
Replies to Referee #1 

Interactive comment on “A Multi-sensor Data-driven methodology for all-sky Passive Microwave 

Inundation Retrieval” by Zeinab Takbiri, Ardeshir M. Ebtehaj, and Efi Foufoula-Georgiou 

 

This paper presents a new retrieval algorithm for estimating the fraction of water within a passive 

microwave pixel by using an archive of brightness temperature-MODIS water relationships developed 

from near-coincident imagery. The manuscript is well written and covers a topic of interest to the remote 

sensing/hydrology research community. I believe this manuscript is suitable for publication subject to 

reviewing the minor suggestions below: 

We thank the reviewer for the positive view and constructive comments. We have addressed all his/her 

comments in the revised manuscript and provide also detailed replies below.  

 

I question the use of a 50% clear-sky in the VNIR data for it to be used in the algorithm. Wouldn’t this 

influence the results (which you suggest in the discussion anyway). The Mekong region is very cloudy 

during the flood season. Would it be better to increase your clear-sky % to higher (which will reduce your 

number of observations in your dictionary, but it may improve the results)? Have you already tested this? 

I suggest including a short discussion on this in the paper. 

The 50% threshold was selected because the MODIS sensor has a much higher resolution than the 

footprint of SSMI/S. Therefore, because of a limited number of cloud-free samples over the Mekong, we 

need to set a threshold to keep a certain number of SMMI/S cloudy pixels and make sure that the 

dictionary will not be undersampled. We believe that pixels with a small fraction of cloud cover still 

contain useful information about surface inundation as microwave observations are not blocked by the 

presence of clouds. For choosing the threshold we conducted some preliminary analysis by randomly 

separating 10% of the samples from the dictionary and estimating their inundation fraction based on 

different thresholds. The analysis showed that the 50 percent threshold is a good choice as it resulted in 

bias that was small relative to MODIS-MWP products; for different thresholds, we compared our results 

with MODIS-MWP over the dry season, which is considered more precise due to less cloud-coverage in 

that season. For future studies, we aim to extend the sample space to other geographical regions to be 

able to collect enough samples with minimal or no cloud cover. We have addressed this issue in the 

revised manuscript on page 8 lines 21–25 and also in the uncertainties and limitations of the algorithm in 

the “Conclusion and future directions” section in page 13 lines 19–23.  



 

You use the 3-day composite MWP products to reduce cloud cover. However, won’t this reduce the 

accuracy of the near-coincident relationship between the brightness temperature and MODIS water 

product – especially when you are also looking at the sub-daily diurnal effects? I know you also average 

the brightness temperature over 3 days as well, however I think it would be worthwhile discussing this 

possible affect in the manuscript.  

We thank you for this comment and acknowledge the existing uncertainties with respect to populating the 

dictionaries with a 3-day composite MODIS-MWP inundation dataset. We agree that this choice might 

affect the accuracy of the retrievals. Between the daily and a three-day averaged MODIS product, we 

decided to use the latter because of its lower retrieval uncertainty. MODIS-MWP daily data are very 

uncertain because of the shadows of terrains and clouds (Nigro et al. 2014). Typically, there are 

numerous missing pixels in daily products, which reduce the sample size dramatically. These errors are 

significantly reduced in the 3-day composite products, as it is less likely for clouds (and their shadows) to 

stay at the same spot for three days (Nigro et al. 2014). Because the retrievals of the presented method 

use a weighted average representation of the dictionary atoms, we believe that less uncertain atoms 

(obtained based on a 3-day MWP dataset) will provide improved estimates of inundation—compared to 

the more uncertain daily samples. However, a more detailed investigation is certainly needed in future 

studies. This discussion has been added to page 5 lines 16–22 in the “Study Area and database” session 

and also in the algorithm limitations and uncertainties in on page 13 lines 15–18. 

 

Minor corrections:  

Once again, we would like to thank the reviewer for the provided comments. Please see our detailed 

response as follows: 

- Page 1, line 11 – should it be ‘shortwave infrared’? It has been changed to shortwave infrared.  

- Page 3, line 12 – change ‘location’ to ‘locations’. It has been changed.  

- Page 3, line 24 – I suggest changing…’with overlapping in spatial and time…’ to ‘which overlap in the 

spatial and time…’. Revised accordingly.  

- Page 4, line 15 – change ‘form’ to ‘from’. Fixed 

- Page 4, line 20 – change ‘…fraction at resolution…’ to ‘…fraction at spatial resolution…’. Revised 

accordingly.  

- Page 5, line 23 – change ‘form’ to ‘from’. It has been changed, thanks.  



- Page 6, line 11 – I suggest changing from first person (i.e. ‘let us’). - Page 10, line 2. It has been revised.  

– change ‘that’ to ‘than’. It has been changed.   

- Page 10, line 3 – change ‘reverse’ to ‘reversed’. Fixed 

- Page 11, line 19 – change ‘form’ to ‘from’. It has been corrected. Thanks. 

 

Figure 2 – should it be ‘downscale’ rather than ‘upscale’ since you are reducing the spatial resolution?  

In earth science, we typically use upscaling when we increase the scale and decrease resolution. We are 

aware that in different disciplines, this terminology might be used reversely while we associate upscaling 

with higher resolution.  

 

Figure 4 caption – I assume the inundation intervals are ‘f’. I suggest changing the caption to ‘…five 

different inundation fraction intervals (f)…’. Incorporated.  

Figure 6 – typing error in the figure ‘July-Descember’ should be ‘July-December’. Corrected.  

 

Reference: 

Nigro, J., Slayback, D., Policelli, F. and Brakenridge, G. R.: NASA / DFO MODIS Near Real-Time (NRT) 

Global Flood Mapping Product Evaluation of Flood and Permanent Water Detection, 2014. 



Responses to Referee #2 

Interactive comment on “A Multi-sensor Data-driven methodology for all-sky Passive Microwave 

Inundation Retrieval” by Zeinab Takbiri, Ardeshir M. Ebtehaj, and Efi Foufoula-Georgiou 

-- Our responses are in italics boldface 

The manuscript has successfully demonstrated a new algorithm for estimating subpixel inundated 

fractions under all weather conditions. By pairing SSMIS multifrequency observations with MODIS 

based flood area values during the training period, a weight matrix is identified such that the inundated 

fraction of a given pixel can be estimated solely from the multi-frequency SSMIS observations over the 

K-nearest neighbors. This research is built upon traditional wetland/flood mapping approaches that use 

either passive microwave or VIS/IR alone. The improved spatial and temporal resolutions will contribute 

to flood monitoring skills during monsoonal seasons. The manuscript is overall well written, but a few 

areas need further clarification and/or improvement. 

We thank the referee for the valuable insights and comments. We have addressed all the comments 

thoroughly into the revised manuscript and detailed replies are provided below. 

 

Detailed comments: 

1) I strongly recommend improving the description of the retrieval algorithm (Section 3).  

More introductory description of the algorithm has been added to the manuscript on page 6 lines 13–28. 

 

a) The most important component missing in this section is information about estimating inundated 

fraction solely from passive microwave observations (e.g., for the year 2015, or during the monsoon 

season). As shown in the flowchart (Figure 3), the last step is to calculate the inundated fraction using Eq 

(2), where the coefficient matrix c is optimized from microwave observations (Eq. (4)) and the 

corresponding inundation fraction (in Fs) is from MODIS (i.e., MWP). How does this work in cases 

where the Fs value from MODIS is unavailable? I assume the ‘dictionaries’ (from 2010-2014) are used, 

but I couldn’t find the relevant text? 

F is known and represents the inundation dictionary for which each value fi is attached to a 

corresponding SSMI/S vector of brightness temperature bi in the dictionary B. These two dictionaries are 

collected using 5 years (2010–2014) of near coincident SSMI/S brightness temperatures and MODIS-

MWP inundation fraction. The collection of these pairs from historical observations forms the two 



dictionaries. This has been better clarified now in revised description in page 6 lines 20–24 (please refer 

to the comment # 1). 

 

b) The number of vectors in matrix B needs to be consistent throughout the manuscript. The dimension 

is n-by-M according to Line 12 on Page 6, where n is the number of frequency channels (i.e.  7) and M is 

the number of vectors.  However, according to Figure 2 N is the number of vectors (and N=n×m), which 

is confusing. Similarly, it is unclear if the M vectors (Page 6, Line 11) refer to microwave observations in 

both time and space âA˘Tˇor just in space? Assume the domain contains 10 rows and 20 columns, and 

there are microwave observations for over 300 hundred time steps. Does this mean that M=10×20 (as 

indicated in Figure 2), or that M=10×20×300 (which is more likely)? 

M=10×20×300 is the correct answer. We believe that the notation is correct. Capital letters represent the 

number of vectors. M is the total number of brightness temperature vectors collected for all involved 

orbits in five years of data. However, N<<M represents the maximum number of pixel level vectors of 

brightness temperatures in each day over the study area that might be associated with either inundated 

pixels or dry pixels. We revised the caption of Figure 2 to further clarify this issue and address the 

concern.   

 

c) Because the K-nearest neighbor search is essential for this study, a bit more information on this 

process will be helpful. This also relates to the above comment (1b)âA˘Tˇwill the K- neighbors be 

selected from one time step, or from multiple observations that occur during different time steps? Since 

the K- neighbors have a better chance of being geographically close to the pixel of interest (and are from 

the same time step), will the random selection of 2×106 pairs of brightness temperature and inundation 

fraction make the Knn less representative? 

The k-nearest search in this paper does not directly constrain its search on any specific time step. For 

every pixel-level vector of brightness temperatures, the K-nearest neighbors search is run over the entire 

dictionary which is formed from all pixels and all time steps available. This has been clarified on page 7 

lines 10–14 of the revised manuscript. Obviously, stratification of the dictionary based on different land 

surface types and period of times (e.g. seasons) can form subset dictionaries and this can be explored in 

future research.  

 

d) Parameters λ1 and λ2 in Eq. (4) are not defined until at the end of Section 3. The selection of λ and α 



are made through “cross validation studies”, which are not explained. 

1λ  and 2λ  in Equation (4) are regularization parameters that enforce a trade-off between the two 

regularizations 1  and 2 , which together control the balance between sparsity and stability of the 

solution in Eq. (4)),. This definition has been added in page 8 lines 5–7 and in page 9 lines 31 to page 10 

line 34.  

There is no closed form solution for these regularization parameters and they are often determined 

empirically through cross-validation (Zou & Hastie, 2005; Zhang & Saligrama, 2015). Cross-validation 

means a series of tests that have been conducted by a set of independent data and optimization is 

performed via a variational approach to get estimates of those parameters.  In our case, we have followed 

a less formal approach and have found by trial and error that the selected values perform reasonably 

well in the sense of having reduced overall retrieval error in the cross-validation experiments. The 

retrieval error has been calculated for different sets of regularization parameters, based on 

MODIS_MWP products for dry months, in which MODIS_MWP are considered more precise than wet 

months due to less cloud coverages. We did not include the results of those trial and error experiments as 

we attempted to validate the algorithm as a proof of concept at this stage. It is clear that for any kind of 

operational application a more rigorous estimation of these parameters should be studied. 

 

e) In Figure 3, there are a few constants that are never explained and never provided with values in the 

manuscripts (such as K, Kp, and p).  

K is the number of the nearest neighbors and has been repeatedly mentioned in the manuscript (for 

example, please see page 7 line 6, 12, 26). The parameter p is the detection probability and its definition 

has been added to page 7 lines 10. An observation vector was considered inundated if the number of its 

nearest neighbors with non-zero inundation was greater than p K×  (noted as Kp in the old version of 

manuscript). The acronym table on page 19 has also been revised to include these parameters in the new 

manuscript.  

 

2) In Section 4, the validation conducted using the probability of “hit” and “false alarm” should be 

compared between the dry season and wet season. This will help to better understand the results. For 

instance, there are much fewer missing data points from the MWP during the dry season than during the 

wet season. Does this mean that there will be a smaller probability of false alarms accordingly âA˘Tˇor 

can the cloud cover/flag from the MODIS product be used to compare results over the 12.5 km pixels 



with and without cloud contamination?  

We appreciate this comment. We can certainly break down the windows of validation to seasonal to 

provide further insights about the conditional performance of the algorithm. We have calculated the 

probability of hit and false alarm for wet and dry season, separately, and added that to Page 10 line 11-

14 of the revised manuscript. The probability of hit was around 0.92 for both dry and wet seasons. 

However, the probability of false alarm is around 0.12 for the dry season and reaches the value of 0.34 

for the wet season, which might be due to MOIDS missing data during the winter. In future work we aim 

to address thoroughly the seasonal performance of the method to increase our understanding of the role 

of missing data and seasonal dependency on the results. 

 

3) Figures 7a and 7c indicate an overestimation (as compared to 7b and 7d) in regions close to the 

rivers, and an underestimation in regions not connected to major rivers. Please consider adding some 

discussion on this. 

Thank you – this is a good point and we have added it now in the discussion. The overestimation of 

inundation near the riverbanks of major rivers might be due to the moisture content (≥ 0.8) during the 

wet season that increases the dielectric constant of the soil up to 30-50 (Alharthi & Lange 1998) which 

is very close to the dielectric constant of the water surfaces (75-80). Another reason is the cloud 

coverage. Since the riverbanks are inundated less frequently than the coastlines, it is possible that those 

few inundation events were missed by MODIS because of the clouds. There is also some underestimation 

in the inundation fractions from the proposed algorithm over the hillslopes far away from the riverbanks 

compared to the MODIS-MWP product. We think that those sporadically inundated areas, which appear 

on MODIS-MWP map (Fig 6. b & d), can be due to the terrain shadows that are misclassified as water. 

While we cannot directly prove the above assertions in the scope of this manuscript, the elevation map 

(Fig. 1) indicates that those hillslopes are very unlikely to get flooded.  This discussion has been added 

to the revised manuscript in page 10 line 24 to page 11 line 14.  

 

4) The highlight of this algorithm is the capability to produce inundated subpixel fraction results under 

all-weather at a daily temporal resolution. Therefore, results and validations which contribute to 

evaluating these skills are preferred. Specifically, it would be interesting to see 1-2 examples showing the 

daily results (similar to Fig. 7), and comparisons of the sub-pixel fraction values (e.g. using scatter plots) 

between the MWP and microwave based estimations. 

We totally understand your concern and believe that the validation should be extended to shorter time 



scales in the future. Although a thorough validation requires access to more detailed ground-based 

observations that goes beyond the scope of the current research, in the revised manuscript we have added 

scatterplots of daily inundation fractions from our retrieval algorithm and MODIS-MWP to get further 

insights about the performance of our algorithm in daily basis. The scatterplots (Figure 7) further 

demonstrated larger inundation fractions from the retrieval algorithm in July-to-December compared to 

the MODIS-MWP data. However, in January-to-June, when there are fewer clouds, the inundation 

fractions from the proposed algorithm are more correlated with the MODIS-MWP data and are slightly 

underestimated. Description has been added on page 11 lines 5-14 and also in the “conclusion and 

further direction” sections on page 13 lines 18-23. 

  

5) There are a number of reasons contributing to the mismatch between the MWP and microwave based 

estimations. Something important missed in the discussion is the error associated with the MWP. Some 

discussion about the uncertainties associated with the results is recommended.  

A complete discussion about the limitations and uncertainties of the results of the proposed algorithm has 

been added in the revised manuscript in page 13 line 16 to page 14 line 14. 

  

6) Although I agree that the water level and the inundated area are correlated, I don’t think it is the best 

practice to simply average the water levels from 11 gauges to represent the basin. During a flood event, 

the water level at an upstream gauge located in a steep valley may increase a lot more (and/or faster) than 

a downstream gauge. However, the downstream gauge is more representative of the basin’s condition. 

We acknowledge that the validation with water level data is not enough but this is the best we could do 

with the available data. By averaging the available water levels over the study area, we obtained a 

correlated surrogate of inundation at a basin scale, which helped us to check that the algorithm is in the 

right direction.  

To further address your concern, we divided the study area into two sub-regions covering the steeper 

upper parts (from the top of the study area shown with a box in Figure 1 up to the Phnom Penh gauge) 

and the flatter region downstream and performed a Copula analysis (join cumulative probability of the 

quantiles) for each region (Figure 9) to rigorously evaluate the algorithm performance in each region.  

The results show a better performance (as expected) in the upper region and this discussion has been 

added in the revised manuscript in page 12 line 24 to page 13 line 3.  



A few minor issues: 

We appreciate the reviewer’s attention to minor details and the comments she/he has provided. We have 

incorporated all of these suggestions in our revised manuscript. 

a) Page 9, line 1: Change “problem” to “equation”. -- Revised. 

b) Page 9, line 7: It should be Fig. 6, not Fig. 7. -- Fixed. 

c) Fig. 3: If the Tb images are intended for all years (see comment 1c), please revise the figure 

accordingly. -- More clarifications have been added to its caption (of figure 2). 

d) Fig. 4b: This figure needs units.  -- [°Kelvin] has been added. 

e) Fig. 5: Should the word “weights” be removed from the top of the right panel? -- Yes, it should and it 

has been removed now.  

f) In some of the figures, the panels are denoted by a, b, c, etc.â but not in all cases. Please be 

consistent.  -- Revised. 
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Abstract. We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high 

spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-10 

infrared, and microwave bands, thereby allowing detection and mapping of the sub-pixel fraction of inundated areas under 

almost all-sky conditions. The method relies on a nearest neighbor search and a modern sparsity-promoting inversion method 

that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping 

observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite 

Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and 15 

Terra satellites. Evaluation of the retrieval algorithm over the Mekong delta shows that it is capable of capturing to a good 

degree the inundation diurnal variability due to localized convective precipitation. At longer time-scales, the results 

demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing 

inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation and 

also Copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water 20 

levels at monthly and daily time scales.  The current inundation products are at resolution of 12.5 Km and twice per day, but 

higher resolution (order of 5 Km and every 3 hours) can be achieved using the same algorithm but populating the dictionary 

with the Global Precipitation Mission (GPM) Microwave Imager (GMI) products. 

 

Keywords: 25 

Passive Microwave Inundation Retrievals, Bayesian Inversion, k-nearest Neighbors, Deltaic regions, Inverse Problems, Sparse 

Regularization.  

 

Key points: 

Multi-sensor observations improve satellite inundation mapping under cloudy sky.    30 

Retrievals using passive microwave observations capture the diurnal variability of inundation. 
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1 Introduction 

Capturing the diurnal spatio-temporal dynamics of inundation over coastal regions, deltaic surfaces, and river floodplains 

requires high-resolution observations in both time and space, which are not available from the typical sparse ground-based 

sensors. Satellite observations from the visible to the microwave bands of the electromagnetic spectrum have been widely used 

for mapping floods, estimating surface water storages, river discharge values and water levels (Smith, 1997). In the visible 5 

bands (~0.4–0.8 µm), natural water reflects a fraction of incident light depending on the water depth and concentration of the 

optically active components such as suspended and dissolved particulate matter. However, water reflectivity sharply declines 

and approaches zero in the near infrared bands (~0.8–2.5 µm). Thresholding of this sharp gradient is often used to discriminate 

water bodies from their nearby dry soils and vegetated surfaces (Rango and Anderson, 1974; Smith, 1997 and references 

therein; Frazier and Page, 2000; Smith, 2001; Jain et al., 2005). In the microwave region of the spectrum, the dielectric constant 10 

of water (~80) is much higher than the dry soil (~4) and thus the inundated areas are substantially less emissive and 

radiometrically colder than the surrounding soils and vegetation covers.  Moreover, emission from smooth water surfaces is 

more polarized than that from rough soils and vegetated surfaces (Ulaby et al., 1982; Papa et al., 2006; Prigent et al., 2007). 

This polarization signal has also been used through empirical thresholding approaches to distinguish water surfaces from other 

land surface types (Allison et al., 1979; Sippel et al., 1994, 1998; Brakenridge et al., 2005, 2007).  15 

 

Flood mapping from space was first accomplished using visible to near infrared (VNIR) observations (0.4–1.1µm),  by the 

Multispectral Scanner System (MSS) sensors on board Landsat-1 (Rango and Anderson, 1974; Rango and Salmonson, 1974; 

McGinnis and Rango, 1975). In these pioneering works, flooded areas were mapped where the near-infrared surface reflectance 

was below a certain threshold as water absorption is strong in this region.  More recently, Brakenridge and Anderson (2006) 20 

showed that the visible red band 1 (0.62–0.67µm) and near infrared (NIR) band 2 (0.84–0.87µm) from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites can be used to detect water over land surfaces. They 

mapped several hundreds of flood events at different sites all over the world by classification of water via thresholding over 

the NIR band and the normalized difference vegetation index, ( ) ( )NDVI NIR red NIR red= − +  introduced by Rouse et al. 

(1974). To better discriminate the vegetation from inundated areas in threshold-based methods, Ticehurst et al. (2013) and 25 

Guerschman et al. (2011) used a new index—called the normalized difference water index, 

( ) ( )NDWI red MIR red MIR= − +  introduced by Gao (1996) and later modified to 

( ) ( )MNDWI green MIR green MIR= − +  by Xu (2006). This index exploits the mid-infrared (MIR: 1.23–1.25µm) part of the 

spectrum to improve the mapping. In all thresholding methods, the shadows of terrains and clouds are usually miss-classified 

as inundated areas. Therefore, Kuenzer et al. (2015) used the topography and cloud information data as ancillary variables to 30 

obtain improved estimates of the inter-annual dynamics of areas covered with water over five deltaic regions with high annual 

cloud cover.  
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The use of passive microwaves (PMW) to map flooded areas was pioneered by Allison et al. (1979), Giddings and Choudhury 

(1989), and Choudhury (1991). Allison et al. (1979) used horizontal polarization of brightness temperatures (Tb) at 19.3 GHz, 

from the Electrically Scanning Microwave Radiometer (ESMR) on board the Nimbus-5 satellite, to delineate flooded regions 

in Australia. Giddings and Choudhury (1989) reported the 37GHz vertical and horizontal polarization differences (i.e., 

37v 37hTb - Tb ), from the Scanning Multi-frequency Microwave Radiometer (SMMR) on board the Nimbus-7 satellite, as the 5 

most responsive channel to identify the seasonal changes in the extent of floodplains over South America. Temimi et al. (2005) 

used the empirical Basin Wetness Index (BWI) defined by Basist et al. (1998), to obtain real-time water surface fraction (WSF) 

in the Mackenzie River Basin, using multi-frequency information at 19, 37, and 85 GHz. To minimize the contamination 

effects of atmospheric emission and variations of surface temperatures, Brakenridge et al. (2007) exploited the ratio of Tb 

values over inundated and dry surfaces at 36 GHz and presented promising results over several river sites all over the globe, 10 

using the PMW observations by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E). De 

Groeve et al. (2010) also used the same method and instrument to map floods for several hundreds of locations for the Global 

Disaster Alert and Coordination System GDACS.  

 

While visible and shortwave-infrared bands often provide sub-kilometer resolution for inundation mapping, their capability is 15 

very limited in a cloudy sky. This limitation is usually very restrictive over prone-to-flooding watersheds and deltas in tropical 

regions with high-frequency of heavy precipitation events. For instance, a long-term analysis of Landsat data revealed that due 

to cloud contamination, only 30% of overpasses are useful for inundation mapping (Melack et al., 1994). Because of this 

limitation, most of the related satellite products, including the MODIS inundation products, are available mostly in monthly, 

seasonal, and/or annual timescales (Ordoyne and Friedl, 2008). However, microwaves can penetrate clouds—and to some 20 

extent hydrometeors in frequencies 37≤  GHz—to provide water inundation mapping in almost all weather conditions. 

Unfortunately, due to the coarse resolution of microwave data, e.g.,  km2 at 19 GHz to  km2 at 183 GHz for 

the SSMIS), only large water bodies can be detected and sub-pixel inundated areas cannot be directly identified (Smith, 1997). 

Nowadays, there exist several sensors on board different satellites which overlap in the spatial and time domains that sample 

land-atmosphere signals at different wavelengths of the electromagnetic spectrum. Therefore, it is imperative to integrate these 25 

multi-sensor observations to overcome their individual shortcomings and improve retrievals of land-atmosphere parameters 

and the extent of flooded areas (Prigent et al., 2001, 2007; Crétaux et al., 2011; Temimi et al., 2011; Schroeder et al., 2010).  

 

In this paper, we develop a method to retrieve sub-pixel inundation fraction (“inundation” referring to regions where water 

covers the land surface, excluding permanent water bodies) only from passive microwave observations based on a set of paired 30 

VNIR and passive microwave training samples. In particular, as training samples, we use global observations of VNIR data 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra (launched in 2000) and Aqua satellites 

(launched in 2002) and passive microwave data from the Special Sensor Microwave Imager/Sounder (SSMIS) on board DMSP 
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satellites F16–F18. Several years of observations (2000-present) by these two sensors allow us to collect adequate overlapping 

data to link coarse scale SSMIS passive microwave data to high-resolution MODIS VNIR data in the form of organized dataset. 

Obviously, this collection of almost coincident observations does not contain direct information about surface inundation in a 

cloudy sky, as the radiative signals in VNIR wavelengths cannot penetrate clouds.  However, over land, it is well understood 

(see Ferraro et al., 1986; Grody, 1991; Wilheit, 1994) that hydrometeors and the atmospheric profile do not significantly affect 5 

the low-frequency <60 GHz brightness temperatures. Therefore, the information content of the dataset over low-frequency 

channels is independent of the atmospheric profile and can be used to a good degree of accuracy to recover inundated surfaces 

under cloudy conditions as well. It should be acknowledged that there is an uncertainty for the inundation retrieval under heavy 

rainy/cloudy sky when only the information in the clear-sky dataset is used. However, we expect that this uncertainty will be 

small since the information of the underlying surfaces in low-frequency channels of the collected dataset remains almost the 10 

same over different atmospheric conditions.  

 

The collected dataset has a large number of linked pairs of inundation fraction data from MODIS data SSMIS multi-frequency 

brightness temperatures. For algorithmic development, the dataset is organized into two fat matrices: the so-called brightness 

temperature and inundation dictionaries. For an observed pixel-level brightness temperature, the proposed passive retrieval 15 

algorithm uses the nearest-neighbor search to isolate a few vectors in the dictionary of brightness temperatures and their 

corresponding inundation fraction and then use them to estimate the unknown inundation fraction. The proposed retrieval 

algorithm is applied to estimate daily inundation fraction at spatial resolution of 12.5 km over the Mekong in 2015. The main 

motivation for selecting this delta as a case study is that approximately 90% of the Mekong region is covered by clouds during 

the rainy season (Leinenkugel et al. 2013) which severely hampers the use of inundation mapping in the VNIR bands. We 20 

retrieve the inundation fraction twice per day using the proposed algorithm over the Mekong delta and compare the results 

with the flood products of VNIR data during clear skies. We also evaluated the results against the daily and monthly water 

level data obtained from eleven gages over the Mekong delta (Fig. 1) to examine consistency of the retrievals with the regional 

inundation patterns.  

 25 

This paper is organized as follows. Section 2 explains the a priori dataset and the formation of the dictionaries and Section 3 

provides detailed information about the retrieval algorithm. Implementation of the method and validation are explained in 

Section 4. Section 5 presents concluding remarks and directions for future research. 

2 Study Area and dataset  

The 60,000-km2 Mekong delta is in South Vietnam (see Fig. 1) with a tropical monsoon climate system. The delta with its 30 

agricultural industry is one of the most important sources of food supply to the Southeast Asia. This critical region is home to 

nearly 20 million people, approximately 22% of the population of Vietnam, and is one of the most densely populated regions 
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in the world. The area has been exposed to exacerbated erosion due to human activities and increased sea level rise and lowland 

flood events in the recent decades (e.g., Syvitski et al., 2005; Ericson et al., 2006; Nicholls and Cazenave, 2010; Tessler et al., 

2015). Improved quantification of (near) real-time inundation of the Mekong Delta can help: (1) to improve flood forecasting 

by identifying the inundated and thus soil saturated zones and (2) to identify erosional and depositional hotspots that can 

improve geomorphologic and ecosystem modeling. The proposed retrieval algorithm is applied to estimate sub-daily 5 

inundation fraction at resolution of 12.5 km over some of the lower regions of the Mekong delta in calendar year 2015 (Fig. 

1). 

 

Two sources of information are used to build a dataset that connects almost coincident VNIR water inundation data and multi-

frequency passive microwave data. The VNIR data consist of the daily NASA standard MODIS Near-Real-Time (NRT) Water 10 

Product (MWP-3D3ON i.e., 3-Days imagery, 3 Observations, and no shadow masking) with approximately 250 m spatial 

resolution (Nigro et al., 2014) from both Terra and Aqua Satellites. The Terra and Aqua satellites both have a sun-synchronous 

orbit. They rotate around the earth in opposite directions: Terra has an ascending orbit with the local equatorial crossing time 

of 10:30 AM and Aqua has a descending orbit with the local equatorial crossing time of 1:30 PM.  MWP products are binary 

information of inundation based on the Dartmouth Flood Observatory (DFO) algorithm, which uses a thresholding scheme on 15 

MODIS observations at Band 1 (0.62–0.67 µm), Band 2 (0.84–0.87 µm) and Band 7 (2.10–2.15 µm). To minimize the 

contamination effects of cloud and terrain shadows, we focus on 3-day composite MWP products (3D3ON). Clearly, the use 

of the 3-day composite MODIS-MWP data can affect daily inundation retrievals; however, in the context of the presented 

algorithm this is the best choice because, daily MODIS-MWP composites are very uncertain due to the terrain shadows and 

clouds (Nigro et al. 2014). Typically, there are numerous missing pixels in the daily products, which reduce the sample size 20 

dramatically. These errors are significantly reduced in 3-day composite products, as it is less likely that clouds (and their 

shadows) stay at the same spot during a 3 day period (Nigro et al. 2014).  

 

The microwave data are obtained from the DMSP SSM/I-SSMIS Pathfinder Daily Equal-Area Scalable Earth Grid (EASE-

Grid; see Armstrong and Brodzik, 1995) brightness temperatures distributed by the National Snow and Ice Data Center 25 

(NSIDC). These datasets are at four central frequencies 19, 22, 37, and 91 GHz. All channels are vertically and horizontally 

polarized except channel 22 GHz. The effective resolution of the highest frequency channel is ~12.5 km while low-resolution 

channels are projected onto a grid size of ~25 km. DMSP SSM/I-SSMIS brightness temperature data products are from 

observations by the SSM/I and SSMIS radiometer on board the DMSP F8, 11, 13 or 17. Since December 2006, the F17 satellite 

has been the only operational satellite from the DMSP series, which carries on board the SSMIS instrument with equatorial 30 

crossing times of 05:30–06:30 AM and 17:30–18:30 PM for the descending and ascending orbits, respectively. It is important 

to note that because these satellites revisit every point on earth at the same local time, repeatedly, the paired MODIS-MWP 

with DMSP SSMIS data have a fixed diurnal time-difference in the entire dataset. Since the MODIS-MWP data are from the 
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combination of Terra and Aqua observations, their time tag is advantageous in the sense that it allows us to enrich the number 

of samples for the diurnal cycle of inundation dynamics.  

The first step for building the a priori dataset is to match the different space-time resolutions of the multi-sensor information. 

To unify the spatial resolution of the microwave data, the brightness temperatures of the three lower frequency channels are 

mapped onto the latitude/longitude grids of the high-frequency channel of 91 GHz with resolution ~12.5 km, using a nearest 5 

neighbor interpolation. Then the clear-sky MWP data are also upscaled from 250 m to 12.5 km and projected onto the same 

grids. In the process of upscaling the binary MWP data, we assigned to each upscaled pixel a scalar inundation fraction number 

f  that represents the ratio of the number of inundated sub-pixels to the total number of sub-pixels within a pixel size of 12.5 

km. For matching the time scales of Tb and MWP values, the Tb values are averaged over a three-day time window to minimize 

the possible effects of cloud contamination in the VNIR data. Fig. 2 demonstrates schematically the process of producing the 10 

explained dataset. 

3 The Retrieval Algorithm 

The proposed retrieval algorithm uses the link between two available coincidental datasets, passive microwave (SSMIS) and 

VNIR (MODIS-MWP), to retrieve inundation in the cloudy days. First, the overlapped clear-sky pixels of MODIS-MWP and 

SSMIS for 5 years (2010–2014) are collected over the study area to create two coincidental dictionaries: the SSMIS dictionary 15 

and the MODIS-MWP dictionary. The SSMIS dictionary consists of 8-dimensional vectors of brightness temperature (Tb), 

where 8 is the number of frequency channels, and the MODIS-MWP dictionary consists of scalar values of inundation fractions 

for each corresponding pixel in Tb. In other words, the inundation fraction for each Tb in the brightness temperature dictionary 

is known. The algorithm uses the information embedded in these two dictionaries to estimate the unknown inundation fractions 

for each Tb observation vector. First, it searches the brightness temperature dictionary to find the K most similar vectors in the 20 

Euclidean sense to the Tb observation vector through the K-nearest neighbors algorithm. Then, for these K-nearest neighbors, 

the corresponding known scalar values in the inundation fraction dictionary are picked. If the ratio of the number of inundated 

vectors in K-nearest neighbors is greater than a threshold (which will be explained later), this pixel is called inundated and the 

algorithm goes to the estimation step. In the estimation step, the coefficients that can optimally estimate the Tb observation 

vector based on its K-nearest neighbors are calculated through a least squares regularization approach. Those coefficients are 25 

then used to linearly combine the K known inundation fractions that are associated with the neighboring Tb vectors for 

calculating the unknown inundation fraction. The above detection and estimation steps are repeated for each orbit at pixel-

level of 12.5 km over the study area. The algorithm is mathematically described in what follows.   

 

To organize the dataset in an algebraically tractable manner, M vectors of microwave brightness temperatures 30 

( )1 2, ,..., T n
i i i niTb Tb Tb= ∈ℜb  at n frequency channels are collected. These vectors form the column space of an n-by-M matrix 
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[ ]1 2| | ... | n M
M

×∈ℜB = b b b , called brightness temperature dictionary, where M ≫n. Analogously, the corresponding 

inundation fraction values { } 1

M
i i

f
=

  can be collected in the column space of the inundation dictionary [ ] 1
1 2| | ... | M

Mf f f ×∈ℜF =  

For each vector, ib in the dictionary of brightness temperatures there is an inundation fraction if from MODIS-MWP. The 

collection of these pairs from historical observations forms the two dictionaries B  and F . The algorithm follows two 

sequential steps: a detection and an estimation step. In the detection step, for each observed vector of brightness temperature 5 

obsb , the algorithm first finds its K-neighboring brightness temperatures in B  in the Euclidean sense and stores them in the 

column space of s
n K×∈ℜB . Then, knowing the column indices of the neighboring brightness temperatures, it isolates their 

corresponding inundation fraction values in 1
s

K×∈ℜF . In this step, if at least p K×  number of nearby inundation fraction 

values in sF  are non-zero, the algorithm assumes that obsb  is over an inundated pixel and attempts to estimate the fraction of 

inundation in the estimation step. Here, (0 1)p∈ −  is the detection probability parameter. It should be also noted that the K-10 

nearest neighbor algorithm in this paper does not directly constrain its search to any specific time or location. In other words, 

for every pixel-level vector of Tb, the K-nearest neighbors algorithm searches the entire dictionary regardless of any specific 

time or spatial coherency. 

 

In the estimation step, the method assumes that obsb  can be estimated by a linear combination of a few column vectors of sB  15 

as follows: 

obs s= + b B c e      (1)                                                

where the vector K∈ℜc  contains a set of representation coefficients to be estimated and n∈ℜe  is the error vector. Clearly, 

for an observed vector of brightness temperatures obsb , the goal is to estimate its unknown inundation fraction value f̂ . We 

assume that the two paired dictionaries sB  and sF  represent similar manifolds in a geometric sense that their local structures 

can be approximated well with the same linear model. This allows us to assume that the representation coefficients in vector20 

c  from Eq. (1) can be used to estimate the inundation fraction f̂  as follows: 

ˆ= sf F c  (2) 

As a result, using a classic weighted least-squares method, the representation coefficients c  can be estimated as: 

( ){ }2
obs s 2

 argminˆ    = −
c

c W b B c        (3) 

where W  is a weight matrix (to be discussed later in this section) that characterizes the importance of each channel in the 

retrieval scheme. The number of K-nearest neighbors is often larger than the number of frequency channels, k n , making 
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sB  a rank-deficient matrix and the above problem ill-posed. To make the optimization problem (3) well-posed, we use a mixed 

1 – 2  norm regularization as follows: 

( ){ }2 2
obs 1 21 22

T

ˆ  = Argmin     λ λ

subject  to  0,  1  1

− + +

=

s
c

c W b B c c c

c c    

       (4) 

which has been successfully used for passive microwave precipitation retrievals (Ebtehaj et al., 2015a, 2015b). The non-

negativity of the coefficients assures positivity of the brightness temperatures and the sum-to-one constraint enforces an 

unbiased estimation. The regularization involves both the 1 -norm 1
1

K

i
ic

=

= ∑c  and the 2 -norm 2
2

1

2
1

( )
K

i
ic

=

= ∑c . The 5 

parameters 1λ  and 2λ  in Equation (4) are regularization parameters that enforce a trade-off between the two regularizations 

1  and 2 . In this mixed regularization, the 1 -norm leverages sparsity in the solution (i.e., forces some of the elements of  

to be zero) while the 2 -norm increases the stability of the solution as the neighboring brightness temperatures in SB  are 

likely to be highly correlated (see Zou and Hastie, 2005). In effect, due to the use of a mixed regularization, this regularization 

promotes group sparsity (i.e., some blocks of the representation coefficients are zero) while it keeps the solution sufficiently 10 

stable. In other words, it acknowledges the fact that there are a few clusters of nearby brightness temperatures that can properly 

explain the observation. By enforcing the 1 -norm we select vectors that are parts of clusters of brightness temperatures, while 

the 2 -norm handles the potential correlation between those clustered neighbors and makes the problem sufficiently stable.  

The proposed algorithm is summarized in a flowchart shown in Fig. 3. 

 15 

As previously noted, in the current implementation of the proposed retrieval algorithm, we focus on (almost) coincidental 

observations of the brightness temperatures and inundation fractions by the SSMIS and MODIS instruments, respectively. The 

dictionaries B  and F  are constructed using 5 years of overlapping data (2010–2014) over the Mekong delta (latitude: 0–10 N 

and longitude: 100–110 E) at 12.5 km grid resolution (Fig. 1).  

 20 

To build the dictionary, only the clear-sky MODIS-MWP products were considered. At resolution 12.5 km, we labeled a pixel 

as clear-sky when less than 50 percent of the VNIR data at resolution 250m is flagged as non-cloudy. Because the MODIS 

sensor has a much higher resolution than the footprint of SSMIS and because the number of cloud-free samples over the 

Mekong is very limited, a threshold above zero is deployed to keep a certain number of partially cloudy pixels and make sure 

that the dictionary will not be undersampled. For choosing the threshold, we conducted some sensitivity analysis (not shown 25 

here) and found a 50 percent threshold, as a fair probability choice, results in minimum of potential biases. 

 

c
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Since the DMSP satellites have two different equatorial crossing times, here, we use two sets of dictionaries for Tb  values in 

the ascending (day or morning) and descending (night or evening) orbits. From all the available coincident observations, we 

randomly chose 2×106 pairs of brightness temperatures and inundation fractions in each ascending and descending dictionary. 

The purpose of stratifying the dictionaries into ascending and descending orbits is to exclude the effects of Tb modulations 

from the retrieval process caused by the systematic diurnal variation of surface temperature. In other words, the same 5 

inundation fraction has different PMW spectral signature in a daytime versus a night-time overpass largely due to the diurnal 

variability of skin temperature, precipitation, and soil moisture (see Mears et al., 2002; Ramage and Isacks, 2003; Norouzi et 

al., 2012). Fig. 4(a) presents the systematic difference between the Tbs of the ascending versus descending tracks for various 

ranges of pixel-level inundated fractions. In effect, in this figure, the Tbs in the dictionaries are grouped into five intervals 

based on their corresponding inundation fraction (from 0 to 1) in F . Then for each interval, the average of Tb values is shown. 10 

The plot clearly demonstrates that the daytime Tbs are thermally warmer than their night time counterparts and this difference 

begins to shrink when the inundation fraction increases. It is worth noting that the difference between ascending and descending 

brightness temperatures is larger over the low-frequency channels ( 37≤ GHz) as they respond more to the land surface 

structural variability than the higher frequency channels that capture atmospheric signatures. Fig. 4(b) depicts A DTb - Tb  

where ATb and DTb  stands for ascending and descending overpasses, respectively. It can be observed that high values of 15 

A DTb - Tb  depict the coastlines, i.e., regions with the transient presence and/or absence of water over land.  

 

The probability of detection, (0 1)p∈ − , determines if a pixel  is inundated or not if the number of inundated vectors in K-

nearest neighbors is p K≥ × . We found that the inundation detection with 50K ≥  gives a reasonable rate for the probability 

of hit and false alarm. In other words, the probability of detection does not change significantly for a larger number of nearest 20 

neighbors. In the estimation step, to characterize the weight matrix n n×∈ℜW , we used the coefficients of variation of each 

channel in response to changes in the inundation fraction (see Fig. 5).  In other words, we assume that those channels that 

exhibit more variability with respect to changes in inundation fraction contain more information about inundation and shall be 

given more weight in the estimation process. One might ask why it is important to consider the high-frequency channels (e.g., 

91 V, H GHz) despite the fact that they show minimal sensitivity to the inundation fraction (Fig. 5) and land surface emissivity 25 

compared to lower frequency channels. The high-frequency channels mainly capture the information content of the 

atmospheric profile. Therefore, incorporating them in the proposed retrieval framework allows us to indirectly consider the 

effect of atmospheric conditions by narrowing down the search for K-nearest neighbors to those Tb candidates that best match 

both the underlying land surface emissivity and the atmospheric conditions.  

 30 

For implementation of the algorithm, the regularization parameters are set as 1λ =λ(1 )α−  and 2λ  λ α= , where (0,1)α ∈ . 

Here, through cross validation studies, we empirically through cross-validation found that   0.001λ =  and 0.1α =  provide a 
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reasonable balance between sparsity and stability of the solution in Eq. (4). It should be noted that Eq. (4) is converted to a 

constrained quadratic programming problem and solved using an iterative Newton’s method with MATLAB optimization 

Toolbox (see Branch and Grace, 1996).   

 

4 Results, Validation and Discussion  5 

The inundation fractions were estimated during the wet period of calendar year 2015 from July-to-December when the water 

levels across the delta begin to rise and eventually recede (see Fig. 6). The wet season of the region is largely characterized by 

heavy precipitation as a result of the interactions of two monsoons including the Indian monsoon and the East Asia-Western 

North Pacific summer monsoon (Delgado et al., 2012).  

 10 

To study the performance of the detection step we computed the probability of hit ˆ( 0 | 0)P f MWP> >  and false alarm 

ˆ( 0 | 0)P f MWP> =  of the algorithm outputs. Our analysis indicates that the probability of hit is around 0.92 for both the dry 

and wet season, demonstrating the capability of the algorithm in detecting the inundated areas. However, the probability of 

false alarm is around 0.12 for the dry season and reaches the value of 0.34 for the wet season, which might be due to the 

generalization of the algorithm and MODIS missing data during the wet season. The MODIS daily data, especially in the wet 15 

season, contain a large number of missing values due to cloud blockages and frequent heavy rains over the study area. In fact, 

while we were collecting the overlapping data for constructing the dictionaries, we observed that over 88% of the MWP 

products have some missing portion in the 12.5 km resolution. As a result, it is very likely that the MWP data underestimate 

the actual inundation fraction of regions with prolonged precipitation events. 

 20 

Fig. 6 shows that the algorithm is capable of identifying hotspots of inundation when its outputs are compared with the MODIS-

MWP; however, the algorithm slightly overestimates the inundation fractions for some pixels farther from the coastlines, most 

of which are completely dry in MWP. Here for brevity, we only show the results for ascending overpasses, while similar spatial 

patterns are observed for descending overpasses. Fig. 6 also shows some overestimation of inundation fractions near the 

riverbanks of major rivers. This might be due to the high soil moisture content (≥ 0.8) during the wet season that increases the 25 

dielectric constant of the soil up to 30-50 (Alharthi and Lange 1987), which is close to the dielectric constant of the water 

surfaces (75-80). Another reason, is the cloud coverage. Since the riverbanks are inundated less frequently than the coastlines, 

it is possible that these few inundation events were missed by MODIS because of the cloud blockages. There is also some 

underestimation in the inundation fractions from the proposed algorithm over the hillslopes far away from the riverbanks 

compared to the MODIS-MWP product. Those sporadically inundated areas, which appear on the MODIS-MWP map (Fig 6. 30 

b & c), can be due to the terrain shadows that are misclassified as water. While we cannot directly prove the above assertion 

within the scope of this manuscript, the elevation map (Fig. 1) indicates that those hillslopes are very unlikely to get inundated. 
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retrieval results. This indicates the superior performance of the proposed inundation fraction retrievals as compared to the 

MWP products, chiefly because of its all-sky skills during the rain dominant seasons. 

 

When is compared to MODIS-MWP, the inundated area obtained by the retrieval algorithm in the dry months (Fig 8(a)) shows 

some underestimation. One reason for this underestimation is the general limitation of the empirical Bayesian estimation 5 

method regarding the extreme events (see Coles and Powell, 1996, and the references therein) and we suspect that it is not just 

limited to the months of January-to-March but it affects the retrievals at other months to a lesser extent, as well. This limitation 

arises by the sample scarcity of large flooding scenarios during the warm months of the year, which probably lead to the 

underestimation of inundation fractions related to those events by our retrieval algorithm. We expect that by improving the 

representativeness of the dataset—especially for extreme events in the summer months, this shortcoming can be significantly 10 

improved. 

 

A closer look at Fig. 8(a) also reveals slightly larger inundated surfaces in each month for the ascending (evening overpasses) 

compared to the descending (morning overpasses) tracks. This small difference between the ascending and descending 

retrievals can be attributed to the expected diurnal patterns of the precipitation over the Mekong delta. Indeed, it is well 15 

documented (Gupta 2005) that localized convective precipitation events are more likely during the evening, which can increase 

the extent of the inundated areas. To further assess the proposed algorithm performance at a daily scale, we compare the 

dependence of the total area of ascending daily inundation fractions of the algorithmic outputs with the average daily water 

level data, using Spearman’s rank correlation coefficient. The rationale is that a stronger rank correlation of an inundation 

product with the water level data implies an improved retrieval. The correlation coefficient between the daily water level of 20 

the rivers and the total inundated surfaces of the Mekong delta is equal to 0.22, which drops to -0.38 for the MWP products. 

To go beyond a rank correlation, we also examined the dependence structures across different ranges of inundation and water 

level quantiles using an empirical Copula (see Appendix 1).  

 

Copulas provide an effective nonparametric way for simple representation of multivariate joint distributions of high-25 

dimensional random variables to describe their dependence structure. When dependence of two random variables increases, 

their bivariate “L-shaped” cumulative Copulas tend more to the origin. In Fig. 9, the axes show the marginal quantiles of daily 

inundation fractions versus those of water level elevations and the contours trace the cumulative Copulas. To characterize the 

dependence of water level and inundation as a function of topography, we divided the study area into two sub-regions covering 

the steeper upper parts (above the Phnom Penh gauge in Fig. 1) and the flatter downstream region. The copula analysis for 30 

each region was presented separately in Fig. 9. As is evident, the empirical Copula of the total daily inundation fraction from 

the proposed algorithm shows higher degree of dependence to the water level, as compared to MWP, especially for the 

quantiles with less than 0.8 cumulative probability for both upstream and the downstream regions. However, comparing the 

downstream (Fig. 9(a)) and the upstream (Fig 9(b)) regions, we see an increased dependency of the retrievals with the water 
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levels in the upstream region. This observation seems to be consistent from a geomorphological point of view. Because, over 

steeper region of the basin the hill slopes are naturally steeper and any small water variability can give rise to significant water 

extension of inundated areas. However, over fat floodplains water levels and extent of inundations may not be strongly 

correlated as small changes of water levels my give rise a large extension of flooded surfaces.  

5 Conclusions and Future Directions  5 

In this paper, we introduced a methodology to retrieve inundation from space for almost all-sky conditions to reduce the gaps 

that exist in using satellite data in visible to microwave bands. The key idea of the proposed method was to explore the links 

between overlapping daily high-resolution observations in the visible and near infrared bands from the MODIS and the lower-

resolution passive microwave observations from the Special Sensor Microwave Imager/Sounder (SSMIS) sensor. The 

developed multi-frequency inundation retrieval algorithm uses the K-nearest matching method in conjunction with a sparsity 10 

promoting regularization technique. The proposed method demonstrated promising results in resolving the spatial patterns of 

inundation, compared with the MODIS-MWP data. Over the months with high cloud coverage, the monthly results are 

consistent with the seasonal dynamics of water level variation, which is controlled by tropical monsoons in the Mekong delta. 

Analysis also showed that, at a daily time scale, the outputs of the algorithm exhibit stronger dependency with the water level 

data than the MWP data. 15 

 

There were three major sources of uncertainty in the proposed retrieval model in this paper. The first one related to the use of 

the 3-day composite MODIS-MWP data (daily products of MODIS-MWP were avoided due to missing values and cloud 

blockages), which might have introduced some bias in the daily retrievals due to mismatch of time scales. This source of error 

can be significantly reduced if the MODIS dictionary is populated with more accurate daily products. The second source of 20 

error related to the lack of adequate fully clear-sky samples in our dictionary and therefore the need to define a cloud coverage 

threshold in order to increase the sample size. Using partially cloudy MODIS data was the main reason for some observed 

underestimation of inundation fractions, especially in the dry months (Figs. 7 and 8), which can be mitigated by increasing the 

sample size. The last source of error was more related to the general limitation of the Bayesian estimation method regarding 

the retrieval of extreme events (see, Coles and Powell, 1996, and references therein). This limitation is due to scarcity of large 25 

floods in the dictionary, which can be treated by adding more scenarios of extreme events to the dataset from different 

geographic locations. 

 

One of the limitations of the proposed algorithm (because of the spatial resolution of microwave data used in this paper) was 

its lack of information about the spatial patterns of inundation within the 12.5 km pixels. The spatial pattern of the estimated 30 

inundation fractions can be further enhanced by using the guidance of a high-resolution topographic data (see Galantowicz, 

2002). The database can also expand to include some high-resolution cloud-free imageries from newly launched satellites such 
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Sentinel-2 that can aid in capturing the high-resolution inundation areas. Finally, expanding the dictionary to include data from 

the passive microwave channels of the new satellites such as Global Precipitation Mission (GPM) Microwave Imager (GMI) 

will increase the spatial resolution of the retrievals to approximately 5 km. In this paper, the seasonality and also different land 

surface classes have not been directly taken into account in the retrieval algorithm. Future research should include the 

stratification of the dictionary based on different land surface types and time periods (e.g. seasons).  5 
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Acronyms and Abbreviations  

SSMIS Special Sensor Microwave Imager and Sounder  
SSM/I Special Sensor Microwave Imager 
DMSP Defense Meteorological Satellite Program  
MSS Multispectral Scanner System 
VNIR Visible to near infrared 
MODIS Moderate Resolution Imaging Spectroradiometer 
NIR Near infrared 
MIR Mid-infrared  
PMW Passive microwaves 
ESMR Electrically Scanning Microwave Radiometer 
SMMR Multi-frequency Microwave Radiometer 
BWI Wetness Index 
WSF Water Surface Fraction 
AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System 
NRT Near Real-Time 
NSIDC National Snow and Ice Data Center 
DFO Dartmouth Flood Observatory 
MODIS-MWP MODIS Near Real-Time (NRT) Water Product 
CDF Cumulative probability function 

 Number of vectors of microwave brightness temperatures B  
k Number of nearest neigbirs  
B  Brightness temperature dictionary 
f  Inundation fraction 

F  Inundation dictionary 
obsb  Observed vector of brightness temperature  

K Number of nearest neighbors 
sB  Sub-dictionary of B  

sF  Sub-dictionary of F  
c  Vector of representation coefficients 
f̂  Estimated inundation fraction 

W Weight matrix 
n  Number of frequency channels 
p Detection probability (0,1)∈  

1 & 2  Regularizations norms 
 λ1  &  λ2 Regularization parameters 

 
  

M
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Appendix 1: Copula 

Let 1X  and 2X  denote two random variables with marginal cumulative distributions 1 1 1 1( )  [ ]F x P X x≡ ≤  and 

2 2 2 2( )  [ ]F x P X x≡ ≤  with the cumulative joint distribution function [ ]1 2 1 1 2 2( , ) ,F x x P X x X x≡ ≤ ≤ . According to the 

Sklar’s theorem (Nelsen, 1999), the cumulative joint distribution 1 2( , )F x x  of 1X  and 2X  is equal to the cumulative joint 

distribution function 1 2( , )C u u  of the quantiles 1 1 1( )u F x=  and 2 2 2( )u F x=  by: 5 

( ) [ ]

[ ]
( )

1 2 1 1 2 2

1 1
1 1 1 2 2 2

1 1 2 2

1 2

, ,

( ), ( )

,

              ,

F x x P X x X x

P X F u X F u

C U u U u

C u u

− −

= ≤ ≤

 = ≤ ≤ 
≡ ≤ ≤

=

                                          (1) 

where ( )1 2,C u u , is the cumulative Copula with uniform marginal random variables 1 1( )F x  and 2 2( )F x  on the interval  [0, 1]. 

The multivariate density function 1 2( , )f x x , if exists, can be calculated by taking the derivative of C  and F  which results in 

the following: 

( )
1 2 1 2 1 2

1 2 1 2

( , ) ( , ). ( ). ( )
              ( ), ( ) . ( ). ( )
f x x c u u f x f x

c F X F X f x f x
=

=
                                                                                                                                    (2) 10 

It shows the Copula density function 1 2( , )c u u  separates the joint distribution function 1 2( , )f x x  from its marginal probability 

distribution functions 1( )f x  and 2( )f x ; therefore, it can captures the probabilistic dependence between two random variables 

1x  and 2x by quantifying the strength of the relationship between their corresponding quantiles. 
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Figures 

  
Figure 1. Map and digital elevation of the Mekong river basin (area=795,000 km2) and its delta. The study area is delineated by a 
pink rectangle. The 11 stations (from Mekong River Commission) that monitor the water level are also marked by pink stars.  

  5 



21 
 

 
Figure 2. A Schematic showing construction steps of the a priori dataset for dictionaries.  The top slab is the upscaled MODIS-MWP 
and the other slabs are the brightness temperature data at seven frequency bands. Each vector on the left is created by stacking a 
pixel-level information of the multi-frequency brightness temperatures by the SSMIS radiometer and their corresponding 
inundation fractions from the MWP product at 12.5 km resolution. This process is repeated for each orbit to generate a large number 5 
of vectors and form separate dictionaries for ascending and descending orbits using all satellite overpasses in 5 years from 2010 to 
2014. N n m= ×  is the number of collected vectors for one day in a year. The same process is conducted for each day in 5 years 

(2010-2014) to create the dictionaries with 
5 365

1
i

i
M N

×

=

= ∑ vectors. 
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Figure 3. Flowchart of the inundation retrieval algorithm for N pixels in each orbit.  See text for definitions of the notations and 
detailed explanation.  
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Figure 4. (a) The systematic difference between passive microwave observations from the ascending (solid lines) and descending 
orbits (broken lines) as a function of five different sub-pixel intervals of inundation fractions. (b) July-to-Dec daily average of 
absolute differences between the ascending (TbA) and descending (TbD) brightness temperatures at vertically polarized 19 GHz 
channel. The values of A DTb - Tb mainly capture the coastal regions with significant variability in their surface emissivity values 5 
due frequent diurnal tidal effects.  
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Figure 5. The normalized coefficients of variation (right panel) of the brightness temperatures (Tb) (left panel) averaged over the 
entire dataset for different intervals of inundation fractions. Here, Tb denotes the average of brightness temperatures over the 
inundation fractions. The coefficients of variation of each channel are used to determine the channel weights for the retrieval 
algorithm. Channels 19 H GHz and 37 V GHz are the most responsive channels to the variability of inundation fraction and are 5 
given higher weights.  
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Figure 6. Inundated map of the Mekong delta in the wet (July-December) and dry (January-June) seasons for the ascending orbits. 
The results of the proposed retrieval algorithm are presented using the ascending dictionary (top row) against the upscaled MODIS 
Near Real-Time (NRT) Water Product (MWP) data (bottom row). Overall, a good agreement is observed with some overestimation 
of inundated areas by the proposed algorithm compared to MODIS-MWP data around the river banks.  5 
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Figure 7. Scatterplots of daily inundation fractions (f) from the retrieval algorithm against those from MODIS-MWP in wet (a) and 
dry seasons (b) shown in Fig. 6. The scatterplots demonstrate larger inundation fractions from the retrieval algorithm in July-to-
December (a) compared to MODIS-MWP data. However, in January-to-June, when there are fewer clouds, the inundation fractions 
from the proposed algorithm are more correlated with the MODIS-MWP data, with only a slight underestimation of their 5 
variability. 
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Figure 8. The monthly inundated areas of the Mekong delta calculated from the proposed retrieval algorithm and MODIS Near 
Real-Time (NRT) Water Product (MWP) data in comparison with ground based monthly water level data. (a) Comparison of the 
total inundated surface of the Mekong delta from MWP products and the retrieval algorithm from ascending and descending 5 
dictionaries. From visual inspection, it is obvious that the retrieval algorithm can better follow variations of the water levels 
compared to MWP. More inundation over dry season is reported by MWP products than the wet season, which contradicts the 
causality between rivers’ stages and the extent of inundated areas. (b) The total fraction of land surface areas that are labeled as 
missing in MWP product because of atmospheric contaminations. The larger deviations of the MWP products from water level data 
during the wet months might be attributed to the larger percentage of missing values. 10 

  



28 
 

 

Figure 9. The empirical Copula (joint probability distribution of quantiles) of the average daily water level and total daily inundated 
areas from the proposed retrieval algorithm (red curves) and MODIS-MWP data (black curves) for 2015. These plots indicate that 
our products have stronger dependence to water levels than the MWP products (more L-shaped curves) for both the downstream 
(a) and upstream (b) regions of the Mekong Delta. The shaded areas (which quantify the difference between the degree of dependence 5 
of our products and the MWP products to the daily water levels) are larger in the upstream region, indicating an enhanced 
performance of the proposed algorithm to retrieve inundation fraction where potential inundation areas are better defined due to 
topography, e.g. around major riverbanks. 

 

 10 
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