Van Meter et al., 2016, e.g., see), we are doubtful that this effect is

important in the Arkavathy today. Indirect evidence (e.g., surveys) indicates that the water table is hundreds of meters below

the surface in northern parts of the Arkavathy watershed (Srinivasan et al., 2015). Furthermore, the relief in the watershed

is only about 100 m over a distance of 50 km in the TG Halli watershed, meaning that system-wide return flows connecting

upstream to downstream are unlikely.25

Urbanization can have a wetting effect on downstream tanks, due to increases in impervious surfaces, the fallowing of

agricultural land in anticipation of urbanization, and reduced consumptive water use. There is also a non-local effect in that

increased urban water use produces increased urban effluent, which is discharged to the surface channel network where it can

contribute to increases in tank water storage downstream. The observed increases make sense given Bangalore’s imports from

the Cauvery river have increased substantially from 185 million liters per day (MLD) in 1974 to 1350 MLD currently (BWSSB,30

2017), Additionally, as the city has grown, groundwater pumping for urban areas has also increased to an estimated 600 MLD

(Lele et al., 2013). About 40% of Bangalore’s sewage of 1400 MLD flows to Byramangala reservoir (Jamwal et al., 2015).

This has contributed to additional inflows to Byramangala reservoir and more irrigated agriculture directly downstream of the

reservoir. Tanks within urban areas can also exhibit drying trends. For instance, tanks may be encroached upon as residential
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areas expand. Additional urban wastewater inflow can lead to expansion of algae blooms covering the tank water surface, which

can appear as a "drying" of the tank in this analysis.

4.2 Assessing the classification and model uncertainty

The classification of small tanks in the Arkavathy watershed poses challenges associated with harmonization of different

Landsat sensors and the variability in the spectral properties of “wet” tanks due to variations in water quality and vegetation5

extent. The classification tends to overestimate the amount of water in dry pixels and underestimate the amount of water in wet

and mixed pixels. Because our classification scheme is designed to avoid bias between images taken with different Landsat

sensors, we likely sacrifice some precision with sensors from Landsat missions 5–8.

Because these pixels lie at the boundary of the wetted tank area, classification error would be sensitive to geo-registration

error in one or both of the images. Error could also arise from our specification that water pixels must lie within 60 m of clearly10

identifiable water bodies, or the assumptions made during spectral unmixing. Although the classification scheme accounted

for only two classes, the spectral properties of the land class varied among dry soil, wet soil, sparse vegetation, and irrigated

agriculture. Classification of water was complicated by vegetation in tanks, varying degrees of turbidity, and algae blooms in

tanks with considerable wastewater inflow.

Errors at the pixel and tank scales are likely unavoidable given the spectral heterogeneity of both land and water pixels. In15

particular, tanks containing water of variable turbidity, excessive vegetation, or algae blooms are prone to classification errors.

Because pixel-scale errors are unbiased, accuracy at the tank scale improves as tank size increases. Error is further mitigated

by grouping tanks into clusters in the statistical model.

The uncertainty of the classification (R2 = 0.99 when all water bodies are included) is small compared with the uncertainty

of the statistical model (R2 = 0.68). Although the results of our statistical model imply a non-trivial amount of unexplained20

variation, Gardelle et al. (2010) reported similar performance (R2 = 0.78) for a model relating precipitation and water extent in

a single lake, and noted that the correlation was valid only for a nine-year subset of the five-decade study period. The sources

of uncertainty include the complex hydrological processes that relate precipitation, streamflow, and tank water storage, as well

as the nonlinear and heterogeneous relationship between water extent and water storage and the non-stationary behavior of

dry-season losses in the two northermost watersheds. Given this uncertainty, results of our analysis are reasonable given the25

simplicity of the model and the complexity and heterogeneity of the watershed hydrological response.

5 Conclusions

The Arkavathy watershed embodies many of the water security challenges confronting southern India. With data limitations

hampering the characterization of changing water supplies in the basin, remote sensing tools provide insights into the history

and spatial pattern of change in water availability. We were able to take advantage of a pre-existing "sensing network" provided30

by the irrigation tank system throughout the Arkavathy watershed. The high number of tanks in this watershed allowed for a

comparison of hydrological change with land use at spatial scales appropriate for a first-order analysis.
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The analysis reveals that changes in surface water resources are not spatially homogeneous, but vary in their magnitude and

sign among different regions of the basin. These differences appear to be associated with differing patterns of land use across

the basin. A comparison of the hydrological trends with agricultural practices within the TG Halli watershed showed that

streamflow decline is more closely associated with groundwater irrigated agriculture than other kinds of land use, including

Eucalyptus plantations. Groundwater depletion appears to be an important driver of streamflow decline, likely because of the5

direct consequence of the disconnection of the water table from the stream channel as well as the indirect consequence of

check dam construction in groundwater-depleted areas. Further investigation could attempt to attribute the cause of streamflow

decline, either via a more sophisticated statistical analysis considering the many potential drivers of change or via a mechanistic

model of catchment hydrologic functioning. Ideally such analysis would also separate the relative effects of loss of baseflow

due to groundwater pumping and conversion of surface flows to groundwater recharge via check dams.10

Surface networks of rainwater harvesting structures are employed in seasonal climates worldwide, whether in cascading tank

systems in southern India and Sri Lanka, or hillslope farm dams in Australia (Callow and Smettem, 2009; Roohi and Webb,

2012), North-East Brazil (Lima Neto et al., 2011; Malveira et al., 2012; de Araújo and Medeiros, 2013; de Toledo et al., 2014),

South Africa (Hughes and Mantel, 2010), the US Great Plains (Womack et al., 2012) and China (Xiankun, 2014; Xu et al.,

2013). Capitalizing on these networks as proxy indicators of rainfall and streamflow variation, as in the Arkavathy, could prove15

a valuable approach to circumventing problems of data scarcity and characterizing changing hydrological conditions.
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Figure 1. Site map. (a) Location of the Arkavathy watershed within the state of Karnataka, India, and scene boundaries for Landsat 1–

3 (WRS-1) and Landsat 4–8 (WRS-2). (b) Map of the watershed including tanks, reservoirs including the stream gauge locations, river

network, and municipal boundary of Bangalore. Lower-order streams and a number of small, generally dry tanks are excluded.
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Figure 2. Aerial photos of a small tank containing turbid water in the Arkavathy watershed before and after runoff events in August 2014.

The tank receives water from the channel and directly from adjacent agricultural plots, and water extent increases with storage.
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Figure 3. Flowchart of classification method. In Steps 3 and 4, clear water fraction and turbid water fraction are each calculated for all pixels

in the image before they are combined into water fraction in Step 5. Color images are from Landsat, with red, green, and blue in the image

corresponding to NIR, Red, and Green bands from Landsat TM.
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Figure 4. Subwatersheds and tank cluster watersheds. Each tank cluster contained at least 15 tanks.
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Figure 5. (a) Pixel-level producer and consumer accuracy tables, given by percent of pixels within a given error bin. Pixels are grouped

into rows by the producer or consumer water fraction and then binned into columns by the error (Landsat - LISS water fraction). The center

column shows the percentage of pixels that were correctly classified, with error between -0.2 and 0.2. (b) Histogram of non-zero classification

errors (excluding pixels where the error was zero).
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(a)

(b) (c)

Figure 6. Comparison of Landsat and reference (LISS) classification from February 2014 images. (a) Water extent in tanks less than 25

ha. (b) Water extent in all tanks and reservoirs. (c) Error in the Landsat classification for tanks and reservoirs. Relative error decreases with

increasing tank size. Only three of the five reservoirs are included because the LISS image excluded the Harobele reservoir and there was

considerable change in an algae bloom in the Byramangala reservoir in the time between the acquisition of the LISS and Landsat images.

25



−8

−4

0

4

Temporal trend            
(ha decade−1 10 km−2)

Figure 7. Trends in cluster water extent, 1973–2010, given as change in water surface area (ha) per decade per 10 km2 of watershed area.

White space indicates subwatershed boundaries, and black lines indicate statistical significance of the cluster trend.
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Figure 8. Agricultural land use and hydrological change. (Top) Land use fraction of Eucalyptus plantations and irrigated crops in four land

use maps. (Bottom) Model coefficients relating hydrological change to Eucalyptus and irrigated crops based from the multivariate linear

regression. Horizontal lines indicate 95% confidence intervals.
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